Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Francesco Bucci
Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy
Michele Santangelo
CORRESPONDING AUTHOR
Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy
Lorenzo Fongo
Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Piazza dell’Università 1, 06123 Perugia, Italy
Massimiliano Alvioli
Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy
Mauro Cardinali
Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy
Laura Melelli
Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Piazza dell’Università 1, 06123 Perugia, Italy
Ivan Marchesini
Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica, via Madonna Alta 126, 06128 Perugia, Italy
Related authors
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
M. Santangelo, I. Marchesini, F. Bucci, M. Cardinali, F. Fiorucci, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 15, 2111–2126, https://doi.org/10.5194/nhess-15-2111-2015, https://doi.org/10.5194/nhess-15-2111-2015, 2015
Short summary
Short summary
In this work, we present a new semi-automatic procedure to prepare landslide inventory maps that uses GIS applications and tools for the digitization of photo-interpreted data. Results show that the new semi-automatic procedure proves more efficient for the production of landslide inventories and results in the production of more accurate maps, compared to the manual procedure. The presented work has potential consequences for multiple applications of landslide studies.
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
M. Santangelo, L. Zhang, E. Rupnik, M. P. Deseilligny, and M. Cardinali
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1085–1092, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, 2022
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Michele Santangelo, Massimiliano Alvioli, Marco Baldo, Mauro Cardinali, Daniele Giordan, Fausto Guzzetti, Ivan Marchesini, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 19, 325–335, https://doi.org/10.5194/nhess-19-325-2019, https://doi.org/10.5194/nhess-19-325-2019, 2019
Short summary
Short summary
The paper discusses the use of rockfall modelling software and photogrammetry applied to images acquired by RPAS to provide support to civil protection agencies during emergency response. The paper focuses on a procedure that was applied to define the residual rockfall risk for a road that was hit by an earthquake-triggered rockfall that occurred during the seismic sequence that hit central Italy on 24 August 2016. Road reopening conditions were decided based on the results of this study.
Txomin Bornaetxea, Mauro Rossi, Ivan Marchesini, and Massimiliano Alvioli
Nat. Hazards Earth Syst. Sci., 18, 2455–2469, https://doi.org/10.5194/nhess-18-2455-2018, https://doi.org/10.5194/nhess-18-2455-2018, 2018
Short summary
Short summary
While producing a landslide susceptibility map using a fieldwork-based landslide inventory and a logistic regression model, two crucial questions came to our minds. (i) Shall we consider unsurveyed regions of the study area, for which landslide absence is typically assumed? (ii) Which reference mapping unit should be used in our model? So we compared four maps and found that rejecting unsurveyed regions together with slope units as reference mapping unit should be the best option.
Federica Fiorucci, Daniele Giordan, Michele Santangelo, Furio Dutto, Mauro Rossi, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018, https://doi.org/10.5194/nhess-18-405-2018, 2018
Short summary
Short summary
This paper describes the criteria for the optimal selection of remote sensing images to map event landslides, discussing the ability of monoscopic and stereoscopic VHR satellite images and ultra-high-resolution UAV images to resolve the landslide photographical and morphological signatures. The findings can be useful to decide on the optimal imagery and technique to be used when planning the production of a landslide inventory map.
Maria Elena Martinotti, Luca Pisano, Ivan Marchesini, Mauro Rossi, Silvia Peruccacci, Maria Teresa Brunetti, Massimo Melillo, Giuseppe Amoruso, Pierluigi Loiacono, Carmela Vennari, Giovanna Vessia, Maria Trabace, Mario Parise, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 17, 467–480, https://doi.org/10.5194/nhess-17-467-2017, https://doi.org/10.5194/nhess-17-467-2017, 2017
Short summary
Short summary
We studied a period of torrential rain between 1 and 6 September 2014 in the Gargano Promontory, Puglia, southern Italy, which caused a variety of geohydrological hazards, including landslides, flash floods, inundations and sinkholes. We used the rainfall and the landslide information available to us to design and test the new ensemble – non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the probability of the occurrence of rainfall-induced landslides.
Massimiliano Alvioli, Ivan Marchesini, Paola Reichenbach, Mauro Rossi, Francesca Ardizzone, Federica Fiorucci, and Fausto Guzzetti
Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, https://doi.org/10.5194/gmd-9-3975-2016, 2016
Short summary
Short summary
Slope units are morphological mapping units bounded by drainage and divide lines that maximize within-unit homogeneity and between-unit heterogeneity. We use r.slopeunits, a software for the automatic delination of slope units. We outline an objective procedure to optimize the software input parameters for landslide susceptibility (LS) zonation. Optimization is achieved by maximizing an objective function that simultaneously evaluates terrain aspect segmentation quality and LS model performance.
Paola Salvati, Umberto Pernice, Cinzia Bianchi, Ivan Marchesini, Federica Fiorucci, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 16, 1487–1497, https://doi.org/10.5194/nhess-16-1487-2016, https://doi.org/10.5194/nhess-16-1487-2016, 2016
Short summary
Short summary
We designed the POLARIS website to communicate to a broader audience information on geohydrological (landslide and flood) hazards with potential consequences to the population. POLARIS publishes periodic reports, analyses of specific damaging events and blog posts. POLARIS can help multiple audiences understand how risks can be reduced through appropriate measures and behaviours, contributing to increasing the resilience of the population to geohydrological risk.
