Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1037-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1037-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An evaluation of long-term physical and hydrochemical measurements at the Sylt Roads Marine Observatory (1973–2019), Wadden Sea, North Sea
Johannes J. Rick
CORRESPONDING AUTHOR
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Wattenmeerstation Sylt, Hafenstraße 43, 25992 List,
Germany
Mirco Scharfe
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Meeresstation, Biologische Anstalt Heligoland, Kurpromenade,
27498 Heligoland, Germany
deceased
Tatyana Romanova
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Wattenmeerstation Sylt, Hafenstraße 43, 25992 List,
Germany
Justus E. E. van Beusekom
Helmholtz-Zentrum Hereon, Institute of Carbon Cycles, Department
Aquatic Nutrient Cycles, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Ragnhild Asmus
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Wattenmeerstation Sylt, Hafenstraße 43, 25992 List,
Germany
Harald Asmus
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Wattenmeerstation Sylt, Hafenstraße 43, 25992 List,
Germany
Finn Mielck
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Wattenmeerstation Sylt, Hafenstraße 43, 25992 List,
Germany
Anja Kamp
Hochschule Bremen – City University of Applied Science, Fakultät 5, Abt. Schiffbau und Meerestechnik, Nautik, Biologie, Bionik, Neustadtswall 30, 28199 Bremen, Germany
Rainer Sieger
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
deceased
Karen H. Wiltshire
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Wattenmeerstation Sylt, Hafenstraße 43, 25992 List,
Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und
Meeresforschung, Meeresstation, Biologische Anstalt Heligoland, Kurpromenade,
27498 Heligoland, Germany
Related authors
No articles found.
Gaziza Konyssova, Vera Sidorenko, Alexey Androsov, Sabine Horn, Sara Rubinetti, Ivan Kuznetsov, Karen Helen Wiltshire, and Justus van Beusekom
EGUsphere, https://doi.org/10.5194/egusphere-2025-2135, https://doi.org/10.5194/egusphere-2025-2135, 2025
Short summary
Short summary
This study explores how winds, tides, and biological activity influence suspended particle concentrations in a tidal basin of the Wadden Sea. Combining long-term measurements, ocean modelling, and machine learning, we found that wind dominates in winter, while biological processes like algae growth gain importance in spring and summer. The results also reveal contrasting short-term dynamics at shallow and deep stations, identifying the drivers of variability in coastal waters.
Andreas Neumann, Justus E. E. van Beusekom, Alexander Bratek, Jana Friedrich, Jürgen Möbius, Tina Sanders, Hendrik Wolschke, and Kirstin Dähnke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1803, https://doi.org/10.5194/egusphere-2025-1803, 2025
Short summary
Short summary
The North-Western shelf of the Black Sea is substantially influenced by the discharge of nutrients from River Danube. We have sampled the sediment there and measured particulate carbon and nitrogen to reconstruct the variability of nitrogen sources to the NW shelf. Our results demonstrate that the balance of riverine nitrogen input and marine nitrogen fixation is sensitive to climate changes. Nitrogen from human activities is detectable in NW shelf sediment since the 12th century.
Mona Norbisrath, Justus E. E. van Beusekom, and Helmuth Thomas
Ocean Sci., 20, 1423–1440, https://doi.org/10.5194/os-20-1423-2024, https://doi.org/10.5194/os-20-1423-2024, 2024
Short summary
Short summary
We present an observational study investigating total alkalinity (TA) in the Dutch Wadden Sea. Discrete water samples were used to identify the TA spatial distribution patterns and locate and shed light on TA sources. By observing a tidal cycle, the sediments and pore water exchange were identified as local TA sources. We assumed metabolically driven CaCO3 dissolution as the TA source in the upper, oxic sediments and anaerobic metabolic processes as TA sources in the deeper, anoxic ones.
Felipe de Luca Lopes de Amorim, Areti Balkoni, Vera Sidorenko, and Karen Helen Wiltshire
Ocean Sci., 20, 1247–1265, https://doi.org/10.5194/os-20-1247-2024, https://doi.org/10.5194/os-20-1247-2024, 2024
Short summary
Short summary
We studied the increasing or decreasing of chlorophyll a abundance in the German Bight. Chlorophyll a is the pigment present in algae that allows them to capture energy from the sun and indicates both the growth of the algae and the health of the environment. Most of the German Bight has decreasing chlorophyll a concentration in the analysed period. In addition, about 45 % of the changes happening in chlorophyll a were connected with changes in temperature.
