Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3387-2023
https://doi.org/10.5194/essd-15-3387-2023
Data description paper
 | 
02 Aug 2023
Data description paper |  | 02 Aug 2023

Network for the Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) trace gas measurements at the University of Toronto Atmospheric Observatory from 2002 to 2020

Shoma Yamanouchi, Stephanie Conway, Kimberly Strong, Orfeo Colebatch, Erik Lutsch, Sébastien Roche, Jeffrey Taylor, Cynthia H. Whaley, and Aldona Wiacek

Viewed

Total article views: 2,112 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,638 394 80 2,112 61 66
  • HTML: 1,638
  • PDF: 394
  • XML: 80
  • Total: 2,112
  • BibTeX: 61
  • EndNote: 66
Views and downloads (calculated since 23 Jan 2023)
Cumulative views and downloads (calculated since 23 Jan 2023)

Viewed (geographical distribution)

Total article views: 2,112 (including HTML, PDF, and XML) Thereof 2,019 with geography defined and 93 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Nov 2024
Download
Short summary
Nineteen years of atmospheric composition measurements made at the University of Toronto Atmospheric Observatory (TAO; 43.66° N, 79.40° W; 174 m.a.s.l.) are presented. These are retrieved from Fourier transform infrared (FTIR) solar absorption spectra recorded with a spectrometer from May 2002 to December 2020. The retrievals have been optimized for fourteen species: O3, HCl, HF, HNO3, CH4, C2H6, CO, HCN, N2O, C2H2, H2CO, CH3OH, HCOOH, and NH3.
Altmetrics
Final-revised paper
Preprint