M. Santangelo, I. Marchesini, F. Bucci, M. Cardinali, F. Fiorucci, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 15, 2111–2126, https://doi.org/10.5194/nhess-15-2111-2015, https://doi.org/10.5194/nhess-15-2111-2015, 2015
Short summary
Short summary
In this work, we present a new semi-automatic procedure to prepare landslide inventory maps that uses GIS applications and tools for the digitization of photo-interpreted data. Results show that the new semi-automatic procedure proves more efficient for the production of landslide inventories and results in the production of more accurate maps, compared to the manual procedure. The presented work has potential consequences for multiple applications of landslide studies.
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Short summary
The article deals with strategies to (i) reduce computation time and to (ii) appropriately account for uncertain input parameters when applying an open source GIS sliding surface model to estimate landslide susceptibility for a 90km² study area in central Italy. For (i), the area is split into a large number of tiles, enabling the exploitation of multi-processor computing environments. For (ii), the model is run with various parameter combinations to compute the slope failure probability.
P. Salvati, C. Bianchi, F. Fiorucci, P. Giostrella, I. Marchesini, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2589–2603, https://doi.org/10.5194/nhess-14-2589-2014, https://doi.org/10.5194/nhess-14-2589-2014, 2014
I. Marchesini, F. Ardizzone, M. Alvioli, M. Rossi, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 2215–2231, https://doi.org/10.5194/nhess-14-2215-2014, https://doi.org/10.5194/nhess-14-2215-2014, 2014
A. Manconi, F. Casu, F. Ardizzone, M. Bonano, M. Cardinali, C. De Luca, E. Gueguen, I. Marchesini, M. Parise, C. Vennari, R. Lanari, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 14, 1835–1841, https://doi.org/10.5194/nhess-14-1835-2014, https://doi.org/10.5194/nhess-14-1835-2014, 2014
S. Raia, M. Alvioli, M. Rossi, R. L. Baum, J. W. Godt, and F. Guzzetti
Geosci. Model Dev., 7, 495–514, https://doi.org/10.5194/gmd-7-495-2014, https://doi.org/10.5194/gmd-7-495-2014, 2014
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
A geodatabase of historical landslide events occurred in the highly urbanized volcanic area of Campi Flegrei, Italy
Valgarður: A Database of the Petrophysical, Mineralogical, and Chemical Properties of Icelandic Rocks
OCTOPUS database (v.2)
A national landslide inventory for Denmark
Pan-Arctic soil element availability estimations
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-267, https://doi.org/10.5194/essd-2022-267, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500,000 people are exposed to multi-hazard conditions, including landslides. Here, in the 1828–2017 time span, more than two thousand mass movements affected the volcanic slopes, concentrating mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes pose also a societal risk.
Samuel Warren Scott, Léa Lévy, Cari Covell, Hjalti Franzson, Benoit Gibert, Ágúst Valfells, Juliet Newson, Julia Frolova, Egill Júlíusson, and María Sigríður Guðjónsdóttir
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-279, https://doi.org/10.5194/essd-2022-279, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, this data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-123, https://doi.org/10.5194/essd-2022-123, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients such as silicon, calcium, iron, aluminum, phosphorus and amorphous silica is crucial to understand future carbon fluxes in the Arctic. Here we provide for the first time a unique data set on the availability of those nutrients for the different soil layers including the currently frozen permafrost layer. We relate this data to several geographical and geological parameters.
Cited articles
Alvarez, W. and Shimabukuro, D. H.: The geological relationships between
Sardiniaand Calabria during Alpine and Hercynian times, Ital. J.
Geosci., 128, 257–282, https://doi.org/10.3301/IJG.2009.128.2.257, 2009.
Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope units with
r.slopeunits v1.0
and their optimization for landslide susceptibility modeling, Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, 2016.
Alvioli, M., Guzzetti, F., and Marchesini, I.: Parameter-free delineation of
slope units and terrain subdivision of Italy, Geomorphology, 358, 107124,
https://doi.org/10.1016/j.geomorph.2020.107124, 2020.
Alvioli, M., Santangelo, M., Fiorucci, F., Cardinali, M., Marchesini, I.,
Reichenbach, P., Rossi, M., Guzzetti, F., and Peruccacci, S.: Rockfall
susceptibility and network-ranked susceptibility along the Italian railway,
Eng. Geol., 293, 106301,
https://doi.org/10.1016/j.enggeo.2021.106301, 2021.
Amanti, M., Battaglini, L., Campo, V., Cipolloni, C., Congi, M. P., Conte,
G., Delogu, D., Ventura, R., and Zonetti, C.: La carta litologica d'italia
alla scala 1:100 000, in: Atti della 11a Conferenza Nazionale ASITA, Turin, Italy, 6–9 November 2007, http://atti.asita.it/Asita2007/Pdf/119.pdf (last access: 14 January 2022), 2007.
