Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-579-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-579-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DINOSTRAT: a global database of the stratigraphic and paleolatitudinal distribution of Mesozoic–Cenozoic organic-walled dinoflagellate cysts
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the
Netherlands
Related authors
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Dominique K. L. L. Jenny, Tammo Reichgelt, Charlotte L. O'Brien, Xiaoqing Liu, Peter K. Bijl, Matthew Huber, and Appy Sluijs
Clim. Past, 20, 1627–1657, https://doi.org/10.5194/cp-20-1627-2024, https://doi.org/10.5194/cp-20-1627-2024, 2024
Short summary
Short summary
This study reviews the current state of knowledge regarding the Oligocene
icehouseclimate. We extend an existing marine climate proxy data compilation and present a new compilation and analysis of terrestrial plant assemblages to assess long-term climate trends and variability. Our data–climate model comparison reinforces the notion that models underestimate polar amplification of Oligocene climates, and we identify potential future research directions.
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596, https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Short summary
This work verifies the remarkable finds of late Eocene Antarctic-sourced iceberg-rafted debris found on South Orkney. We find that these icebergs must have been on the larger end of the size scale compared to today’s icebergs due to faster melting in the warmer Eocene climate. The study was performed using a high-resolution model in which individual icebergs were followed through time.
Chris D. Fokkema, Tobias Agterhuis, Danielle Gerritsma, Myrthe de Goeij, Xiaoqing Liu, Pauline de Regt, Addison Rice, Laurens Vennema, Claudia Agnini, Peter K. Bijl, Joost Frieling, Matthew Huber, Francien Peterse, and Appy Sluijs
Clim. Past, 20, 1303–1325, https://doi.org/10.5194/cp-20-1303-2024, https://doi.org/10.5194/cp-20-1303-2024, 2024
Short summary
Short summary
Polar amplification (PA) is a key uncertainty in climate projections. The factors that dominantly control PA are difficult to separate. Here we provide an estimate for the non-ice-related PA by reconstructing tropical ocean temperature variability from the ice-free early Eocene, which we compare to deep-ocean-derived high-latitude temperature variability across short-lived warming periods. We find a PA factor of 1.7–2.3 on 20 kyr timescales, which is somewhat larger than model estimates.
Suning Hou, Leonie Toebrock, Mart van der Linden, Fleur Rothstegge, Martin Ziegler, Lucas J. Lourens, and Peter K. Bijl
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-33, https://doi.org/10.5194/cp-2024-33, 2024
Revised manuscript accepted for CP
Short summary
Short summary
Based on dinoflagellate cyst assemblage and sea surface temperature record west offshore Tasmania, we find a northward migration and freshening of the subtropical front, not at the M2 glacial maximum but at its deglaciation phase. This oceanographic change aligns well with the trends in pCO2. We propose that iceberg discharge from the M2 deglaciation freshened the subtropical front, which together with the other oceanographic changes, affected atmosphere-ocean CO2 exchange in the Southern Ocean.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Peter K. Bijl and Henk Brinkhuis
J. Micropalaeontol., 42, 309–314, https://doi.org/10.5194/jm-42-309-2023, https://doi.org/10.5194/jm-42-309-2023, 2023
Short summary
Short summary
We developed an online, open-access database for taxonomic descriptions, stratigraphic information and images of organic-walled dinoflagellate cyst species. With this new resource for applied and academic research, teaching and training, we open up organic-walled dinoflagellate cysts for the academic era of open science. We expect that palsys.org represents a starting point to improve taxonomic concepts, and we invite the community to contribute.
Frida S. Hoem, Adrián López-Quirós, Suzanna van de Lagemaat, Johan Etourneau, Marie-Alexandrine Sicre, Carlota Escutia, Henk Brinkhuis, Francien Peterse, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 19, 1931–1949, https://doi.org/10.5194/cp-19-1931-2023, https://doi.org/10.5194/cp-19-1931-2023, 2023
Short summary
Short summary
We present two new sea surface temperature (SST) records in comparison with available SST records to reconstruct South Atlantic paleoceanographic evolution. Our results show a low SST gradient in the Eocene–early Oligocene due to the persistent gyral circulation. A higher SST gradient in the Middle–Late Miocene infers a stronger circumpolar current. The southern South Atlantic was the coldest region in the Southern Ocean and likely the main deep-water formation location in the Middle Miocene.
Peter K. Bijl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-169, https://doi.org/10.5194/essd-2023-169, 2023
Publication in ESSD not foreseen
Short summary
Short summary
This new version release of DINOSTRAT, version 2.0, aligns stratigraphic ranges of dinoflagellate cysts, a microfossil group, to the Geologic Time Scale. In this release we present the evolution of dinocyst subfamilies from the mid-Triassic to the modern.
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023, https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary
Short summary
Dinoflagellate cysts can be used to infer past oceanographic conditions in the Southern Ocean. This requires knowledge of their present-day ecologic affinities. We add 66 Antarctic-proximal surface sediment samples to the Southern Ocean data and derive oceanographic conditions at those stations. Dinoflagellate cysts are clearly biogeographically separated along latitudinal gradients of temperature, sea ice, nutrients, and salinity, which allows us to reconstruct these parameters for the past.
Suning Hou, Foteini Lamprou, Frida S. Hoem, Mohammad Rizky Nanda Hadju, Francesca Sangiorgi, Francien Peterse, and Peter K. Bijl
Clim. Past, 19, 787–802, https://doi.org/10.5194/cp-19-787-2023, https://doi.org/10.5194/cp-19-787-2023, 2023
Short summary
Short summary
Neogene climate cooling is thought to be accompanied by increased Equator-to-pole temperature gradients, but mid-latitudes are poorly represented. We use biomarkers to reconstruct a 23 Myr continuous sea surface temperature record of the mid-latitude Southern Ocean. We note a profound mid-latitude cooling which narrowed the latitudinal temperature gradient with the northward expansion of subpolar conditions. We surmise that this reflects the strengthening of the ACC and the expansion of sea ice.
Michael Amoo, Ulrich Salzmann, Matthew J. Pound, Nick Thompson, and Peter K. Bijl
Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, https://doi.org/10.5194/cp-18-525-2022, 2022
Short summary
Short summary
Late Eocene to earliest Oligocene (37.97–33.06 Ma) climate and vegetation dynamics around the Tasmanian Gateway region reveal that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation; a series of regional and global events, including a change in stratification of water masses and changes in pCO2, may have played significant roles.
Peter D. Nooteboom, Peter K. Bijl, Christian Kehl, Erik van Sebille, Martin Ziegler, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 13, 357–371, https://doi.org/10.5194/esd-13-357-2022, https://doi.org/10.5194/esd-13-357-2022, 2022
Short summary
Short summary
Having descended through the water column, microplankton in ocean sediments represents the ocean surface environment and is used as an archive of past and present surface oceanographic conditions. However, this microplankton is advected by turbulent ocean currents during its sinking journey. We use simulations of sinking particles to define ocean bottom provinces and detect these provinces in datasets of sedimentary microplankton, which has implications for palaeoclimate reconstructions.
Nick Thompson, Ulrich Salzmann, Adrián López-Quirós, Peter K. Bijl, Frida S. Hoem, Johan Etourneau, Marie-Alexandrine Sicre, Sabine Roignant, Emma Hocking, Michael Amoo, and Carlota Escutia
Clim. Past, 18, 209–232, https://doi.org/10.5194/cp-18-209-2022, https://doi.org/10.5194/cp-18-209-2022, 2022
Short summary
Short summary
New pollen and spore data from the Antarctic Peninsula region reveal temperate rainforests that changed and adapted in response to Eocene climatic cooling, roughly 35.5 Myr ago, and glacially related disturbance in the early Oligocene, approximately 33.5 Myr ago. The timing of these events indicates that the opening of ocean gateways alone did not trigger Antarctic glaciation, although ocean gateways may have played a role in climate cooling.
Peter K. Bijl, Joost Frieling, Marlow Julius Cramwinckel, Christine Boschman, Appy Sluijs, and Francien Peterse
Clim. Past, 17, 2393–2425, https://doi.org/10.5194/cp-17-2393-2021, https://doi.org/10.5194/cp-17-2393-2021, 2021
Short summary
Short summary
Here, we use the latest insights for GDGT and dinocyst-based paleotemperature and paleoenvironmental reconstructions in late Cretaceous–early Oligocene sediments from ODP Site 1172 (East Tasman Plateau, Australia). We reconstruct strong river runoff during the Paleocene–early Eocene, a progressive decline thereafter with increased wet/dry seasonality in the northward-drifting hinterland. Our critical review leaves the anomalous warmth of the Eocene SW Pacific Ocean unexplained.
Frida S. Hoem, Isabel Sauermilch, Suning Hou, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 40, 175–193, https://doi.org/10.5194/jm-40-175-2021, https://doi.org/10.5194/jm-40-175-2021, 2021
Short summary
Short summary
We use marine microfossil (dinocyst) assemblage data as well as seismic and tectonic investigations to reconstruct the oceanographic history south of Australia 37–20 Ma as the Tasmanian Gateway widens and deepens. Our results show stable conditions with typically warmer dinocysts south of Australia, which contrasts with the colder dinocysts closer to Antarctica, indicating the establishment of modern oceanographic conditions with a strong Southern Ocean temperature gradient and frontal systems.
Frida S. Hoem, Luis Valero, Dimitris Evangelinos, Carlota Escutia, Bella Duncan, Robert M. McKay, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
Clim. Past, 17, 1423–1442, https://doi.org/10.5194/cp-17-1423-2021, https://doi.org/10.5194/cp-17-1423-2021, 2021
Short summary
Short summary
We present new offshore palaeoceanographic reconstructions for the Oligocene (33.7–24.4 Ma) in the Ross Sea, Antarctica. Our study of dinoflagellate cysts and lipid biomarkers indicates warm-temperate sea surface conditions. We posit that warm surface-ocean conditions near the continental shelf during the Oligocene promoted increased precipitation and heat delivery towards Antarctica that led to dynamic terrestrial ice sheet volumes in the warmer climate state of the Oligocene.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Marlow Julius Cramwinckel, Lineke Woelders, Emiel P. Huurdeman, Francien Peterse, Stephen J. Gallagher, Jörg Pross, Catherine E. Burgess, Gert-Jan Reichart, Appy Sluijs, and Peter K. Bijl
Clim. Past, 16, 1667–1689, https://doi.org/10.5194/cp-16-1667-2020, https://doi.org/10.5194/cp-16-1667-2020, 2020
Short summary
Short summary
Phases of past transient warming can be used as a test bed to study the environmental response to climate change independent of tectonic change. Using fossil plankton and organic molecules, here we reconstruct surface ocean temperature and circulation in and around the Tasman Gateway during a warming phase 40 million years ago termed the Middle Eocene Climatic Optimum. We find that plankton assemblages track ocean circulation patterns, with superimposed variability being related to temperature.
Christopher J. Hollis, Tom Dunkley Jones, Eleni Anagnostou, Peter K. Bijl, Marlow Julius Cramwinckel, Ying Cui, Gerald R. Dickens, Kirsty M. Edgar, Yvette Eley, David Evans, Gavin L. Foster, Joost Frieling, Gordon N. Inglis, Elizabeth M. Kennedy, Reinhard Kozdon, Vittoria Lauretano, Caroline H. Lear, Kate Littler, Lucas Lourens, A. Nele Meckler, B. David A. Naafs, Heiko Pälike, Richard D. Pancost, Paul N. Pearson, Ursula Röhl, Dana L. Royer, Ulrich Salzmann, Brian A. Schubert, Hannu Seebeck, Appy Sluijs, Robert P. Speijer, Peter Stassen, Jessica Tierney, Aradhna Tripati, Bridget Wade, Thomas Westerhold, Caitlyn Witkowski, James C. Zachos, Yi Ge Zhang, Matthew Huber, and Daniel J. Lunt
Geosci. Model Dev., 12, 3149–3206, https://doi.org/10.5194/gmd-12-3149-2019, https://doi.org/10.5194/gmd-12-3149-2019, 2019
Short summary
Short summary
The Deep-Time Model Intercomparison Project (DeepMIP) is a model–data intercomparison of the early Eocene (around 55 million years ago), the last time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Previously, we outlined the experimental design for climate model simulations. Here, we outline the methods used for compilation and analysis of climate proxy data. The resulting climate
atlaswill provide insights into the mechanisms that control past warm climate states.
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Julian D. Hartman, Peter K. Bijl, and Francesca Sangiorgi
J. Micropalaeontol., 37, 445–497, https://doi.org/10.5194/jm-37-445-2018, https://doi.org/10.5194/jm-37-445-2018, 2018
Short summary
Short summary
We present an extensive overview of the organic microfossil remains found at Site U1357, Adélie Basin, East Antarctica. The organic microfossil remains are exceptionally well preserved and are derived from unicellular as well as higher organisms. We provide a morphological description, photographic images, and a discussion of the ecological preferences of the biological species from which the organic remains were derived.
