Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2879-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2879-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GRiMeDB: the Global River Methane Database of concentrations and fluxes
Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
Luke C. Loken
Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706, USA
U.S. Geological Survey, Upper Midwest Science Center, Madison, WI 53726, USA
Nora J. Casson
Department of Geography, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
Samantha K. Oliver
U.S. Geological Survey, Upper Midwest Science Center, Madison, WI 53726, USA
Ryan A. Sponseller
Department of Ecology and Environmental Science, Umeå University, Umeå, 90736, Sweden
Marcus B. Wallin
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
Liwei Zhang
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
Gerard Rocher-Ros
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB-CSIC), 17300 Girona, Spain
Related authors
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Carolina Jativa, Anna Lupon, Emma Lannergård, José L. J. Ledesma, Gerard Rocher-Ros, Xavier Peñarroya, and Susana Bernal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1253, https://doi.org/10.5194/egusphere-2025-1253, 2025
Short summary
Short summary
Over 4.5 years, we studied 53 storms to assess stream metabolism’s resistance to change and resilience (recover capacity). Resistance was low, as storms easily disrupted metabolism, with energy consumption rising in larger events. Resilience decreased with storm size, prolonging recovery, but stabilized after 6 days. While storms temporarily boost activity, larger ones hinder recovery. Our findings highlight how changing storm patterns could alter stream health and their role in nutrient cycles.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Jens Daniel Müller, Bernd Schneider, Ulf Gräwe, Peer Fietzek, Marcus Bo Wallin, Anna Rutgersson, Norbert Wasmund, Siegfried Krüger, and Gregor Rehder
Biogeosciences, 18, 4889–4917, https://doi.org/10.5194/bg-18-4889-2021, https://doi.org/10.5194/bg-18-4889-2021, 2021
Short summary
Short summary
Based on profiling pCO2 measurements from a field campaign, we quantify the biomass production of a cyanobacteria bloom in the Baltic Sea, the export of which would foster deep water deoxygenation. We further demonstrate how this biomass production can be accurately reconstructed from long-term surface measurements made on cargo vessels in combination with modelled temperature profiles. This approach enables a better understanding of a severe concern for the Baltic’s good environmental status.
Cited articles
Aho, K. S., Fair, J. H., Hosen, J. D., Kyzivat, E. D., Logozzo, L. A., Rocher-Ros, G., Weber, L. C., Yoon, B., and Raymond, P. A.:
Distinct concentration-discharge dynamics in temperate streams and rivers: CO2 exhibits chemostasis while CH4 exhibits source limitation due to temperature control, Limnol. Oceanogr., 66, 3656–3668, https://doi.org/10.1002/lno.11906, 2021.
Allen, G. H. and Pavelsky, T. M.:
Global extent of rivers and streams, Science, 361, 585–588, https://doi.org/10.1126/science.aat0636, 2018.
Alshboul, Z., Encinas-Fernández, J., Hofmann, H., and Lorke, A.:
Export of dissolved methane and carbon dioxide with effluents from municipal wastewater treatment plants, Environ. Sci. Technol., 50, 5555–5563, https://doi.org/10.1021/acs.est.5b04923, 2016.
Anthony, S. E., Prahl, F. G., and Peterson, T. D.:
Methane dynamics in the Willamette River, Oregon, Limnol. Oceanogr., 57, 1517–1530, https://doi.org/10.4319/lo.2012.57.5.1517, 2012.
Attermeyer, K., Casas-Ruiz, J. P., Fuss, T., Pastor, A., Cauvy-Fraunié, S., Sheath, D., Nydahl, A. C., Doretto, A., Portela, A. P., Doyle, B. C., Simov, N., Gutmann Roberts, C., Niedrist, G. H., Timoner, X., Evtimova, V., Barral-Fraga, L., Bašić, T., Audet, J., Deininger, A., Busst, G., Fenoglio, S., Catalán, N., de Eyto, E., Pilotto, F., Mor, J.-R., Monteiro, J., Fletcher, D., Noss, C., Colls, M., Nagler, M., Liu, L., Romero González-Quijano, C., Romero, F., Pansch, N., Ledesma, J. L. J., Pegg, J., Klaus, M., Freixa, A., Herrero Ortega, S., Mendoza-Lera, C., Bednařík, A., Fonvielle, J. A., Gilbert, P. J., Kenderov, L. A., Rulík, M., and Bodmer, P.:
Carbon dioxide fluxes increase from day to night across European streams, Commun. Earth Environ., 2, 118, https://doi.org/10.1038/s43247-021-00192-w, 2021.
