Articles | Volume 16, issue 2
https://doi.org/10.5194/essd-16-1137-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-1137-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
Jingyu Lin
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Peng Wang
Coastal and Ocean Management Institute, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
Jinzhu Wang
School of Life and Environmental Sciences, Deakin University, Burwood, Vic 3125, Australia
Youping Zhou
Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
Xudong Zhou
Global Hydrological Prediction Center, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Hao Zhang
CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Yanpeng Cai
CORRESPONDING AUTHOR
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Zhifeng Yang
Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
Related authors
No articles found.
Yanbin Qiu, Xudong Zhou, Jiaquan Wan, Tao Yang, Lvfei Zhang, Yuanzhuo Zhong, Leqi Shen, and Xinwu Ji
EGUsphere, https://doi.org/10.5194/egusphere-2024-4053, https://doi.org/10.5194/egusphere-2024-4053, 2025
Short summary
Short summary
Floods pose a significant risk to cities, so fast and accurate information is essential for disaster management. This study used social media images to assess flood levels by analyzing submerged buses, a reliable reference object. An advanced AI model (YOLOv8) trained on different datasets achieved high flood detection accuracy. The results provide a scalable solution for real-time flood monitoring, enhancing urban transportation safety, and supporting emergency planning.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Menaka Revel, Xudong Zhou, Dai Yamazaki, and Shinjiro Kanae
Hydrol. Earth Syst. Sci., 27, 647–671, https://doi.org/10.5194/hess-27-647-2023, https://doi.org/10.5194/hess-27-647-2023, 2023
Short summary
Short summary
The capacity to discern surface water improved as satellites became more available. Because remote sensing data is discontinuous, integrating models with satellite observations will improve knowledge of water resources. However, given the current limitations (e.g., parameter errors) of water resource modeling, merging satellite data with simulations is problematic. Integrating observations and models with the unique approaches given here can lead to a better estimation of surface water dynamics.
Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki
Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, https://doi.org/10.5194/nhess-21-1071-2021, 2021
Short summary
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Cited articles
Allen, C.: A review of scientific advancements in datasets derived from big data for monitoring the Sustainable Development Goals, Sustain. Sci., 16, 1701–1716, https://doi.org/10.1007/s11625-021-00982-3, 2021.
Bowes, M. J., Armstrong, L. K., Harman, S. A., Wickham, H. D., Nicholls, D. J. E., Scarlett, P. M., Roberts, C., Jarvie, H. P., Old, G. H., Gozzard, E., Bachiller-Jareno, N., and Read, D. S.: Weekly water quality monitoring data for the River Thames (UK) and its major tributaries (2009–2013): the Thames Initiative research platform, Earth Syst. Sci. Data, 10, 1637–1653, https://doi.org/10.5194/essd-10-1637-2018, 2018.
Cai, L. and Zhu, Y.: The challenges of data quality and data quality assessment in the big data era, Data Sci. J., 14, 2, https://doi.org/10.5334/dsj-2015-002, 2015.
Chen, J., Zheng, T., Garg, A., Xu, L., Li, S., and Fei, Y.: Alternative maritime power application as a green port strategy: barriers in China, J. Clean. Prod., 213, 825–837, https://doi.org/10.1016/j.jclepro.2018.12.177, 2019.
Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A., and Arheimer, B.: Lessons learnt from checking the quality of openly accessible river flow data worldwide, Hydrol. Sci. J., 65, 699–711, https://doi.org/10.1080/02626667.2019.1659509, 2020.
Dai, M., Su, J., Zhao, Y., Hofmann, E. E., Cao, Z., Cai, W.-J., Gan, J., Lacroix, F., Laruelle, G. G., Meng, F., Müller, J. D., Regnier, P. A. G., Wang, G., and Wang, Z.: Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends, Annu. Rev. Earth Planet. Sci., 50, 593–626, https://doi.org/10.1146/annurev-earth-032320-090746, 2022.
Di, Z., Chang, M., and Guo, P.: Water quality evaluation of the Yangtze River in China using machine learning techniques and data monitoring on different time scales, Water, 11, 339, https://doi.org/10.3390/w11020339, 2019.
Duan, W., He, B., Chen, Y., Zou, S., Wang, Y., Nover, D., Chen, W., and Yang, G.: Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China, PLoS ONE, 13, e0188889, https://doi.org/10.1371/journal.pone.0188889, 2018.
Ebeling, P., Kumar, R., Lutz, S. R., Nguyen, T., Sarrazin, F., Weber, M., Büttner, O., Attinger, S., and Musolff, A.: QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany, Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, 2022.