Julian D. Hartman, Francesca Sangiorgi, Ariadna Salabarnada, Francien Peterse, Alexander J. P. Houben, Stefan Schouten, Henk Brinkhuis, Carlota Escutia, and Peter K. Bijl
Clim. Past, 14, 1275–1297, https://doi.org/10.5194/cp-14-1275-2018, https://doi.org/10.5194/cp-14-1275-2018, 2018
Short summary
Short summary
We reconstructed sea surface temperatures for the Oligocene and Miocene periods (34–11 Ma) based on archaeal lipids from a site close to the Wilkes Land coast, Antarctica. Our record suggests generally warm to temperate surface waters: on average 17 °C. Based on the lithology, glacial and interglacial temperatures could be distinguished, showing an average 3 °C offset. The long-term temperature trend resembles the benthic δ18O stack, which may have implications for ice volume reconstructions.
Peter K. Bijl, Alexander J. P. Houben, Julian D. Hartman, Jörg Pross, Ariadna Salabarnada, Carlota Escutia, and Francesca Sangiorgi
Clim. Past, 14, 1015–1033, https://doi.org/10.5194/cp-14-1015-2018, https://doi.org/10.5194/cp-14-1015-2018, 2018
Short summary
Short summary
We document Southern Ocean surface ocean conditions and changes therein during the Oligocene and Miocene (34–10 Myr ago). We infer profound long-term and short-term changes in ice-proximal oceanographic conditions: sea surface temperature, nutrient conditions and sea ice. Our results point to warm-temperate, oligotrophic, ice-proximal oceanographic conditions. These distinct oceanographic conditions may explain the high amplitude in inferred Oligocene–Miocene Antarctic ice volume changes.
Ariadna Salabarnada, Carlota Escutia, Ursula Röhl, C. Hans Nelson, Robert McKay, Francisco J. Jiménez-Espejo, Peter K. Bijl, Julian D. Hartman, Stephanie L. Strother, Ulrich Salzmann, Dimitris Evangelinos, Adrián López-Quirós, José Abel Flores, Francesca Sangiorgi, Minoru Ikehara, and Henk Brinkhuis
Clim. Past, 14, 991–1014, https://doi.org/10.5194/cp-14-991-2018, https://doi.org/10.5194/cp-14-991-2018, 2018
Short summary
Short summary
Here we reconstruct ice sheet and paleoceanographic configurations in the East Antarctic Wilkes Land margin based on a multi-proxy study conducted in late Oligocene (26–25 Ma) sediments from IODP Site U1356. The new obliquity-forced glacial–interglacial sedimentary model shows that, under the high CO2 values of the late Oligocene, ice sheets had mostly retreated to their terrestrial margins and the ocean was very dynamic with shifting positions of the polar fronts and associated water masses.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43, https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript not accepted
Short summary
Short summary
The Eocene marks a period where the climate was in a hothouse state, without any continental-scale ice sheets. Such climates have proven difficult to reproduce in models, especially their low temperature difference between equator and poles. Here, we present high resolution CESM simulations using a new geographic reconstruction of the middle-to-late Eocene. The results provide new insights into a period for which knowledge is limited, leading up to a transition into the present icehouse state.
Joost Frieling, Emiel P. Huurdeman, Charlotte C. M. Rem, Timme H. Donders, Jörg Pross, Steven M. Bohaty, Guy R. Holdgate, Stephen J. Gallagher, Brian McGowran, and Peter K. Bijl
J. Micropalaeontol., 37, 317–339, https://doi.org/10.5194/jm-37-317-2018, https://doi.org/10.5194/jm-37-317-2018, 2018
Short summary
Short summary
The hothouse climate of the early Paleogene and the associated violent carbon cycle perturbations are of particular interest to understanding current and future global climate change. Using dinoflagellate cysts and stable carbon isotope analyses, we identify several significant events, e.g., the Paleocene–Eocene Thermal Maximum in sedimentary deposits from the Otway Basin, SE Australia. We anticipate that this study will facilitate detailed climate reconstructions west of the Tasmanian Gateway.
Peter K. Bijl, Alexander J. P. Houben, Anja Bruls, Jörg Pross, and Francesca Sangiorgi
J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, https://doi.org/10.5194/jm-37-105-2018, 2018
Short summary
Short summary
In order to use ocean sediments as a recorder of past oceanographic changes, a critical first step is to stratigraphically date the sediments. The absence of microfossils with known stratigraphic ranges has always hindered dating of Southern Ocean sediments. Here we tie dinocyst ranges to the international timescale in a well-dated sediment core from offshore Antarctica. With this, we can now use dinocysts as a biostratigraphic tool in otherwise stratigraphically poorly dated sediments.
Stephanie L. Strother, Ulrich Salzmann, Francesca Sangiorgi, Peter K. Bijl, Jörg Pross, Carlota Escutia, Ariadna Salabarnada, Matthew J. Pound, Jochen Voss, and John Woodward
Biogeosciences, 14, 2089–2100, https://doi.org/10.5194/bg-14-2089-2017, https://doi.org/10.5194/bg-14-2089-2017, 2017
Short summary
Short summary
One of the main challenges in Antarctic vegetation reconstructions is the uncertainty in unambiguously identifying reworked pollen and spore assemblages in marine sedimentary records influenced by waxing and waning ice sheets. This study uses red fluorescence and digital imaging as a new tool to identify reworking in a marine sediment core from circum-Antarctic waters to reconstruct Cenozoic climate change and vegetation with high confidence.
Michiel Baatsen, Douwe J. J. van Hinsbergen, Anna S. von der Heydt, Henk A. Dijkstra, Appy Sluijs, Hemmo A. Abels, and Peter K. Bijl
Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, https://doi.org/10.5194/cp-12-1635-2016, 2016
Short summary
Short summary
One of the major difficulties in modelling palaeoclimate is constricting the boundary conditions, causing significant discrepancies between different studies. Here, a new method is presented to automate much of the process of generating the necessary geographical reconstructions. The latter can be made using various rotational frameworks and topography/bathymetry input, allowing for easy inter-comparisons and the incorporation of the latest insights from geoscientific research.
Willem P. Sijp, Anna S. von der Heydt, and Peter K. Bijl
Clim. Past, 12, 807–817, https://doi.org/10.5194/cp-12-807-2016, https://doi.org/10.5194/cp-12-807-2016, 2016
Short summary
Short summary
The timing and role in ocean circulation and climate of the opening of Southern Ocean gateways is as yet elusive. Here, we present the first model results specific to the early-to-middle Eocene where, in agreement with the field evidence, a southerly shallow opening of the Tasman Gateway does indeed cause a westward flow across the Tasman Gateway, in agreement with recent micropalaeontological studies.
L. Contreras, J. Pross, P. K. Bijl, R. B. O'Hara, J. I. Raine, A. Sluijs, and H. Brinkhuis
Clim. Past, 10, 1401–1420, https://doi.org/10.5194/cp-10-1401-2014, https://doi.org/10.5194/cp-10-1401-2014, 2014
Related subject area
Palaeooceanography, palaeoclimatology
Coral skeletal proxy records database for the Great Barrier Reef, Australia
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
Seeing the wood for the trees: active human–environmental interactions in arid northwestern China
SISALv3: a global speleothem stable isotope and trace element database
DINOSTRAT version 2.1-GTS2020
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
Last Glacial loess in Europe: luminescence database and chronology of deposition
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
The World Atlas of Last Interglacial Shorelines (version 1.0)
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Artemisia pollen dataset for exploring the potential ecological indicators in deep time
Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array
Last Interglacial sea-level data points from Northwest Europe
World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios
Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA
Compilation of a database of Holocene nearshore marine mollusk shell geochemistry from the California Current System
Last interglacial sea-level proxies in the glaciated Northern Hemisphere
Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)
High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores
The Southern Ocean Radiolarian (SO-RAD) dataset: a new compilation of modern radiolarian census data
Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions
A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e)
A standardized database of Marine Isotopic Stage 5e sea-level proxies on tropical Pacific islands
Last interglacial sea-level history from speleothems: a global standardized database
Last interglacial sea-level proxies in East Africa and the Western Indian Ocean
A multiproxy database of western North American Holocene paleoclimate records
A review of MIS 5e sea-level proxies around Japan
Last interglacial (MIS 5e) sea-level proxies in southeastern South America
Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics
A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change
SISALv2: a comprehensive speleothem isotope database with multiple age–depth models
The Eurasian Modern Pollen Database (EMPD), version 2
VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments
The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate
Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis
Simple noise estimates and pseudoproxies for the last 21 000 years
The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems
Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance
A database of paleoceanographic sediment cores from the North Pacific, 1951–2016
The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period
A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Hui Shen, Robert N. Spengler, Xinying Zhou, Alison Betts, Peter Weiming Jia, Keliang Zhao, and Xiaoqiang Li
Earth Syst. Sci. Data, 16, 2483–2499, https://doi.org/10.5194/essd-16-2483-2024, https://doi.org/10.5194/essd-16-2483-2024, 2024
Short summary
Short summary
Understanding how early farmers adapted to their environments is important regarding how we respond to the changing climate. Here, we present wood charcoal records from northwestern China to explore human–environmental interactions. Our data suggest that people started managing chestnut trees around 4600 BP and cultivating fruit trees and transporting conifers from 3500 BP. From 2500 BP, people established horticultural systems, showing that they actively adapted to the environment.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary
Short summary
Modern pollen datasets are essential for pollen-based quantitative paleoclimate reconstructions. Here we present a modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau. This dataset can be used not only for quantitative precipitation reconstructions on the central and western Tibetan Plateau, but can also be combined with other pollen datasets to improve the reliability of quantitative climate reconstructions across the entire Tibetan Plateau.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022, https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Li-Li Lu, Bo-Han Jiao, Feng Qin, Gan Xie, Kai-Qing Lu, Jin-Feng Li, Bin Sun, Min Li, David K. Ferguson, Tian-Gang Gao, Yi-Feng Yao, and Yu-Fei Wang
Earth Syst. Sci. Data, 14, 3961–3995, https://doi.org/10.5194/essd-14-3961-2022, https://doi.org/10.5194/essd-14-3961-2022, 2022
Short summary
Short summary
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to decipher the underlying causes of the long-standing disagreement on the correlation between Artemisia pollen and aridity by using the dataset to recognize the different ecological implications of Artemisia pollen types. Our findings improve the resolution of palaeoenvironmental assessment and change the traditional concept of Artemisia being restricted to arid and semi-arid environments.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Kim M. Cohen, Víctor Cartelle, Robert Barnett, Freek S. Busschers, and Natasha L. M. Barlow
Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, https://doi.org/10.5194/essd-14-2895-2022, 2022
Short summary
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Andrea Dutton, Alexandra Villa, and Peter M. Chutcharavan
Earth Syst. Sci. Data, 14, 2385–2399, https://doi.org/10.5194/essd-14-2385-2022, https://doi.org/10.5194/essd-14-2385-2022, 2022
Short summary
Short summary
This paper includes data that have been compiled to identify the position of sea level during a warm period about 125 000 years ago that is known as the Last Interglacial. Here, we have focused on compiling data for the region of the Bahamas, Turks and Caicos, and the east coast of Florida. These data were compiled and placed within a standardized format prescribed by a new database known as WALIS, which stands for World Atlas of Last Interglacial Shorelines Database.
Hannah M. Palmer, Veronica Padilla Vriesman, Roxanne M. W. Banker, and Jessica R. Bean
Earth Syst. Sci. Data, 14, 1695–1705, https://doi.org/10.5194/essd-14-1695-2022, https://doi.org/10.5194/essd-14-1695-2022, 2022
Short summary
Short summary
Shells of coastal marine organisms can serve as archives of past ocean and climate change. Here, we compiled a database of all available oxygen and carbon isotope values of nearshore marine molluscs from the northeast Pacific coast of North America through the Holocene including both modern collected shells and shells analyzed from midden sites. This first-of-its-kind database can be used to answer archaeological and oceanographic questions in future research.