Barbosa, P. M., Farjalla, V. F., Melack, J. M., Amaral, J. H. F., da Silva, J. S., and Forsberg, B. R.:
High rates of methane oxidation in an Amazon floodplain lake, Biogeochemistry, 137, 351–365, https://doi.org/10.1007/s10533-018-0425-2, 2018.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and Enrich-Prast, A.:
Freshwater Methane emissions offset the continental carbon sink, Science, 331, 50–50, https://doi.org/10.1126/science.1196808, 2011.
Baulch, H. M., Dillon, P. J., Maranger, R., and Schiff, S. L.:
Diffusive and ebullitive transport of methane and nitrous oxide from streams: Are bubble-mediated fluxes important?, J. Geophys. Res., 116, G04028, https://doi.org/10.1029/2011JG001656, 2011.
Bednařík, A., Blaser, M., Matoušů, A., Hekera, P., and Rulík, M.:
Effect of weir impoundments on methane dynamics in a river, Sci. Total Environ., 584–585, 164–174, https://doi.org/10.1016/j.scitotenv.2017.01.163, 2017.
Begum, M. S., Bogard, M. J., Butman, D. E., Chea, E., Kumar, S., Lu, X., Nayna, O. K., Ran, L., Richey, J. E., Tareq, S. M., Xuan, D. T., Yu, R., and Park, J.:
Localized pollution impacts on greenhouse gas dynamics in three anthropogenically modified Asian river systems, J. Geophys. Res.-Biogeo., 126, e2020JG006124, https://doi.org/10.1029/2020JG006124, 2021.
Benjamini, Y. and Hochberg, Y.:
Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995.
Billett, M. F. and Harvey, F. H.:
Measurements of CO2 and CH4 evasion from UK peatland headwater streams, Biogeochemistry, 114, 165–181, https://doi.org/10.1007/s10533-012-9798-9, 2013.
Bodmer, P., Vroom, R., Stepina, T., del Giorgio, P., and Kosten, S.:
Methane fluxes of vegetated areas in natural freshwater ecosystems: assessments and global significance, Earth ArXiv https://doi.org/10.31223/X5ND0F, 5 December 2021, 2021.
Borges, A. V., Darchambeau, F., Lambert, T., Bouillon, S., Morana, C., Brouyère, S., Hakoun, V., Jurado, A., Tseng, H.-C., Descy, J.-P., and Roland, F. A. E.:
Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium), Sci. Total Environ., 610–611, 342–355, https://doi.org/10.1016/j.scitotenv.2017.08.047, 2018.
Bouillon, S., Yambélé, A., Spencer, R. G. M., Gillikin, D. P., Hernes, P. J., Six, J., Merckx, R., and Borges, A. V.:
Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin), Biogeosciences, 9, 2045–2062, https://doi.org/10.5194/bg-9-2045-2012, 2012.
Bretz, K. A., Jackson, A. R., Rahman, S., Monroe, J. M., and Hotchkiss, E. R.:
Integrating ecosystem patch contributions to stream corridor carbon dioxide and methane fluxes, J. Geophys. Res.-Biogeo., 126, e2021JG006313, https://doi.org/10.1029/2021JG006313, 2021.
Burns, R., Wynn, P. M., Barker, P., McNamara, N., Oakley, S., Ostle, N., Stott, A. W., Tuffen, H., Zhou, Z., Tweed, F. S., Chesler, A., and Stuart, M.:
Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier, Sci. Rep.-UK, 8, 17118. https://doi.org/10.1038/s41598-018-35253-2. 2018.
Bussmann, I., Koedel, U., Schütze, C., Kamjunke, N., and Koschorreck, M.:
Spatial variability and hotspots of methane concentrations in a large temperate river, Front. Environ. Sci., 10, 833936, https://doi.org/10.3389/fenvs.2022.833936, 2022.
Call, M., Sanders, C. J., Enrich-Prast, A., Sanders, L., Marotta, H., Santos, I. R., and Maher, D. T.:
Radon-traced pore-water as a potential source of CO2 and CH4 to receding black and clear water environments in the Amazon Basin, Limnol. Oceanogr. Lett., 3, 375–383, https://doi.org/10.1002/lol2.10089, 2018.
Campeau, A., Lapierre, J.-F., Vachon, D., and del Giorgio, P. A.:
Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec, Global Biogeochem. Cy., 28, 57–69, https://doi.org/10.1002/2013GB004685, 2014.
