Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-579-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-579-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DINOSTRAT: a global database of the stratigraphic and paleolatitudinal distribution of Mesozoic–Cenozoic organic-walled dinoflagellate cysts
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the
Netherlands
Related authors
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025, https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris on the South Orkney Microcontinent. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Peter K. Bijl, Kasia K. Sliwinska, Bella Duncan, Arnaud Huguet, Sebastian Naeher, Ronnakrit Rattanasriampaipong, Claudia Sosa-Montes de Oca, Alexandra Auderset, Melissa Berke, Bum Soo Kim, Nina Davtian, Tom Dunkley Jones, Desmond Eefting, Felix Elling, Lauren O'Connor, Richard D. Pancost, Francien Peterse, Pierrick Fenies, Addison Rice, Appy Sluijs, Devika Varma, Wenjie Xiao, and Yige Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1467, https://doi.org/10.5194/egusphere-2025-1467, 2025
Short summary
Short summary
Many academic laboratories worldwide process environmental samples for analysis of membrane lipid molecules of archaea, for the reconstruction of past environmental conditions. However, the sample workup scheme involves many steps, each of which has a risk of contamination or bias, affecting the results. This paper reviews steps involved in sampling, extraction and analysis of lipids, interpretation and archiving of the data. This ensures reproducable, reusable, comparable and consistent data.
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025, https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris on the South Orkney Microcontinent. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past, 21, 79–93, https://doi.org/10.5194/cp-21-79-2025, https://doi.org/10.5194/cp-21-79-2025, 2025
Short summary
Short summary
Based on dinoflagellate cyst assemblages and sea surface temperature records west of offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes affected atmosphere–ocean CO2 exchange in the Southern Ocean.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Cited articles
Açıkalın, S., Vellekoop, J., Ocakoğlu, F., Yılmaz, İ.
Ö., Smit, J., Altıner, S. Ö., Goderis, S., Vonhof, H., Speijer, R.
P., Woelders, L., Fornaciari, E., and Brinkhuis, H.: Geochemical and
palaeontological characterization of a new K-Pg Boundary locality from the
Northern branch of the Neo-Tethys: Mudurnu – Göynük Basin, NW
Turkey, Cretaceous Res., 52, 251–267, 2015.
Århus, N., Birkelund, T., and Smelror, M.: Biostratigraphy of some
Callovian and Oxfordian cores off Vega, Helgeland, Norsk Geol.
Tidsskr., 69, 39–56, 1989.
Aubry, A. M. R., De Schepper, S., and de Vernal, A.: Dinocyst and acritarch biostratigraphy of the Late Pliocene to Early Pleistocene at Integrated Ocean Drilling Program Site U1307 in the Labrador Sea, J. Micropalaeontol., 39, 41–60, https://doi.org/10.5194/jm-39-41-2020, 2020.
Awad, W. K. and Oboh-Ikuenobe, F. E.: Early Paleogene dinoflagellate cysts
from ODP Hole 959D, Côte d'Ivoire-Ghana Transform Margin, West Africa:
New species, biostratigraphy and paleoenvironmental implications, J.
Afr. Earth Sci., 123, 123–144, https://doi.org/10.1016/j.jafrearsci.2016.07.014,
2016.
Awad, W. K. and Oboh-Ikuenobe, F. E.: Paleogene-early Neogene
paleoenvironmental reconstruction based on palynological analysis of ODP
Hole 959A, West Africa, Mar. Micropaleontol., 148, 29–45, 2019.
Bailey, D. A., Milner, P., and Varney, T.: Some dinoflagellate cysts from the
Kimmeridge Clay Formation in North Yorkshire and Dorset, U.K., P. Yorks. Geol. Soc., 51, 235–243, 1997.
Baruffini, L., Lottaroli, F., and Torricelli, S.: Integrated high-resolution
stratigraphy of the lower oligocene tusa tuffite formation in the
Calabro-Lucano area and sicily (southern Italy), Riv. Ital.
Paleontol. S., 108, 457–478, 2002.
Besems, R.: Dinoflagellate cyst biostratigraphy of Tertiary and Quaternary
deposits of offshore NW Borneo, Geological Society of Malaysia, Bulletin of the Royal Society,
33, 65–93, 1993.
Biffi, U. and Manum, S. B.: Late Eocene-Early Miocene dinoflagellate cyst
stratigraphy from the Marche region (Central Italy), Bulletino della
Società Paleontologica Italiana, 27, 163–212, 1988.
Bijl, P. K.: DINOSTRAT V1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.5772616, 2021.
Bijl, P. K. and Brinkhuis, H.: A new genus and two new species of
dinoflagellate cysts from lower Eocene marine sediments of the Wilkes Land
Margin, Antarctica, Rev. Palaeobot. Palyno., 220, 88–97,
https://doi.org/10.1016/j.revpalbo.2015.05.004, 2015.
Bijl, P. K., Sluijs, A., and Brinkhuis, H.: A magneto- chemo-
stratigraphically calibrated dinoflagellate cyst zonation of the early
Paleogene South Pacific Ocean, Earth-Sci. Rev., 124, 1–31, https://doi.org/10.1016/j.earscirev.2013.04.010, 2013a.
Bijl, P. K., Bendle, A. P. J., Bohaty, S. M., Pross, J., Schouten, S.,
Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A.,
Escutia, C., Brinkhuis, H., and Expedition 318 scientists: Eocene cooling linked to
early flow across the Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110, 9645–9650,
https://doi.org/10.1073/pnas.1220872110, 2013b.
Bijl, P. K., Sluijs, A., and Brinkhuis, H.: Erratum to “A magneto- and
chemostratigraphically calibrated dinoflagellate cyst zonation of the early
Paleogene South Pacific Ocean” [Earth Sci. Rev. 124 (2013) 1–31],
Earth-Sci. Rev., 134, 160–163, https://doi.org/10.1016/j.earscirev.2014.03.010,
2014.
Bijl, P. K., Brinkhuis, H., Egger, L. M., Eldrett, J. S., Frieling, J.,
Grothe, A., Houben, A. J. P., Pross, J., Sliwinska, K. K., and Sluijs, A.:
Comment on “Wetzeliella and its allies – the “hole” story: a taxonomic
revision of the Paleogene dinoflagellate subfamily Wetzelielloideae” by
Williams et al. (2015), Palynology, 41, 423–429, https://doi.org/10.1080/01916122.2016.1235056,
2016.
Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal, J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, 2018.
Bowman, V. C., Francis, J. E., Riding, J. B., Hunter, S. J., and Haywood, A.
M.: A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation
from Antarctica, and implications for phytoprovincialism in the high
southern latitudes, Rev. Palaeobot. Palyno., 171, 40–56,
https://doi.org/10.1016/j.revpalbo.2011.11.004, 2012.
Bowman, V., Ineson, J., Riding, J., Crame, J., Francis, J., Condon, D.,
Whittle, R., and Ferraccioli, F.: The Paleocene of Antarctica: Dinoflagellate
cyst biostratigraphy, chronostratigraphy and implications for the
palaeo-Pacific margin of Gondwana, Gondwana Res., 38, 132–148,
https://doi.org/10.1016/j.gr.2015.10.018, 2016.
Bravo, I. and Figueroa, R. I.: Towards an Ecological Understanding of Dinoflagellate
Cyst Functions, Microorganisms, 2, 11–32,
https://doi.org/10.3390/microorganisms2010011, 2014.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (northeast Italy); biostratigraphy and
palaeoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163, 1994.
Brinkhuis, H. and Biffi, U.: Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in Central Italy, Mar. Micropaleontol., 22,
131–183, 1993.
Brinkhuis, H., Powell, A. J., and Zevenboom, D.: High-resolution
dinoflagellate cyst stratigraphy of the Oligocene/Miocene transition
interval in northwest and central Italy, in: Neogene and Quaternary
Dinoflagellate Cysts and Acritarchs, edited by: Head, M. J., and Wrenn, J. H.,
American Association of Stratigraphic Palynologists Foundation, Dallas,
1992.
Brinkhuis, H., Bujak, J. P., Smit, J., Versteegh, G. J. M., and Visscher, H.:
Dinoflagellate-based sea surface temperature reconstructions across the
Cretaceous-Tertiary boundary, Palaeogeogr. Palaeocl., 141, 67–83, 1998.
Brinkhuis, H., Munsterman, D. M., Sengers, S., Sluijs, A., Warnaar, J., and
Williams, G. L.: Late Eocene to Quaternary dinoflagellate cysts from ODP
Site 1168, off western Tasmania, in: Proceedings of the ODP, Scientific results, Leg 189, edited by: Exon, N., and Kennett, J. P., U.S. Government
Printing Office, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.189.105.2003, 2003a.