April S. Dalton, Evan J. Gowan, Jan Mangerud, Per Möller, Juha P. Lunkka, and Valery Astakhov
Earth Syst. Sci. Data, 14, 1447–1492, https://doi.org/10.5194/essd-14-1447-2022, https://doi.org/10.5194/essd-14-1447-2022, 2022
Short summary
Short summary
The last interglacial (LIG; 130 to 115 ka) is a useful analogue for improving predictions of future changes to sea level. Here, we describe the location and characteristics of 82 LIG marine sites from the glaciated Northern Hemisphere (Russia, northern Europe, Greenland and North America). Sites are located in a variety of settings, including boreholes, riverbank exposures and along coastal cliffs.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Peter M. Chutcharavan and Andrea Dutton
Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, https://doi.org/10.5194/essd-13-3155-2021, 2021
Short summary
Short summary
This paper summarizes a global database of fossil coral U-series ages for the Last Interglacial period and was compiled as a contribution to the World Atlas of Last Interglacial Shorelines. Each entry contains relevant age, elevation and sample metadata, and all ages and isotope activity ratios have been normalized and recalculated using the same decay constant values. We also provide two example geochemical screening criteria to help users assess sample age quality.
Nadine Hallmann, Gilbert Camoin, Jody M. Webster, and Marc Humblet
Earth Syst. Sci. Data, 13, 2651–2699, https://doi.org/10.5194/essd-13-2651-2021, https://doi.org/10.5194/essd-13-2651-2021, 2021
Short summary
Short summary
The last interglacial (Marine Isotope Stage 5e – MIS 5e) occurred between 128 and 116 ka when sea level was about 6–8 m above its present level; sea-level changes during this period are still debated. MIS 5e represents a potential future warm-climate analogue. This paper presents an open-access database based on the review of MIS 5e coral reef records from many tropical Pacific islands. Overall, the database contains 318 age data points and 94 relative sea-level data points from 38 studies.
Oana A. Dumitru, Victor J. Polyak, Yemane Asmerom, and Bogdan P. Onac
Earth Syst. Sci. Data, 13, 2077–2094, https://doi.org/10.5194/essd-13-2077-2021, https://doi.org/10.5194/essd-13-2077-2021, 2021
Short summary
Short summary
Here we describe a global database that summarizes the current knowledge of MIS 5 sea level as captured by speleothems. We used the framework of the WALIS database to provide a standardized format which will facilitate the sea-level research community to utilize this worldwide database. This is the first speleothem database and contains all the information needed to assess former paleo relative sea levels and their chronological constraints.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Evan Tam and Yusuke Yokoyama
Earth Syst. Sci. Data, 13, 1477–1497, https://doi.org/10.5194/essd-13-1477-2021, https://doi.org/10.5194/essd-13-1477-2021, 2021
Short summary
Short summary
Changes in sea level during Marine Isotope Stage (MIS) 5e are comparable to modern sea levels in our global climate. Contributing to the World Atlas of Last Interglacial Shorelines (WALIS), this paper reviewed data from over 70 studies detailing sea-level markers for MIS 5e around Japan. Most sea-level markers were found as marine terraces and are often dated by comparison to dated volcanic ash or sediment layers, which has connected Japan’s landforms to global patterns of sea-level change.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer
Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, https://doi.org/10.5194/essd-12-2311-2020, 2020
Short summary
Short summary
Annually laminated lake sediments (varves) record past climate change at seasonal resolution. The VARved sediments DAtabase (VARDA) is created to utilize the full potential of varves for climate reconstructions. VARDA offers free access to a compilation and synchronization of standardized climate-proxy data, with applications ranging from reconstructing regional patterns of past climate change to validating simulations of climate models. VARDA is freely accessible at https://varve.gfz-potsdam.de
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
István Gábor Hatvani, Zoltán Kern, Szabolcs Leél-Őssy, and Attila Demény
Earth Syst. Sci. Data, 10, 139–149, https://doi.org/10.5194/essd-10-139-2018, https://doi.org/10.5194/essd-10-139-2018, 2018
Short summary
Short summary
Evenly spaced carbon and oxygen stable isotope records were produced from central European stalagmites. To mitigate the potential bias of interpolation, the variance spectra were carefully evaluated. The derived data are ready to use with conventional uni- and multivariate statistics, which are usually not prepared to handle the general characteristic of sedimentary paleoclimate records derived from geological sequences unevenly sampled in time.
Marisa Borreggine, Sarah E. Myhre, K. Allison S. Mislan, Curtis Deutsch, and Catherine V. Davis
Earth Syst. Sci. Data, 9, 739–749, https://doi.org/10.5194/essd-9-739-2017, https://doi.org/10.5194/essd-9-739-2017, 2017
Short summary
Short summary
We created a database of 2134 marine sediment cores above 30° N in the North Pacific from 1951 to 2016 to facilitate paleoceanographic and paleoclimate research. This database allows for accessibility to sedimentary sequences, age models, and proxies produced in the North Pacific. We found community-wide shifts towards multiproxy investigation and increased age model generation. The database consolidates the research efforts of an entire community into an efficient tool for future investigations.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Cited articles
Açıkalın, S., Vellekoop, J., Ocakoğlu, F., Yılmaz, İ.
Ö., Smit, J., Altıner, S. Ö., Goderis, S., Vonhof, H., Speijer, R.
P., Woelders, L., Fornaciari, E., and Brinkhuis, H.: Geochemical and
palaeontological characterization of a new K-Pg Boundary locality from the
Northern branch of the Neo-Tethys: Mudurnu – Göynük Basin, NW
Turkey, Cretaceous Res., 52, 251–267, 2015.
Århus, N., Birkelund, T., and Smelror, M.: Biostratigraphy of some
Callovian and Oxfordian cores off Vega, Helgeland, Norsk Geol.
Tidsskr., 69, 39–56, 1989.
Aubry, A. M. R., De Schepper, S., and de Vernal, A.: Dinocyst and acritarch biostratigraphy of the Late Pliocene to Early Pleistocene at Integrated Ocean Drilling Program Site U1307 in the Labrador Sea, J. Micropalaeontol., 39, 41–60, https://doi.org/10.5194/jm-39-41-2020, 2020.
Awad, W. K. and Oboh-Ikuenobe, F. E.: Early Paleogene dinoflagellate cysts
from ODP Hole 959D, Côte d'Ivoire-Ghana Transform Margin, West Africa:
New species, biostratigraphy and paleoenvironmental implications, J.
Afr. Earth Sci., 123, 123–144, https://doi.org/10.1016/j.jafrearsci.2016.07.014,
2016.
Awad, W. K. and Oboh-Ikuenobe, F. E.: Paleogene-early Neogene
paleoenvironmental reconstruction based on palynological analysis of ODP
Hole 959A, West Africa, Mar. Micropaleontol., 148, 29–45, 2019.
Bailey, D. A., Milner, P., and Varney, T.: Some dinoflagellate cysts from the
Kimmeridge Clay Formation in North Yorkshire and Dorset, U.K., P. Yorks. Geol. Soc., 51, 235–243, 1997.
Baruffini, L., Lottaroli, F., and Torricelli, S.: Integrated high-resolution
stratigraphy of the lower oligocene tusa tuffite formation in the
Calabro-Lucano area and sicily (southern Italy), Riv. Ital.
Paleontol. S., 108, 457–478, 2002.
Besems, R.: Dinoflagellate cyst biostratigraphy of Tertiary and Quaternary
deposits of offshore NW Borneo, Geological Society of Malaysia, Bulletin of the Royal Society,
33, 65–93, 1993.
Biffi, U. and Manum, S. B.: Late Eocene-Early Miocene dinoflagellate cyst
stratigraphy from the Marche region (Central Italy), Bulletino della
Società Paleontologica Italiana, 27, 163–212, 1988.
Bijl, P. K.: DINOSTRAT V1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.5772616, 2021.
Bijl, P. K. and Brinkhuis, H.: A new genus and two new species of
dinoflagellate cysts from lower Eocene marine sediments of the Wilkes Land
Margin, Antarctica, Rev. Palaeobot. Palyno., 220, 88–97,
https://doi.org/10.1016/j.revpalbo.2015.05.004, 2015.
Bijl, P. K., Sluijs, A., and Brinkhuis, H.: A magneto- chemo-
stratigraphically calibrated dinoflagellate cyst zonation of the early
Paleogene South Pacific Ocean, Earth-Sci. Rev., 124, 1–31, https://doi.org/10.1016/j.earscirev.2013.04.010, 2013a.
Bijl, P. K., Bendle, A. P. J., Bohaty, S. M., Pross, J., Schouten, S.,
Tauxe, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A.,
Escutia, C., Brinkhuis, H., and Expedition 318 scientists: Eocene cooling linked to
early flow across the Tasmanian Gateway, P. Natl. Acad. Sci. USA, 110, 9645–9650,
https://doi.org/10.1073/pnas.1220872110, 2013b.
Bijl, P. K., Sluijs, A., and Brinkhuis, H.: Erratum to “A magneto- and
chemostratigraphically calibrated dinoflagellate cyst zonation of the early
Paleogene South Pacific Ocean” [Earth Sci. Rev. 124 (2013) 1–31],
Earth-Sci. Rev., 134, 160–163, https://doi.org/10.1016/j.earscirev.2014.03.010,
2014.
Bijl, P. K., Brinkhuis, H., Egger, L. M., Eldrett, J. S., Frieling, J.,
Grothe, A., Houben, A. J. P., Pross, J., Sliwinska, K. K., and Sluijs, A.:
Comment on “Wetzeliella and its allies – the “hole” story: a taxonomic
revision of the Paleogene dinoflagellate subfamily Wetzelielloideae” by
Williams et al. (2015), Palynology, 41, 423–429, https://doi.org/10.1080/01916122.2016.1235056,
2016.
Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J., and Sangiorgi, F.: Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal, J. Micropalaeontol., 37, 105–138, https://doi.org/10.5194/jm-37-105-2018, 2018.
Bowman, V. C., Francis, J. E., Riding, J. B., Hunter, S. J., and Haywood, A.
M.: A latest Cretaceous to earliest Paleogene dinoflagellate cyst zonation
from Antarctica, and implications for phytoprovincialism in the high
southern latitudes, Rev. Palaeobot. Palyno., 171, 40–56,
https://doi.org/10.1016/j.revpalbo.2011.11.004, 2012.
Bowman, V., Ineson, J., Riding, J., Crame, J., Francis, J., Condon, D.,
Whittle, R., and Ferraccioli, F.: The Paleocene of Antarctica: Dinoflagellate
cyst biostratigraphy, chronostratigraphy and implications for the
palaeo-Pacific margin of Gondwana, Gondwana Res., 38, 132–148,
https://doi.org/10.1016/j.gr.2015.10.018, 2016.
Bravo, I. and Figueroa, R. I.: Towards an Ecological Understanding of Dinoflagellate
Cyst Functions, Microorganisms, 2, 11–32,
https://doi.org/10.3390/microorganisms2010011, 2014.
Brinkhuis, H.: Late Eocene to Early Oligocene dinoflagellate cysts from the
Priabonian type-area (northeast Italy); biostratigraphy and
palaeoenvironmental interpretation, Palaeogeogr. Palaeocl., 107, 121–163, 1994.
Brinkhuis, H. and Biffi, U.: Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in Central Italy, Mar. Micropaleontol., 22,
131–183, 1993.
Brinkhuis, H., Powell, A. J., and Zevenboom, D.: High-resolution
dinoflagellate cyst stratigraphy of the Oligocene/Miocene transition
interval in northwest and central Italy, in: Neogene and Quaternary
Dinoflagellate Cysts and Acritarchs, edited by: Head, M. J., and Wrenn, J. H.,
American Association of Stratigraphic Palynologists Foundation, Dallas,
1992.
Brinkhuis, H., Bujak, J. P., Smit, J., Versteegh, G. J. M., and Visscher, H.:
Dinoflagellate-based sea surface temperature reconstructions across the
Cretaceous-Tertiary boundary, Palaeogeogr. Palaeocl., 141, 67–83, 1998.
Brinkhuis, H., Munsterman, D. M., Sengers, S., Sluijs, A., Warnaar, J., and
Williams, G. L.: Late Eocene to Quaternary dinoflagellate cysts from ODP
Site 1168, off western Tasmania, in: Proceedings of the ODP, Scientific results, Leg 189, edited by: Exon, N., and Kennett, J. P., U.S. Government
Printing Office, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.189.105.2003, 2003a.
Brinkhuis, H., Sengers, S., Sluijs, A., Warnaar, J., and Williams, G. L.:
Latest Cretaceous to earliest Oligocene, and Quaternary dinoflagellates from
ODP Site 1172, East Tasman Plateau, in: Proceedings of the ODP, Scientific results, Leg 189, edited by: Exon, N., and Kennett, J. P., U.S. Government
Printing Office, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.189.106.2003, 2003b.
Brown, S. and Downie, C.: Dinoflagellate cyst biostratigraphy of late
Paleocene and early Eocene sediments from Holes 552, 553A, and 555, Leg 81,
Deep Sea Drilling Project (Rockall Plateau), in: Proceedings of the deep sea
drilling project, Initial reports, vol. 81, Washington, U.S.A., 565–579, https://doi.org/10.2973/dsdp.proc.81.113.1984,
1984.
