Darbeheshti, N., Wöske, F., Weigelt, M., Mccullough, C., and Wu, H.: GRACETOOLS – GRACE Gravity Field Recovery Tools, Geosciences 8, 350,
https://doi.org/10.3390/geosciences8090350, 2018.
a
Darbeheshti, N., Lasser, M., Meyer, U., Arnold, D., and Jaeggi, A.: AIUB-G3P GRACE monthly gravity field solutions, Helmholtz-Zentrum Potsdam GeoForschungsZentrum GFZ [data set],
https://doi.org/10.5880/ICGEM.2023.001, 2023b.
a
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C., Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06, Geophys. J. Int., 211, 263–269,
https://doi.org/10.1093/gji/ggx302, 2017.
a
Folkner, W. M., Williams, J. G., and Boggs, D. H.: The Planetary and Lunar Ephemeris DE 421, Tech. Rep. Volume 42-178, 1–34, The Interplanetary Network Progress Report,
https://ipnpr.jpl.nasa.gov/progress_report/42-178/178C (last access: 13 February 2023), 2009. a
Goswami, S.: A contribution to Understanding the sensor noise in the GRACE range-rate observations by analyzing their residuals, PhD thesis, Leibniz Universität Hannover,
https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-822.pdf (last access: 21 March 2024), 2018. a
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans, Earth Syst. Sci. Data, 11, 647–674,
https://doi.org/10.5194/essd-11-647-2019, 2019.
a
Jäggi, A., Hubentobler, U., and G., B.: Pseudo-stochastic orbit modeling techniques for low-Earth orbiters, J. Geodesy, 80, 47–60, 2006.
a,
b
Jäggi, A., Dach, R., Montenbruck, O., Hugentobler, U., Bock, H., and Beutler, G.: Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination, J. Geodesy, 83, 1145–1162, 2009. a
Jäggi, A., Weigelt, M., Flechtner, F., Güntner, A., Mayer-Gürr, T., Martinis, S., Bruinsma, S., Flury, J., Bourgogne, S., Steffen, H., Meyer, U., Jean, Y., Sušnik, A., Grahsl, A., Arnold, D., Cann-Guthauser, K., Dach, R., Li, Z., Chen, Q., van Dam, T., Gruber, C., Poropat, L., Gouweleeuw, B., Kvas, A., Klinger, B., Lemoine, J.-M., Biancale, R., Zwenzner, H., Bandikova, T., and Shabanloui, A.: European Gravity Service for Improved Emergency Management (EGSIEM)–from concept to implementation, Geophys. J. Int., 218, 1572–1590,
https://doi.org/10.1093/gji/ggz238, 2019.
a
Jäggi, A., Meyer, U., Lasser, M., Jenny, B., Lopez, T., Flechtner, F., Dahle, C., Förste, C., Mayer-Gürr, T., Kvas, A., Lemoine, J.-M., Bourgogne, S., Weigelt, M., and Groh, A.: International Combination Service for Time-Variable Gravity Fields (COST-G), Springer Berlin Heidelberg, Berlin, Heidelberg, 1–9,
https://doi.org/10.1007/1345_2020_109, 2020.
a
Klinger, B.: A contribution to GRACE time-variable gravity field recovery: Improved Level-1B data pre-processing methodologies, PhD thesis, Graz University of Technology,
https://permalink.obvsg.at/AC15076679 (last access: 21 March 2024), 2018.
a,
b
Klinger, B. and Mayer Gürr, T.: The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016, Adv. Space Res., 58, 1597–1609,
https://doi.org/10.1016/j.asr.2016.08.007, 2016.
a,
b,
c
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649,
https://doi.org/10.5194/os-17-615-2021, 2021.
a
Meyer, U., Jäggi, A., and Beutler, G.: Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics, Approach, Earth Planet. Sc. Lett., 345–348, 72–80, 2012.
a,
b
Meyer, U., Jäggi, A., Jean, Y., and Beutler, G.: AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data, Geophys. J. Int., 205, 1196–1207,
https://doi.org/10.1093/gji/ggw081, 2016.
a,
b,
c,
d,
e
Meyer, U., Jean, Y., Kvas, A., Dahle, C., Lemoine, J. M., and Jäggi, A.: Combination of GRACE monthly gravity fields on the normal equation level, J. Geodesy, 93, 1645–1658,
https://doi.org/10.1007/s00190-019-01274-6, 2019.
a
Petit, G. and Luzum, B.: IERS Conventions (2010), IERS Technical Note No. 36, Tech. rep., Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany,
https://iers-conventions.obspm.fr/content/tn36.pdf (last access: 21 March 2024), 2010.
a,
b
Tapley, B., Watkins, M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of GRACE to understanding climate change, Nat. Clim. Change, 9, 358–369,
https://doi.org/10.1038/s41558-019-0456-2, 2019.
a
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607,
https://doi.org/10.1029/2004GL019920, 2004.
a
Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res.-Sol. Ea., 103, 30205–30229,
https://doi.org/10.1029/98JB02844, 1998.
a