Brinkhuis, H., Sengers, S., Sluijs, A., Warnaar, J., and Williams, G. L.:
Latest Cretaceous to earliest Oligocene, and Quaternary dinoflagellates from
ODP Site 1172, East Tasman Plateau, in: Proceedings of the ODP, Scientific results, Leg 189, edited by: Exon, N., and Kennett, J. P., U.S. Government
Printing Office, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.189.106.2003, 2003b.
Brown, S. and Downie, C.: Dinoflagellate cyst biostratigraphy of late
Paleocene and early Eocene sediments from Holes 552, 553A, and 555, Leg 81,
Deep Sea Drilling Project (Rockall Plateau), in: Proceedings of the deep sea
drilling project, Initial reports, vol. 81, Washington, U.S.A., 565–579, https://doi.org/10.2973/dsdp.proc.81.113.1984,
1984.
Brown, S. and Downie, C.: Dinoflagellate cyst stratigraphy of Paleocene to
Miocene sediments from the Goban Spur (Sites 548–550, Leg 80), in: Proceedings
of the Deep Sea Drilling Project, Initial reports, vol. 80, Washington,
U.S.A., 643–651, https://doi.org/10.2973/dsdp.proc.80.120.1985, 1985.
Bucefalo Palliani, R. and Riding, J. B.: Lower Toarcian palynostratigraphy
of Pozzale, central Italy, Palynology, 21, 91–103, 1997a.
Bucefalo Palliani, R. and Riding, J. B.: The influence of
palaeoenvironmental change on dinoflagellate cyst distribution. An example
from the Lower and Middle Jurassic of Quercy, southwest France, Bull.
Cent. Rech. Elf E., 21, 107–123, 1997b.
Bucefalo Palliani, R. and Riding, J. B.: A palynological investigation of
the Lower and lowermost Middle Jurassic strata (Sinemurian to Aalenian) from
North Yorkshire, UK, Proceedings of the Yorkshire Geological Society, 53,
1–16, 2000.
Bucefalo Palliani, R. and Riding, J. B.: Biostratigraphy, Provincialism and
evolution of European Early Jurassic (Pliensbachian to early Toarcian)
dinoflagellate cysts, Palynology, 27, 179–214, 2003.
Bujak, J. P. and Matsuoka, K.: Late Cenozoic dinoflagellate cyst zonation in
the western and Northern Pacific, Palynology, 17, 7–25, 1986.
Bujak, J. P. and Mudge, D. C.: A high-resolution North Sea Eocene dinocyst
zonation, Journal of the Geological Society London, 151, 449–462, 1994.
Clyde, W. C., Wilf, P., Iglesias, A., Slingerland, R. L., Barnum, T., Bijl,
P. K., Bralower, T. J., Brinkhuis, H., Comer, E. E., Huber, B. T.,
Ibañez-Mejia, M., Jicha, B. R., Krause, J. M., Schueth, J. D., Singer,
B. S., Raigemborn, M. S., Schmitz, M. D., Sluijs, A., and Zamaloa, M. C.: New
age constraints for the Salamanca Formation and lower Río Chico Group
in the western San Jorge Basin, Patagonia, Argentina: Implications for
cretaceous-paleogene extinction recovery and land mammal age correlations, GSA Bulletin,
126, 289–306, https://doi.org/10.1130/B30915.1, 2014.
Correia, V. F., Riding, J. B., Henriques, M. H., Fernandes, P., Pereira, Z.,
and Wiggan, N. J.: The middle Jurassic palynostratigraphy of the northern
Lusitanian Basin, Portugal, Newsl. Stratigr., 52, 73–79,
https://doi.org/10.1127/nos/2018/0471, 2019.
Costa, L. I. and Davey, R. J.: Dinoflagellate cysts of the Cretaceous
system, in: A stratigraphix index of dinoflagellate cysts, in: A
stratigraphix index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK,
99–154, ISBN-13 978-9401050524, 1992.
Costa, L. I. and Downie, C.: The Wetzeliellaceae; Palaeogene
dinoflagellates, in: Proceedings of the 4th International Palynological
Conference, Lucknow, 1976, 34–46, 1979.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K.,
Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L.,
Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.:
Synchronous tropical and deep ocean temperature evolution in the Eocene,
Nature, 559, 382–386, 2018.
Cramwinckel, M. J., van der Ploeg, R., Bijl, P. K., Peterse, F., Bohaty, S.
M., Röhl, U., Schouten, S., Middelburg, J. J., and Sluijs, A.: Harmful
algae and export production collapse in the equatorial Atlantic during the
zenith of Middle Eocene Climatic Optimum warmth, Geology, 47, 247–250,
https://doi.org/10.1130/G45614.1, 2019.
Crouch, E. M., Willumsen, P. S., Kulhanek, D. K., and Gibbs, S.: A revised
Paleocene (Teurian) dinoflagellate cyst zonation from eastern New Zealand,
Palaeogeogr. Palaeocl., 202, 47–79, 2014.
Crouch, E. M., Shepherd, C. L., Morgans, H. E. G., Naafs, B. D. A.,
Dallanave, E., Phillips, A., Hollis, C. J., and Pancost, R. D.: Climatic and
environmental changes across the early Eocene climatic optimum at
mid-Waipara River, Canterbury Basin, New Zealand, Earth-Sci. Rev.,
200, 102961, https://doi.org/10.1016/j.earscirev.2019.102961, 2020.
Dallanave, E., Bachtadse, V., Crouch, E. M., Tauxe, L., Shepherd, C. L.,
Morgans, H. E. G., Hollis, C. J., Hines, B. R., and Sugisaki, S.:
Constraining early to middle Eocene climate evolution of the southwest
Pacific and Southern Ocean, Earth Planet. Sc. Lett., 433,
380–392, https://doi.org/10.1016/j.epsl.2015.11.010, 2016.
Davey, R. J.: Marine Apto-Albian palynomorphs from Holes 400A and 402A, IPOD
Leg 48, northern Bay of Biscay, in: Init. Rep. DSDP, vol. 48, edited by:
Montardert, L., Roberts, D. G., and Thompson, R. W., DSDP, Washington, USA, https://doi.org/10.2973/dsdp.proc.48.123.1979, 1979.
Davey, R. J.: Dinocyst stratigraphy of the latest Jurassic to Early
Cretaceous of the Haldager No. 1 borehole, Denmark, Danmarks Geologiske
Undersögelse, Series B, 6, 1–57, 1982.
Davey, R. J.: A summary of the palynology of the lower Hauterivian (Lower
Cretaceous) from Speeton, east England, Neues Jahrbuch für
Paläontologische Abhandlungen, 122, 83–93, 2001.
Davey, R. J. and Verdier, J.-P.: An investigation of microplankton
assemblages from the Albian of the Paris Basin, Verh., Ned. Akad. Wet., Afd.
Natuurkd., Eerste Reeks, 26, 1–58, 1971.
De Lira Mota, M. A., Harrington, G., and Dunkley Jones, T.: Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast, J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, 2020.
De Schepper, S. and Head, M. J.: Age calibration of dinoflagellate cyst and
acritarch events in the Pliocene-Pleistocene of the eastern North Atlantic
(DSDP Hole 610A), Stratigraphy, 5, 137–161, 2008.
De Schepper, S. and Head, M. J.: Pliocene and pleistocene dinoflagellate
cyst and acritarch zonation of DSDP Hole 610A, Eastern North Atlantic,
Palynology, 33, 179–218, 2009.
De Schepper, S., Beck, K. M., and Mangerud, G.: Late Neogene dinoflagellate
cyst and acritarch biostratigraphy for Ocean Drilling Program Hole 642B,
Norwegian Sea, Rev. Palaeobot. Palyno., 236, 12–32,
https://doi.org/10.1016/j.revpalbo.2016.08.005, 2017.
De Vernal, A. and Mudie, P. J.: Late Pliocene to Holocene palynostratigraphy
at ODP Site 645, Baffin Bay, in: Proceedings of the ODP, Scientific Results, Leg 105, edited by: Srivastava, S. P., Arthur, M., and
Clement, B., College
Station, Texas, USA, https://doi.org/10.2973/odp.proc.sr.105.133.1989, 1989.
De Vernal, A., Londeix, L., Mudie, P. J., Harland, R., Morzadec-Kerfourn, M.
T., Turon, J.-L., and Wrenn, J. H.: Quaternary organic-walled dinoflagellate
cysts of the North Atlantic Ocean and adjacent seas: ecostratigraphy and
biostratigraphy, in: Neogene and Quaternary dinoflagellate cysts and
acritarchs, edited by: Head, M. J. and Wrenn, J. H., AASP Foundation, 289–329,
1992.
De Verteuil, L. and Norris, G.: Miocene dinoflagellate stratigraphy and
systematics of Maryland and Virginia, Micropaleontology, 42, 1–172, https://doi.org/10.2307/1485926, 1996.