Brown, S. and Downie, C.: Dinoflagellate cyst stratigraphy of Paleocene to
Miocene sediments from the Goban Spur (Sites 548–550, Leg 80), in: Proceedings
of the Deep Sea Drilling Project, Initial reports, vol. 80, Washington,
U.S.A., 643–651, https://doi.org/10.2973/dsdp.proc.80.120.1985, 1985.
Bucefalo Palliani, R. and Riding, J. B.: Lower Toarcian palynostratigraphy
of Pozzale, central Italy, Palynology, 21, 91–103, 1997a.
Bucefalo Palliani, R. and Riding, J. B.: The influence of
palaeoenvironmental change on dinoflagellate cyst distribution. An example
from the Lower and Middle Jurassic of Quercy, southwest France, Bull.
Cent. Rech. Elf E., 21, 107–123, 1997b.
Bucefalo Palliani, R. and Riding, J. B.: A palynological investigation of
the Lower and lowermost Middle Jurassic strata (Sinemurian to Aalenian) from
North Yorkshire, UK, Proceedings of the Yorkshire Geological Society, 53,
1–16, 2000.
Bucefalo Palliani, R. and Riding, J. B.: Biostratigraphy, Provincialism and
evolution of European Early Jurassic (Pliensbachian to early Toarcian)
dinoflagellate cysts, Palynology, 27, 179–214, 2003.
Bujak, J. P. and Matsuoka, K.: Late Cenozoic dinoflagellate cyst zonation in
the western and Northern Pacific, Palynology, 17, 7–25, 1986.
Bujak, J. P. and Mudge, D. C.: A high-resolution North Sea Eocene dinocyst
zonation, Journal of the Geological Society London, 151, 449–462, 1994.
Clyde, W. C., Wilf, P., Iglesias, A., Slingerland, R. L., Barnum, T., Bijl,
P. K., Bralower, T. J., Brinkhuis, H., Comer, E. E., Huber, B. T.,
Ibañez-Mejia, M., Jicha, B. R., Krause, J. M., Schueth, J. D., Singer,
B. S., Raigemborn, M. S., Schmitz, M. D., Sluijs, A., and Zamaloa, M. C.: New
age constraints for the Salamanca Formation and lower Río Chico Group
in the western San Jorge Basin, Patagonia, Argentina: Implications for
cretaceous-paleogene extinction recovery and land mammal age correlations, GSA Bulletin,
126, 289–306, https://doi.org/10.1130/B30915.1, 2014.
Correia, V. F., Riding, J. B., Henriques, M. H., Fernandes, P., Pereira, Z.,
and Wiggan, N. J.: The middle Jurassic palynostratigraphy of the northern
Lusitanian Basin, Portugal, Newsl. Stratigr., 52, 73–79,
https://doi.org/10.1127/nos/2018/0471, 2019.
Costa, L. I. and Davey, R. J.: Dinoflagellate cysts of the Cretaceous
system, in: A stratigraphix index of dinoflagellate cysts, in: A
stratigraphix index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK,
99–154, ISBN-13 978-9401050524, 1992.
Costa, L. I. and Downie, C.: The Wetzeliellaceae; Palaeogene
dinoflagellates, in: Proceedings of the 4th International Palynological
Conference, Lucknow, 1976, 34–46, 1979.
Cramwinckel, M. J., Huber, M., Kocken, I. J., Agnini, C., Bijl, P. K.,
Bohaty, S. M., Frieling, J., Goldner, A., Hilgen, F. J., Kip, E. L.,
Peterse, F., van der Ploeg, R., Röhl, U., Schouten, S., and Sluijs, A.:
Synchronous tropical and deep ocean temperature evolution in the Eocene,
Nature, 559, 382–386, 2018.
Cramwinckel, M. J., van der Ploeg, R., Bijl, P. K., Peterse, F., Bohaty, S.
M., Röhl, U., Schouten, S., Middelburg, J. J., and Sluijs, A.: Harmful
algae and export production collapse in the equatorial Atlantic during the
zenith of Middle Eocene Climatic Optimum warmth, Geology, 47, 247–250,
https://doi.org/10.1130/G45614.1, 2019.
Crouch, E. M., Willumsen, P. S., Kulhanek, D. K., and Gibbs, S.: A revised
Paleocene (Teurian) dinoflagellate cyst zonation from eastern New Zealand,
Palaeogeogr. Palaeocl., 202, 47–79, 2014.
Crouch, E. M., Shepherd, C. L., Morgans, H. E. G., Naafs, B. D. A.,
Dallanave, E., Phillips, A., Hollis, C. J., and Pancost, R. D.: Climatic and
environmental changes across the early Eocene climatic optimum at
mid-Waipara River, Canterbury Basin, New Zealand, Earth-Sci. Rev.,
200, 102961, https://doi.org/10.1016/j.earscirev.2019.102961, 2020.
Dallanave, E., Bachtadse, V., Crouch, E. M., Tauxe, L., Shepherd, C. L.,
Morgans, H. E. G., Hollis, C. J., Hines, B. R., and Sugisaki, S.:
Constraining early to middle Eocene climate evolution of the southwest
Pacific and Southern Ocean, Earth Planet. Sc. Lett., 433,
380–392, https://doi.org/10.1016/j.epsl.2015.11.010, 2016.
Davey, R. J.: Marine Apto-Albian palynomorphs from Holes 400A and 402A, IPOD
Leg 48, northern Bay of Biscay, in: Init. Rep. DSDP, vol. 48, edited by:
Montardert, L., Roberts, D. G., and Thompson, R. W., DSDP, Washington, USA, https://doi.org/10.2973/dsdp.proc.48.123.1979, 1979.
Davey, R. J.: Dinocyst stratigraphy of the latest Jurassic to Early
Cretaceous of the Haldager No. 1 borehole, Denmark, Danmarks Geologiske
Undersögelse, Series B, 6, 1–57, 1982.
Davey, R. J.: A summary of the palynology of the lower Hauterivian (Lower
Cretaceous) from Speeton, east England, Neues Jahrbuch für
Paläontologische Abhandlungen, 122, 83–93, 2001.
Davey, R. J. and Verdier, J.-P.: An investigation of microplankton
assemblages from the Albian of the Paris Basin, Verh., Ned. Akad. Wet., Afd.
Natuurkd., Eerste Reeks, 26, 1–58, 1971.
De Lira Mota, M. A., Harrington, G., and Dunkley Jones, T.: Organic-walled dinoflagellate cyst biostratigraphy of the upper Eocene to lower Oligocene Yazoo Formation, US Gulf Coast, J. Micropalaeontol., 39, 1–26, https://doi.org/10.5194/jm-39-1-2020, 2020.
De Schepper, S. and Head, M. J.: Age calibration of dinoflagellate cyst and
acritarch events in the Pliocene-Pleistocene of the eastern North Atlantic
(DSDP Hole 610A), Stratigraphy, 5, 137–161, 2008.
De Schepper, S. and Head, M. J.: Pliocene and pleistocene dinoflagellate
cyst and acritarch zonation of DSDP Hole 610A, Eastern North Atlantic,
Palynology, 33, 179–218, 2009.
De Schepper, S., Beck, K. M., and Mangerud, G.: Late Neogene dinoflagellate
cyst and acritarch biostratigraphy for Ocean Drilling Program Hole 642B,
Norwegian Sea, Rev. Palaeobot. Palyno., 236, 12–32,
https://doi.org/10.1016/j.revpalbo.2016.08.005, 2017.
De Vernal, A. and Mudie, P. J.: Late Pliocene to Holocene palynostratigraphy
at ODP Site 645, Baffin Bay, in: Proceedings of the ODP, Scientific Results, Leg 105, edited by: Srivastava, S. P., Arthur, M., and
Clement, B., College
Station, Texas, USA, https://doi.org/10.2973/odp.proc.sr.105.133.1989, 1989.
De Vernal, A., Londeix, L., Mudie, P. J., Harland, R., Morzadec-Kerfourn, M.
T., Turon, J.-L., and Wrenn, J. H.: Quaternary organic-walled dinoflagellate
cysts of the North Atlantic Ocean and adjacent seas: ecostratigraphy and
biostratigraphy, in: Neogene and Quaternary dinoflagellate cysts and
acritarchs, edited by: Head, M. J. and Wrenn, J. H., AASP Foundation, 289–329,
1992.
De Verteuil, L. and Norris, G.: Miocene dinoflagellate stratigraphy and
systematics of Maryland and Virginia, Micropaleontology, 42, 1–172, https://doi.org/10.2307/1485926, 1996.
Dimter, A. and Smelror, M.: Callovian (Middle Jurassic) marine microplankton
from southwestern Germany: Biostratigraphy and paleoenvironmental
interpretations, Palaeogeogr. Palaeocl.,
80, 173–195, https://doi.org/10.1016/0031-0182(90)90131-P, 1990.
Dodsworth, P.: Trans-Atlantic dinoflagellate cyst stratigraphy across the Cenomanian–Turonian (Cretaceous) Stage boundary, J. Micropalaeontol., 19, 69–84, https://doi.org/10.1144/jm.19.1.69, 2000.
Duffield, S. L. and Stein, J. A.: Peridiniacean-dominated cyst assemblage
from the Miocene of the Gulf of Mexico shelf, offshore Louisiana, American
Association of Stratigraphic Palynologists Contribution Series, 17, 27–45,
1986.
Duque-Herrera, A.-F., Helenes, J., Pardo-Trujillo, A., Flores-Villarejo,
J.-A., and Sierro-Sánchez, F.-J.: Miocene biostratigraphy and
paleoecology from dinoflagellates, benthic foraminifera and calcareous
nannofossils on the Colombian Pacific coast, Mar. Micropaleontol., 141,
42–54, https://doi.org/10.1016/j.marmicro.2018.05.002, 2018.
Duxbury, S.: A study of dinoflagellate cysts and acritarchs from the Lower
Green- sand (Aptian to Lower Albian) of the Isle of Wight, southern England,
Palaeontographica, Abt. B, 186, 18–80, 1983.
Duxbury, S.: A palynological zonation scheme for the Lower Cretaceous –
United Kingdom Sector, Central North Sea, Neues Jahrb. Geol. P-A.,
219, 95–137, 2001.
Dybkjær, K. and Piasecki, S.: A new Neogene biostratigraphy for Denmark,
Geol. Surv. Den. Greenl., 15, 1–29, https://doi.org/10.34194/geusb.v15.5036 , 2008.
Dybkjær, K. and Piasecki, S.: Neogene dinocyst zonation for the eastern
North Sea Basin, Denmark, Rev. Palaeobot. Palyno., 161,
1–29, https://doi.org/10.1016/j.revpalbo.2010.02.005, 2010.
Egger, L. M., Sliwinska, K. K., van Peer, T. E., Liebrand, D., Lippert, P.
C., Friedrich, O., Wilson, P. A., Norris, R. D., and Pross, J.:
Magnetostratigraphically-calibrated dinoflagellate cyst bioevents for the
uppermost Eocene to lowermost Miocene of the western North Atlantic (IODP
Expedition 342, Paleogene Newfoundland sediment drifts), Rev.
Palaeobot. Palyno., 234, 159–185,
https://doi.org/10.1016/j.revpalbo.2016.08.002, 2016.
Eldrett, J. S. and Harding, I. C.: Palynological analyses of Eocene to
Oligocene sediments from DSDP Site 338, Outer Vøring Plateau, Mar.
Micropaleontol., 73, 226–240, 2009.
Eldrett, J. S., Harding, I. C., Firth, J. V., and Roberts, A. P.:
Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst
biostratigraphy from the Norwegian-Greenland Sea, Mar. Geol., 204,
91–127, 2004.
Eldrett, J. S., Harding, I. C., Wilshaw, R., and Xuan, C.: A new high
northern latitude dinocyst-based magneto-biostratigraphic calibration for
the Norwegian-Greenland Sea, Newsl. Stratigr., 52, 435–460,
2019.
Ellegaard, M.: Variations in dinoflagellate cyst morphology under conditions
of changing salinity during the last 2000 years in the Limfjord, Denmark,
Rev. Palaeobot. Palyno., 109, 65–81, 2000.
Eshet, Y., Moshkovitz, S., Habib, D., Benjamini, C., and Magaritz, M.:
Calcareous nannofossil and dinoflagellate stratigraphy across the
Cretaceous/Tertiary boundary at Hor Hahar, Israel, Mar. Micropaleontol.,
18, 199–228, https://doi.org/10.1016/0377-8398(92)90013-A, 1992.
Feist-Burkhardt, S.: Dinoflagellate assemblages of the Hausen coreholes
(Aalenian to Early Bajocian), southwest Germany, Bull. Cent. Rech. Elf
E., 14, 611–633, 1990.
