Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Refined fine-scale mapping of tree cover using time series of Planet-NICFI and Sentinel-1 imagery for Southeast Asia (2016–2021)
Feng Yang
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Zhenzhong Zeng
CORRESPONDING AUTHOR
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Related authors
No articles found.
Yue Yan, Xin Jiang, Sihuan Wei, Yubin Jin, Xinyu Zou, Junwei Liu, Yaotong Cai, Jianhuai Ye, Zhilin Guo, and Zhenzhong Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-695, https://doi.org/10.5194/essd-2025-695, 2026
Preprint under review for ESSD
Short summary
Short summary
Floating solar is booming in China, but its rapid growth is unmapped. We built the first detailed atlas for China's key Yangtze River Delta using radar and optical satellites, then manually verified every installation over ten years. Our map reveals explosive growth to 145.4 km² and provides a vital tool for sustainable energy planning and environmental monitoring.
Yuguang Zhu, Zhilin Guo, Sichen Wan, Kewei Chen, Yushan Wang, Zhenzhong Zeng, Huizhong Shen, Jianhuai Ye, and Chunmiao Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-5534, https://doi.org/10.5194/egusphere-2025-5534, 2025
Short summary
Short summary
Groundwater is rapidly being depleted in many regions, threatening water security and food production. We studied a major groundwater depression in northern China to test whether recharging aquifers with diverted river water can help recovery. Using long-term computer simulations, we found that recharge raises water levels and dilutes nitrate pollution, offering an effective way to restore overused aquifers.
Dukun Chen, Weifeng Su, Shaojie Jiang, Honglong Yang, Chunsheng Zhang, Shutong Jiang, Dongyang Chang, Yuxin Liang, Hao Wang, Xin Yang, Tzung-May Fu, Zhenzhong Zeng, Lei Zhu, Huizhong Shen, Chen Wang, and Jianhuai Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-4752, https://doi.org/10.5194/egusphere-2025-4752, 2025
Short summary
Short summary
This research turns unmanned aerial vehicles (UAVs) into sensitive weather stations by measuring how wind pushes and tilts them in flight. This method accurately gauges wind speed and direction without extra sensors, providing a low-cost way to map complex wind patterns. The findings are vital for improving air quality forecasts, tracking pollution, and ensuring safe drone operations, supporting smarter environmental management.
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024, https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Short summary
Our research analyzed China's wind speed data and addressed inconsistencies caused by factors like equipment changes and station relocations. After improving data quality, China's recent wind speed decrease reduced by 41 %, revealing an increasing trend. This emphasizes the importance of rigorous data processing for accurate trend assessments in various research fields.
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337, https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary
Short summary
Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of landscapes to climate stressors, together impacting food security and human health. Our results indicate that tuning dust emission models to dust in the atmosphere has hidden dust emission modelling weaknesses and its poor performance. Our new approach will reduce uncertainty and driven by prognostic albedo improve Earth System Models of aerosol effects on future environmental change.
Cited articles
Achard, F., Beuchle, R., Mayaux, P., Stibig, H. J., Bodart, C., Brink, A., Carboni, S., Desclée, B., Donnay, F., Eva, H. D., and Lupi, A.: Determination of tropical deforestation rates and related carbon losses from 1990 to 2010, Global Change Biol., 20, 2540–2554, 2014.
Allouche, O., Tsoar, A., and Kadmon, R.: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS), J. Appl. Ecol., 43, 1223–1232, 2006.
Brandt, M., Tucker, C. J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, L. V., Hiernaux, P., Diouf, A. A., and Kergoat, L.: An unexpectedly large count of trees in the West African Sahara and Sahel, Nature, 587, 78–82, 2020.
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and Smets, B.: Copernicus global land cover layers – collection 2, Remote Sens.-Basel, 12, 1044, 2020.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., and Zhang, W.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm., 103, 7–27, 2015.
CoP26, G. L.: Glasgow Leaders' Declaration on Forests and Land Use, https://webarchive.nationalarchives.gov.uk/ukgwa/20230418175226/https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/, last access: 6 September 2023.