Dimter, A. and Smelror, M.: Callovian (Middle Jurassic) marine microplankton
from southwestern Germany: Biostratigraphy and paleoenvironmental
interpretations, Palaeogeogr. Palaeocl.,
80, 173–195, https://doi.org/10.1016/0031-0182(90)90131-P, 1990.
Dodsworth, P.: Trans-Atlantic dinoflagellate cyst stratigraphy across the Cenomanian–Turonian (Cretaceous) Stage boundary, J. Micropalaeontol., 19, 69–84, https://doi.org/10.1144/jm.19.1.69, 2000.
Duffield, S. L. and Stein, J. A.: Peridiniacean-dominated cyst assemblage
from the Miocene of the Gulf of Mexico shelf, offshore Louisiana, American
Association of Stratigraphic Palynologists Contribution Series, 17, 27–45,
1986.
Duque-Herrera, A.-F., Helenes, J., Pardo-Trujillo, A., Flores-Villarejo,
J.-A., and Sierro-Sánchez, F.-J.: Miocene biostratigraphy and
paleoecology from dinoflagellates, benthic foraminifera and calcareous
nannofossils on the Colombian Pacific coast, Mar. Micropaleontol., 141,
42–54, https://doi.org/10.1016/j.marmicro.2018.05.002, 2018.
Duxbury, S.: A study of dinoflagellate cysts and acritarchs from the Lower
Green- sand (Aptian to Lower Albian) of the Isle of Wight, southern England,
Palaeontographica, Abt. B, 186, 18–80, 1983.
Duxbury, S.: A palynological zonation scheme for the Lower Cretaceous –
United Kingdom Sector, Central North Sea, Neues Jahrb. Geol. P-A.,
219, 95–137, 2001.
Dybkjær, K. and Piasecki, S.: A new Neogene biostratigraphy for Denmark,
Geol. Surv. Den. Greenl., 15, 1–29, https://doi.org/10.34194/geusb.v15.5036 , 2008.
Dybkjær, K. and Piasecki, S.: Neogene dinocyst zonation for the eastern
North Sea Basin, Denmark, Rev. Palaeobot. Palyno., 161,
1–29, https://doi.org/10.1016/j.revpalbo.2010.02.005, 2010.
Egger, L. M., Sliwinska, K. K., van Peer, T. E., Liebrand, D., Lippert, P.
C., Friedrich, O., Wilson, P. A., Norris, R. D., and Pross, J.:
Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the
uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP
Expedition 342, Paleogene Newfoundland sediment drifts), Rev.
Palaeobot. Palyno., 234, 159–185,
https://doi.org/10.1016/j.revpalbo.2016.08.002, 2016.
Eldrett, J. S. and Harding, I. C.: Palynological analyses of Eocene to
Oligocene sediments from DSDP Site 338, Outer Vøring Plateau, Mar.
Micropaleontol., 73, 226–240, 2009.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.:
Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst
biostratigraphy from the Norwegian-Greenland Sea, Mar. Geol., 204,
91–127, 2004.
Eldrett, J. S., Harding, I. C., Wilshaw, R., and Xuan, C.: A new high
northern latitude dinocyst-based magneto-biostratigraphic calibration for
the Norwegian-Greenland Sea, Newsl. Stratigr., 52, 435–460,
2019.
Ellegaard, M.: Variations in dinoflagellate cyst morphology under conditions
of changing salinity during the last 2000 years in the Limfjord, Denmark,
Rev. Palaeobot. Palyno., 109, 65–81, 2000.
Eshet, Y., Moshkovitz, S., Habib, D., Benjamini, C., and Magaritz, M.:
Calcareous nannofossil and dinoflagellate stratigraphy across the
Cretaceous/Tertiary boundary at Hor Hahar, Israel, Mar. Micropaleontol.,
18, 199–228, https://doi.org/10.1016/0377-8398(92)90013-A, 1992.
Feist-Burkhardt, S.: Dinoflagellate assemblages of the Hausen coreholes
(Aalenian to Early Bajocian), southwest Germany, Bull. Cent. Rech. Elf
E., 14, 611–633, 1990.
Feist-Burkhardt, S. and Monteil, E.: Dinoflagellate cysts from the Bajocian
stratotype (Calvados, Normandy, western France). Kystes de dinoflagellés
du stratotype du Bajocien (Calvados, Normandie, France), Bull. Cent.
Rech. Elf E., 21, 31–105, 1997.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton,
D. I., and Williams, G. L.: A Classification of Modern and Fossil
Dinoflagellates, edited by: Dinkins, G., Micropalaeontology, Special Paper,
Salem, No. 7, 1993.
Fensome, R. A., Crux, J. A., Gard, G., MacRae, R. A., Williams, G. L.,
Thomas, F. C., Fiorini, F., and Wach, G.: The last 100 million years on the
Scotian Margin, offshore eastern Canada: an event-stratigraphic scheme
emphasizing biostratigraphic data, Atl. Geol., 44, 93–126, 2008.
Firth, J. V.: Upper middle Eocene to Oligocene dinoflagellate
biostratigraphy and assemblage variations in Hole 913B, Greenland Sea, in:
Proceedings of the Ocean Drilling Program. Scientific Results, vol. 151, edited by: Thiede, J., Myrhe, A. M., Firth, J. V., Johnson, G. L., and Ruddiman, W. F., 203–242, https://doi.org/10.2973/odp.proc.sr.151.105.1996,
1996.
Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K., and Wade, B. S.:
Integrated biomagnetochronology for the palaeogene of ODP Hole 647A:
Implications for correlating palaeoceanographic events from high to low
latitudes, Geol. Soc. Sp., 373, 29–78, https://doi.org/10.1144/SP373.9, 2013.
Frieling, J. and Sluijs, A.: Towards quantitative environmental
reconstructions from ancient non-analogue microfossil assemblages:
Ecological preferences of Paleocene – Eocene dinoflagellates, Earth-Sci.
Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014, 2018.
Frieling, J., Iakovleva, A. I., Reichart, G. J., Aleksandrova, G. N.,
Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene–Eocene warming
and biotic response in the epicontinental West Siberian Sea, Geology, 42,
767–770, 2014.
Gradstein, F. M., Kristiansen, I. L., Loemo, L., and Kaminski, M. A.:
Cenozoic foraminiferal and dinoflagellate cyst biostrtigraphy of the central
North Sea, Micropaleontology, 38, 101–137, 1992.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic
Time Scale 2012, Elsevier, Amsterdam, 1–1144, ISBN 9780444594488, 2012.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic Time
Scale 2020, Elsevier, Amsterdam, 1–1358, ISBN 9780128243619, 2020.
Grothe, A., Sangiorgi, F., Brinkhuis, H., Stoica, M., and Krijgsman, W.:
Migration of the dinoflagellate Galeacysta etrusca and its implications for
the Messinian Salinity Crisis, Newsl. Stratigr., 51, 73–91,
https://doi.org/10.1127/nos/2016/0340, 2017.
Guasti, E., Speijer, R. P., Brinkhuis, H., Smit, J., and Steurbaut, E.:
Paleoenvironmental change at the Danian-Selandian transition in Tunisia:
Foraminifera, organic-walled dinoflagellate cyst and calcareous nannofossil
records, Mar. Micropaleontol., 59, 210–229, 2005.
Habib, D. and Drugg, W. S.: Dinoflagellate age of Middle Jurassic–Early
Cretaceous sediments in the Blake-Bahama Basin, in: Deep Sea Drilling Project,
vol. 76, edited by: Gradstein, F. M., Sheridan, R. E. et al., U.S. Govt.
Printing Office, Washington, https://doi.org/10.2973/dsdp.proc.76.126.1983, 1983.
Habib, D. and Drugg, W. S.: Palynology of Sites 603 and 605, Leg 93, Deep
Sea Drilling Project, in: Deep Sea Drilling
Project, edited by: van Hinte, J. E. et al., Washington, Initial Reports, vol. 93, 751–775, https://doi.org/10.2973/dsdp.proc.93.122.1987, 1987.
Harding, I. C., Smith, G. A., Riding, J. B., and Wimbledon, W. A. P.:
Inter-regional correlation of Jurassic/Cretaceous boundary strata based on
the Tithonian-Valanginian dinoflagellate cyst biostratigraphy of the Volga
Basin, western Russia, Rev. Palaeobot. Palyno., 167,
82–116, https://doi.org/10.1016/j.revpalbo.2011.07.002, 2011.
Harland, R.: Dinoflagellate biostratigraphy of Neogene and Quaternary
sediments at holes 400/400A in the Bay of Biscay (DSDP Leg 48), Initial
Reports of the deep sea drilling project Leg 48, https://doi.org/10.2973/dsdp.proc.48.122.1979, 1979.