Amanti, M., Battaglini, L., Campo, V., Cipolloni, C., Congi, M. P., Conte,
G., Delogu, D., Ventura, R., and Zonetti, C.: The Lithological map of Italy
at 1:100 000 scale: An example of re-use of an existing paper geological
map, in: 33rd International Geological Conference, Oslo, Norway, 6–14 August 2008, IE102310L, http://www.33igc.org (last access: 14 January 2022), 2008.
Amodio-Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G.,
Liguori, V., Lorenzoni, S., Paglianico, A., Perrone, V., Peccarreta, G.,
Russo, M., Scandone, P., Zanettin, E., and Zuppetta, A.: L'arco Calabro
Peloritano nell'Orogene Appenninico-Magrebide, Memorie della Società
Geologica Italiana, 17, 1–60, 1976.
Asch, K.: The 1:5 Million International Geological Map of Europe and
Adjacent Areas, Final Version for the Internet, BGR, Hannover,
https://www.bgr.bund.de/EN/Themen/Sammlungen-Grundlagen/GG_geol_Info/Karten/Europa/IGME5000/IGME_Download/IGME_Map_small.jpg?__blob=publicationFile&v=1 (last access: 14 January 2022), 2005.
Bentivenga, M., Coltorti, M., Prosser, G., and Tavarnelli, E.: Deformazioni
distensive recenti nell'entroterra del Golfo di Taranto: implicazioni per la
realizzazione di un deposito geologico per scorie nucleari nei pressi di
Scanzano Ionico (Basilicata), Boll. Soc. Geol. It., 123,
391–404, 2004.
Bigi, G., Cosentino, D., and Parotto, M.: Structural Model of Italy and
Gravity Map: Scale 1:500 000, Consiglio Nazionale delle Ricerche, 18 pp.,
1993.
Boni, C. F., Bono, P., Fanelli, M., Funiciello, R., Parotto, P., and
Praturlon, A.: Carta delle manifestazioni termali e dei complessi
idrogeologici d'Italia alla scala 1:1 000 000, in: Contributo alla
conoscenza delle risorse geotermiche del territorio italiano, CNR, Roma,
1982.
Bonomo, R., Capotorti, F., D'Ambrogi, C., Di Stefano, R., Graziano, R.,
Martarelli, L., Pampaloni, M. L., Pantaloni, M., Ricci, V., Compagnoni, B.,
Galluzzo, F., Tacchia, D., Masella, G., Pannuti, V., Ventura, R., and
Vitale, V.: Carta geologica d'Italia alla scala 1:1 250 000, Serv. Geol.
d'It., APAT, Roma, 2005.
Bortolotti, V., Fazzuoli, M., Pandelli, E., Principi, G., Babbini, A., and
Corti, S.: Geology of Central and Eastern Elba Island, Italy, Ofioliti, 26,
97–105, 2001.
Brogi, A. and Liotta, D.: Fluid flow paths in fossil and active geothermal
fields: the Plio-Pleistocene Boccheggiano-Montieri and the Larderello areas,
85∘ Congresso Nazionale della Società Geologica Italiana, Pisa, Italy, 2010,
Geological Field Trips and Maps, 3 (2.2),
ISSN 2038-4947, https://doi.org/10.3301/GFT.2011.03, 2011.
Brozzetti, F.: Geological map (1:25 000 scale) of the Northern Umbria
Preapennines in the Monte Santa Maria Tiberina area (Umbria Italy), B.
Soc. Geol. Ital., 126, 511–526, 2007.
Bucci, F., Novellino, R., Guglielmi, P., Prosser, G., and Tavarnelli, E.:
Geological map of the northeastern sector of the high Agri Valley, Southern
Apennines (Basilicata, Italy), J. Maps, 8, 282–292,
https://doi.org/10.1080/17445647.2012.722403, 2012.
Bucci, F., Novellino, R., Tavarnelli, E., Prosser, G., Guzzetti, F.,
Cardinali, M., Gueguen, E., Guglielmi, P., and Adurno, I.: Frontal collapse
during thrust propagation in mountain belts: a case study in the Lucania
Apennines, Southern Italy, J. of the Geol. Soc., 171, 571–581,
https://doi.org/10.1144/jgs2013-103, 2014.
Bucci, F., Santangelo, M., Cardinali, M., Fiorucci, F., and Guzzetti, F.:
Landslide distribution and size in response to Quaternary fault activity:
the Peloritani Range, NE Sicily, Italy, Earth Surf. Proc.
Land., 41, 711–720, https://doi.org/10.1002/esp.3898, 2016a.
Bucci, F., Mirabella, F., Santangelo, M., Cardinali, M., and Guzzetti, F.:
Photo-geology of the Montefalco Quaternary Basin, Umbria, Central Italy,
J. Maps, 12, 314–322,
https://doi.org/10.1080/17445647.2016.1210042, 2016b.