Feist-Burkhardt, S. and Monteil, E.: Dinoflagellate cysts from the Bajocian
stratotype (Calvados, Normandy, western France). Kystes de dinoflagellés
du stratotype du Bajocien (Calvados, Normandie, France), Bull. Cent.
Rech. Elf E., 21, 31–105, 1997.
Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton,
D. I., and Williams, G. L.: A Classification of Modern and Fossil
Dinoflagellates, edited by: Dinkins, G., Micropalaeontology, Special Paper,
Salem, No. 7, 1993.
Fensome, R. A., Crux, J. A., Gard, G., MacRae, R. A., Williams, G. L.,
Thomas, F. C., Fiorini, F., and Wach, G.: The last 100 million years on the
Scotian Margin, offshore eastern Canada: an event-stratigraphic scheme
emphasizing biostratigraphic data, Atl. Geol., 44, 93–126, 2008.
Firth, J. V.: Upper middle Eocene to Oligocene dinoflagellate
biostratigraphy and assemblage variations in Hole 913B, Greenland Sea, in:
Proceedings of the Ocean Drilling Program. Scientific Results, vol. 151, edited by: Thiede, J., Myrhe, A. M., Firth, J. V., Johnson, G. L., and Ruddiman, W. F., 203–242, https://doi.org/10.2973/odp.proc.sr.151.105.1996,
1996.
Firth, J. V., Eldrett, J. S., Harding, I. C., Coxall, H. K., and Wade, B. S.:
Integrated biomagnetochronology for the palaeogene of ODP Hole 647A:
Implications for correlating palaeoceanographic events from high to low
latitudes, Geol. Soc. Sp., 373, 29–78, https://doi.org/10.1144/SP373.9, 2013.
Frieling, J. and Sluijs, A.: Towards quantitative environmental
reconstructions from ancient non-analogue microfossil assemblages:
Ecological preferences of Paleocene – Eocene dinoflagellates, Earth-Sci.
Rev., 185, 956–973, https://doi.org/10.1016/j.earscirev.2018.08.014, 2018.
Frieling, J., Iakovleva, A. I., Reichart, G. J., Aleksandrova, G. N.,
Gnibidenko, Z. N., Schouten, S., and Sluijs, A.: Paleocene–Eocene warming
and biotic response in the epicontinental West Siberian Sea, Geology, 42,
767–770, 2014.
Gradstein, F. M., Kristiansen, I. L., Loemo, L., and Kaminski, M. A.:
Cenozoic foraminiferal and dinoflagellate cyst biostrtigraphy of the central
North Sea, Micropaleontology, 38, 101–137, 1992.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic
Time Scale 2012, Elsevier, Amsterdam, 1–1144, ISBN 9780444594488, 2012.
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M.: The Geologic Time
Scale 2020, Elsevier, Amsterdam, 1–1358, ISBN 9780128243619, 2020.
Grothe, A., Sangiorgi, F., Brinkhuis, H., Stoica, M., and Krijgsman, W.:
Migration of the dinoflagellate Galeacysta etrusca and its implications for
the Messinian Salinity Crisis, Newsl. Stratigr., 51, 73–91,
https://doi.org/10.1127/nos/2016/0340, 2017.
Guasti, E., Speijer, R. P., Brinkhuis, H., Smit, J., and Steurbaut, E.:
Paleoenvironmental change at the Danian-Selandian transition in Tunisia:
Foraminifera, organic-walled dinoflagellate cyst and calcareous nannofossil
records, Mar. Micropaleontol., 59, 210–229, 2005.
Habib, D. and Drugg, W. S.: Dinoflagellate age of Middle Jurassic–Early
Cretaceous sediments in the Blake-Bahama Basin, in: Deep Sea Drilling Project,
vol. 76, edited by: Gradstein, F. M., Sheridan, R. E. et al., U.S. Govt.
Printing Office, Washington, https://doi.org/10.2973/dsdp.proc.76.126.1983, 1983.
Habib, D. and Drugg, W. S.: Palynology of Sites 603 and 605, Leg 93, Deep
Sea Drilling Project, in: Deep Sea Drilling
Project, edited by: van Hinte, J. E. et al., Washington, Initial Reports, vol. 93, 751–775, https://doi.org/10.2973/dsdp.proc.93.122.1987, 1987.
Harding, I. C., Smith, G. A., Riding, J. B., and Wimbledon, W. A. P.:
Inter-regional correlation of Jurassic/Cretaceous boundary strata based on
the Tithonian-Valanginian dinoflagellate cyst biostratigraphy of the Volga
Basin, western Russia, Rev. Palaeobot. Palyno., 167,
82–116, https://doi.org/10.1016/j.revpalbo.2011.07.002, 2011.
Harland, R.: Dinoflagellate biostratigraphy of Neogene and Quaternary
sediments at holes 400/400A in the Bay of Biscay (DSDP Leg 48), Initial
Reports of the deep sea drilling project Leg 48, https://doi.org/10.2973/dsdp.proc.48.122.1979, 1979.
Harland, R.: Dinoflagellate cysts of the Quaternary system, in: A
stratigraphix index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK,
253–273, ISBN-13 978-9401050524, 1992.
Head, M. J.: Pollen and dinoflagellates from the Red Crag at
Walton-on-the-Naze, Essex: Evidence for a mild climatic phase during the
early Late Pliocene of eastern England, Geol. Mag., 135,
803–817, 1998.
Head, M. J. and Norris, G.: Palynology and dinocyst stratigraphy of the
Eocene and Oligocene in ODP Leg 105, Hole 647A, Labrador Sea, in: Proceedings of the ODP, Scientific
Results, Leg 105, edited by: Srivastava, S.
P., Arthur, M., and Clement, B., College Station, Texas, https://doi.org/10.2973/odp.proc.sr.105.178.1989, 1989.
Head, M. J. and Norris, G.: New species of dinoflagellate cysts and other
palynomorphs from the latest Miocene and Pliocene of DSDP Hole 603C, Western
North Atlantic, Journal of Palaeontology, 77, 1–15, https://doi.org/10.1666/0022-3360(2003)077<0001:NSODCA>2.0.CO;2, 2003.
Head, M. J., Norris, G., and Mudie, P. J.: 25. Palynology and dinocyst
stratigraphy of the Upper Miocene and lowermost Pliocene, ODP Leg 105, Site
646, Labrador Sea, in: Ocean Drilling Program,
Proceedings, Scientific Results, Leg 105, edited by: Srivastava, S. P. et al., College Station, Texas, 423–451, https://doi.org/10.2973/odp.proc.sr.105.135.1989, 1989.
Heilmann-Clausen, C.: Dinoflagellate stratigraphy of the uppermost Danian to
Ypresien in the Viborg I borehole, central Jylland, Denmark, Danmarks
Geologische Untersogelse A, 7, 1–69, 1985.
Heilmann-Clausen, C.: Lower Cretaceous dinoflagellate biostratigraphy in the
Danish Central Trough, Danmarks Geologische Untersogelse A, 17, 1–89,
1987.
Heilmann-Clausen, C. and Van Simaeys, S.: Dinoflagellate cysts from the
Middle Eocene to lowermost Oligocene succession in the Kysing research
borehole, central Danish basin, Palynology, 29, 143–204,
https://doi.org/10.1080/01916122.2005.9989606, 2005.
Helby, R. and McMinn, A.: A preliminary report of Early Cretaceous dinocyst
floras from Site 765, Argo Abyssal Plain, northwest Australia, edited by: Gradstein, F.
M. et al., Proc. ODP, Sci. Results, 123, 407–420, College Station,
TX, https://doi.org/10.2973/odp.proc.sr.123.121.1992, 1992.
Helby, R., Morgan, R., and Partridge, A. D.: A palynological zonation of the
Australian Mesozoic, in: Studies in Australian Mesozoic Palynology, edited by: Jell, P. A., Mem. Assoc. Australas. Palaeontol., 1987.
Hoek, R. P., Eshet, Y., and Almogi-Labin, A.: Dinoflagellate cyst zonation of
Campanian-Maastrichtian sequences in Israel, Micropaleontology, 42,
125–150, 1996.
Hollis, C. J., Crouch, E. M., Morgans, H. E. G., Handley, L., Baker, J. A.,
Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos,
J. C., and Pancost, R. D.: Tropical sea temperatures in the high latitude
South Pacific during the Eocene, Geology, 37, 99–102, 2009.
Houben, A. J. P., Bijl, P. K., Guerstein, G. R., Sluijs, A., and Brinkhuis,
H.: Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst
from the Southern Ocean, Rev. Palaeobot. Palyno., 165,
175, https://doi.org/10.1016/j.revpalbo.2011.03.002, 2011.
Houben, A. J. P., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S.,
Stickley, C. E., Röhl, U., Sugisaki, S., Tauxe, L., Van De Flierdt, T.,
Olney, M., Sangiorgi, F., Sluijs, A., Escutia, C., and Brinkhuis, H.:
Reorganization of Southern Ocean plankton ecosystem at the onset of
Antarctic glaciation, Science, 340, 341–344, https://doi.org/10.1126/science.1223646, 2013.
Houben, A. J. P., Bijl, P. K., Sluijs, A., Schouten, S., and Brinkhuis, H.: Late
Eocene Southern Ocean cooling and invigoration of circulation preconditioned
Antarctica for full-scale glaciation, Geochem. Geophy. Geosy.,
20, 2214–2234, 2019.
Hoyle, T. M., Sala-Pérez, M., and Sangiorgi, F.: Where should we draw the lines between dinocyst “species”? Morphological continua in Black Sea dinocysts, J. Micropalaeontol., 38, 55–65, https://doi.org/10.5194/jm-38-55-2019, 2019.
Iakovleva, A. I. and Heilmann-Clausen, C.: Eocene dinoflagellate cyst
biostratigraphy of research borehole 011-BP, Omsk region, southwestern
Siberia, Palynology, 34, 195–232, 2010.
Iakovleva, A. I., Brinkhuis, H., and Cavagnetoo, C.: Late Paleocene-Early Eocene
dinoflagellate cysts from the Turgay Strait, KAzachstan; correlations across
ancient seaways, Palaeogeogr. Palaeocl., 172,
243–268, 2001.
Ioannides, N. S., Colin, J.-P., and Jan du Chêne, R.: A preliminary
investigation of Kimmeridgian dinoflagellates and ostracodes from Quercy,
southwest France, Bull. Cent. Rech. Elf E., 12,
471–491, 1988.
King, C., Iakovleva, A., Heilmann-Clausen, C., and Steurbaut, E.: Ypresian
(early Eocene) stratigraphy of the Suvlu-Kaya reference section in the
Bakhchisaray area (Crimea), Newsl. Stratigr., 51,
167–208, https://doi.org/10.1127/nos/2017/0384, 2018.
Kirsch, K. H.: Dinoflagellaten-Zysten aus der Oberkreide des Helvetikums und
Nordultrahelvetikums von Oberbayern, Muenchner Geowiss. Abh. Reihe A,
Geol. Palaeontol., 22, 1–306, 1991.
Köthe, A.: A revised cenozoic dinoflagellate cyst and calcareous
nannoplankton zonation for the german sector of the southeastern north sea
basin, Newsl. Stratigr., 45, 189–220,
https://doi.org/10.1127/0078-0421/2012/0021, 2012.
Köthe, A., Khan, A. M., and Ahsraf, M.: Biostratigraphy of the Surghar
Range, Salt Range, Sulaiman Range and the Kohat area, Pakistan, according to
Jurassic through Paleogene calcareous nannofossils and Paleogene
dinoflagellates, Geol. Jb. Reihe B, 71, 3–87, 1988.
Krijgsman, W., Hilgen, F. J., Langereis, C. G., Santarelli, A., and
Zachariasse, W. J.: Late Miocene magnetostratigraphy, biostratigraphy and
cyclostratigraphy in the Mediterranean, Earth Planet. Sc. Lett.,
136, 475–494, https://doi.org/10.1016/0012-821X(95)00206-R, 1995.
Kuhlmann, G., Langereis, C. G., Munsterman, D., Leeuwen, R.-J. van,
Verreussel, R., Meulenkamp, J. E., and Wong, T. E.: Integrated
chronostratigraphy of the Pliocene-Pleistocene interval and its relation to
the regional stratigraphical stages in the southern North Sea region,
Geol. Mijnbouw, 85, 20–45, 2006.
Lebedeva, N. K., Aleksandrova, G. N., Shurygin, B. N., Ovechkina, M. N., and
Gnibidenkoa, Z. N.: Paleontological and Magnetostratigraphic Data on Upper
Cretaceous Deposits from Borehole no. 8 (Russkaya Polyana District,
Southwestern Siberia), Stratigr. Geol. Correl., 21,
48–78, 2013.