Harland, R.: Dinoflagellate cysts of the Quaternary system, in: A
stratigraphix index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK,
253–273, ISBN-13 978-9401050524, 1992.
Head, M. J.: Pollen and dinoflagellates from the Red Crag at
Walton-on-the-Naze, Essex: Evidence for a mild climatic phase during the
early Late Pliocene of eastern England, Geol. Mag., 135,
803–817, 1998.
Head, M. J. and Norris, G.: Palynology and dinocyst stratigraphy of the
Eocene and Oligocene in ODP Leg 105, Hole 647A, Labrador Sea, in: Proceedings of the ODP, Scientific
Results, Leg 105, edited by: Srivastava, S.
P., Arthur, M., and Clement, B., College Station, Texas, https://doi.org/10.2973/odp.proc.sr.105.178.1989, 1989.
Head, M. J. and Norris, G.: New species of dinoflagellate cysts and other
palynomorphs from the latest Miocene and Pliocene of DSDP Hole 603C, Western
North Atlantic, Journal of Palaeontology, 77, 1–15, https://doi.org/10.1666/0022-3360(2003)077<0001:NSODCA>2.0.CO;2, 2003.
Head, M. J., Norris, G., and Mudie, P. J.: 25. Palynology and dinocyst
stratigraphy of the Upper Miocene and lowermost Pliocene, ODP Leg 105, Site
646, Labrador Sea, in: Ocean Drilling Program,
Proceedings, Scientific Results, Leg 105, edited by: Srivastava, S. P. et al., College Station, Texas, 423–451, https://doi.org/10.2973/odp.proc.sr.105.135.1989, 1989.
Heilmann-Clausen, C.: Dinoflagellate stratigraphy of the uppermost Danian to
Ypresien in the Viborg I borehole, central Jylland, Denmark, Danmarks
Geologische Untersogelse A, 7, 1–69, 1985.
Heilmann-Clausen, C.: Lower Cretaceous dinoflagellate biostratigraphy in the
Danish Central Trough, Danmarks Geologische Untersogelse A, 17, 1–89,
1987.
Heilmann-Clausen, C. and Van Simaeys, S.: Dinoflagellate cysts from the
Middle Eocene to lowermost Oligocene succession in the Kysing research
borehole, central Danish basin, Palynology, 29, 143–204,
https://doi.org/10.1080/01916122.2005.9989606, 2005.
Helby, R. and McMinn, A.: A preliminary report of Early Cretaceous dinocyst
floras from Site 765, Argo Abyssal Plain, northwest Australia, edited by: Gradstein, F.
M. et al., Proc. ODP, Sci. Results, 123, 407–420, College Station,
TX, https://doi.org/10.2973/odp.proc.sr.123.121.1992, 1992.
Helby, R., Morgan, R., and Partridge, A. D.: A palynological zonation of the
Australian Mesozoic, in: Studies in Australian Mesozoic Palynology, edited by: Jell, P. A., Mem. Assoc. Australas. Palaeontol., 1987.
Hoek, R. P., Eshet, Y., and Almogi-Labin, A.: Dinoflagellate cyst zonation of
Campanian-Maastrichtian sequences in Israel, Micropaleontology, 42,
125–150, 1996.
Hollis, C. J., Crouch, E. M., Morgans, H. E. G., Handley, L., Baker, J. A.,
Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos,
J. C., and Pancost, R. D.: Tropical sea temperatures in the high latitude
South Pacific during the Eocene, Geology, 37, 99–102, 2009.
Houben, A. J. P., Bijl, P. K., Guerstein, G. R., Sluijs, A., and Brinkhuis,
H.: Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst
from the Southern Ocean, Rev. Palaeobot. Palyno., 165,
175, https://doi.org/10.1016/j.revpalbo.2011.03.002, 2011.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., Van De Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., and Brinkhuis, H.:
Reorganization of Southern Ocean plankton ecosystem at the onset of
Antarctic glaciation, Science, 340, 341–344, https://doi.org/10.1126/science.1223646, 2013.
Houben, A. J. P., Bijl, P. K., Sluijs, A., Schouten, S., and Brinkhuis, H.: Late
Eocene Southern Ocean cooling and invigoration of circulation preconditioned
Antarctica for full-scale glaciation, Geochem. Geophy. Geosy.,
20, 2214–2234, 2019.
Hoyle, T. M., Sala-Pérez, M., and Sangiorgi, F.: Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts, J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, 2019.
Iakovleva, A. I. and Heilmann-Clausen, C.: Eocene dinoflagellate cyst
biostratigraphy of research borehole 011-BP, Omsk region, southwestern
Siberia, Palynology, 34, 195–232, 2010.
Iakovleva, A. I., Brinkhuis, H., and Cavagnetoo, C.: Late Paleocene-Early Eocene
dinoflagellate cysts from the Turgay Strait, KAzachstan; correlations across
ancient seaways, Palaeogeogr. Palaeocl., 172,
243–268, 2001.
Ioannides, N. S., Colin, J.-P., and Jan du Chêne, R.: A preliminary
investigation of Kimmeridgian dinoflagellates and ostracodes from Quercy,
southwest France, Bull. Cent. Rech. Elf E., 12,
471–491, 1988.
King, C., Iakovleva, A., Heilmann-Clausen, C., and Steurbaut, E.: Ypresian
(early Eocene) stratigraphy of the Suvlu-Kaya reference section in the
Bakhchisaray area (Crimea), Newsl. Stratigr., 51,
167–208, https://doi.org/10.1127/nos/2017/0384, 2018.
Kirsch, K. H.: Dinoflagellaten-Zysten aus der Oberkreide des Helvetikums und
Nordultrahelvetikums von Oberbayern, Muenchner Geowiss. Abh. Reihe A,
Geol. Palaeontol., 22, 1–306, 1991.
Köthe, A.: A revised cenozoic dinoflagellate cyst and calcareous
nannoplankton zonation for the german sector of the southeastern north sea
basin, Newsl. Stratigr., 45, 189–220,
https://doi.org/10.1127/0078-0421/2012/0021, 2012.
Köthe, A., Khan, A. M., and Ahsraf, M.: Biostratigraphy of the Surghar
Range, Salt Range, Sulaiman Range and the Kohat area, Pakistan, according to
Jurassic through Paleogene calcareous nannofossils and Paleogene
dinoflagellates, Geol. Jb. Reihe B, 71, 3–87, 1988.
Krijgsman, W., Hilgen, F. J., Langereis, C. G., Santarelli, A., and
Zachariasse, W. J.: Late Miocene magnetostratigraphy, biostratigraphy and
cyclostratigraphy in the Mediterranean, Earth Planet. Sc. Lett.,
136, 475–494, https://doi.org/10.1016/0012-821X(95)00206-R, 1995.
Kuhlmann, G., Langereis, C. G., Munsterman, D., Leeuwen, R.-J. van,
Verreussel, R., Meulenkamp, J. E., and Wong, T. E.: Integrated
chronostratigraphy of the Pliocene-Pleistocene interval and its relation to
the regional stratigraphical stages in the southern North Sea region,
Geol. Mijnbouw, 85, 20–45, 2006.
Lebedeva, N. K., Aleksandrova, G. N., Shurygin, B. N., Ovechkina, M. N., and
Gnibidenkoa, Z. N.: Paleontological and Magnetostratigraphic Data on Upper
Cretaceous Deposits from Borehole no. 8 (Russkaya Polyana District,
Southwestern Siberia), Stratigr. Geol. Correl., 21,
48–78, 2013.
Leereveld, H.: Dinoflagellate cysts from the Lower Cretaceous Rio Argos
succession (southeast Spain), PhD thesis, Utrecht University, Laboratory of Palaeobotany
and Palynology, Contributions series no. 2, Utrecht, the Netherlands, 1995.
Leereveld, H.: Upper Tithonian-Valanginian (Upper Jurassic-Lower Cretaceous)
dinoflagellate cyst stratigraphy of the western Mediterranean, Cretaceous
Res., 18, 385–420, 1997a.
Leereveld, H.: Hauterivian-Barremian (Lower Cretaceous) dinoflagellate cyst
stratigraphy of the western Mediterranean, Cretaceous Res., 18,
421–456, 1997b.
Londeix, L. and Jan Du Chene, R.: Burdigalian dinocyst stratigraphy of the
stratotypic area (Bordeaux, France), GEOBIOS, 31, 283–294, 1998.
Louwye, S., Head, M. J., and De Schepper, S.: Dinoflagellate cyst
stratigraphy and Palaeoecology of the Pliocene in Northern Belgium, southern
North Sea Basin, Geol. Mag., 141, 353–378, 2004.
