Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4677-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrogen deposition in the UK at 1 km resolution from 1990 to 2017
UKCEH, Lancaster Environment Centre, Library Avenue, Bailrigg, LA1 4AP, UK
Edward J. Carnell
UKCEH, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
Anthony J. Dore
UKCEH, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
Ulrike Dragosits
UKCEH, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
Related authors
Samuel James Tomlinson, Edward James Carnell, Clare Pearson, Mark A. Sutton, Niveta Jain, and Ulrike Dragosits
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-75, https://doi.org/10.5194/essd-2025-75, 2025
Preprint under review for ESSD
Short summary
Short summary
The release of ammonia into the air poses a serious risk to ecosystems and human health and so it is important to characterise where this polluting gas originates from. It is known that agriculture is an important source of ammonia (e.g. using fertilisers) and that South Asia is a global hotspot of this pollutant. It is, therefore, important to refine methods used to estimate how much ammonia is released in South Asia to be then used in advanced chemistry models for air quality assessments.
Samuel James Tomlinson, Edward James Carnell, Clare Pearson, Mark A. Sutton, Niveta Jain, and Ulrike Dragosits
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-75, https://doi.org/10.5194/essd-2025-75, 2025
Preprint under review for ESSD
Short summary
Short summary
The release of ammonia into the air poses a serious risk to ecosystems and human health and so it is important to characterise where this polluting gas originates from. It is known that agriculture is an important source of ammonia (e.g. using fertilisers) and that South Asia is a global hotspot of this pollutant. It is, therefore, important to refine methods used to estimate how much ammonia is released in South Asia to be then used in advanced chemistry models for air quality assessments.
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023, https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary
Short summary
Forest expansion is a ″net-zero“ pathway, but change in land cover alters air quality in many ways. This study combines tree planting suitability data with UK measured emissions of biogenic volatile organic compounds to simulate spatial and temporal changes in atmospheric composition for planting scenarios of four species. Decreases in fine particulate matter are relatively larger than increases in ozone, which may indicate a net benefit of tree planting on human health aspects of air quality.
Y. Sim Tang, Chris R. Flechard, Ulrich Dämmgen, Sonja Vidic, Vesna Djuricic, Marta Mitosinkova, Hilde T. Uggerud, Maria J. Sanz, Ivan Simmons, Ulrike Dragosits, Eiko Nemitz, Marsailidh Twigg, Netty van Dijk, Yannick Fauvel, Francisco Sanz, Martin Ferm, Cinzia Perrino, Maria Catrambone, David Leaver, Christine F. Braban, J. Neil Cape, Mathew R. Heal, and Mark A. Sutton
Atmos. Chem. Phys., 21, 875–914, https://doi.org/10.5194/acp-21-875-2021, https://doi.org/10.5194/acp-21-875-2021, 2021
Short summary
Short summary
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4+, NO3−, SO42−, Cl−, Na+) across Europe (2006–2010). Differences in spatial and temporal concentrations and patterns between geographic regions and four ecosystem types were captured. NH3 and NH4NO3 were dominant components, highlighting their growing relative importance in ecosystem impacts (acidification, eutrophication) and human health effects (NH3 as a precursor to PM2.5) in Europe.
Cited articles
Aggenbach, C. J. S., Kooijman, A. M., Fujita, Y., van der Hagen, H., van Til,
M., Cooper, D., and Jones, L.: Does atmospheric nitrogen deposition lead to
greater nitrogen and carbon accumulation in coastal sand dunes?, Biol. Conserv., 212, 416–422, https://doi.org/10.1016/j.biocon.2016.12.007, 2017.
Aleksankina, K., Heal, M. R., Dore, A. J., Van Oijen, M., and Reis, S.: Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study, Geosci. Model Dev., 11, 1653–1664, https://doi.org/10.5194/gmd-11-1653-2018, 2018.
Baek, B. H. and Aneja, V. P.: Measurement and analysis of the relationship
between ammonia, acid gases, and fine particles in eastern North Carolina,
Air Waste Manage. Assoc., 54, 623–633, https://doi.org/10.1080/10473289.2004.10470933, 2004.
Britton, A. J., Gibbs, S., Fisher, J. M., and Helliwell, R. C.: Impacts of
nitrogen deposition on carbon and nitrogen cycling in alpine Racomitrium
heath in the UK and prospects for recovery, Environ. Pollut., 254, 112986, https://doi.org/10.1016/j.envpol.2019.112986, 2019.