Leereveld, H.: Dinoflagellate cysts from the Lower Cretaceous Rio Argos
succession (southeast Spain), PhD thesis, Utrecht University, Laboratory of Palaeobotany
and Palynology, Contributions series no. 2, Utrecht, the Netherlands, 1995.
Leereveld, H.: Upper Tithonian-Valanginian (Upper Jurassic-Lower Cretaceous)
dinoflagellate cyst stratigraphy of the western Mediterranean, Cretaceous
Res., 18, 385–420, 1997a.
Leereveld, H.: Hauterivian-Barremian (Lower Cretaceous) dinoflagellate cyst
stratigraphy of the western Mediterranean, Cretaceous Res., 18,
421–456, 1997b.
Londeix, L. and Jan Du Chene, R.: Burdigalian dinocyst stratigraphy of the
stratotypic area (Bordeaux, France), GEOBIOS, 31, 283–294, 1998.
Louwye, S., Head, M. J., and De Schepper, S.: Dinoflagellate cyst
stratigraphy and Palaeoecology of the Pliocene in Northern Belgium, southern
North Sea Basin, Geol. Mag., 141, 353–378, 2004.
Louwye, S., Mertens, K. N., and Vercauteren, D.: New dinoflagellate cysts
from the Miocene of the Porcupine Basin, offshore southwest Ireland,
Palynology, 32, 131–142, 2008.
MacRae, R. A., Fensome, R. A., and Williams, G. L.: Fossil dinoflagellate
diversity, originations and extinctions and their significance, Can.
J. Botany, 74, 1687–1694, 1996.
Mao, S. and Mohr, B. A. R.: Late Cretaceous dinoflagellate cysts
(Santonian-Maestrichtian) from the Southern Indian Ocean (Hole 748C), in:
Proceedings of the Ocean Drilling
Program, Scientific results, volume 120, edited by: Wise, S. W. and Schlich, R., College Station, TX, USA, 1992.
Marret, F., Bradley, L., de Vernal, A., Hardy, W., Kim, S.-Y., Mudie, P.,
Penaud, A., Pospelova, V., Price, A. M., Radi, T., and Rochon, A.: From
bi-polar to regional distribution of modern dinoflagellate cysts, an
overview of their biogeography, Mar. Micropaleontol., 159, 101753,
https://doi.org/10.1016/j.marmicro.2019.101753, 2020.
Martini, E.: Standard Tertiary and Quaternary calcareous nannoplankton
zonation, in: Proceedings 2nd International
Conference Planktonic Microfossils Roma, Rome, 1970, ed. Tecnosci., Vol. 2, edited by: Farinacci, A.,
739–785, 1971.
Masure, E.: Berriasian to Aptian dinoflagellate cysts from the Galicia
margin, offshore Spain, Sites 638 and 639, Leg 103, in: Proceedings of the Ocean Drilling Program,
Scientific Results, volume 103, edited by: Boillot, G.,
Winterer, E. L., and et al., College Station, Texas, https://doi.org/10.2973/odp.proc.sr.103.183.1988, 1988.
Masure, E., Rauscher, R., Dejax, J., Schuler, M., and Ferre, B.:
Cretaceous-Paleocene palynology from the Cote D'ivoire-Ghana Transform
Margin, sites 959, 960, 961, and 962, Proc. Ocean Drill. Program Sci. Res., 159, 253–276, https://doi.org/10.2973/odp.proc.sr.159.040.1998, 1998.
Matsuoka, K., Bujak, J. P., and Shimazaki, T.: Late Cenozoic dinoflagellate
cyst biostratigraphy from the west coast of northern Japan,
Micropaleontology, 33, 214–229, 1987.
Matthiessen, J. and Brenner, W.: Dinoflagellate cyst ecostratigraphy of
Pliocene-Pleistocene sediments from the Yermak Plateau (Arctic Ocean, Hole
911A), in: Proceedings of the Ocean Drilling Program, Scientific Results, vol.
151, College Station, Texas, USA, https://doi.org/10.2973/odp.proc.sr.151.109.1996, 1996.
McLachlan, S. M. S., Pospelova, V., and Hebda, R. J.: Dinoflagellate cysts
from the upper Campanian (Upper Cretaceous) of Hornby Island, British
Columbia, Canada, with implications for Nanaimo Group biostratigraphy and
paleoenvironmental reconstructions, Mar. Micropaleontol., 145, 1–20,
https://doi.org/10.1016/j.marmicro.2018.10.002, 2018.
McMinn, A.: Neogene dinoflagellate distribution in the eastern Indian Ocean
from Leg 123, Site 765, in: Proc. ODP, Sci. Results, volume 123, edited by:
Gradstein, F. M., Ludden, J. N., et al., College
Station, TX, https://doi.org/10.2973/odp.proc.sr.123.120.1992, 1992.
McMinn, A.: Neogene dinoflagellate cyst biostratigraphy from sites 815 and
823, Leg 133, northeastern Australian margin, in: Proceedings of the Ocean Drilling Program,
Scientific Results, volume 133, edited by: McKenzie, J. A.,
Davies, P. J., and Palmer-Julson, A., U.S. Government Printing Office, College
Station, Texas, https://doi.org/10.2973/odp.proc.sr.133.219.1993, 1993.
Mertens, K. N. and Carbonell-Moore, C.: Introduction to Spiniferites Mantell 1850 special
issue, Palynology, 42, 1–9, https://doi.org/10.1080/01916122.2018.1465741, 2018.
Mertens, K. N., Takano, Y., Head, M. J., and Matsuoka, K.: Living fossils in
the Indo-Pacific warm pool: A refuge for thermophilic dinoflagellates during
glaciations, Geology, 42, 531–534, https://doi.org/10.1130/G35456.1, 2014.
Mohr, B. A. R. and Mao, S.: Maastrichtian dinocyst floras from Maud Rise and
Georgia Basin (Southern Ocean): Their Stratigraphic and Palaeoenvironmental
implications, Palynology, 21, 41–65, 1997.
Montanari, A., Bice, D. M., Capo, R., Coccioni, R., Deino, A., DePaolo, D.
J., Emmanuel, L., Monechi, S., Renard, M., and Zevenboom, D.: Integrated
stratigraphy of the Chattian to mid-Burdigalian pelagic sequence of the
Contessa Valley (Gubbio, Italy), in:
Miocene Stratigraphy: an Integrated Approach, edited by: Montanari, A., Odin, G. S., and Coccioni, R., Elsevier, Amsterdam, the
Netherlands, ISBN 0-444-82498-7, 1997.
Monteil, E.: Kystes de dinoflagellés index (Tithonique-Valanginien) du
sud-est de la France: proposition d'une nouvelle zonation palynologique,
Rev. Paleobiol., 11, 299–306, 1992.
Monteil, E.: Dinoflagellate cyst biozonation of the Tithonian and Berriasian
of south-east France. Correlation with the sequence stratigraphy, Bull.
Cent. Rech. Elf E., 17, 249–273, 1993.
Mudge, D. C. and Bujak, J. P.: An integrated stratigraphy for the Paleocene
and Eocene of the North Sea, Geol. Soc. Sp., 101, 91–113, https://doi.org/10.1144/GSL.SP.1996.101.01.06,
1996.
Mudge, D. C. and Bujak, J. P.: Biostratigraphic evidence for evolving
palaeoenvironments inthe Lower Paleogene of the Faeroe-Shetland Basin,
Mar. Petrol. Geol., 18, 577–590,
https://doi.org/10.1016/S0264-8172(00)00074-X, 2001.
Mudie, P. J.: Palynology and dinoflagellate biostratigraphy of DSDP Leg 94,
Sites 607 and 611, North Atlantic Ocean, Initial Reports of the DSDP, vol. 94,
Washington, USA, https://doi.org/10.2973/dsdp.proc.94.118.1987, 1987.
Nikitenko, B., Pestchevitskaya, E. B., Lebedeva, N. K., and Ilyina, V. I.:
Micropalaeontological and palynological analyses across the
Jurassic-Cretaceous boundary on Nordvik Peninsula, Northeast Siberia,
Newsl. Stratigr., 42, 181–222, 2008.
Nøhr-Hansen, H., Sheldon, E., and Dam, G.: A new biostratigraphic scheme for
the Paleocene onshore West Greenland and its implications for the timing of
the pre-volcanic evolution, Geol. Soc. Sp., 197,
111–156, 2002.
Nøhr-Hansen, H., Piasecki, S., and Alsen, P.: A Cretaceous dinoflagellate
cyst zonation for NE Greenland, Geol. Mag., 157, 1658–1692,
2020.
Ogg, J. G. and Hinnov, L. A.: Cretaceous, in: The Geologic Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G.,
Schmitz, M. D., and Ogg, G. M., Elsevier,
Amsterdam, ISBN 978-0-12-824360-2, 2012a.
Ogg, J. G. and Hinnov, L. A.: Jurassic, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, ISBN 978-0-12-824360-2, 2012b.
Olde, K., Jarvis, I., Pearce, M., Uličný, D., Tocher, B.,
Trabucho-Alexandre, J., and Gröcke, D.: A revised Northern European Turonian
(upper Cretaceous) dinoflagellate cyst biostratigraphy: Integrating
palynology and carbon isotope events, Rev. Palaeobot. Palyno.,
213, 1–16, https://doi.org/10.1016/j.revpalbo.2014.10.006, 2015.
Oosting, A. M., Leereveld, H., Dickens, G. R., Henderson, R. A., and
Brinkhuis, H.: Correlation of Barremian-Aptian (mid-Cretaceous)
dinoflagellate cyst assemblages between the Tethyan and Austral realms,
Cretaceous Res., 27, 792–813, https://doi.org/10.1016/j.cretres.2006.03.012,
2006.
Pearce, M. A.: New organic-walled dinoflagellate cysts from the Cenomanian to Maastrichtian of the Trunch borehole, UK, J. Micropalaeontol., 29, 51–72, https://doi.org/10.1144/jm.29.1.51, 2010.
Petrizzo, M. R., Wade, B. S., and Gradstein, F. M.: Planktonic Foraminifera, in: The Geologic
Time Scale 2012, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., chapter 3, 74–87, Elsevier, Amsterdam, ISBN 978-0-12-824360-2, 2012.
Piasecki, S., Larsen, L. M., Pedersen, A. K., and Pedersen, G. K.: Palynostratigraphy of the Lower Tertiary volcanics and marine clastic sediments in the southern part of West Greenland Basin: implications for the timing and duration of the volcanism, Rapport
Grønlands Geologiske Undersøgelse, 154, 13–31, 1992.
Poulsen, N. E.: Jurassic dinoflagellate cyst biostratigraphy of the Danish
Subbasin in relation to sequences in England and Poland; a preliminary
review, Rev. Palaeobot. Palyno., 75, 1–32, 1992.
Poulsen, N. E.: Dinoflagellate cyst biostratigraphy of the Late Jurassic of
Poland, GEOBIOS, 17, 401–407, 1994.
Poulsen, N. E.: Upper Bajocian to Callovian (Jurassic) dinoflagellate cysts
from central Poland, Acta Geol. Pol., 48, 237–245, 1998.
Poulsen, N. E. and Riding, J. B.: The Jurassic dinoflagellate cyst zonation of
Subboreal Northwest Europe, Geol. Surv. Den. Greenl., 1, 115–144, 2003.
Powell, A. J.: Latest Palaeogene and Earliest Neogene dinoflagellate cysts
from the Lemme section, NW Italy, AASP Contributions Series, 17, 83–104,
1986.
Powell, A. J.: A modified dinoflagellate cyst biozonation for latest
Palaeocene and earliest Eocene sediments from the central North Sea, Rev. Palaeobot. Palyno., 56, 327–344,
https://doi.org/10.1016/0034-6667(88)90064-4, 1988.
Powell, A. J.: Dinoflagellate cysts of the Tertiary System, in: A
stratigraphic index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK, ISBN-13 978-9401050524, 1992.
Powell, A. J., Brinkhuis, H., and Bujak, J. P.: Upper Paleocene-lower Eocene
dinoflagellate cyst sequence biostratigraphy of southeast England, edited by: R. W. O. Knox, R. M. Corfield, and R. E. Dunay, Geol. Soc. Spec. Publ., 101, 145–183,
1996.
Prince, I. M., Jarvis, I., Pearce, M. A., and Tocher, B. A.: Dinoflagellate
cyst biostratigraphy of the Coniacian-Santonian (Upper Cretaceous): New data
from the English Chalk, Rev. Palaeobot. Palyno., 150,
59–96, https://doi.org/10.1016/j.revpalbo.2008.01.005, 2008.
Pross, J., Houben, A. J. P., Simaeys, S. van, Williams, G. L., Kotthoff, U.,
Coccioni, R., Wilpshaar, M., and Brinkhuis, H.: Umbria-Marche revisited: A
refined magnetostratigraphic calibration of dinoflagellate cyst events for
the Oligocene of the Western Tethys, Rev. Palaeobot. Palyno.,
158, 213–235, 2010.