Louwye, S., Mertens, K. N., and Vercauteren, D.: New dinoflagellate cysts
from the Miocene of the Porcupine Basin, offshore southwest Ireland,
Palynology, 32, 131–142, 2008.
MacRae, R. A., Fensome, R. A., and Williams, G. L.: Fossil dinoflagellate
diversity, originations and extinctions and their significance, Can.
J. Botany, 74, 1687–1694, 1996.
Mao, S. and Mohr, B. A. R.: Late Cretaceous dinoflagellate cysts
(Santonian-Maestrichtian) from the Southern Indian Ocean (Hole 748C), in:
Proceedings of the Ocean Drilling
Program, Scientific results, volume 120, edited by: Wise, S. W. and Schlich, R., College Station, TX, USA, 1992.
Marret, F., Bradley, L., de Vernal, A., Hardy, W., Kim, S.-Y., Mudie, P.,
Penaud, A., Pospelova, V., Price, A. M., Radi, T., and Rochon, A.: From
bi-polar to regional distribution of modern dinoflagellate cysts, an
overview of their biogeography, Mar. Micropaleontol., 159, 101753,
https://doi.org/10.1016/j.marmicro.2019.101753, 2020.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton
zonation, in: Proceedings 2nd International
Conference Planktonic Microfossils Roma, Rome, 1970, ed. Tecnosci., Vol. 2, edited by: Farinacci, A.,
739–785, 1971.
Masure, E.: Berriasian to Aptian dinoflagellate cysts from the Galicia
margin, offshore Spain, Sites 638 and 639, Leg 103, in: Proceedings of the Ocean Drilling Program,
Scientific Results, volume 103, edited by: Boillot, G.,
Winterer, E. L., and et al., College Station, Texas, https://doi.org/10.2973/odp.proc.sr.103.183.1988, 1988.
Masure, E., Rauscher, R., Dejax, J., Schuler, M., and Ferre, B.:
Cretaceous-Paleocene palynology from the Cote D'ivoire-Ghana Transform
Margin, sites 959, 960, 961, and 962, Proc. Ocean Drill. Program Sci. Res., 159, 253–276, https://doi.org/10.2973/odp.proc.sr.159.040.1998, 1998.
Matsuoka, K., Bujak, J. P., and Shimazaki, T.: Late Cenozoic dinoflagellate
cyst biostratigraphy from the west coast of northern Japan,
Micropaleontology, 33, 214–229, 1987.
Matthiessen, J. and Brenner, W.: Dinoflagellate cyst ecostratigraphy of
Pliocene-Pleistocene sediments from the Yermak Plateau (Arctic Ocean, Hole
911A), in: Proceedings of the Ocean Drilling Program, Scientific Results, vol.
151, College Station, Texas, USA, https://doi.org/10.2973/odp.proc.sr.151.109.1996, 1996.
McLachlan, S. M. S., Pospelova, V., and Hebda, R. J.: Dinoflagellate cysts
from the upper Campanian (Upper Cretaceous) of Hornby Island, British
Columbia, Canada, with implications for Nanaimo Group biostratigraphy and
paleoenvironmental reconstructions, Mar. Micropaleontol., 145, 1–20,
https://doi.org/10.1016/j.marmicro.2018.10.002, 2018.
McMinn, A.: Neogene dinoflagellate distribution in the eastern Indian Ocean
from Leg 123, Site 765, in: Proc. ODP, Sci. Results, volume 123, edited by:
Gradstein, F. M., Ludden, J. N., et al., College
Station, TX, https://doi.org/10.2973/odp.proc.sr.123.120.1992, 1992.
McMinn, A.: Neogene dinoflagellate cyst biostratigraphy from sites 815 and
823, Leg 133, northeastern Australian margin, in: Proceedings of the Ocean Drilling Program,
Scientific Results, volume 133, edited by: McKenzie, J. A.,
Davies, P. J., and Palmer-Julson, A., U.S. Government Printing Office, College
Station, Texas, https://doi.org/10.2973/odp.proc.sr.133.219.1993, 1993.
Mertens, K. N. and Carbonell-Moore, C.: Introduction to Spiniferites Mantell 1850 special
issue, Palynology, 42, 1–9, https://doi.org/10.1080/01916122.2018.1465741, 2018.
Mertens, K. N., Takano, Y., Head, M. J., and Matsuoka, K.: Living fossils in
the Indo-Pacific warm pool: A refuge for thermophilic dinoflagellates during
glaciations, Geology, 42, 531–534, https://doi.org/10.1130/G35456.1, 2014.
Mohr, B. A. R. and Mao, S.: Maastrichtian dinocyst floras from Maud Rise and
Georgia Basin (Southern Ocean): Their Stratigraphic and Palaeoenvironmental
implications, Palynology, 21, 41–65, 1997.
Montanari, A., Bice, D. M., Capo, R., Coccioni, R., Deino, A., DePaolo, D.
J., Emmanuel, L., Monechi, S., Renard, M., and Zevenboom, D.: Integrated
stratigraphy of the Chattian to mid-Burdigalian pelagic sequence of the
Contessa Valley (Gubbio, Italy), in:
Miocene Stratigraphy: an Integrated Approach, edited by: Montanari, A., Odin, G. S., and Coccioni, R., Elsevier, Amsterdam, the
Netherlands, ISBN 0-444-82498-7, 1997.
Monteil, E.: Kystes de dinoflagellés index (Tithonique-Valanginien) du
sud-est de la France: proposition d'une nouvelle zonation palynologique,
Rev. Paleobiol., 11, 299–306, 1992.
Monteil, E.: Dinoflagellate cyst biozonation of the Tithonian and Berriasian
of south-east France. Correlation with the sequence stratigraphy, Bull.
Cent. Rech. Elf E., 17, 249–273, 1993.
Mudge, D. C. and Bujak, J. P.: An integrated stratigraphy for the Paleocene
and Eocene of the North Sea, Geol. Soc. Sp., 101, 91–113, https://doi.org/10.1144/GSL.SP.1996.101.01.06,
1996.
Mudge, D. C. and Bujak, J. P.: Biostratigraphic evidence for evolving
palaeoenvironments inthe Lower Paleogene of the Faeroe-Shetland Basin,
Mar. Petrol. Geol., 18, 577–590,
https://doi.org/10.1016/S0264-8172(00)00074-X, 2001.
Mudie, P. J.: Palynology and dinoflagellate biostratigraphy of DSDP Leg 94,
Sites 607 and 611, North Atlantic Ocean, Initial Reports of the DSDP, vol. 94,
Washington, USA, https://doi.org/10.2973/dsdp.proc.94.118.1987, 1987.
Nikitenko, B., Pestchevitskaya, E. B., Lebedeva, N. K., and Ilyina, V. I.:
Micropalaeontological and palynological analyses across the
Jurassic-Cretaceous boundary on Nordvik Peninsula, Northeast Siberia,
Newsl. Stratigr., 42, 181–222, 2008.
Nøhr-Hansen, H., Sheldon, E., and Dam, G.: A new biostratigraphic scheme for
the Paleocene onshore West Greenland and its implications for the timing of
the pre-volcanic evolution, Geol. Soc. Sp., 197,
111–156, 2002.
Nøhr-Hansen, H., Piasecki, S., and Alsen, P.: A Cretaceous dinoflagellate
cyst zonation for NE Greenland, Geol. Mag., 157, 1658–1692,
2020.
Ogg, J. G. and Hinnov, L. A.: Cretaceous, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G.,
Schmitz, M. D., and Ogg, G. M., Elsevier,
Amsterdam, ISBN 978-0-12-824360-2, 2012a.
Ogg, J. G. and Hinnov, L. A.: Jurassic, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, ISBN 978-0-12-824360-2, 2012b.
Olde, K., Jarvis, I., Pearce, M., Uličný, D., Tocher, B.,
Trabucho-Alexandre, J., and Gröcke, D.: A revised Northern European Turonian
(upper Cretaceous) dinoflagellate cyst biostratigraphy: Integrating
palynology and carbon isotope events, Rev. Palaeobot. Palyno.,
213, 1–16, https://doi.org/10.1016/j.revpalbo.2014.10.006, 2015.
Oosting, A. M., Leereveld, H., Dickens, G. R., Henderson, R. A., and
Brinkhuis, H.: Correlation of Barremian-Aptian (mid-Cretaceous)
dinoflagellate cyst assemblages between the Tethyan and Austral realms,
Cretaceous Res., 27, 792–813, https://doi.org/10.1016/j.cretres.2006.03.012,
2006.
Pearce, M. A.: New organic-walled dinoflagellate cysts from the Cenomanian to Maastrichtian of the Trunch borehole, UK, J. Micropalaeontol., 29, 51–72, https://doi.org/10.1144/jm.29.1.51, 2010.