Bucci, F., Tavarnelli, E., Novellino, R., Palladino, G., Guglielmi, P.,
Laurita, S., Prosser, G., and Bentivenga, M.: The History of the Southern
Apennines of Italy Preserved in the Geosites Along a Geological Itinerary in
the High Agri Valley, Geoheritage, 11, 1489–1508,
https://doi.org/10.1007/s12371-019-00385-y, 2019.
Bucci, F., Novellino, R., Guglielmi, P., and Tavarnelli, E.: Growth and
dissection of a fold and thrust belt: the geological record of the High Agri
Valley, Italy, J. Maps, 16, 245–256,
https://doi.org/10.1080/17445647.2020.1737254, 2020.
Bucci, F., Santangelo, M., Fongo, L., Alvioli, M., Cardinali, M., Melelli, L., and Marchesini, I.: A new digital lithological Map of Italy at 1:100 000 scale, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.935673, 2021.
Calamita, F., Esestime, P., Paltrinieri, W., Scisciani, V., and Tavarnelli,
E.: Structural inheritance of pre- and syn-orogenic normal faults on the
arcuate geometry of Pliocene-Quaternary thrusts: Examples from the Central
and Southern Apennine Chain, Ital. J. Geosci., 128, 381–394,
https://doi.org/10.3301/IJG.2009.128.2.381, 2009.
Campobasso, C., Salvati, L., and Vita, L. (Eds.): Evoluzione dei bacini
neogenici e loro rapporti con il magmatismo plio-quaternario dell'area
tosco-laziale, vol. XLIX, Istituto poligrafico e Zecca dello Stato, Roma, 375 pp., 1994.
Carmignani, L.: Geologia della Sardegna. Note illustrative della Carta
Geologica della Sardegna a scala 1:200 000, vol. 60/2001, Serv. Geol. d'It., Roma, 283
pp., ISSN 0536-0242, 2001.
Carmignani, L., Conti, P., Cornamusini, G., and Pirro, A.: Geological map of
Tuscany (Italy), J. Maps, 9, 487–497,
https://doi.org/10.1080/17445647.2013.820154, 2013.
Catanzariti, R., Ottria, G., and Cerrina Ferroni, A.: Carta geologico-strutturale dell'Appennino Emiliano-Romagnolo 1:25 0000, RER – Servizio
Geologico, Sismico e dei Suoli; CNR – Istituto di Geoscienze e Georisorse,
Pisa, https://ambiente.regione.emilia-romagna.it/it/geologia/pubblicazioni/cartografia-geo-tematica/carta-geologico-strutturale-dellappennino-emiliano-romagnolo-1-250.000 (last access: 14 January 2022), 2002.
Celico, P. B., De Vita, P., Monacelli, G., Scalise, A. R., and Tranfaglia,
G.: Carta idrogeologica dell'Italia Meridionale, scala 1:250 000, Istituto Poligrafico e Zecca dello Stato S.p.A,
Roma, ISBN 9788844802158, 2007.
Centamore, E., Panbianchi, G., Deiana, G., Calamita, F., Cello, G., Dramis,
F., Gentili, B., and Nanni, T.: Ambiente fisico delle Marche. Geologia,
Geomorfologia, Idrogeologia alla scala 1:100 000, Regione Marche, SELCA, Firenze, 1991.
Centamore, E., Rossi, D., and Tavarnelli, E.: Geometry and kinematics of
Triassic-to-Recent structures in the Northern-Central Apennines: a review
and an original working hypothesis, Ital, J. Geosci., 128, 419–432,
https://doi.org/10.3301/IJG.2009.128.2.419, 2009.
Chiarini, E., D'Orefice, M., and Graciotti, R.: Le unità stratigrafiche
di riferimento nella rappresentazione cartografica dei depositi
plio-quaternari continentali nel Progetto CARG. Esempi: Arco alpino, Pianura
Padana e Sardegna, Il Quaternario, 21, 51–56, 2008.
Cipolloni, C., Pantaloni, M., Ventura, R., Vitale, V., and Tacchia, D.: The
GEO1MDB: the database of the 1:1 000 000 scale Geological Map of Italy, I, 6th EUREGEO, European Congress on Regional Geoscientific Cartography and Infromation Systems, Munich, Bavaria, Germany, 9–12 June 2009,
215–217, 2009.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS
International Chronostratigraphic Chart, Episodes, 36, 199–204, 2013.
Compagnoni, B.: La Carta geologica d'Italia, alla scala 1:1 000.000, Mem.
Descr. Carta Geol. It., 71, 207–212, 2004.
Compagnoni, B., Damiani, A. V., and Valletta, M.: Carta geologica d’Italia alla scala 1:500 000. In 5 fogli e note illustrative, Servizio Geologico d’Italia, Roma, 1976–1983.
Console, F., Pantaloni, M., Petti, F. M., and Tacchia, D.: La cartografia
del Servizio geologico d'Italia – The Geological survey of Italy mapping, Memorie Descrittive della Carta Geologia d'Italia, vol. 100, ISPRA (IStituto Superiore per la Protezione e la Ricerca Ambientale), Servizio Geologico d'Italia, ISBN 978-88-9311-052-5, ISSN 0536-0242, https://www.isprambiente.gov.it/en/publications/technical-periodicals/descriptive-memories-of-the-geological-map-of/the-geological-survey-of-italy-mapping (last access: 14 January 2022),
2017.