Quaijtaal, W. and Brinkhuis, H.: Pentadinium alabamensis: A new, unusual dinoflagellate from the
early Oligocene of the Gulf Coast, Alabama, USA, Rev. Palaeobot. Palyno., 175, 47–54, https://doi.org/10.1016/j.revpalbo.2012.03.002, 2012.
Quaijtaal, W., Donders, T. H., Persico, D., and Louwye, S.: Characterising
the middle Miocene Mi-events in the Eastern North Atlantic realm: A first
high-resolution marine palynological record from the Porcupine Basin,
Palaeogeogr. Palaeocl., 399, 140–159, 2014.
Radmacher, W., Pérez-Rodríguez, I., Arz, J. A., and Pearce, M. A.:
Dinoflagellate biostratigraphy at the Campanian-Maastrichtian boundary in
Zumaia, northern Spain, Cretaceous Res., 51, 309–320,
https://doi.org/10.1016/j.cretres.2014.07.004, 2014a.
Radmacher, W., Tyszka, J., Mangerud, G., and Pearce, M. A.: Dinoflagellate
cyst biostratigraphy of the Upper Albian to Lower Maastrichtian in the
southwestern Barents Sea, Mar. Petrol. Geol., 57, 109–121,
2014b.
Radmacher, W., Mangerud, G., and Tyszka, J.: Dinoflagellate cyst
biostratigraphy of Upper Cretaceous strata from two wells in the Norwegian
Sea, Rev. Palaeobot. Palyno., 216, 18–32, 2015.
Reichart, G.-J., Brinkhuis, H., Huiskamp, F., and Zachariasse, W. J.:
Hyperstratification following glacial overturning events in the northern
Arabian Sea, Paleoceanography, 19, PA2013, https://doi.org/10.1029/2003PA000900, 2004.
Riding, J. B. and Helby, R.: Early Jurassic (Toarcian) dinoflagellate cysts
from the Timor Sea, Australia, Studies in Australian Mesozoic palynology II,
Memoir of the Association of Australasian Palaeontologists, vol. 24, edited by: Laurie, J.
R. and Foster, C. B., 1–32, lSSN 0810 8889, 2001a.
Riding, J. B. and Helby, R.: A selective reappraisal of Wanaea Cookson &
Eisenack 1958 (Dinophyceae), Studies in Australian Mesozoic palynology II;
Memoir of the Association of Australasian Palaeontologists, vol. 24, edited by: Laurie, J.
R. and Foster, C. B., 33–58, lSSN 0810 8889, 2001b.
Riding, J. B. and Helby, R.: Phallocysta granosa sp. nov., a Mid Jurassic (Bathonian)
dinoflagellate cyst from the Timor Sea, Australia., Studies in Australian
Mesozoic palynology II; Memoir of the Association of Australasian
Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B., 59–63,
2001c.
Riding, J. B. and Helby, R.: Microplankton from the Mid Jurassic (late
Callovian) Rigaudella aemula Zone in the Timor Sea, north-western Australia, Studies in
Australian Mesozoic palynology II; Memoir of the Association of Australasian
Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B., 65–109, lSSN 0810 8889,
2001d.
Riding, J. B. and Helby, R.: Dinoflagellate cysts from the Late Jurassic
(Oxfordian) Wanaea spectabilis Zone in the Timor Sea region, Studies in Australian Mesozoic
palynology II; Memoir of the Association of Australasian Palaeontologists,
vol. 24, edited by: Laurie, J. R. and Foster, C. B., 111–140, lSSN 0810 8889, 2001e.
Riding, J. B. and Helby, R.: Dinoflagellate cysts from the Late Jurassic
(Kimmeridgian) Dingodinium swanense Zone in the North-West Shelf and Timor Sea, Australia.,
Studies in Australian Mesozoic palynology II; Memoir of the Association of
Australasian Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B.,
141–176, lSSN 0810 8889, 2001f.
Riding, J. B. and Helby, R.: Marine microplankton from the Late Jurassic
(Tithonian) of the north-west Australian region., Studies in Australian
Mesozoic palynology II; Memoir of the Association of Australasian
Palaeontologists, vol. 24, edited by: Laurie, J. R. and Foster, C. B., 177–220, lSSN 0810 8889,
2001g.
Riding, J. B. and Thomas, J. E.: Dinoflagellate cyst stratigraphy of the
Kimmeridge Clay (Upper Jurassic) from the Dorset Coast, Southern England,
Palynology, 12, 65–88, 1988.
Riding, J. B. and Thomas, J. E.: Dinoflagellate cysts of the Jurassic System,
in: A stratigraphix index of dinoflagellate cysts, edited by: Powell, A. J.,
British Micropaleontological Society Publications Series, London, UK, 7–98, ISBN-13 978-9401050524,
1992.
Riding, J. B. and Thomas, J. E.: Marine palynomorphs from the Staffin Bay
and Staffin Shale formations (Middle–Upper Jurassic) of the Trotternish
Peninsula, NW Skye, Scot. J. Geol., 33, 59–74, 1997.
Riding, J. B., Mantle, D. J., and Backhouse, J.: A review of the
chronostratigraphical ages of Middle Triassic to Late Jurassic
dinoflagellate cyst biozones of the North West Shelf of Australia, Rev. Palaeobot. Palyno., 162, 543–575,
https://doi.org/10.1016/j.revpalbo.2010.07.008, 2010.
Riley, L. A. and Fenton, J. P. G.: A dinocyst zonation for the Callovian to
iddle Oxfordian succession (Jurassic) of northwest Europe, Palynology, 6,
193–202, 1982.
Rochon, A., Lewis, J., Ellegaard, M., and Harding, I. C.: The Gonyaulax spinifera (Dinophyceae)
“complex”: Perpetuating the paradox?, Rev. Palaeobot. Palyno.,
155, 52–60, 2009.
Sangiorgi, F., Bijl, P. K., Passchier, S., Salzmann, U., Schouten, S., McKay,
R., Cody, R. D., Pross, J., Van De Flierdt, T., Bohaty, S. M., Levy, R.,
Williams, T., Escutia, C., and Brinkhuis, H.: Southern Ocean warming and Wilkes
Land ice sheet retreat during the mid-Miocene, Nat. Commun., 9,
317, https://doi.org/10.1038/s41467-017-02609-7, 2018.
Schiøler, P.: New species of dinoflagellate cysts from Maastrichtian-Danian chalks of the Danish North Sea, J. Micropalaeontol., 12, 99–112, https://doi.org/10.1144/jm.12.1.99, 1993.
Schreck, M. and Matthiessen, J.: Batiacasphaera bergenensis and Lavradosphaera elongata – new dinoflagellate cyst and
acritarch species from the Miocene of the Iceland Sea (ODP Hole 907A),
Rev. Palaeobot. Palyno., 211, 97–106, 2014.
Schreck, M., Matthiessen, J., and Head, M. J.: A magnetostratigraphic
calibration of middle Miocene through Pliocene dinoflagellate cyst and
acritarch events in the Iceland Sea (Ocean Drilling Program Hole 907A),
Rev. Palaeobot. Palyno. 187, 66–94,
https://doi.org/10.1016/j.revpalbo.2012.08.006, 2012.
Schreck, M., Meheust, M., Stein, R., and Matthiessen, J.: Response of marine
palynomorphs to Neogene climate cooling in the Iceland Sea (ODP Hole 907A),
Mar. Micropaleontol., 101, 49–67, https://doi.org/10.1016/j.marmicro.2013.03.003,
2013.
Schreck, M., Nam, C., Clotten, S. I., Fahl, K., De Schepper, S., Forwick, M.,
and Matthiessen, J.: Neogene dinoflagellate cysts and acritarchs from the
high northern latitudes and their relation to sea surface temperature,
Mar. Micropaleontol., 136, 51–65, https://doi.org/10.1016/j.marmicro.2017.09.003,
2017.
Shulgina, N. I., Burdykina, M. D., Basov, V. A., and Århus, N.:
Distribution of ammonites, foraminifera and dinoflagellate cysts in the
lower Cretaceous reference sections of the Khatanga Basin, and Boreal
Valanginian biogeography, Cretaceous Res., 15, 1–16, 1994.
Skupien, P.: Albian non-calcareous dinoflagellates of the western
Carpathians, Slovak Geological Magazine, 10, 203–214, 2004.
Skupien, P. and Vasícek, Z.: Lower Cretaceous ammonite and dinocyst
biostratigraphy and paleoenvironment of the Silesian Basin (outher western
Carpathians), Geol. Carpath., 53, 179–189, 2002.
Slimani, H. and Louwye, S.: New dinoflagellate cyst species of the
Microdinium and Phanerodinium Complexes (Evitt) from the Upper Cretaceous-Lower Paleogene Chalk
Group in the Meer borehole, northern Belgium, Rev. Palaeobot.
Palyno., 168, 41–50, 2011.
Śliwińska, K. K., Abrahamsen, N., Beyer, C., Brünings-Hansen,
T., Thomsen, E., Ulleberg, K., and Heilmann-Clausen, C.: Bio- and
magnetostratigraphy of Rupelian-mid Chattian deposits from the Danish land
area, Rev. Palaeobot. Palyno., 172, 48–69, 2012.
Śliwińska, K. K., Jelby, M. E., Grundvåg, S.-A., Nohr-Hansen, H.,
Alsen, P., and Olaussen, S.: Dinocyst stratigraphy of the Valanginian-Aptian
Rurikfjellet and Helvetiafjellet formations on Spitsbergen, Arctic Norway,
Geol. Mag., 157, 1693–1714, 2020.
Sluijs, A., Brinkhuis, H., Stickley, C. E., Warnaar, J., Williams, G. L., and
Fuller, M.: Dinoflagellate cysts from the Eocene–Oligocene transition in
the Southern Ocean: Results from ODP Leg 189, in: Proceedings of the ODP, Scientific Results, Leg 189, edited by: Exon, N. and
Kennett, J. P., U.S.
Government Printing Office, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.189.104.2003, 2003.
Sluijs, A., Pross, J., and Brinkhuis, H.: From greenhouse to icehouse;
organic walled dinoflagellate cysts as paleoenvironmental indicators in the
Paleogene, Earth-Sci. Rev., 68, 281–315, 2005.
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H.,
Sinninghe Damsté, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein,
R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., Moran, K., and Expedition 302 Scientists: Subtropical Arctic Ocean temperatures
during the Palaeocene/Eocene Thermal Maximum, Nature, 441, 610–613, 2006.
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S., John, C. M., Zachos, J.
C., Reichart, G.-J., Sinninghe Damsté, J. S., Crouch, E. M., and Dickens,
G. R.: Environmental precursors to rapid light carbon injection at the
Palaeocene/Eocene boundary, Nature, 450, 1218–1221, 2007.
Smelror, M.: Late Bathonian to Early Oxfordian dinoflagellate cyst
stratigraphy of Jameson Land and Milne Land, East Greenand, Rapp.
Grønlands Geol. Unders., 137, 135–159, 1988a.
Smelror, M.: Bathonian to early Oxfordian dinoflagellate cysts and
acritarchs from Kong Karls Land, Svalbard, Rev. Palaeobot.
Palyno., 56, 275–303, https://doi.org/10.1016/0034-6667(88)90061-9, 1988b.
Smelror, M.: Jurassic stratigraphy of the western Barents Sea region: a
review, GEOBIOS, 17, 441–451, 1994.
Smelror, M. and Dietl, G.: Dinoflagellates cysts of the Bathonian/Callovian
boundary beds in Southern Germany, GEOBIOS, 17, 453–459, 1994.
Smelror, M. and Lominadze, T. A.: Callovian dinoflagellate cysts from the
Caucasus, U.S.S.R., N. Jb. Geol. Palõont., Abh., 178, 147–166, 1989.
Smelror, M., Århus, N., Meléndez, G., and Lardies, M. Q.: A
reconnaissance study of Bathonian to Oxfordian (Jurassic) dinoflagellates
and acritarchs from the Zaragoza region (NE Spain) and Figueira da Foz
(Portugal), Rev. Esp. Micropaleont., 23, 47–82, 1991.
Soliman, A., Coric, S., Head, M. J., Piller, W. E., and El Beialy, S. Y.:
Lower and Middle Miocene biostratigraphy, Gulf of Suez, Egypt based on
dinoflagellate cysts and calcareous nannofossils, Palynology, 36, 38–79,
2012.
Steeman, T., De Weirdt, J., Smith, T., De Putter, T., Mees, F., and Louwye, S.: Dinoflagellate cyst biostratigraphy and palaeoecology of the
early Paleogene Landana reference section, Cabinda Province, Angola,
Palynology, 44, 280–309, https://doi.org/10.1080/01916122.2019.1575091, 2020.