Petrizzo, M. R., Wade, B. S., and Gradstein, F. M.: Planktonic Foraminifera, in: The Geologic
Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., chapter 3, 74–87, Elsevier, Amsterdam, ISBN 978-0-12-824360-2, 2012.
Piasecki, S., Larsen, L. M., Pedersen, A. K., and Pedersen, G. K.: Palynostratigraphy of the Lower Tertiary volcanics and marine clastic sediments in the southern part of West Greenland Basin: implications for the timing and duration of the volcanism, Rapport
Grønlands Geologiske Undersøgelse, 154, 13–31, 1992.
Poulsen, N. E.: Jurassic dinoflagellate cyst biostratigraphy of the Danish
Subbasin in relation to sequences in England and Poland; a preliminary
review, Rev. Palaeobot. Palyno., 75, 1–32, 1992.
Poulsen, N. E.: Dinoflagellate cyst biostratigraphy of the Late Jurassic of
Poland, GEOBIOS, 17, 401–407, 1994.
Poulsen, N. E.: Upper Bajocian to Callovian (Jurassic) dinoflagellate cysts
from central Poland, Acta Geol. Pol., 48, 237–245, 1998.
Poulsen, N. E. and Riding, J. B.: The Jurassic dinoflagellate cyst zonation of
Subboreal Northwest Europe, Geol. Surv. Den. Greenl., 1, 115–144, 2003.
Powell, A. J.: Latest Palaeogene and Earliest Neogene dinoflagellate cysts
from the Lemme section, NW Italy, AASP Contributions Series, 17, 83–104,
1986.
Powell, A. J.: A modified dinoflagellate cyst biozonation for latest
Palaeocene and earliest Eocene sediments from the central North Sea, Rev. Palaeobot. Palyno., 56, 327–344,
https://doi.org/10.1016/0034-6667(88)90064-4, 1988.
Powell, A. J.: Dinoflagellate cysts of the Tertiary System, in: A
stratigraphic index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK, ISBN-13 978-9401050524, 1992.
Powell, A. J., Brinkhuis, H., and Bujak, J. P.: Upper Paleocene-lower Eocene
dinoflagellate cyst sequence biostratigraphy of southeast England, edited by: R. W. O. Knox, R. M. Corfield, and R. E. Dunay, Geol. Soc. Spec. Publ., 101, 145–183,
1996.
Prince, I. M., Jarvis, I., Pearce, M. A., and Tocher, B. A.: Dinoflagellate
cyst biostratigraphy of the Coniacian-Santonian (Upper Cretaceous): New data
from the English Chalk, Rev. Palaeobot. Palyno., 150,
59–96, https://doi.org/10.1016/j.revpalbo.2008.01.005, 2008.
Pross, J., Houben, A. J. P., Simaeys, S. van, Williams, G. L., Kotthoff, U.,
Coccioni, R., Wilpshaar, M., and Brinkhuis, H.: Umbria-Marche revisited: A
refined magnetostratigraphic calibration of dinoflagellate cyst events for
the Oligocene of the Western Tethys, Rev. Palaeobot. Palyno.,
158, 213–235, 2010.
Quaijtaal, W. and Brinkhuis, H.: Pentadinium alabamensis: A new, unusual dinoflagellate from the
early Oligocene of the Gulf Coast, Alabama, USA, Rev. Palaeobot. Palyno., 175, 47–54, https://doi.org/10.1016/j.revpalbo.2012.03.002, 2012.
Quaijtaal, W., Donders, T. H., Persico, D., and Louwye, S.: Characterising
the middle Miocene Mi-events in the Eastern North Atlantic realm: A first
high-resolution marine palynological record from the Porcupine Basin,
Palaeogeogr. Palaeocl., 399, 140–159, 2014.
Radmacher, W., Pérez-Rodríguez, I., Arz, J. A., and Pearce, M. A.:
Dinoflagellate biostratigraphy at the Campanian-Maastrichtian boundary in
Zumaia, northern Spain, Cretaceous Res., 51, 309–320,
https://doi.org/10.1016/j.cretres.2014.07.004, 2014a.
Radmacher, W., Tyszka, J., Mangerud, G., and Pearce, M. A.: Dinoflagellate
cyst biostratigraphy of the Upper Albian to Lower Maastrichtian in the
southwestern Barents Sea, Mar. Petrol. Geol., 57, 109–121,
2014b.
Radmacher, W., Mangerud, G., and Tyszka, J.: Dinoflagellate cyst
biostratigraphy of Upper Cretaceous strata from two wells in the Norwegian
Sea, Rev. Palaeobot. Palyno., 216, 18–32, 2015.
Reichart, G.-J., Brinkhuis, H., Huiskamp, F., and Zachariasse, W. J.:
Hyperstratification following glacial overturning events in the northern
Arabian Sea, Paleoceanography, 19, PA2013, https://doi.org/10.1029/2003PA000900, 2004.
Riding, J. B. and Helby, R.: Early Jurassic (Toarcian) dinoflagellate cysts
from the Timor Sea, Australia, Studies in Australian Mesozoic palynology II,
Memoir of the Association of Australasian Palaeontologists, vol. 24, edited by: Laurie, J.
R. and Foster, C. B., 1–32, lSSN 0810 8889, 2001a.
Riding, J. B. and Helby, R.: A selective reappraisal of Wanaea Cookson &
Eisenack 1958 (Dinophyceae), Studies in Australian Mesozoic palynology II;
Memoir of the Association of Australasian Palaeontologists, vol. 24, edited by: Laurie, J.
R. and Foster, C. B., 33–58, lSSN 0810 8889, 2001b.
Riding, J. B. and Helby, R.: Phallocysta granosa sp. nov., a Mid Jurassic (Bathonian)
dinoflagellate cyst from the Timor Sea, Australia., Studies in Australian
Mesozoic palynology II; Memoir of the Association of Australasian
Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B., 59–63,
2001c.
Riding, J. B. and Helby, R.: Microplankton from the Mid Jurassic (late
Callovian) Rigaudella aemula Zone in the Timor Sea, north-western Australia, Studies in
Australian Mesozoic palynology II; Memoir of the Association of Australasian
Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B., 65–109, lSSN 0810 8889,
2001d.
Riding, J. B. and Helby, R.: Dinoflagellate cysts from the Late Jurassic
(Oxfordian) Wanaea spectabilis Zone in the Timor Sea region, Studies in Australian Mesozoic
palynology II; Memoir of the Association of Australasian Palaeontologists,
vol. 24, edited by: Laurie, J. R. and Foster, C. B., 111–140, lSSN 0810 8889, 2001e.
Riding, J. B. and Helby, R.: Dinoflagellate cysts from the Late Jurassic
(Kimmeridgian) Dingodinium swanense Zone in the North-West Shelf and Timor Sea, Australia.,
Studies in Australian Mesozoic palynology II; Memoir of the Association of
Australasian Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B.,
141–176, lSSN 0810 8889, 2001f.
Riding, J. B. and Helby, R.: Marine microplankton from the Late Jurassic
(Tithonian) of the north-west Australian region., Studies in Australian
Mesozoic palynology II; Memoir of the Association of Australasian
Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B., 177–220, lSSN 0810 8889,
2001g.
Riding, J. B. and Thomas, J. E.: Dinoflagellate cyst stratigraphy of the
Kimmeridge Clay (Upper Jurassic) from the Dorset Coast, Southern England,
Palynology, 12, 65–88, 1988.
Riding, J. B. and Thomas, J. E.: Dinoflagellate cysts of the Jurassic System,
in: A stratigraphix index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK, 7–98, ISBN-13 978-9401050524,
1992.
Riding, J. B. and Thomas, J. E.: Marine palynomorphs from the Staffin Bay
and Staffin Shale formations (Middle–Upper Jurassic) of the Trotternish
Peninsula, NW Skye, Scot. J. Geol., 33, 59–74, 1997.
Riding, J. B., Mantle, D. J., and Backhouse, J.: A review of the
chronostratigraphical ages of Middle Triassic to Late Jurassic
dinoflagellate cyst biozones of the North West Shelf of Australia, Rev. Palaeobot. Palyno., 162, 543–575,
https://doi.org/10.1016/j.revpalbo.2010.07.008, 2010.
Riley, L. A. and Fenton, J. P. G.: A dinocyst zonation for the Callovian to
iddle Oxfordian succession (Jurassic) of northwest Europe, Palynology, 6,
193–202, 1982.
Rochon, A., Lewis, J., Ellegaard, M., and Harding, I. C.: The Gonyaulax spinifera (Dinophyceae)
“complex”: Perpetuating the paradox?, Rev. Palaeobot. Palyno.,
155, 52–60, 2009.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay,
R., Cody, R. D., Pross, J., Van De Flierdt, T., Bohaty, S. M., Levy, R.,
Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and Wilkes
Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9,
317, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Schiøler, P.: New species of dinoflagellate cysts from Maastrichtian-Danian chalks of the Danish North Sea, J. Micropalaeontol., 12, 99–112, https://doi.org/10.1144/jm.12.1.99, 1993.