Conti, P., Cornamusini, G., and Carmignani, L.: An outline of the geology of
the Northern Apennines (Italy), with geological map at 1:250 000 scale, Ital, J. Geosci.,
139, 149–194, https://doi.org/10.3301/IJG.2019.25, 2020.
Corpo Reale delle Miniere: Carta mineraria d'Italia. Scala 1:500 000. 1
carta in 13 fogli + note illustrative, Roma, 1926.
Coulthard, T. J.: Landscape evolution models: a software review,
Hydrol. Process., 15, 165–173, https://doi.org/10.1002/hyp.426, 2001.
D'Ambrogi, C., Scrocca, D., Pantaloni, M., Valeri, V., and Doglioni, C.:
Exploring Italian geological data in 3D, J. Virtual Explor., 36, 24,
https://doi.org/10.3809/jvirtex.2010.00256, 2010.
de Graaf, I. E. M., van Beek, R. L. P. H., Gleeson, T., Moosdorf, N.,
Schmitz, O., Sutanudjaja, E. H., and Bierkens, M. F. P.: A global-scale
two-layer transient groundwater model: Development and application to
groundwater depletion, Adv. Water Resour., 102, 53–67,
https://doi.org/10.1016/j.advwatres.2017.01.011, 2017.
De Rita, D., Fabbrini, M., and Cimarelli, C.: Evoluzione pleistocenica del
margine tirrenico dell'Italia centrale tra eustatismo, vulcanismo e
tettonica, Il Quaternario, 17, 523–536, 2004.
Delogu, D., Campo, V., Cipolloni, C., Congi, M. P., Falcetti, S., Moretti,
P., Pampaloni, M. L., Pantaloni, M., Roma, M., and Ventura, R.: Il Portale
del Servizio Geologico d'Italia: uno strumento al servizio dei geologi
professionisti, Professione Geologo, 32, 24–27, 2012.
Donnini, M., Marchesini, I., and Zucchini, A.: A new Alpine geo-lithological
map (Alpine-Geo-LiM) and global carbon cycle implications, Geol. Soc. Am. Bull.,
132, 2004–2022, https://doi.org/10.1130/B35236.1, 2020.
Dürr, H. H., Meybeck, M., and Dürr, S. H.: Lithologic composition of
the Earth's continental surfaces derived from a new digital map emphasizing
riverine material transfer, Global Biogeochem. Cy., 19, GB4S10,
https://doi.org/10.1029/2005GB002515, 2005.
Forte, G., Chioccarelli, E., De Falco, M., Cito, P., Santo, A., and
Iervolino, I.: Seismic soil classification of Italy based on surface geology
and shear-wave velocity measurements, Soil Dynamics and Earthquake
Engineering, 122, 79–93, https://doi.org/10.1016/j.soildyn.2019.04.002,
2019.
GEMINA: Ligniti e torbe dell'Italia continentale: indagini geominerarie
effettuate nel periodo 1958–1961 dalla Geomineraria nazionale (GEMINA) di
Roma, GEMINA, Geomineraria nazionale, GEMINA, Geomineraria nazionale, Roma,
319 pp., 1962.
Geological Survey of Canada: Generalized geological map of the world and
linked databases, Geological Survey of Canada, https://doi.org/10.4095/195142, 1995.
Giannandrea, P., La Volpe, L., Principe, C., and Schiattarella, M.: Mappa geologica 1:25 000 del Monte Vulture [Map in Italian], in: The geology of Mount Vulture,
Regione Basilicata, edited by: Principe, C., Consiglio Nazionale delle Ricerche, 2006.
Giardino, M. and Fioraso, G.: Cartografia geologica delle formazioni
superficiali in aree di catena montuosa: il rilevamento del F.
“Bardonecchia” nell'ambito del progetto CARG, Memorie della Società
Geologica Italiana, 50, 133–153, 1998.
Gibbs, M. T. and Kump, L. R.: Global chemical erosion during the Last
Glacial Maximum and the present: Sensitivity to changes in lithology and
hydrology, Paleoceanography, 9, 529–543, https://doi.org/10.1029/94PA01009,
1994.
Girotti, O. and Mancini, M.: Plio-Pleistocene stratigraphy and relations
between marine and non-marine successions in the middle valley of the Tiber
river (Latium, Umbria), Italian Journal of Quaternary Sciences, 16, 89–106,
2003.
Giustini, F., Ciotoli, G., Rinaldini, A., Ruggiero, L., and Voltaggio, M.:
Mapping the geogenic radon potential and radon risk by using Empirical
Bayesian Kriging regression: A case study from a volcanic area of central
Italy, Sci. Total Environ., 661, 449–464,
https://doi.org/10.1016/j.scitotenv.2019.01.146, 2019.
Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H.,
Manning, A. H., van Beek, L. P. H., and Jellinek, A. M.: Mapping
permeability over the surface of the Earth, Geophys. Res. Lett.,
38, L02401, https://doi.org/10.1029/2010GL045565, 2011.
Gueguen, E., Tavarnelli, E., Renda, P., and Tramutoli, M.: The southern
Tyrrhenian Sea margin: an example of lithospheric scale strike-slip duplex,
Ital. J. Geosci., 129, 496–505, https://doi.org/10.3301/IJG.2010.15, 2010.
Guzzetti, F., Cardinali, M., and Reichenbach, P.: The Influence of
Structural Setting and Lithology on Landslide Type and Pattern,
Environ. Eng. Geosci., 2, 531–555,
https://doi.org/10.2113/gseegeosci.II.4.531, 1996.
Han, L., Fuqiang, L., Zheng, D., and Weixu, X.: A lithology identification
method for continental shale oil reservoir based on BP neural network,
J. Geophys. Eng., 15, 895–908,
https://doi.org/10.1088/1742-2140/aaa4db, 2018.
Hartmann, J., Jansen, N., Dürr, H. H., Harashima, A., Okubo, K., and
Kempe, S.: Predicting riverine dissolved silica fluxes to coastal zones from
a hyperactive region and analysis of their first-order controls, Int. J. Earth
Sci., 99, 207–230, https://doi.org/10.1007/s00531-008-0381-5,
2010.
Hartmann, J., Dürr, H. H., Moosdorf, N., Meybeck, M., and Kempe, S.: The
geochemical composition of the terrestrial surface (without soils) and
comparison with the upper continental crust, Int. J. Earth Sci.,
101, 365–376, https://doi.org/10.1007/s00531-010-0635-x, 2012.
Horton, J. D., San Juan, C. A., and Stoeser, D. B.: The State Geologic Map
Compilation (SGMC) geodatabase of the conterminous United States, The State
Geologic Map Compilation (SGMC) geodatabase of the conterminous United
States, U.S. Geological Survey, Reston, VA, https://doi.org/10.3133/ds1052,
2017.
ISPRA and Parco Nazionale del Cilento, Vallo di Diano e Alburni: Carta
Geologica del Parco del Cilento Vallo di Diano e degli Alburni, Salerno, https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/suolo-e-territorio-1/carta-geologica-del-parco-del-cilento-vallo-di-diano-e-degli-alburni (last access: 14 January 2022),
2013.
Lentini, F. and Carbone, S. (Eds.): Geologia della Sicilia, Serv. Geol.
d'It., Mem. Descr. Carta Geol. d’It.,
XCV, 7–414, 2014.
Loche, M., Alvioli, M., Marchesini, I., Bakka, H., and Lombardo, L.:
Landslide susceptibility maps of Italy: Lesson learnt from dealing with
multiple landslide types and the uneven spatial distribution of the national
inventory, Earth-Sci. Rev., 232, 104125,
https://doi.org/10.1016/j.earscirev.2022.104125, 2022.
Lorenzo-Lacruz, J., Garcia, C., and Morán-Tejeda, E.: Groundwater level
responses to precipitation variability in Mediterranean insular aquifers,
J. Hydrol., 552, 516–531,
https://doi.org/10.1016/j.jhydrol.2017.07.011, 2017.
Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M., and Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas, Geosci. Model Dev., 7, 2969–2982, https://doi.org/10.5194/gmd-7-2969-2014, 2014.
Ministero dei Lavori Pubblici, Ufficio Idrografico, Sezione Geologica: Carta
Geologica d'Italia alla scala 1:100 000 – F. 35 Riva, Firenze, http://sgi.isprambiente.it/geologia100k/mostra_foglio.aspx?numero_foglio=35 (last access: 14 January 2022), 1948.
Mirabella, F., Bucci, F., Santangelo, M., Cardinali, M., Caielli, G., De
Franco, R., Guzzetti, F., and Barchi, M. R.: Alluvial fan shifts and stream
captures driven by extensional tectonics in central Italy, J.
Geol. Soc. London, 175, 788, https://doi.org/10.1144/jgs2017-138, 2018.
Mori, F., Mendicelli, A., Moscatelli, M., Romagnoli, G., Peronace, E., and
Naso, G.: A new Vs30 map for Italy based on the seismic microzonation
dataset, Eng. Geol., 275, 105745,
https://doi.org/10.1016/j.enggeo.2020.105745, 2020.
Novellino, R., Bucci, F., and Tavarnelli, E.: Structural investigation of
background features and normal faults affecting the Calcari con Selce
Formation, Southern Apennines, Italy, Ital. J. Geosci., 140,
237–254, https://doi.org/10.3301/ijg.2020.31, 2021.
Pantaloni, M.: La Carta geologica d'Italia alla scala 1:1 000 000: una
pietra miliare nel percorso della conoscenza geologica, Geologia Tecnica
& Ambientale, 11, 88–99, 2011.
Patacca, E., Scandone, P., Bellatalla, M., Perilli, N., and Santini, U.: La
zona di giunzione tra l'arco appenninico settentrionale e l'arco appenninico
meridionale nell'Abruzzo e nel Molise, Studi Geol. Camerti, Vol. Spec. 2,
417–441, 1991.