Campeau, A., Bishop, K., Nilsson, M. B., Klemedtsson, L., Laudon, H., Leith, F. I., Öquist, M., and Wallin, M. B.:
Stable carbon isotopes reveal soil-stream DIC linkages in contrasting headwater catchments, J. Geophys. Res.-Biogeo., 123, 149–167, https://doi.org/10.1002/2017JG004083, 2018.
Castro-Morales, K., Canning, A., Körtzinger, A., Göckede, M., Küsel, K., Overholt, W. A., Wichard, T., Redlich, S., Arzberger, S., Kolle, O., and Zimov, N.:
Effects of reversal of water flow in an Arctic floodplain river on fluvial emissions of CO2 and CH4, J. Geophys. Res.-Biogeo., 127, e2021JG006485, https://doi.org/10.1029/2021JG006485, 2022.
Chen, S., Wang, D., Ding, Y., Yu, Z., Liu, L., Li, Y., Yang, D., Gao, Y., Tian, H., Cai, R., and Chen, Z.:
Ebullition controls on CH4 emissions in an urban, eutrophic river: A potential time-scale bias in determining the aquatic CH4 flux, Environ. Sci. Technol., 55, 7287–7298, https://doi.org/10.1021/acs.est.1c00114, 2021.
Crawford, J. T., Stanley, E. H., Spawn, S. A., Finlay, J. C., Loken, L. C., and Striegl, R. G.:
Ebullitive methane emissions from oxygenated wetland streams, Glob. Change Biol., 20, 3408–3422, https://doi.org/10.1111/gcb.12614, 2014.
Crawford, J. T., Dornblaser, M. M., Stanley, E. H., Clow, D. W., and Strieg, R. G.:
Source limitation of carbon gas emissions in high-elevation mountain streams and lakes, J. Geophys. Res.-Biogeo., 120, 952–64, https://doi.org/10.1002/2014JG002861, 2015.
Crawford, J. T., Loken, L. C., Stanley, E. H., Stets, E. G., Dornblaser, M. M., and Striegl, R. G.:
Basin scale controls on CO2 and CH4 emissions from the Upper Mississippi River, Geophys. Res. Lett., 43, 1973–1979, https://doi.org/10.1002/2015GL067599, 2016.
Crawford, J. T., Loken, L. C., West, W. E., Crary, B., Spawn, S. A., Gubbins, N., Jones, S. E., Striegl, R. G., and Stanley, E. H.:
Spatial heterogeneity of within-stream methane concentrations, J. Geophys. Res.-Biogeo., 122, 1036–1048, https://doi.org/10.1002/2016JG003698, 2017.
de Angelis, M. A. and Lilley, M. D.:
Methane in surface waters of Oregon estuaries and rivers, Limnol. Oceanogr., 32, 716–722, https://doi.org/10.4319/lo.1987.32.3.0716, 1987.
DelSontro, T., Beaulieu, J. J., and Downing, J. A.: Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change,
Limnol. Oceanogr. Lett., 3, 64–75, https://doi.org/10.1002/lol2.10073, 2018.
Dowle, M. and Srinivasan, A.: data.table: Extension of 'data.frame', R package version 1.14.2, R Foundation [code], https://CRAN.R-project.org/package=data.table (last access: 8 October 2022), 2021.
Fisher, S. G., Gray, L. J., Grimm, N. B., and Busch, D. E.:
Temporal succession in a desert stream ecosystem following flash flooding, Ecol. Monogr., 52, 93–110, https://doi.org/10.2307/2937346, 1982.
Flecker, A. S., Shi, Q., Almeida, R. M., Angarita, H., Gomes-Selman, J. M., García-Villacorta, R., Sethi, S. A., Thomas, S. A., Poff, N. L., Forsberg, B. R., Heilpern, S. A., Hamilton, S. K., Abad, J. D., Anderson, E. P., Barros, N., Bernal, I. C., Bernstein, R., Cañas, C. M., Dangles, O., Encalada, A. C., Fleischmann, A. S., Goulding, M., Higgins, J., Jézéquel, C., Larson, E. I., McIntyre, P. B., Melack, J. M., Montoya, M., Oberdorff, T., Paiva, R., Perez, G., Rappazzo, B. H., Steinschneider, S., Torres, S., Varese, M., Walter, M. T., Wu, X., Xue, Y., Zapata-Ríos, X. E., and Gomes, C. P.:
Reducing adverse impacts of Amazon hydropower expansion, Science, 375, 753–760, https://doi.org/10.1126/science.abj4017, 2022.