Schreck, M. and Matthiessen, J.: Batiacasphaera bergenensis and Lavradosphaera elongata – new dinoflagellate cyst and
acritarch species from the Miocene of the Iceland Sea (ODP Hole 907A),
Rev. Palaeobot. Palyno., 211, 97–106, 2014.
Schreck, M., Matthiessen, J., and Head, M. J.: A magnetostratigraphic
calibration of middle Miocene through Pliocene dinoflagellate cyst and
acritarch events in the Iceland Sea (Ocean Drilling Program Hole 907A),
Rev. Palaeobot. Palyno. 187, 66–94,
https://doi.org/10.1016/j.revpalbo.2012.08.006, 2012.
Schreck, M., Meheust, M., Stein, R., and Matthiessen, J.: Response of marine
palynomorphs to Neogene climate cooling in the Iceland Sea (ODP Hole 907A),
Mar. Micropaleontol., 101, 49–67, https://doi.org/10.1016/j.marmicro.2013.03.003,
2013.
Schreck, M., Nam, C., Clotten, S. I., Fahl, K., De Schepper, S., Forwick, M.,
and Matthiessen, J.: Neogene dinoflagellate cysts and acritarchs from the
high northern latitudes and their relation to sea surface temperature,
Mar. Micropaleontol., 136, 51–65, https://doi.org/10.1016/j.marmicro.2017.09.003,
2017.
Shulgina, N. I., Burdykina, M. D., Basov, V. A., and Århus, N.:
Distribution of ammonites, foraminifera and dinoflagellate cysts in the
lower Cretaceous reference sections of the Khatanga Basin, and Boreal
Valanginian biogeography, Cretaceous Res., 15, 1–16, 1994.
Skupien, P.: Albian non-calcareous dinoflagellates of the western
Carpathians, Slovak Geological Magazine, 10, 203–214, 2004.
Skupien, P. and Vasícek, Z.: Lower Cretaceous ammonite and dinocyst
biostratigraphy and paleoenvironment of the Silesian Basin (outher western
Carpathians), Geol. Carpath., 53, 179–189, 2002.
Slimani, H. and Louwye, S.: New dinoflagellate cyst species of the
Microdinium and Phanerodinium Complexes (Evitt) from the Upper Cretaceous-Lower Paleogene Chalk
Group in the Meer borehole, northern Belgium, Rev. Palaeobot.
Palyno., 168, 41–50, 2011.
Śliwińska, K. K., Abrahamsen, N., Beyer, C., Brünings-Hansen,
T., Thomsen, E., Ulleberg, K., and Heilmann-Clausen, C.: Bio- and
magnetostratigraphy of Rupelian-mid Chattian deposits from the Danish land
area, Rev. Palaeobot. Palyno., 172, 48–69, 2012.
Śliwińska, K. K., Jelby, M. E., Grundvåg, S.-A., Nohr-Hansen, H.,
Alsen, P., and Olaussen, S.: Dinocyst stratigraphy of the Valanginian-Aptian
Rurikfjellet and Helvetiafjellet formations on Spitsbergen, Arctic Norway,
Geol. Mag., 157, 1693–1714, 2020.
Sluijs, A., Brinkhuis, H., Stickley, C. E., Warnaar, J., Williams, G. L., and
Fuller, M.: Dinoflagellate cysts from the Eocene–Oligocene transition in
the Southern Ocean: Results from ODP Leg 189, in: Proceedings of the ODP, Scientific Results, Leg 189, edited by: Exon, N. and
Kennett, J. P., U.S.
Government Printing Office, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.189.104.2003, 2003.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse;
organic walled dinoflagellate cysts as paleoenvironmental indicators in the
Paleogene, Earth-Sci. Rev., 68, 281–315, 2005.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H.,
Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein,
R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and Expedition 302 Scientists: Subtropical Arctic Ocean temperatures
during the Palaeocene/Eocene Thermal Maximum, Nature, 441, 610–613, 2006.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S., John, C. M., Zachos, J.
C., Reichart, G.-J., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens,
G. R.: Environmental precursors to rapid light carbon injection at the
Palaeocene/Eocene boundary, Nature, 450, 1218–1221, 2007.
Smelror, M.: Late Bathonian to Early Oxfordian dinoflagellate cyst
stratigraphy of Jameson Land and Milne Land, East Greenand, Rapp.
Grønlands Geol. Unders., 137, 135–159, 1988a.
Smelror, M.: Bathonian to early Oxfordian dinoflagellate cysts and
acritarchs from Kong Karls Land, Svalbard, Rev. Palaeobot.
Palyno., 56, 275–303, https://doi.org/10.1016/0034-6667(88)90061-9, 1988b.
Smelror, M.: Jurassic stratigraphy of the western Barents Sea region: a
review, GEOBIOS, 17, 441–451, 1994.
Smelror, M. and Dietl, G.: Dinoflagellates cysts of the Bathonian/Callovian
boundary beds in Southern Germany, GEOBIOS, 17, 453–459, 1994.
Smelror, M. and Lominadze, T. A.: Callovian dinoflagellate cysts from the
Caucasus, U.S.S.R., N. Jb. Geol. Palõont., Abh., 178, 147–166, 1989.
Smelror, M., Århus, N., Meléndez, G., and Lardies, M. Q.: A
reconnaissance study of Bathonian to Oxfordian (Jurassic) dinoflagellates
and acritarchs from the Zaragoza region (NE Spain) and Figueira da Foz
(Portugal), Rev. Esp. Micropaleont., 23, 47–82, 1991.
Soliman, A., Coric, S., Head, M. J., Piller, W. E., and El Beialy, S. Y.:
Lower and Middle Miocene biostratigraphy, Gulf of Suez, Egypt based on
dinoflagellate cysts and calcareous nannofossils, Palynology, 36, 38–79,
2012.
Steeman, T., De Weirdt, J., Smith, T., De Putter, T., Mees, F., and Louwye, S.: Dinoflagellate cyst biostratigraphy and palaeoecology of the
early Paleogene Landana reference section, Cabinda Province, Angola,
Palynology, 44, 280–309, https://doi.org/10.1080/01916122.2019.1575091, 2020.
Stover, L. E. and Hardenbol, J.: Dinoflagellates and depositional sequences
in the Lower Oligocene (Rupelian) Boom Clay Formation, Belgium, Bulletin de
la Société Belge de Géologie, 102, 5–77, 1994.
Strauss, C. and Lund, J. J.: A Middle Miocene dinoflagellate cyst microflora
from Papendorf near Hamburg, Germany, Mitt. Geol.-Palõont. Inst. Univ.
Hamburg, 73, 157–189, 1992.
Thorn, V. C., Riding, J. B., and Francis, J. E.: The Late Cretaceous
dinoflagellate cyst Manumiella: Biostratigraphy, systematics, and palaeoecological
signals in Antarctica, Rev. Palaeobot. Palyno., 156, 436–448,
2009.
Tocher, B. A.: Campanian to Maestrichtian dinoflagellate cysts from the
United States Atlantic margin, Deep Sea Drilling Project Site 612, Initial
Reports DSDP, Leg 95, 419–428, https://doi.org/10.2973/dsdp.proc.95.114.1987, 1987.
Tocher, B. A. and Jarvis, I.: Dinoflagellate cyst distribution and
stratigraphy of the lower–middle Cenomanian (Upper Cretaceous) at Fumichon,
Normandy, northern France, Revue de Micropaleontologie, 37, 223–232,
1994.
Tocher, B. A. and Jarvis, I.: Dinocyst distributions and stratigraphy of two Cenomanian–Turonian boundary (Upper Cretaceous) sections from the western Anglo-Paris Basin, J. Micropalaeontol., 14, 97–105, https://doi.org/10.1144/jm.14.2.97, 1995.
Tocher, B. A. and Jarvis, I.: Dinoflagellate cyst distributions and the Albian–Cenomanian boundary (mid-Cretaceous) at Cordebugle, NW France and Lewes, southern England, J. Micropalaeontol., 15, 55–67, https://doi.org/10.1144/jm.15.1.55, 1996.
Torricelli, S.: Lower Cretaceous dinoflagellate cyst and acritarch
stratigraphy of the Cismon APTICORE (southern Alps, Italy), Rev.
Palaeobot. Palyno., 108, 213–266,
https://doi.org/10.1016/S0034-6667(99)00041-X, 2000.