Louise C. V. Rewrie, Burkard Baschek, Justus E. E. van Beusekom, Arne Körtzinger, Gregor Ollesch, and Yoana G. Voynova
Biogeosciences, 20, 4931–4947, https://doi.org/10.5194/bg-20-4931-2023, https://doi.org/10.5194/bg-20-4931-2023, 2023
Short summary
Short summary
After heavy pollution in the 1980s, a long-term inorganic carbon increase in the Elbe Estuary (1997–2020) was fueled by phytoplankton and organic carbon production in the upper estuary, associated with improved water quality. A recent drought (2014–2020) modulated the trend, extending the water residence time and the dry summer season into May. The drought enhanced production of inorganic carbon in the estuary but significantly decreased the annual inorganic carbon export to coastal waters.
Mona Norbisrath, Andreas Neumann, Kirstin Dähnke, Tina Sanders, Andreas Schöl, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 20, 4307–4321, https://doi.org/10.5194/bg-20-4307-2023, https://doi.org/10.5194/bg-20-4307-2023, 2023
Short summary
Short summary
Total alkalinity (TA) is the oceanic capacity to store CO2. Estuaries can be a TA source. Anaerobic metabolic pathways like denitrification (reduction of NO3− to N2) generate TA and are a major nitrogen (N) sink. Another important N sink is anammox that transforms NH4+ with NO2− into N2 without TA generation. By combining TA and N2 production, we identified a TA source, denitrification, occurring in the water column and suggest anammox as the dominant N2 producer in the bottom layer of the Ems.
Mona Norbisrath, Johannes Pätsch, Kirstin Dähnke, Tina Sanders, Gesa Schulz, Justus E. E. van Beusekom, and Helmuth Thomas
Biogeosciences, 19, 5151–5165, https://doi.org/10.5194/bg-19-5151-2022, https://doi.org/10.5194/bg-19-5151-2022, 2022
Short summary
Short summary
Total alkalinity (TA) regulates the oceanic storage capacity of atmospheric CO2. TA is also metabolically generated in estuaries and influences coastal carbon storage through its inflows. We used water samples and identified the Hamburg port area as the one with highest TA generation. Of the overall riverine TA load, 14 % is generated within the estuary. Using a biogeochemical model, we estimated potential effects on the coastal carbon storage under possible anthropogenic and climate changes.
Gesa Schulz, Tina Sanders, Justus E. E. van Beusekom, Yoana G. Voynova, Andreas Schöl, and Kirstin Dähnke
Biogeosciences, 19, 2007–2024, https://doi.org/10.5194/bg-19-2007-2022, https://doi.org/10.5194/bg-19-2007-2022, 2022
Short summary
Short summary
Estuaries can significantly alter nutrient loads before reaching coastal waters. Our study of the heavily managed Ems estuary (Northern Germany) reveals three zones of nitrogen turnover along the estuary with water-column denitrification in the most upstream hyper-turbid part, nitrate production in the middle reaches and mixing/nitrate uptake in the North Sea. Suspended particulate matter was the overarching control on nitrogen cycling in the hyper-turbid estuary.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Cited articles
Asmus, H., Hussel, B., Kadel, P., Asmus, R., Rick, J. J., and Wiltshire, K.
H.: Fish monitoring in the Sylt Rømø bight (2007 et seq), Alfred-
Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.pangaea.de/10.1594/PANGAEA.911261, 2020.
Asmus, R.: Bivalvia abundance at List Ferry Terminal, Sylt, Germany, in
1996, Alfred-Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data
set], https://doi.pangaea.de/10.1594/PANGAEA.745178, 2010.
Asmus, R.: Bivalvia abundance at List Ferry Terminal, Sylt, Germany, in
2014, Alfred- Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data
set], https://doi.pangaea.de/10.1594/PANGAEA.859859, 2016.
Asmus, R. and Asmus H.: Phytoplankton primary production at Koenigshafen,
List/Sylt, in 2014, Alfred-Wegener-Institute – Wadden Sea Station Sylt,
PANGAEA [data set], https://doi.org/10.1594/PANGAEA.860613,
2016.
Asmus, R. and Hussel, B.: Chlorophyll, net oxygen production and respiration
rates measured on water bottle samples at List Institute Beach, 1994–2007,
Alfred- Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.753577, 2010.
Asmus, R., Hussel, B., Asmus, H., Rick, J. J., and Wiltshire, K. H.: Gelatinous
zooplankton abundance at Sylt Roads – Wadden Sea off List, Sylt, North Sea
in 2009, Alfred-Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.880599, 2017a.