Peacock, D. C. P., Anderson, M. W., Rotevatn, A., Sanderson, D. J., and
Tavarnelli, E.: The interdisciplinary use of “overpressure,” J.
Volcanol. Geoth. Res., 341, 1–5,
https://doi.org/10.1016/j.jvolgeores.2017.05.005, 2017.
Piana, F., Fioraso, G., Irace, A., Mosca, P., d'Atri, A., Barale, L.,
Falletti, P., Monegato, G., Morelli, M., Tallone, S., and Vigna, G. B.:
Geology of Piemonte region (NW Italy, Alps–Apennines interference zone),
J. Maps, 13, 395–405,
https://doi.org/10.1080/17445647.2017.1316218, 2017.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Prosser, G.: The development of the North Giudicarie fault zone (Insubric
Line, Northern Italy), J. Geodyn., 30, 229–250,
https://doi.org/10.1016/S0264-3707(99)00035-6, 2000.
Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., and Guzzetti, F.: Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach, Geosci. Model Dev., 7, 495–514, https://doi.org/10.5194/gmd-7-495-2014, 2014.
Regio Ufficio Geologico: Carta Geologica d'Italia alla scala 1:100 000 – F.
248 Trapani, Roma, 1884a.
Regio Ufficio Geologico: Carta Geologica d'Italia alla scala 1:100 000 – F.
249 Palermo, Roma, 1884b.
Regio Ufficio Geologico: Carta Geologica d'Italia alla scala 1:100 000 – F.
257 Castevetrano, Roma, 1884c.
Regio Ufficio Geologico: Carta Geologica d'Italia alla scala 1:100 000 – F.
258 Corleone, Roma, 1884d.
Regio Ufficio Geologico: Carta Geologica d'Italia alla scala 1:100 000 – F.
266 Sciacca, Roma, 1884e.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically-based landslide susceptibility models, Earth-Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Roche, V., Bouchot, V., Beccaletto, L., Jolivet, L., Guillou-Frottier, L.,
Tuduri, J., Bozkurt, E., Oguz, K., and Tokay, B.: Structural, lithological,
and geodynamic controls on geothermal activity in the Menderes geothermal
Province (Western Anatolia, Turkey), Int. J. Earth Sci., 108,
301–328, https://doi.org/10.1007/s00531-018-1655-1, 2019.
Ronchi, A., Cassinis, G., Durand, M., Fontana, D., Oggiano, G., and Stefani,
C.: Stratigrafia e analisi di facies della successione continentale permiana
e triassica della Nurra: confronti con la Provenza e ricostruzione
paleogeografica, GFT&M, 3, 1–43, https://doi.org/10.3301/GFT.2011.01, 2011.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Santangelo, M., Gioia, D., Cardinali, M., Guzzetti, F., and Schiattarella, M.: Interplay between mass movement and fluvial network organization: An
example from southern Apennines, Italy, Geomorphology, 188, 54–67,
https://doi.org/10.1016/j.geomorph.2012.12.008, 2013.
Sarro, R., María Mateos, R., Reichenbach, P., Aguilera, H., Riquelme,
A., Hernández-Gutiérrez, L. E., Martín, A., Barra, A., Solari,
L., Monserrat, O., Alvioli, M., Fernández-Merodo, J. A.,
López-Vinielles, J., and Herrera, G.: Geotechnics for rockfall
assessment in the volcanic island of Gran Canaria (Canary Islands, Spain),
J. Maps, 16, 605–613,
https://doi.org/10.1080/17445647.2020.1806125, 2020.
Schiattarella, M., Beneduce, P., Di Leo, P., Giano, S., Giannandrea, P., and
Principe, C.: Assetto strutturale ed evoluzione morfotettonica quaternaria
del vulcano del Monte Vulture (Appennino lucano), B. Soc.
Geol. Ital., 124, 543–562, 2005.
Schlögel, R., Marchesini, I., Alvioli, M., Reichenbach, P., Rossi, M.,
and Malet, J.-P.: Optimizing landslide susceptibility zonation: Effects of
DEM spatial resolution and slope unit delineation on logistic regression
models, Geomorphology, 301, 10–20,
https://doi.org/10.1016/j.geomorph.2017.10.018, 2018.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 265 Mazzara del Vallo, Firenze, 1955.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 163 Lucera, E.I.R.A., Firenze, 1964.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 185 Salerno, E.I.R.A., Firenze, 1965.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 36 Schio, Bergamo, 1968a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 122 Perugia, Bergamo, 1968b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 199 Potenza, Roma, 1969.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 34 Breno., E.I.R.A., Firenze, 1970a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 186 S. Angelo dei Lombardi, Ercolano (Napoli), 1970b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 187 Melfi, Ercolano (Napoli), 1970c.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 198 Eboli, Roma, 1970d.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:100 000
– F. 220 Verbicaro, Ercolano (Napoli), 1970e.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 027 Bolzano, Firenze, 1972.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 028 La Marmolada, Firenze, 1977.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 132-152-153, Bardonecchia, Firenze, 2002.