Gatti, R. C., Callaghan, T. V., Rozhkova-Timina, I., Dudko, A., Lim, A., Vorobyev, S. N., Kirpotin, S. N., and Pokrovsky, O. S.:
The role of Eurasian beaver (Castor fiber) in the storage, emission and deposition of carbon in lakes and rivers of the River Ob flood plain, western Siberia, Sci. Total Environ., 644, 1371–1379, https://doi.org/10.1016/j.scitotenv.2018.07.042, 2018.
Gómez-Gener, L., Hotchkiss, E. R., Laudon, H., and Sponseller, R. A.:
Integrating discharge-concentration dynamics across carbon forms in a boreal landscape, Water Resour. Res., 57, e2020WR028806, https://doi.org/10.1029/2020WR028806, 2021a.
Gómez-Gener, L., Rocher-Ros, G., Battin, T., Cohen, M. J., Dalmagro, H. J., Dinsmore, K. J., Drake, T. W., Duvert, C., Enrich-Prast, A., Horgby, Å., Johnson, M. S., Kirk, L., Machado-Silva, F., Marzolf, N. S., McDowell, M. J., McDowell, W. H., Miettinen, H., Ojala, A. K., Peter, H., Pumpanen, J., Ran, L., Riveros-Iregui, D. A., Santos, I. R., Six, J., Stanley, E. H., Wallin, M. B., White, S. A., and Sponseller, R. A.:
Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions, Nat. Geosci., 14, 289–294, https://doi.org/10.1038/s41561-021-00722-3, 2021b.
Gries, C., Hanson, P. C., O'Brien, M., Servilla, M., Vanderbilt, K., and Waide, R.: The Environmental Data Initiative: Connecting the past to the future through data reuse, Ecol. Evol., 13, e9592, https://doi.org/10.1002/ece3.9592, 2023.
Gurnell, A. M., O'Hare, J. M., O'Hare, M. T., Dunbar, M. J., and Scarlett, P. M.:
An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers, Geomorphology, 116, 135–144, https://doi.org/10.1016/j.geomorph.2009.10.014, 2010.
Hall Jr., R. O. and Ulseth, A. J.: Gas exchange in streams and rivers,
WIREs Water, 7, e1391, https://doi.org/10.1002/wat2.1391, 2020.
Hlaváčová, E., Rulík, M., Čáp, L., and Mach, V.:
Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic, Arch. Hydrobiol., 165, 339–353, https://doi.org/10.1127/0003-9136/2006/0165-0339, 2006.
Ho, L., Jerves-Cobo, R., Barthel, M., Six, J., Bode, S., Boeckx, P., and Goethals, P.:
Greenhouse gas dynamics in an urbanized river system: influence of water quality and land use, Environ. Sci. Pollut. R., 29, 37277–37290, https://doi.org/10.1007/s11356-021-18081-2, 2022.
Hollister, J. W., Robitaille, A. L., Beck, M. W., Johnson, M., and Shah, T.: jhollist/elevatr: CRAN Release 0.4.2, Zenodo [code], https://doi.org/10.5281/zenodo.5809645, 2021.
Horton, R. E.:
Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geol. Soc. Am. Bull., 56, 275, https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2, 1945.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.:
Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hughes, B. B., Beas-Luna, R., Barner, A. K., Brewitt, K., Brumbaugh, D. R., Cerny-Chipman, E. B., Close, S. L., Coblentz, K. E., de Nesnera, K. L., Drobnitch, S. T., Figurski, J. D., Focht, B., Friedman, M., Freiwald, J., Heady, K. K., Heady, W. N., Hettinger, A., Johnson, A., Karr, K. A., Mahoney, B., Moritsch, M. M., Osterback, A.-M. K., Reimer, J., Robinson, J., Rohrer, T., Rose, J. M., Sabal, M., Segui, L. M., Shen, C., Sullivan, J., Zuercher, R., Raimondi, P. T., Menge, B. A., Grorud-Colvert, K., Novak, M., and Carr, M. H.:
Long-term studies contribute disproportionately to ecology and policy, BioScience, 67, 271–281, https://doi.org/10.1093/biosci/biw185, 2017.