Stover, L. E. and Hardenbol, J.: Dinoflagellates and depositional sequences
in the Lower Oligocene (Rupelian) Boom Clay Formation, Belgium, Bulletin de
la Société Belge de Géologie, 102, 5–77, 1994.
Strauss, C. and Lund, J. J.: A Middle Miocene dinoflagellate cyst microflora
from Papendorf near Hamburg, Germany, Mitt. Geol.-Palõont. Inst. Univ.
Hamburg, 73, 157–189, 1992.
Thorn, V. C., Riding, J. B., and Francis, J. E.: The Late Cretaceous
dinoflagellate cyst Manumiella: Biostratigraphy, systematics, and palaeoecological
signals in Antarctica, Rev. Palaeobot. Palyno., 156, 436–448,
2009.
Tocher, B. A.: Campanian to Maestrichtian dinoflagellate cysts from the
United States Atlantic margin, Deep Sea Drilling Project Site 612, Initial
Reports DSDP, Leg 95, 419–428, https://doi.org/10.2973/dsdp.proc.95.114.1987, 1987.
Tocher, B. A. and Jarvis, I.: Dinoflagellate cyst distribution and
stratigraphy of the lower–middle Cenomanian (Upper Cretaceous) at Fumichon,
Normandy, northern France, Revue de Micropaleontologie, 37, 223–232,
1994.
Tocher, B. A. and Jarvis, I.: Dinocyst distributions and stratigraphy of two Cenomanian–Turonian boundary (Upper Cretaceous) sections from the western Anglo-Paris Basin, J. Micropalaeontol., 14, 97–105, https://doi.org/10.1144/jm.14.2.97, 1995.
Tocher, B. A. and Jarvis, I.: Dinoflagellate cyst distributions and the Albian–Cenomanian boundary (mid-Cretaceous) at Cordebugle, NW France and Lewes, southern England, J. Micropalaeontol., 15, 55–67, https://doi.org/10.1144/jm.15.1.55, 1996.
Torricelli, S.: Lower Cretaceous dinoflagellate cyst and acritarch
stratigraphy of the Cismon APTICORE (southern Alps, Italy), Rev.
Palaeobot. Palyno., 108, 213–266,
https://doi.org/10.1016/S0034-6667(99)00041-X, 2000.
Torricelli, S.: Dinoflagellate cyst stratigraphy of the Scisti a Fucoidi
Formation (Early Cretaceous) from Piobbico, Central Italy: calibrated events
for the Albian of the Tethyan Realm, Riv. Ital. Paleontol.
S., 112, 95–112, 2006.
Torricelli, S. and Rosa Amore, M.: Dinoflagellate cysts and calcareous
nannofossils from the upper Cretaceous Saraceno formation (Calabria, Italy):
Implications about the history of the Liguride Complex, Rivista Italiana di
Paleontologia e Stratigrafia, 109, 499–516, 2003.
Torricelli, S., Knezaurek, G., and Biffi, U.: Sequence biostratigraphy and
paleoenvironmental reconstruction in the early Eocene Figols Group of the
Tremp–Graus Basin (South-Central Pyrenees, Spain), Palaeogeogr.
Palaeocl., 232, 1–35, https://doi.org/10.1016/j.palaeo.2005.08.009, 2006.
Türkecan, A. T., Munsterman, D., Işik, U., Altiner,
D., Pinar, M., Çevik, T., and Alay, Z.: Dinoflagellate cyst
biostratigraphy of Miocene strata in the Adana Basin, Eastern Mediterranean,
Turkey, Palynology, 42, 516–539, https://doi.org/10.1080/01916122.2017.1403389,
2018.
Van De Schootbrugge, B., Houben, A. J. P., Ercan, F. E. Z., Verreussel, R.,
Kerstholt, S., Janssen, N. M. M., Nikitenko, B., and Suan, G.: Enhanced
Arctic-Tethys connectivity ended the Toarcian Oceanic Anoxic Event in NW
Europe, Geol. Mag., 157, 1593–1611,
https://doi.org/10.1017/S0016756819001262, 2019a.
Van De Schootbrugge, B., Richoz, S., Pross, J., Luppold, F. W., Hunze, S.,
Wonik, T., Blau, J., Meister, C., van der Weijst, C. M. H., Suan, G.,
Fraguas, A., Fiebig, J., Herrle, J. O., Guex, J., Little, C. T. S., Wignall,
P. B., Püttmann, W., and Oschmann, W.: The Schandelah Scientific Drilling
Project: A 25-million year record of Early Jurassic palaeo-environmental
change from northern Germany, Newsl. Stratigr., 52, 249–296,
2019b.
van Helmond, N. A. G. M., Sluijs, A., Papadomanolaki, N. M., Plint, A. G., Gröcke, D. R., Pearce, M. A., Eldrett, J. S., Trabucho-Alexandre, J., Walaszczyk, I., van de Schootbrugge, B., and Brinkhuis, H.: Equatorward phytoplankton migration during a cold spell within the Late Cretaceous super-greenhouse, Biogeosciences, 13, 2859–2872, https://doi.org/10.5194/bg-13-2859-2016, 2016.
Van Hinsbergen, D. J. J., De Groot, L. V., Van Schaik, S. J., Spakman, W.,
Bijl, P. K., Sluijs, A., Langereis, C. G., and Brinkhuis, H.: A paleolatitude
calculator for paleoclimate studies, PLOS One, 10, e0126946, https://doi.org/10.1371/journal.pone.0126946, 2015.
Van Mourik, C. A. and Brinkhuis, H.: The Massignano Eocene–Oligocene golden
spike section revisited, Stratigraphy, 2, 13–30, 2005.
Van Mourik, C. A., Brinkhuis, H., and Williams, G. L.: Mid-to late Eocene
organic-walled dinoflagellate cysts from ODP Leg 171B, offshore Florida,
Geol. Soc. Spec. Publ., 183, 225–251, https://doi.org/10.1144/GSL.SP.2001.183.01.11, 2001.
Van Simaeys, S., de Man, E., Vandenberghe, N., Brinkhuis, H., and Steurbaut,
E.: Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian
transition in the type region: evidence from dinoflagellate cysts,
foraminifera and calcareous nannofossils, Palaeogeogr.
Palaeocl., 208, 31–58, 2004.
Van Simaeys, S., Munsterman, D., and Brinkhuis, H.: Oligocene dinoflagellate
cyst biostratigraphy of the southern North Sea Basin, Rev. Palaeobot. Palyno., 134, 105–128, https://doi.org/10.1016/j.revpalbo.2004.12.003,
2005.
Vellekoop, J., Smit, J., van de Schootbrugge, B., Weijers, J. W. H.,
Galeotti, S., Sinninghe Damsté, J. S., and Brinkhuis, H.: Palynological
evidence for prolonged cooling along the Tunisian continental shelf
following the K-Pg boundary impact, Palaeogeogr. Palaeocl., 426, 216–228, 2015.
Versteegh, G. J. M.: The onset of major Northern Hemisphere glaciations and
their impact on dinoflagellate cysts an acritarchs from the Singa section,
Calabria (southern Italy) and DSDP Holes 607/607A (North Atlantic), Mar. Micropaleontol., 30, 319–343, 1997.
Versteegh, G. J. M. and Zevenboom, D.: New genera and species of dinoflagellate
cysts from the Mediterranean Neogene, Rev. Palaeobot. Palyno.,
85, 213–229, 1995.
Vieira, M. and Jolley, D.: Stratigraphic and spatial distribution of
palynomorphs in deep-water turbidites: A metastudy from the UK central North
Sea Paleogene, Mar. Petrol. Geol., 12, 104683, https://doi.org/10.1016/j.marpetgeo.2020.104638, 2020.
Vieira, M., Casas-Gallego, M., Mahdi, S., and Fenton, J.: Impagidinium
obscurum sp. nov., a marker dinoflagellate cyst for the Thanetian
(Paleocene) of the North Sea and the Barents Sea, Palynology, 44,
382–390, https://doi.org/10.1080/01916122.2019.1630494, 2020.
Watkins, D. K. and Raffi, I.: Calcareous nannofossils, in: Geologic Time Scale 2020, Volume 1, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, Amsterdam, 69–74, ISBN 0128243619, 2020.
Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C.,
Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D.,
Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D.,
Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H.,
Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., and Zachos, J. C.: An
astronomically dated record of Earth's climate and its predictability over
the last 66 million years, Science, 369, 1383–1387,
https://doi.org/10.1126/science.aba6853, 2020.
Williams, G. L. and Bujak, J. P.: Distribution patterns of some North
Atlantic Cenozoic dinoflagellate cysts, Mar. Micropaleontol., 2,
223–234, 1977.
Williams, G. L., Stover, L. E., and Kidson, E. J.: Morphology and
stratigraphic ranges of selected Mesozoic–Cenozoic dinoflagellate taxa in
the Northern Hemisphere, Pap. Geol. Surv. Can., 92, 1–140, https://doi.org/10.4095/183916, 1993.
Williams, G. L., Brinkhuis, H., Pearce., M. A., Fensome, R. A., and Weegink,
J. W.: Southern Ocean and global dinoflagellate cyst events compared: Index
events for the late Cretaceous–Neogene, in: Proceedings of the ODP, scientific Results, volume 189, edited by: Exon, N. F.,
Kennett, J. P., and Malone, M. J., https://doi.org/10.2973/odp.proc.sr.189.107.2004, 2004.
Williams, G. L., Damassa, S. P., Fensome, R. A., and Guerstein, G. R.:
Wetzeliella and its allies – The “hole” story: A taxonomic revision of the
Paleogene dinoflagellate subfamily Wetzelielloideae, Palynology, 39,
289–344, https://doi.org/10.1080/01916122.2014.993888, 2015.
Williams, G. L., Fensome, R. A., and MacRae, R. A.: DINOFLAJ3, American Association of Stratigraphic Palynologists, Data Series no. 2, available at: http://dinoflaj.smu.ca/dinoflaj3, last access: 1 February 2022.
Willumsen, P. S.: Three new species of dinoflagellate cyst from
Cretaceous-Paleogene (K-Pg) boundary sections at mid-Waipara River and
Fairfield Quarry, South Island, New Zealand, Palynology, 36,
48–62, https://doi.org/10.1080/01916122.2011.642260, 2012.
Wilpshaar, M., Santarelli, A., Brinkhuis, H., and Visscher, H.:
Dinoflagellate cysts and mid-Oligocene chronostratigraphy in the central
Mediterranean region, Journal of the Geological Society of London, 153,
553–561, 1996.
Woollam, R. and Riding, J. B.: Dinoflagellate cyst zonation of the English
Jurassic, Report of the Institute of Geological Sciences, Report 83/2, 1–42, 1983.
Wrenn, J. H. and Kokinos, J. P.: Preliminary comments on Miocene through
Pleistocene dinoflagellate cysts from De Soto Canyon, Gulf of Mexico,
American Association of Stratigraphic Palynologists, Contributions Series,
17, 169–225, 1986.
Zegarra, M. and Helenes, J.: Changes in Miocene through Pleistocene
dinoflagellates from the Eastern Equatorial Pacific (ODP Site 1039), in
relation to primary productivity, Mar. Micropaleontol., 81,
107–121, https://doi.org/10.1016/j.marmicro.2011.09.005, 2011.
Zevenboom, D.: Dinoflagellate cysts from the Mediterranean late Oligocene
and Miocene, PhD thesis, Utrecht University, Utrecht, the Netherlands,
1995.
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., Eglinton, T. I., Emeis, K.-C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Rethemeyer, J., and Wakeham, S. G.: Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record, Biogeosciences, 7, 483–511, https://doi.org/10.5194/bg-7-483-2010, 2010.
Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., Bogus, K., Bonnet, S.,
Bouimetarhan, I., Crouch, E., de Vernal, A., Elshanawany, R., Edwards, L.,
Esper, O., Forke, S., Grøsfjeld, K., Henry, M., Holzwarth, U., Kielt,
J.-F., Kim, S.-Y., Ladouceur, S., Ledu, D., Chen, L., Limoges, A., Londeix,
L., Lu, S.-H., Mahmoud, M. S., Marino, G., Matsouka, K., Matthiessen, J.,
Mildenhal, D. C., Mudie, P., Neil, H. L., Pospelova, V., Qi, Y., Radi, T.,
Richerol, T., Rochon, A., Sangiorgi, F., Solignac, S., Turon, J.-L.,
Verleye, T., Wang, Y., Wang, Z., and Young, M.: Atlas of modern
dinoflagellate cyst distribution based on 2405 datapoints, Rev.
Palaeobot. Palyno., 191, 1–197, https://doi.org/10.1016/j.revpalbo.2012.08.003, 2013.
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their...
Altmetrics
Final-revised paper
Preprint