ESA: Land Cover CCI Product User Guide Version 2, Tech. Rep., http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (last access: 6 September 2023), 2017.
Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A., Deubner, J., Jäckel, Z., Seiwald, K., and Dovzhenko, A.: U-Net: deep learning for cell counting, detection, and morphometry, Nat. Methods, 16, 67–70, 2019.
FAO: Global Forest Resources Assessment 2020 Main report, https://www.fao.org/3/ca9825en/ca9825en.pdf, last access: 6 September 2023.
Feng, Y., Ziegler, A. D., Elsen, P. R., Liu, Y., He, X., Spracklen, D. V., Holden, J., Jiang, X., Zheng, C., and Zeng, Z.: Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia, Nat. Sustain., 4, 892–899, 2021.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Suen, H. Ping, Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.: Stable classification with limited sample: Transferring a 30 m resolution sample set collected in 2015 to mapping 10 m resolution global land cover in 2017, Sci. Bull., 64, 370–373, 2019.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, 2017.
Hammer, D., Kraft, R., and Wheeler, D.: Alerts of forest disturbance from MODIS imagery, Int. J. Appl. Earth Obs., 33, 1–9, 2014.
Hansen, M. C., Stehman, S. V., and Potapov, P. V.: Quantification of global gross forest cover loss, P. Natl. Acad. Sci. USA, 107, 8650–8655, 2010.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., and Kommareddy, A.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, 2013.
Hsieh, P. F., Lee, L. C., and Chen, N. Y.: Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing, IEEE T. Geosci. Remote, 39, 2657–2663, 2001.
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., and Brumby, S. P.: Global land use/land cover with Sentinel 2 and deep learning, in: IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, 4704–4707, 11–16 July 2021, Brussels, Belgium, https://doi.org/10.1109/IGARSS47720.2021.9553499, 2021.
Lang, N., Jetz, W., Schindler, K., and Wegner, J. D.: A high-resolution canopy height model of the Earth, arXiv [preprint], https://doi.org/10.48550/arxiv.2204.08322, 2022.
Marta, S.: Planet imagery product specifications, https://assets.planet.com/docs/Combined-Imagery-Product-Spec-Dec-2018.pdf, last access: 6 September 2023.
Mugabowindekwe, M., Brandt, M., Chave, J., Reiner, F., Skole, D. L., Kariryaa, A., Igel, C., Hiernaux, P., Ciais, P., Mertz, O., and Tong, X.: Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda, Nat. Clim. Change, 13, 91–97, 2023.
Oishi, Y., Sawada, Y., Kamei, A., Murakami, K., Nakamura, R., and Matsunaga, T.: Impact of Changes in Minimum Reflectance on Cloud Discrimination, Remote Sens.-Basel, 10, 693, 2018.
Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42–57, 2014.
Parker, C., Mitchell, A., Trivedi, M., and Mardas, N.: The little REDD book: a guide to governmental and non-governmental proposals for reducing emissions from deforestation and degradation, http://www.globalcanopy.org/themedia/file/PDFs/LRB_lowres/lrb_en.pdf (last access: 6 September 2023), 2008.
Planet Team: Planet Application Program Interface: In Space for Life on Earth, San Francisco, CA, https://api.planet.com (last access: 6 September 2023), 2017.
Pontius Jr., R. G. and Millones, M.: Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment, Int. J. Remote Sens., 32, 4407–4429, 2011.
Reiner, F., Brandt, M., Tong, X., Skole, D., Kariryaa, A., Ciais, P., Davies, A., Hiernaux, P., and Chave, J.: More than one quarter of Africa's tree cover found outside areas previously classified as forest, Nat. Commun., 14, 2258, 2023.
Roy, D. P., Huang, H., Houborg, R., and Martins, V. S.: A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery, Remote Sens. Environ., 264, 112586, https://doi.org/10.1016/j.rse.2021.112586, 2021.