Torricelli, S.: Dinoflagellate cyst stratigraphy of the Scisti a Fucoidi
Formation (Early Cretaceous) from Piobbico, Central Italy: calibrated events
for the Albian of the Tethyan Realm, Riv. Ital. Paleontol.
S., 112, 95–112, 2006.
Torricelli, S. and Rosa Amore, M.: Dinoflagellate cysts and calcareous
nannofossils from the upper Cretaceous Saraceno formation (Calabria, Italy):
Implications about the history of the Liguride Complex, Rivista Italiana di
Paleontologia e Stratigrafia, 109, 499–516, 2003.
Torricelli, S., Knezaurek, G., and Biffi, U.: Sequence biostratigraphy and
paleoenvironmental reconstruction in the early Eocene Figols Group of the
Tremp–Graus Basin (South-Central Pyrenees, Spain), Palaeogeogr.
Palaeocl., 232, 1–35, https://doi.org/10.1016/j.palaeo.2005.08.009, 2006.
Türkecan, A. T., Munsterman, D., Işik, U., Altiner,
D., Pinar, M., Çevik, T., and Alay, Z.: Dinoflagellate cyst
biostratigraphy of Miocene strata in the Adana Basin, Eastern Mediterranean,
Turkey, Palynology, 42, 516–539, https://doi.org/10.1080/01916122.2017.1403389,
2018.
Van De Schootbrugge, B., Houben, A. J. P., Ercan, F. E. Z., Verreussel, R.,
Kerstholt, S., Janssen, N. M. M., Nikitenko, B., and Suan, G.: Enhanced
Arctic-Tethys connectivity ended the Toarcian Oceanic Anoxic Event in NW
Europe, Geol. Mag., 157, 1593–1611,
https://doi.org/10.1017/S0016756819001262, 2019a.
Van De Schootbrugge, B., Richoz, S., Pross, J., Luppold, F. W., Hunze, S.,
Wonik, T., Blau, J., Meister, C., van der Weijst, C. M. H., Suan, G.,
Fraguas, A., Fiebig, J., Herrle, J. O., Guex, J., Little, C. T. S., Wignall,
P. B., Püttmann, W., and Oschmann, W.: The Schandelah Scientific Drilling
Project: A 25-million year record of Early Jurassic palaeo-environmental
change from northern Germany, Newsl. Stratigr., 52, 249–296,
2019b.
van Helmond, N. A. G. M., Sluijs, A., Papadomanolaki, N. M., Plint, A. G., Gröcke, D. R., Pearce, M. A., Eldrett, J. S., Trabucho-Alexandre, J., Walaszczyk, I., van de Schootbrugge, B., and Brinkhuis, H.: Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse, Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, 2016.
Van Hinsbergen, D. J. J., De Groot, L. V., Van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude
calculator for paleoclimate studies, PLOS One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Van Mourik, C. A. and Brinkhuis, H.: The Massignano Eocene–Oligocene golden
spike section revisited, Stratigraphy, 2, 13–30, 2005.
Van Mourik, C. A., Brinkhuis, H., and Williams, G. L.: Mid-to late Eocene
organic-walled dinoflagellate cysts from ODP Leg 171B, offshore Florida,
Geol. Soc. Spec. Publ., 183, 225–251, https://doi.org/10.1144/GSL.SP.2001.183.01.11, 2001.
Van Simaeys, S., de Man, E., Vandenberghe, N., Brinkhuis, H., and Steurbaut,
E.: Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian
transition in the type region: evidence from dinoflagellate cysts,
foraminifera and calcareous nannofossils, Palaeogeogr.
Palaeocl., 208, 31–58, 2004.
Van Simaeys, S., Munsterman, D., and Brinkhuis, H.: Oligocene dinoflagellate
cyst biostratigraphy of the southern North Sea Basin, Rev. Palaeobot. Palyno., 134, 105–128, https://doi.org/10.1016/j.revpalbo.2004.12.003,
2005.
Vellekoop, J., Smit, J., van de Schootbrugge, B., Weijers, J. W. H.,
Galeotti, S., Sinninghe Damsté, J. S., and Brinkhuis, H.: Palynological
evidence for prolonged cooling along the Tunisian continental shelf
following the K-Pg boundary impact, Palaeogeogr. Palaeocl., 426, 216–228, 2015.
Versteegh, G. J. M.: The onset of major Northern Hemisphere glaciations and
their impact on dinoflagellate cysts an acritarchs from the Singa section,
Calabria (southern Italy) and DSDP Holes 607/607A (North Atlantic), Mar. Micropaleontol., 30, 319–343, 1997.
Versteegh, G. J. M. and Zevenboom, D.: New genera and species of dinoflagellate
cysts from the Mediterranean Neogene, Rev. Palaeobot. Palyno.,
85, 213–229, 1995.
Vieira, M. and Jolley, D.: Stratigraphic and spatial distribution of
palynomorphs in deep-water turbidites: A metastudy from the UK central North
Sea Paleogene, Mar. Petrol. Geol., 12, 104683, https://doi.org/10.1016/j.marpetgeo.2020.104638, 2020.
Vieira, M., Casas-Gallego, M., Mahdi, S., and Fenton, J.: Impagidinium
obscurum sp. nov., a marker dinoflagellate cyst for the Thanetian
(Paleocene) of the North Sea and the Barents Sea, Palynology, 44,
382–390, https://doi.org/10.1080/01916122.2019.1630494, 2020.
Watkins, D. K. and Raffi, I.: Calcareous nannofossils, in: Geologic Time Scale 2020, Volume 1, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 69–74, ISBN 0128243619, 2020.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Williams, G. L. and Bujak, J. P.: Distribution patterns of some North
Atlantic Cenozoic dinoflagellate cysts, Mar. Micropaleontol., 2,
223–234, 1977.
Williams, G. L., Stover, L. E., and Kidson, E. J.: Morphology and
stratigraphic ranges of selected Mesozoic–Cenozoic dinoflagellate taxa in
the Northern Hemisphere, Pap. Geol. Surv. Can., 92, 1–140, https://doi.org/10.4095/183916, 1993.
Williams, G. L., Brinkhuis, H., Pearce., M. A., Fensome, R. A., and Weegink,
J. W.: Southern Ocean and global dinoflagellate cyst events compared: Index
events for the late Cretaceous–Neogene, in: Proceedings of the ODP, scientific Results, volume 189, edited by: Exon, N. F.,
Kennett, J. P., and Malone, M. J., https://doi.org/10.2973/odp.proc.sr.189.107.2004, 2004.
Williams, G. L., Damassa, S. P., Fensome, R. A., and Guerstein, G. R.:
Wetzeliella and its allies – The “hole” story: A taxonomic revision of the
Paleogene dinoflagellate subfamily Wetzelielloideae, Palynology, 39,
289–344, https://doi.org/10.1080/01916122.2014.993888, 2015.
Williams, G. L., Fensome, R. A., and MacRae, R. A.: DINOFLAJ3, American Association of Stratigraphic Palynologists, Data Series no. 2, available at: http://dinoflaj.smu.ca/dinoflaj3, last access: 1 February 2022.
Willumsen, P. S.: Three new species of dinoflagellate cyst from
Cretaceous-Paleogene (K-Pg) boundary sections at mid-Waipara River and
Fairfield Quarry, South Island, New Zealand, Palynology, 36,
48–62, https://doi.org/10.1080/01916122.2011.642260, 2012.
Wilpshaar, M., Santarelli, A., Brinkhuis, H., and Visscher, H.:
Dinoflagellate cysts and mid-Oligocene chronostratigraphy in the central
Mediterranean region, Journal of the Geological Society of London, 153,
553–561, 1996.
Woollam, R. and Riding, J. B.: Dinoflagellate cyst zonation of the English
Jurassic, Report of the Institute of Geological Sciences, Report 83/2, 1–42, 1983.
Wrenn, J. H. and Kokinos, J. P.: Preliminary comments on Miocene through
Pleistocene dinoflagellate cysts from De Soto Canyon, Gulf of Mexico,
American Association of Stratigraphic Palynologists, Contributions Series,
17, 169–225, 1986.
Zegarra, M. and Helenes, J.: Changes in Miocene through Pleistocene
dinoflagellates from the Eastern Equatorial Pacific (ODP Site 1039), in
relation to primary productivity, Mar. Micropaleontol., 81,
107–121, https://doi.org/10.1016/j.marmicro.2011.09.005, 2011.
Zevenboom, D.: Dinoflagellate cysts from the Mediterranean late Oligocene
and Miocene, PhD thesis, Utrecht University, Utrecht, the Netherlands,
1995.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S.,
Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L.,
Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt,
J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix,
L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J.,
Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T.,
Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L.,
Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern
dinoflagellate cyst distribution based on 2405 datapoints, Rev.
Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their...
Altmetrics
Final-revised paper
Preprint