Hutchins, R. H. S., Casas-Ruiz, J. P., Prairie, Y. T., and del Giorgio, P. A.:
Magnitude and drivers of integrated fluvial network greenhouse gas emissions across the boreal landscape in Québec, Water Res., 173, 115556, https://doi.org/10.1016/j.watres.2020.115556, 2020.
IPCC: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou., B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (last access: 12 June 2023), 2021.
Jin, H., Yoon, T. K., Begum, M. S., Lee, E.-J., Oh, N.-H., Kang, N., and Park, J.-H.:
Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater, Biogeosciences, 15, 6349–6369, https://doi.org/10.5194/bg-15-6349-2018, 2018.
Kemenes, A., Forsberg, B. R., and Melack, J. M.:
Methane release below a tropical hydroelectric dam, Geophys. Res. Lett., 34, L12809, https://doi.org/10.1029/2007gl029479, 2007.
Kling, G.: Biogeochemistry data set for Imnavait Creek Weir on the North Slope of Alaska 2002-2018, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/733c73c6ebffeaec6970b2b0f4dddfe6, 2019a.
Kling, G.: Biogeochemistry data set for soil waters, streams, and lakes near Toolik on the North Slope of Alaska, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/574fd24522eee7a0c07fc260ccc0e2fa, 2019b.
Kling, G.: Biogeochemistry data set for soil waters, streams, and lakes near Toolik Lake on the North Slope of Alaska, 2012 through 2020 ver 2, Environmental Data Initiative, https://doi.org/10.6073/pasta/4e25db9ae9372f5339f2795792814845, 2022.
Kokic, J., Sahlée, E., Sobek, S., Vachon, D., and Wallin, M. B.:
High spatial variability of gas transfer velocity in streams revealed by turbulence measurements, Inland Waters, 8, 461–473, https://doi.org/10.1080/20442041.2018.1500228, 2018.
Kuhn, C., Bettigole, C., Glick, H. B., Seegmiller, L., Oliver, C. D., and Raymond, P.:
Patterns in stream greenhouse gas dynamics from mountains to plains in northcentral Wyoming, J. Geophys. Res.-Biogeo., 122, 2173–2190, https://doi.org/10.1002/2017jg003906, 2017.
Lamarche-Gagnon, G., Wadham, J. L., Sherwood Lollar, B., Arndt, S., Fietzek, P., Beaton, A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkings, J. R., Kohler, T. J., Zarsky, J. D., Mowlem, M. C., Anesio, A. M., and Stibal, M.:
Greenland melt drives continuous export of methane from the ice-sheet bed, Nature, 565, 73–77, https://doi.org/10.1038/s41586-018-0800-0, 2019.
Lamontagne, R. A., Swinnerton, J. W., Linnenbom, V. J., and Smith, W. D.:
Methane concentrations in various marine environments, J. Geophys. Res., 78, 5317–5324, https://doi.org/10.1029/JC078i024p05317, 1973.
Leng, P., Kamjunke, N., Li, F., and Koschorreck, M.:
Temporal patterns of methane emissions from two streams with different riparian connectivity, J. Geophys. Res.-Biogeo., 126, e2020JG006104, https://doi.org/10.1029/2020jg006104, 2021.
Li, M., Peng, C., Zhang, K., Xu, L., Wang, J., Yang, Y., Li, P., Liu, Z., and He, N.:
Headwater stream ecosystem: an important source of greenhouse gases to the atmosphere, Water Res., 190, 116738, https://doi.org/10.1016/j.watres.2020.116738, 2021.
Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z. X., Huang, J., Sheffield, J., Berg, A. M., Keenan, T. F., McVicar, T. R., Wada, Y., Wang, X., Wang, T., Yang, Y., and Roderick, M. L.:
Multifaceted characteristics of dryland aridity changes in a warming world, Nat. Rev. Earth Environ., 2, 232–250, https://doi.org/10.1038/s43017-021-00144-0, 2021.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and Thieme, M.:
Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution, Sci. Data, 6, 283, https://doi.org/10.1038/s41597-019-0300-6, 2019.
Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., Lin, P., Pan, M., Yamazaki, D., Brinkerhoff, C., Gleason, C., Xia, X., and Raymond, P. A.:
The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers, P. Natl. Acad. Sci. USA, 119, e2106322119, https://doi.org/10.1073/pnas.2106322119, 2022.
Loken, L. C, Crawford, J. T., Stanley, E. H., Butman, D., and Striegl, R.:
Columbia River spatial water chemistry, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/e881070c9e8f6b7f774d3c65b27a9f69, 2018.
