Articles | Volume 15, issue 11
https://doi.org/10.5194/essd-15-5105-2023
https://doi.org/10.5194/essd-15-5105-2023
Data description paper
 | 
24 Nov 2023
Data description paper |  | 24 Nov 2023

Using machine learning to construct TOMCAT model and occultation measurement-based stratospheric methane (TCOM-CH4) and nitrous oxide (TCOM-N2O) profile data sets

Sandip S. Dhomse and Martyn P. Chipperfield

Data sets

TCOM-CH4: TOMCAT CTM and Occultation Measurements based daily zonal stratospheric methane profile dataset [1991-2021] constructed using machine-learning Sandip S. Dhomse https://doi.org/10.5281/zenodo.7293740

TCOM-N2O: TOMCAT CTM and Occultation Measurements based daily zonal stratospheric nitrous oxide profile dataset [1991-2021] constructed using machine-learning Sandip S. Dhomse https://doi.org/10.5281/zenodo.7386001

SPARC Data Initiative monthly zonal mean composition measurements from stratospheric limb sounders (1978-2018) Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis Remsberg, Alexey Rozanov, Matt Toohey, Thomas von Clarmann, Kaley A. Walker, Hsiang Jiu Wang, Robert Damadeo, Ryan Fuller, Gretchen Lingenfelser, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel https://doi.org/10.5281/zenodo.4265393

ARS Halogen Occultation Experiment (HALOE) Level 2 V019 J. M. Russell III, and M. James https://acdisc.gesdisc.eosdis.nasa.gov/data//UARS_HALOE_Level2/

Atmospheric Chemistry Experiment SciSat Level 2 Processed Data P. Bernath, J. Steffen, J. Crouse, and C. Boone https://doi.org/10.20383/101.0291

Download
Short summary
There are no long-term stratospheric profile data sets for two very important greenhouse gases: methane (CH4) and nitrous oxide (N2O). Along with radiative feedback, these species play an important role in controlling ozone loss in the stratosphere. Here, we use machine learning to fuse satellite measurements with a chemical model to construct long-term gap-free profile data sets for CH4 and N2O. We aim to construct similar data sets for other important trace gases (e.g. O3, Cly, NOy species).
Altmetrics
Final-revised paper
Preprint