Servizio geologico d'Italia: Carta geologica d'Italia interattiva.
Interactive geological map of Italy: 1:100 000. 3CD., Etruria innovazione,
2004.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 215 Bedonia, A.P.A.T., Roma, 2005a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 256 Rimini, A.P.A.T., Roma, 2005b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 503 Vallo della Lucania, A.P.A.T., Roma, 2005c.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:250.000,
APAT, S.EL.CA., Firenze, 2005d.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 214 Bargagli, A.P.A.T., Roma, 2006.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 058 Monte Adamello, A.P.A.T., Roma, 2008.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 031 Ampezzo, ISPRA, Roma, 2009a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 599 Patti, ISPRA, Roma, 2009b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 228 Cairo Montenotte, ISPRA, Roma, 2010a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 258–271 San Remo, ISPRA, Roma, 2010b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 504 Sala Consilina, ISPRA, Roma, 2010c.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala
1:1 000 000, ISPRA, Roma, 2011a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 089 Courmayeur, ISPRA, Roma, 2011b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 99 Iseo, ISPRA, Roma, 2011c.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 587–600 Milazzo-Barcellona P. di G., S.EL.CA., Firenze, 2011d.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 098 Bergamo, ISPRA, Roma, 2012a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 489 Marsico Nuovo, ISPRA, Roma, 2012b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 564 Carbonia, ISPRA, Roma, 2012c.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 505 Moliterno, ISPRA, Roma, 2014.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 070 Monte Cervino, ISPRA, Roma, 2015a.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 555 Iglesias, ISPRA, Roma, 2015b.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 580 Soverato, ISPRA, Roma, 2015c.
Servizio geologico d'Italia: Carta Geologica d'Italia alla scala 1:50 000,
F. 280 Fossombrone, ISPRA, Roma, 2016.
Tavarnelli, E.: Structural evolution of a foreland fold-and-thrust belt: the
Umbria-Marche Apennines, Italy, J. Struct. Geol., 19, 523–534,
https://doi.org/10.1016/S0191-8141(96)00093-4, 1997.
Tavarnelli, E., Renda, P., Pasqui, V., and Tramutoli, M.: Composite
structures resulting from negative inversion: An example from the Isle of
Favignana (Egadi Islands), B. Soc. Geol. Ital., 122,
319–325, 2003a.
Tavarnelli, E., Renda, P., Pasqui, V., and Tramutoli, M.: The effects of
post-orogenic extension on different scales: An example from the
Apennine-Maghrebide fold-and-thrust belt, SW Sicily, Terra Nova, 15, 1–7,
https://doi.org/10.1046/j.1365-3121.2003.00466.x, 2003b.
Trigila, A., Iadanza, C., and Spizzichino, D.: Quality assessment of the
Italian Landslide Inventory using GIS processing, Landslides, 7, 455–470,
https://doi.org/10.1007/s10346-010-0213-0, 2010.
Vanmaercke, M., Panagos, P., Vanwalleghem, T., Hayas, A., Foerster, S.,
Borrelli, P., Rossi, M., Torri, D., Casali, J., Borselli, L., Vigiak, O.,
Maerker, M., Haregeweyn, N., De Geeter, S., Zgłobicki, W., Bielders, C.,
Cerdà, A., Conoscenti, C., de Figueiredo, T., Evans, B., Golosov, V.,
Ionita, I., Karydas, C., Kertész, A., Krása, J., Le Bouteiller, C.,
Radoane, M., Ristić, R., Rousseva, S., Stankoviansky, M., Stolte, J.,
Stolz, C., Bartley, R., Wilkinson, S., Jarihani, B., and Poesen, J.:
Measuring, modelling and managing gully erosion at large scales: A state of
the art, Earth-Sci. Rev., 218, 103637,
https://doi.org/10.1016/j.earscirev.2021.103637, 2021.
Vezzani, L., Festa, A., and Ghisetti, F. C.: Geology and tectonic evolution
of the central-southern Apennines, Italy, Geological Society of America,
Boulder, Colorado, 58 pp., https://doi.org/10.1130/2010.2469, 2010.
Vignaroli, G., Mancini, M., Bucci, F., Cardinali, M., Cavinato, G. P.,
Moscatelli, M., Putignano, M. L., Sirianni, P., Santangelo, M., Ardizzone,
F., Cosentino, G., Salvo, C. D., Fiorucci, F., Gaudiosi, I., Giallini, S.,
Messina, P., Peronace, E., Polpetta, F., Reichenbach, P., Scionti, V.,
Simionato, M., and Stigliano, F.: Geology of the central part of the
Amatrice Basin (Central Apennines, Italy), J. Maps, 15, 193–202,
https://doi.org/10.1080/17445647.2019.1570877, 2019.
Vojtek, M. and Vojteková, J.: Flood Susceptibility Mapping on a National
Scale in Slovakia Using the Analytical Hierarchy Process, Water, 11, 364,
https://doi.org/10.3390/w11020364, 2019.
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from...