Lorke, A., Bodmer, P., Noss, C., Alshboul, Z., Koschorreck, M., Somlai-Haase, C., Bastviken, D., Flury, S., McGinnis, D. F., Maeck, A., Müller, D., and Premke, K.:
Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters, Biogeosciences, 12, 7013–7024, https://doi.org/10.5194/bg-12-7013-2015, 2015.
Lupon, A., Denfeld, B. A., Laudon, H., Leach, J., Karlsson, J., and Sponseller, R. A.:
Groundwater inflows control patterns and sources of greenhouse gas emissions from streams, Limnol. Oceanogr., 64, 1545–1557, https://doi.org/10.1002/lno.11134, 2019.
Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren, M., Björk, R. G., Björkman, M. P., Blok, D., Chaudhary, N., Chisholm, C., Classen, A. T., Hasselquist, N. J., Jonsson, M., Kristensen, J. A., Kumordzi, B. B., Lee, H., Mayor, J. R., Prevéy, J., Pantazatou, K., Rousk, J., Sponseller, R. A., Sundqvist, M. K., Tang, J., Uddling, J., Wallin, G., Zhang, W., Ahlström, A., Tenenbaum, D. E., and Abdi, A. M.:
Patchy field sampling biases understanding of climate change impacts across the Arctic, Nat. Ecol. Evol., 2, 1443–1448, https://doi.org/10.1038/s41559-018-0612-5, 2018.
Natchimuthu, S., Wallin, M. B., Klemedtsson, L., and Bastviken, D.: Spatio-temporal patterns of stream methane and carbon dioxide emissions in a hemiboreal catchment in Southwest Sweden, Sci. Rep.-UK, 7, 39729,
https://doi.org/10.1038/srep39729, 2017.
NOAA: Increase in atmospheric methane set another record during 2021, https://www.noaa.gov/news-release/increase-in-atmospheric-methane-set-another-record-during-2021 (last access: 20 September 2022), 2022.
Park, J.-H., Nayna, O. K., Begum, M. S., Chea, E., Hartmann, J., Keil, R. G., Kumar, S., Lu, X., Ran, L., Richey, J. E., Sarma, V. V. S. S., Tareq, S. M., Xuan, D. T., and Yu, R.:
Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges, Biogeosciences, 15, 3049–3069, https://doi.org/10.5194/bg-15-3049-2018, 2018.
Peacock, M., Audet, J., Bastviken, D., Futter, M. N., Gauci, V., Grinham, A., Harrison, J. A., Kent, M. S., Kosten, S., Lovelock, C. E., Veraart, A. J., and Evans, C. D.:
Global importance of methane emissions from drainage ditches and canals, Environ. Res. Lett., 16, 044010, https://doi.org/10.1088/1748-9326/abeb36, 2021.
Pebesma, E.:
Simple features for R: Standardized support for spatial vector data, R Journal, 10, 439, https://doi.org/10.32614/RJ-2018-009, 2018.
Pedersen, T. L.:
Patchwork: the composer of plots, R package version 1.1.2, R Foundation [code] https://CRAN.R-project.org/package=patchwork (last access: 14 June 2023), 2020.
Rajkumar, N. A., Barnes, J., Ramesh, R., Purvaja, R., and Upstill-Goddard, R. C.: Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India, Mar. Pollut. Bull., 56, 2043–2051, https://doi.org/10.1016/j.marpolbul.2008.08.005, 2008.
Ran, L., Shi, H., and Yang, X.:
Magnitude and drivers of CO2 and CH4 emissions from an arid/semiarid river catchment on the Chinese Loess Plateau, J. Hydrol., 598, 126260, https://doi.org/10.1016/j.jhydrol.2021.126260, 2021.
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., McDowell, W. H., and Newbold, D.:
Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers, Limnol. Oceanogr. Fluids Enviro., 2, 41–53, https://doi.org/10.1215/21573689-1597669, 2012.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing [code], Vienna, Austria, https://www.R-project.org/ (last access: 14 June 2023), 2021.
Riis, T. and Biggs, B. J. F.:
Hydrologic and hydraulic control of macrophyte establishment and performance in streams, Limnol. Oceanogr., 48, 1488–1497, https://doi.org/10.4319/lo.2003.48.4.1488, 2003.
Robison, A. L., Wollheim, W. M., Turek, B., Bova, C., Snay, C., and Varner, R. K.:
Spatial and temporal heterogeneity of methane ebullition in lowland headwater streams and the impact on sampling design, Limnol. Oceanogr., 66, 4063–4076, https://doi.org/10.1002/lno.11943, 2021.