Folke, C., Polasky, S., Rockström, J., Galaz, V., Westley, F., Lamont, M., Scheffer, M., Österblom, H., Carpenter, S. R., Chapin, F. S., Seto, K. C., Weber, E. U., Crona, B. I., Daily, G. C., Dasgupta, P., Gaffney, O., Gordon, L. J., Hoff, H., Levin, S. A., Lubchenco, J., Steffen, W., and Walker, B. H.: Our future in the Anthropocene biosphere, Ambio, 50, 834–869, https://doi.org/10.1007/s13280-021-01544-8, 2021.
Gleick, P. H. and Palaniappan, M.: Peak water limits to freshwater withdrawal and use, P. Natl. Acad. Sci. USA, 107, 11155–11162, https://doi.org/10.1073/pnas.1004812107, 2010.
Hassan Omer, N.: Water quality parameters, in: Water Quality - Science, Assessments and Policy, edited by: Summers, K., IntechOpen, https://doi.org/10.5772/intechopen.89657, 2020.
Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., Heiskanen, A.-S., Johnson, R. K., Moe, J., and Pont, D.: The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future, Sci. Total Environ., 408, 4007–4019, https://doi.org/10.1016/j.scitotenv.2010.05.031, 2010.
Huang, J., Zhang, Y., Bing, H., Peng, J., Dong, F., Gao, J., and George, B.: Characterizing the river water quality in China: Recent progress and on-going challenges, Water Res., 201, 117309, https://doi.org/10.1016/j.watres.2021.117309, 2021.
Johnson, D. L., Ambrose, S. H., Bassett, T. J., Bowen, M. L., Crummey, D. E., Isaacson, J. S., Johnson, D. N., Lamb, P., Saul, M., and Winter-Nelson, A. E.: Meanings of Environmental Terms, J. Environ. Qual., 26, 581–589, https://doi.org/10.2134/jeq1997.00472425002600030002x, 1997.
Koelmans, A. A., Mohamed Nor, N. H., Hermsen, E., Kooi, M., Mintenig, S. M., and De France, J.: Microplastics in freshwaters and drinking water: Critical review and assessment of data quality, Water Res., 155, 410–422, https://doi.org/10.1016/j.watres.2019.02.054, 2019.
Leju Celestino Ladu, J., L. Athiba, A., Tombe Venusto Lako, S., and Lomoro Alfred, M.: Investigation on the Impact of Water Pollution on Human Health in Juba County, Republic of South Sudan, J. Environ. Pollut. Hum. Health, 6, 89–95, https://doi.org/10.12691/jephh-6-3-2, 2018.
Lin, J., Bryan, B. A., Zhou, X., Lin, P., Do, H. X., Gao, L., Gu, X., Liu, Z., Wan, L., Tong, S., Huang, J., Wang, Q., Zhang, Y., Gao, H., Yin, J., Chen, Z., Duan, W., Xie, Z., Cui, T., Liu, J., Li, M., Li, X., Xu, Z., Guo, F., Shu, L., Li, B., Zhang, J., Zhang, P., Fan, B., Wang, Y., Zhang, Y., Huang, J., Li, X., Cai, Y., and Yang, Z.: Making China's water data accessible, usable and shareable, Nat. Water, 1, 328–335, https://doi.org/10.1038/s44221-023-00039-y, 2023a.
Lin, J., Wang, P., Wang, J., Zhou, Y., Zhou, X., Yang, P., Zhang, H., Cai, Y., and Yang, Z.: A water quality dataset in China, figshare [data set], https://doi.org/10.6084/m9.figshare.22584742, 2023b.
Ma, T., Sun, S., Fu, G., Hall, J. W., Ni, Y., He, L., Yi, J., Zhao, N., Du, Y., Pei, T., Cheng, W., Song, C., Fang, C., and Zhou, C.: Pollution exacerbates China's water scarcity and its regional inequality, Nat. Commun., 11, 650, https://doi.org/10.1038/s41467-020-14532-5, 2020a.
Ma, T., Zhao, N., Ni, Y., Yi, J., Wilson, J. P., He, L., Du, Y., Pei, T., Zhou, C., Song, C., and Cheng, W.: China's improving inland surface water quality since 2003, Sci. Adv., 6, eaau3798, https://doi.org/10.1126/sciadv.aau3798, 2020b.
Morin, S. and Artigas, J.: Twenty years of research in ecosystem functions in aquatic microbial ecotoxicology, Environ. Toxic Chem., 42, 1867–1888, https://doi.org/10.1002/etc.5708, 2023.
Oteng-Peprah, M., Acheampong, M. A., and deVries, N. K.: Greywater characteristics, treatment systems, reuse strategies and user perception—a review, Water Air Soil Pollut., 229, 255, https://doi.org/10.1007/s11270-018-3909-8, 2018.