Asmus, R., Hussel, B., Asmus, H., Rick, J. J., and Wiltshire K. H.: Gelatinous
zooplankton abundance at Sylt Roads – Wadden Sea off List, Sylt, North Sea
in 2016, Alfred-Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.880606, 2017b.
Bayerl, K., Austen, I., Köster, R., Pejrup, M., and Witte, G.: Sediment
dynamics in the List tidal basin, in:
Ökosystem Wattenmeer – Austausch-, Transport- und
Stoffumwandlungsprozesse, edited by: Gätje, C. and Reise, K., Springer Verlag Berlin Heidelberg, 127–159,
https://doi.org/10.1007/978-3-642-58751-1, 1998.
Bendschneider, K. and Robinson, R. J.: A new spectrophotometric method for
the determination of nitrite in sea water, J. Mar. Res., 11, 87–96, 1952.
Brown, N. L. and Hamon, B. V.: An inductive salinometer, Deep-Sea Res., 8,
65–75, 1961.
Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific
variability and the effect of some environmental variables, J.
Phycol., 21, 347–357, 1985.
Cadee, C. C. and Hegeman, J.: Phytoplankton in the Marsdiep at the end of the
20th century: 30 years monitoring biomass, primary production and
Phaeocystis blooms, J. Sea. Res., 48, 97–110, 2002.
Carstensen, J., Conley, D. J., Andersen, J. H., and Aertebjerk, G.: Coastal
eutrophication and trend reversal; a Danish case study, Limnol. Oceanogr.,
51, 398–408, 2006.
Castillo-Ramírez, A. Claussen, M., Rick, J. J., Elbrächter, M., and
Wiltshire, K. H.: Semi-quantitative microplankton analysis (Sylt Roads Time
Series) – Wadden Sea off List, Sylt, North Sea in 2020, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.937748, 2021.
Culberson, C. H., Knapp, G., Stalcup, M. C., Williams, R. T., and Zemlyak, F.: A
comparison of methods for the determination of dissolved oxygen in seawater,
WHPO Publication, 9, https://doi.org/10.1575/1912/243, 1991.
Dugdale, R. C.: Nutrient limitation in the sea: dynamics, identification,
and significance, Limnol. Oceanogr., 12, 685–695, 1967.
Gaarder, T. and Gran, H. H.: Investigations of the production of plankton in
the Oslo Fjord. Rapports et procès-verbaux des réunions/Conseil
international pour l'exploration de la mer, 42, 1–48, 1927.
Gätje, C. and Reise, K.: Ökosystem Wattenmeer: Austausch-,
Transport-, und Stoffumwandlungsprozesse, edited by: Gätje, C. and Reise, K., Springer, https://epic.awi.de/899 (last access: 2 March 2023), 1998.
Grasshoff, K.: Determination of nitrate, in: Methods of Seawater Analysis, edited by: Grasshoff, K., Ehrhardt, M., and
Kremling, K., Weinheim: Verlag Chemie,
143, 1983.
Grasshoff, K. and Johannsen, H.: A new sensitive and direct method of the
automatic determination of ammonia in seawater, J. Cons. Int. Explor. Mer.,
34, 516–521, 1972.
Grasshoff, K. and Johannsen, H.: Notes on techniques and methods for sea
water analysis, J. Cons. Int. Explor. Mer., 36, 90–92, 1974.
Jeffrey, S. W. and Humphrey, G. F.: New spectrophotometric equations for
determining Chlorophylls a, b, c1 and c2 in higher plants, algae
and natural phytoplankton, Biochem. Physiol. Pfl., 167, 191–194,
1975.
Kawano, T.: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert
Reports and Guidelines. IOCCP Report No. 14, ICPO Publication Series No.
134, Version 1, https://www.go-ship.org/Manual/Kawano_Salinity.pdf (last access: 2 March 2023), 2010.
Koroleff, F.: Determination of nutrients: 1. Phosphorus, in: Methods of seawater analysis, edited by: Grasshoff, K., 117–126, 1976a.
Koroleff, F.: Determination of nutrients: 6. Silicon, in: Methods of seawater analysis, edited by: Grasshoff, K., 149–158, 1976b.
Loebl, M., Colijn, F., van Beusekom, J. E. E., Baretta-Bekker, J. G., Lancelot,
C., Philippart, C. J. M., Rousseau, V., and Wiltshire, K. H.: Recent patterns in
potential phytoplankton limitation along the Northwest European continental
coast, J. Sea Res., 61, 34–43, 2009.