Rocher-Ros, G., Stanley, E. H., Loken, L. C., Casson, N. J., Raymond, P. A., Liu, S., Amantulli, G., and Sponseller, R. A.: Global methane emissions from running waters, Nature, accepted, 2023.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., and Eyre, B. D.:
Half of global methane emissions come from highly variable aquatic ecosystem sources, Nat. Geosci., 14, 225–230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
Rovelli, L., Olde, L. A., Heppell, C. M., Binley, A., Yvon-Durocher, G., Glud, R. N., and Trimmer, M.:
Contrasting biophysical controls on carbon dioxide and methane outgassing from streams, J. Geophys. Res.-Biogeo., 127, e2021JG006328, https://doi.org/10.1029/2021JG006328, 2022.
Sabo, J. L., Sinha, T., Bowling, L. C., Schoups, G. H. W., Wallender, W. W., Campana, M. E., Cherkauer, K. A., Fuller, P. L., Graf, W. L., Hopmans, J. W., Kominoski, J. S., Taylor, C., Trimble, S. W., Webb, R. H., and Wohl, E. E.:
Reclaiming freshwater sustainability in the Cadillac Desert, P. Natl. Acad. Sci. USA, 107, 21263–21269, https://doi.org/10.1073/pnas.1009734108, 2010.
Sanders, I. A., Heppell, C. M., Cotton, J. A., Wharton, G., Hildrew, A. G., Flowers, E. J., and Trimmer, M.:
Emission of methane from chalk streams has potential implications for agricultural practices, Freshwater Biol., 52, 1176–1186, https://doi.org/10.1111/j.1365-2427.2007.01745.x, 2007.
Sawakuchi, H. O., Bastviken, D., Sawakuchi, A. O., Krusche, A. V., Ballester, M. V. R., and Richey, J. E.:
Methane emissions from Amazonian rivers and their contribution to the global methane budget, Glob. Change Biol., 20, 2829–2840, https://doi.org/10.1111/gcb.12646, 2014.
Smith, R. L. and Böhlke, J. K.:
Methane and nitrous oxide temporal and spatial variability in two midwestern USA streams containing high nitrate concentrations, Sci. Total Environ., 685, 574–588, https://doi.org/10.1016/j.scitotenv.2019.05.374, 2019.
Smith, R. M., Kaushal, S. S., Beaulieu, J. J., Pennino, M. J., and Welty, C.:
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams, Biogeosciences, 14, 2831–2849, https://doi.org/10.5194/bg-14-2831-2017, 2017.
Spawn, S., Dunn, S., Fiske, G., Natali, S., Schade, J., and Zimov, N.:
Summer methane ebullition from a headwater catchment in Northeastern Siberia, Inland Waters, 5, 224–230, https://doi.org/10.5268/IW-5.3.845, 2015.
Stanley, E. H., Loken, L. C., Crawford, J. T., Casson, N. J, Oliver, S. K, Gries, C., and Christel, S.:
A global database of methane concentrations and atmospheric fluxes for streams and rivers, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/21f5bd6642e9689baf90262f3c85ac4a, 2015.
Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L. C., and Oliver, S. K.:
The ecology of methane in streams and rivers: patterns, controls, and global significance, Ecol. Monogr., 86, 146–171, https://doi.org/10.1890/15-1027, 2016.
Stanley, E. H., Collins, S. M., Lottig, N. R., Oliver, S. K., Webster, K. E., Cheruvelil, K. S., and Soranno, P. A.:
Biases in lake water quality sampling and implications for macroscale research, Limnol. Oceanogr., 64, 1572–1585, https://doi.org/10.1002/lno.11136, 2019.
Stanley, E. H., Loken, L. C., Rocher-Ros, G., Casson, N. J., Oliver, S. K., Sponseller, R. A., Wallin, M., and Zhang, L.:
GRiMeDB: a comprehensive global database of methane concentrations and fluxes in fluvial ecosystems with supporting physical and chemical information, ver 2, Environmental Data Initiative [code/data set], https://doi.org/10.6073/pasta/f48cdb77282598052349e969920356ef, 2023.
Stow, C. A., Webster, K. E., Wagner, T., Lottig, N., Soranno, P. A., and Cha, Y.:
Small values in big data: The continuing need for appropriate metadata, Ecol. Inform., 45, 26–30, https://doi.org/10.1016/j.ecoinf.2018.03.002, 2018.