Plagányi, É., Kenyon, R., Blamey, L., Robins, J., Burford, M., Pillans, R., Hutton, T., Hughes, J., Kim, S., Deng, R. A., Cannard, T., Jarrett, A., Laird, A., Lawrence, E., Miller, M., and Moeseneder, C.: Integrated assessment of river development on downstream marine fisheries and ecosystems, Nat. Sustain., 7, 31–44, https://doi.org/10.1038/s41893-023-01238-x, 2023.
Prüss-Ustün, A., Bartram, J., Clasen, T., Colford, J. M., Cumming, O., Curtis, V., Bonjour, S., Dangour, A. D., De France, J., Fewtrell, L., Freeman, M. C., Gordon, B., Hunter, P. R., Johnston, R. B., Mathers, C., Mäusezahl, D., Medlicott, K., Neira, M., Stocks, M., Wolf, J., and Cairncross, S.: Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries, Tropical Med. Int. Health, 19, 894–905, https://doi.org/10.1111/tmi.12329, 2014.
Read, E. K., Carr, L., De Cicco, L., Dugan, H. A., Hanson, P. C., Hart, J. A., Kreft, J., Read, J. S., and Winslow, L. A.: Water quality data for national-scale aquatic research: The Water Quality Portal, Water Resour. Res., 53, 1735–1745, https://doi.org/10.1002/2016WR019993, 2017.
Regnier, P., Resplandy, L., Najjar, R. G., and Ciais, P.: The land-to-ocean loops of the global carbon cycle, Nature, 603, 401–410, https://doi.org/10.1038/s41586-021-04339-9, 2022.
Sadoff, C. W., Borgomeo, E., and Uhlenbrook, S.: Rethinking water for SDG 6, Nat. Sustain., 3, 346–347, https://doi.org/10.1038/s41893-020-0530-9, 2020.
Shogren, A. J., Zarnetske, J. P., Abbott, B. W., Bratsman, S., Brown, B., Carey, M. P., Fulweber, R., Greaves, H. E., Haines, E., Iannucci, F., Koch, J. C., Medvedeff, A., O'Donnell, J. A., Patch, L., Poulin, B. A., Williamson, T. J., and Bowden, W. B.: Multi-year, spatially extensive, watershed-scale synoptic stream chemistry and water quality conditions for six permafrost-underlain Arctic watersheds, Earth Syst. Sci. Data, 14, 95–116, https://doi.org/10.5194/essd-14-95-2022, 2022.
Stehle, S. and Schulz, R.: Agricultural insecticides threaten surface waters at the global scale, P. Natl. Acad. Sci. USA, 112, 5750–5755, https://doi.org/10.1073/pnas.1500232112, 2015.
Tiyasha, Tung, T. M., and Yaseen, Z. M.: A survey on river water quality modelling using artificial intelligence models: 2000–2020, J. Hydrol., 585, 124670, https://doi.org/10.1016/j.jhydrol.2020.124670, 2020.
United Nations: Sustainable Development Goals: Goal 6 – Clean Water and Sanitation, https://www.un.org/sustainabledevelopment/water-and-sanitation/ (last access: 23 January 2024), 2018.
Van Vliet, M. T. H., Thorslund, J., Strokal, M., Hofstra, N., Flörke, M., Ehalt Macedo, H., Nkwasa, A., Tang, T., Kaushal, S. S., Kumar, R., Van Griensven, A., Bouwman, L., and Mosley, L. M.: Global river water quality under climate change and hydroclimatic extremes, Nat. Rev. Earth Environ., 4, 687–702, https://doi.org/10.1038/s43017-023-00472-3, 2023.
Virro, H., Amatulli, G., Kmoch, A., Shen, L., and Uuemaa, E.: GRQA: Global River Water Quality Archive, Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, 2021.
World Health Organization: Guidelines for drinking-water quality: fourth edition incorporating first addendum, World Health Organization, Geneva, 541 pp., 2017.
WWAP: The United Nations World Water Development Report 2019: Leaving no one behind, Paris, 186 pp.,2019.
WWAP: The United Nations World Water Development Report 2023: Partnerships and cooperation for water, Paris, 177 pp., 2023.
Zhang, F., Lin, L., Li, W., Fang, D., Lv, Z., Li, M., Ma, G., Wang, Y., Wang, L., and He, L.: Long-term study of monitoring history and change trends in surface water quality in China, Water, 14, 2134, https://doi.org/10.3390/w14132134, 2022.
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly,...
Altmetrics
Final-revised paper
Preprint