Martens, P.: Abundance of zooplankton at times series station List Reede in
1976, Alfred- Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.646264, 2007.
Martens, P.: Abundance of zooplankton at times series station List
Reede in 2011, Alfred- Wegener-Institute – Wadden Sea Station Sylt, PANGAEA
[data set], https://doi.org/10.1594/PANGAEA.774882, 2012.
Pätsch, J. and Lenhart H.-J. (Eds.): Daily Loads of Nutrients, Total
Alkalinity, Dissolved Inorganic Carbon and Dissolved Organic Carbon of the
European Continental Rivers for the years 1977–2002, Berichte aus dem
Zentrum für Meeres- und Klimaforschung. Reihe B: Ozeanographie, 48, 159 pp.,
2004.
Raabe, T. and Wiltshire, K. H.: Quality control and analyses of the long-term
nutrient data from Helgoland Roads, North Sea, J. Sea Res., 61, 3–16, 2009.
Redfield, A. C.: On the proportions of organic derivations in sea water and
their relation to the composition of plankton, in: James Johnstone Memorial
Volume, edited by: Daniel, R. J., University Press of Liverpool, 176–192, 1934.
Redfield, A. C.: The biological control of chemical factors in the
environment, Sci Prog., 111, 150–170, PMID: 24545739, 1958.
Rick, J. J. and Wiltshire K. H.: Veränderungen des Phytoplanktons in der
Nordsee, in: WARNSIGNAL KLIMA: Die Biodiversität Unter
Berücksichtigung von Habitatveränderungen, Umweltverschmutzung &
Globalisierung Wissenschaftliche Fakten, WARNSIGNALE KLIMA: Die
Biodiversität, Hamburg, 8 p.,
https://www.klima-warnsignale.uni-hamburg.de/wp-content/uploads/pdf/de/biodiversitaet/warnsignal_klima-die_biodiversitaet-kapitel-4_1.pdf (last access: 2 March 2023),
2016.
Rick, J. J., van Beusekom, J., Asmus, R., and Wiltshire, K. H.: Long-term
quantitative microplankton analysis at Sylt Roads LTER (1992–2013), Wadden
Sea, North Sea, links to datasets, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.150033, 2017a.
Rick, J. J., van Beusekom, J., Romanova, T., and Wiltshire, K. H.: Long-term
physical an hydrochemical measurements at Sylt Roads LTER (1973–2013),
Wadden Sea, North Sea, links to data sets, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.150032, 2017b.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Reede, Sylt, Germany, in 2014, Alfred Wegener Institute – Wadden Sea
Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.873549, 2017c.
Rick, J. J., Romanova, T., and Wiltshire K. H.: Hydrochemistry time series at
List Entrance Koenigshafen, Sylt, Germany, in 2014, Alfred Wegener Institute
– Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.873545, 2017d.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Ferry Terminal, Sylt, Germany, in 2014, Alfred Wegener Institute –
Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.873547, 2017e.
Rick, J. J., Drebes, G., Elbrächter, M., Halliger, H., van Beusekom, J.,
and Wiltshire, K. H.: Semi-quantitative microplankton analysis (Sylt Roads
Time Series) in the Wadden Sea off List, Sylt, North Sea (1987–2016),
Alfred- Wegener-Institute – Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.886833, 2018.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Reede, Sylt, Germany, in 2015 (Version 2), Alfred Wegener Institute –
Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918018, 2020a.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Entrance Koenigshafen, Sylt, Germany, in 2015 (Version 2), Alfred
Wegener Institute – Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918032, 2020b.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Ferry Terminal, Sylt, Germany, in 2015 (Version 2), Alfred Wegener
Institute – Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918027, 2020c.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Reede, Sylt, Germany, in 2016 (Version 2), Alfred Wegener Institute –
Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918023, 2020d.