Stringer, L. C., Mirzabaev, A., Benjaminsen, T. A., Harris, R. M. B., Jafari, M., Lissner, T. K., Stevens, N., and Tirado-von der Pahlen, C.:
Climate change impacts on water security in global drylands, One Earth, 4, 851–864, https://doi.org/10.1016/j.oneear.2021.05.010, 2021.
Taillardat, P., Bodmer, P., Deblois, C. P., Ponçot, A., Prijac, A., Riahi, K., Gandois, L., del Giorgio, P. A., Bourgault, M. A., Tremblay, A., and Garneau, M.:
Carbon dioxide and methane dynamics in a peatland headwater stream: Origins, processes and implications, J. Geophys. Res.-Biogeo., 127, e2022JG006855, https://doi.org/10.1029/2022jg006855, 2022.
Turner, A. J., Frankenberg, C., and Kort, E. A.:
Interpreting contemporary trends in atmospheric methane, P. Natl. Acad. Sci. USA, 116, 2805–2813, https://doi.org/10.1073/pnas.1814297116, 2019.
van den Hoogen, J., Robmann, N., Routh, D., Lauber, T., van Tiel, N., Danylo, O., and Crowther, T. W.:
A geospatial mapping pipeline for ecologists, BioRxiv, https://doi.org/10.1101/2021.07.07.451145, 9 July 2021.
Wallin, M. B., Campeau, A., Audet, J., Bastviken, D., Bishop, K., Kokic, J., Laudon, H., Lundin, E., Löfgren, S., Natchimuthu, S., Sobek, S., Teutschbein, C., Weyhenmeyer, G. A., and Grabs, T.:
Carbon dioxide and methane emissions of Swedish low-order streams – a national estimate and lessons learnt from more than a decade of observations, Limnol. Oceanogr. Lett., 3, 156–167, https://doi.org/10.1002/lol2.10061, 2018.
Wickham, H.:
ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York, https://doi.org/10.1007/978-3-319-24277-4, 2016.
Wickham, H., François, R., Henry, L., and Müller, K.:
dplyr: A Grammar of Data Manipulation, R package version 1.0.7, R Foundation [code] https://CRAN.R-project.org/package=dplyr (last access: 14 June 2023), 2021.
Wilcock, R. J. and Sorrell, B. K.:
Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments, Water Air Soil Poll., 188, 155–170, https://doi.org/10.1007/s11270-007-9532-8, 2008.
Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten J.-W., Bonino da Silva Santos, L., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., `t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone S.-A., Schultes, E., Sengstag, T. Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Veltrerop, J. Waangmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR Guiding Principles for scientific data management and stewardship,
Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Woda, J., Wen, T., Lemon, J., Marcon, V., Keeports, C. M., Zelt, F., Steffy, L. Y., and Brantley, S. L.:
Methane concentrations in streams reveal gas leak discharges in regions of oil, gas, and coal development, Sci. Total Environ., 737, 140105, https://doi.org/10.1016/j.scitotenv.2020.140105, 2020.
Wu, Q.: whitebox: “WhiteboxTools”, R Frontend, v1.2.0, GitHub [code], https://github.com/giswqs/whiteboxR (last access: 14 June 2023), 2020.
Yang, L., Li, X., Yan, W., Ma, P., and Wang, J.:
CH4 concentrations and emissions from three rivers in the Chaohu Lake watershed in southeast China, J. Integr. Agr., 11, 665–673, https://doi.org/10.1016/S2095-3119(12)60054-9, 2012.
Yang, X., Pavelsky, T. M., Allen, G. H.:
The past and future of global river ice, Nature, 577, 69–73, https://doi.org/10.1038/s41586-019-1848-1, 2020.
Zhang, L., Xia, X., Liu, S., Zhang, S., Li, S., Wang, J., Wang, G., Gao, H., Zhang, Z., Wang, Q., Wen, W., Liu, R., Yang, Z., Stanley, E. H., and Raymond, P. A.: Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau, Nat. Geosci., 13, 349–354, https://doi.org/10.1038/s41561-020-0571-8, 2020.
Zhang, W., Li, H., Pueppke, S. G., and Pang, J.:
Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production, Environ. Pollut., 284, 117114, https://doi.org/10.1016/j.envpol.2021.117114, 2021.
Short summary
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters and concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
The Global River Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing...
Altmetrics
Final-revised paper
Preprint