Sexton, J. O., Noojipady, P., Song, X. P., Feng, M., Song, D. X., Kim, D. H., Anand, A., Huang, C., Channan, S., Pimm, S. L., and Townshend, J. R.: Conservation policy and the measurement of forests, Nat. Clim. Change, 6, 192–196, 2016.
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., and Lucas, R.: New global forest/non-forest maps from ALOS PALSAR data (2007–2010), Remote Sens. Environ., 155, 13–31, 2014.
Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., Van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., and Belkacemi, M.: Climate change 2022: Mitigation of climate change, IPCC Sixth Assessment Report, https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf (last access: 6 September 2023), 2022.
Tsendbazar, N., Herold, M., Li, L., Tarko, A., De Bruin, S., Masiliunas, D., Lesiv, M., Fritz, S., Buchhorn, M., Smets, B., and Van De Kerchove, R.: Towards operational validation of annual global land cover maps, Remote Sens. Environ., 266, 112686, https://doi.org/10.1016/j.rse.2021.112686, 2021.
Velasco, R. F., Lippe, M., Tamayo, F., Mfuni, T., Sales-Come, R., Mangabat, C., Schneider, T., and Günter, S.: Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters, Remote Sens. Environ., 274, 112997, https://doi.org/10.1016/j.rse.2022.112997, 2022.
Wagner, F. H., Dalagnol, R., Silva-Junior, C. H., Carter, G., Ritz, A. L., Hirye, M. C., Ometto, J. P., and Saatchi, S.: Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021, Remote Sens., 15, 521, https://doi.org/10.3390/rs15020521, 2023.
Wigneron, J. P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J., Saatchi, S., Baccini, A., and Fensholt, R.: Tropical forests did not recover from the strong 2015–2016 El Niño event, Sci. Adv., 6, eaay4603, https://doi.org/10.1126/sciadv.aay4603, 2020.
Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., and Gong, P.: Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016, Earth Syst. Sci. Data, 12, 847–867, https://doi.org/10.5194/essd-12-847-2020, 2020.
Yang, F. and Zeng, Z.: Fine-scale maps of tree cover generated using time-series Planet-NICFI imagery for Southeast Asia (2016-2021) [DS/OL], V1, Science Data Bank [data set], https://doi.org/10.57760/sciencedb.07173, 2023.
Yang, F., Jiang, X., Ziegler, A. D., Estes, L. D., Wu, J., Chen, A., Ciais, P., Wu, J., and Zeng, Z.: Improved finescale tropical forest cover mapping for Southeast Asia using Planet-NICFI and Sentinel-1 imagery, J. Remote Sens., 3, 0064, https://doi.org/10.34133/remotesensing.0064, 2023.
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, L. L., Tsendbazar, N. E., Ramoino, F., and Arino, O.: ESA WorldCover 10 m 2020 v100, https://doi.org/10.5281/zenodo.5571936, 2021.
Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., and Lesiv, M.: ESA WorldCover 10 m 2021 v200, https://doi.org/10.5281/zenodo.7254221, 2022.
Zeng, Z., Estes, L., Ziegler, A. D., Chen, A., Searchinger, T., Hua, F., Guan, K., Jintrawet, A., and Wood, E. F.: Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century, Nat. Geosci., 11, 556–562, 2018a.
Zeng, Z., Gower, D., and Wood, E. F.: Accelerating Forest loss in Southeast Asian Massif in the 21st century: A case study in Nan Province, Thailand, Global Change Biol., 24, 4682–4695, 2018b.
Short summary
We generated a 4.77 m resolution annual tree cover map product for Southeast Asia (SEA) for 2016–2021 using Planet-NICFI and Sentinel-1 imagery. Maps were created with good accuracy and high consistency during 2016–2021. The baseline maps at 4.77 m can be converted to forest cover maps for SEA at various resolutions to meet different users’ needs. Our products can help resolve rounding errors in forest cover mapping by counting isolated trees and monitoring long, narrow forest cover removal.
We generated a 4.77 m resolution annual tree cover map product for Southeast Asia (SEA) for...
Altmetrics
Final-revised paper
Preprint