Rick, J. J., Romanova, T., and Wiltshire K.H.: Hydrochemistry time series at
List Entrance Koenigshafen, Sylt, Germany, in 2016 (Version 2), Alfred
Wegener Institute – Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918033, 2020e.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Ferry Terminal, Sylt, Germany, in 2016 (Version 2), Alfred Wegener
Institute – Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.918028, 2020f.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Reede, Sylt, Germany, in 2017, Alfred Wegener Institute – Wadden Sea
Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918024, 2020g.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Entrance Koenigshafen, Sylt, Germany, in 2017, Alfred Wegener Institute
– Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918034, 2020h.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Ferry Terminal, Sylt, Germany, in 2017, Alfred Wegener Institute –
Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918029, 2020i.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Reede, Sylt, Germany, in 2018, Alfred Wegener Institute – Wadden Sea
Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918025, 2020j.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Entrance Koenigshafen, Sylt, Germany, in 2018, Alfred Wegener Institute
– Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918035, 2020k.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Ferry Terminal, Sylt, Germany, in 2018. Alfred Wegener Institute –
Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918030, 2020l.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Reede, Sylt, Germany, in 2019. Alfred Wegener Institute – Wadden Sea
Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918026, 2020m.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Entrance Koenigshafen, Sylt, Germany, in 2019, Alfred Wegener Institute
– Wadden Sea Station Sylt, PANGAEA,
https://doi.org/10.1594/PANGAEA.918036, 2020n.
Rick, J. J., Romanova, T., and Wiltshire, K. H.: Hydrochemistry time series at
List Ferry Terminal, Sylt, Germany, in 2019, Alfred Wegener Institute –
Wadden Sea Station Sylt, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.918031, 2020o.
Strasser, M. and Günther, C.-P.: Larval supply of predator and prey:
temporal mismatch between crabs and bivalves after a severe winter in the
Wadden Sea, J. Sea Res., 46, 57–67, 2001.
Strasser, M., Kadel, P., Asmus, R., Rick, J., and Wiltshire, K.: Sylt Roads Meroplankton time series at List, Ferry Terminal station and Station 1, Alfred-Wegener Institut – Wadden Sea Station Sylt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.946473, 2022.
Thomas, R. W. and Dorey, S. W.: Protected oceanographic reversing thermometer
comparison study, Limnol. Oceanogr., 12, 361–362,
https://doi.org/10.4319/lo.1967.12.2.0361, 1967.
van Beusekom, J. E. E., Bot, P., Göbel, J. Hanslik, M., Lenhart, H.J.,
Pätsch, J., Peperzak, L., Petenati, T., and Reise, K.: Eutrophication,
in: Wadden Sea Quality Status Report
2004, edited by: Essink, K., Dettmann, C., Farke, H., Laursen, K., Lüerssen, G.,
Marencic, H., and Wiersinga, W., Wadden Sea Ecosystem No. 19, Trilateral Monitoring and Assessment
Group. Common Wadden Sea Secretariat, Wilhemshaven, Germany, 2005.
van Beusekom, J. E. E., Loebl, M., and Martens, P.: Distant riverine nutrient
supply and local temperature drive the long-term phytoplankton development
in a temperate coastal basin, J. Sea Res., 61, 26–33, 2009.
van Beusekom, J. J. E., Bot, P., Carstensen, J., Grage, A., Lenhart, H.J.,
Pätsch, J., Petenati, T., and Rick, J.: Eutrophication, in: Wadden Sea
Quality Status Report 2017, edited by: Kloepper, S., Baptist, M. J., Bostelmann, A., Busch, J. A., Buschbaum, C., Gutow, L., Janssen, G., Jensen, K., Jørgensen, H. P., de Jong, F., Lüerßen, G., Schwarzer, K., Strempel, R., and Thieltges, D., Common Wadden Sea
Secretariat, Wilhelmshaven, Germany,
http://qsr.waddensea-worldheritage.org/reports/eutrophication (last access: 2 March 2023), 2017.
van Beusekom, J. E. E., Carstensen, J., Dolch, T., Grage, A., Hofmeister, R.,
Lenhart, H., Kerimoglu, O., Kolbe, K., Pätsch, J., Rick, J., Rönn,
L., and Ruiter, H.: Wadden Sea Eutrophication: Long-Term Trends and Regional
Differences, Front. Mar. Sci., 6, 370,
https://doi.org/10.3389/fmars.2019.00370, 2019.
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J.:
Coastal ocean acidification: The other eutrophication problem, Estuar.
Coast. Shelf Scie., 148, 1–13, 2014.
Waldbusser, G. G., Voigt, E. P., Bergschneider, H., Green, M. A., and Newell,
R. I. E.: Biocalcification in the eastern oyster (Crassostrea virginica) in relation to longer
trends in Chesapeake Bay pH, Estuar. Coast., 34, 221–231, 2011.
Wiltshire, K. H. and Manly B. F. J.: The warming trend at Helgoland Roads,
North Sea: phytoplankton response, Helgol., Mar. Res., 58, 269–273, 2004.
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has...
Altmetrics
Final-revised paper
Preprint