Brown, P., Broomfield, M., Cardenas, L., Choudrie, S., Jones, L., Karagianni, E., Passant, N., Thistlethwaite, G., Thomson, A., Turtle, L., and Wakeling, D.: UK Greenhouse Gas Inventory, 1990 to 2017: Annual Report for submission under the Framework Convention on Climate Change, available at:
https://unfccc.int/sites/default/files/resource/gbr-2019-nir-15apr19.zip (last access: 1 November 2020), 2019.
Carnell, E. J., Thomas, I. N., Tomlinson, S. J., Leaver, D., and Dragosits, U.: The spatial distribution of ammonia, methane and nitrous oxide emissions
from agriculture in the UK 2017, Contribution to the UK National Atmospheric Emission Inventory and Greenhouse Gas Inventory, Annual Report on Defra Project SCF0107, CEH Report, 13 pp., available at: http://nora.nerc.ac.uk/id/eprint/529856/ (last access: 15 October 2020), 2019a.
Carnell, E. J., Vieno, M., Vardoulakis, S., Beck, R., Heaviside, C.,
Tomlinson, S., Dragosits, U., Heal, M. R., and Reis, S.: Modelling public
health improvements as a result of air pollution control policies in the UK
over four decades – 1970 to 2010, Environ. Res. Lett., 14, 074001, https://doi.org/10.1088/1748-9326/ab1542, 2019b.
Carslaw, D.: Defra deposition model evaluation analysis – Phase 1, available at:
https://uk-air.defra.gov.uk/assets/documents/reports/cat20/1105091512_DepsotionFinal.pdf (last access: 15 January 2020), 2011.
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation, Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004.
Dore, A. J., Kryza, M., Hall, J. R., Hallsworth, S., Keller, V. J. D., Vieno, M., and Sutton, M. A.: The influence of model grid resolution on estimation of national scale nitrogen deposition and exceedance of critical loads, Biogeosciences, 9, 1597–1609, https://doi.org/10.5194/bg-9-1597-2012, 2012.
Dore, A., Reis, S., Oxley, T., ApSimon, H., Hall, J., Vieno, M., Kryza, M.,
Green, C., Tsagatakis, I., Tang, S., Braban, C., and Sutton, M.: Calculation
of Source-Receptor Matrices for Use in an Integrated Assessment Model and
Assessment of Impacts on Natural Ecosystems, in: Air Pollution Modeling and Its Application Xxiv, edited by: Steyn, D. G. and Chaumerliac, N., Springer, Cham, 107–112, 2016.
Dore, A. J., Vieno, M., Fournier, N., Weston, K. J., and Sutton, M. A.:
Development of a new wind-rose for the British Isles using radiosonde data,
and application to an atmospheric transport model, Q. J. Roy. Meteorol. Soc., 132, 2769–2784, 2006.
Dragosits, U., Sutton, M. A., Place, C. J., and Bayley, A. A.: Modelling the
spatial distribution of agricultural ammonia emissions in the UK, Environ, Pollut,, 102, 195–203, https://doi.org/10.1016/S0269-7491(98)80033-X, 1998.
EEA – European Environment Agency: EMEP/EEA air pollutant emission inventory
guidebook 2019 – Technical guidance to prepare national emission inventories, EEA Report No. 13/2019, Luxembourg, 2019.
EMEP – European Monitoring and Evaluation Programme: The Emissions Database,
available at: https://www.ceip.at/webdab-emission-database (last access: 20 August 2019), 2019.
E-PRTR – European Pollutant Release and Transfer Register: Welcome to the Industrial emissions portal, available at: https://industry.eea.europa.eu/, last access: 20 August 2019.
Feng, J., Chan, E., and Vet, R.: Air quality in the eastern United States
and Eastern Canada for 1990–2015: 25 years of change in response to emission reductions of SO2 and NOx in the region, Atmos. Chem. Phys., 20, 3107–3134, https://doi.org/10.5194/acp-20-3107-2020, 2020.
Fowler, D., O'Donoghue, M., Muller, J. B. A., Smith, R. I., Dragosits, U.,
Skiba, U., Sutton, M. A., and Brimblecombe, P.: A Chronology of Nitrogen
Deposition in the UK Between 1900 and 2000, Water Air Soil Pollut., 4, 9–23, https://doi.org/10.1007/s11267-004-3009-1, 2004.
Fowler, D., Smith, R. I., Muller, J. B. A., Cape, J. N., Sutton, M. A., Erisman, J. W., and Fagerli, H.: Long Term Trends in Sulphur and Nitrogen Deposition in Europe and the Cause of Non-linearities, Water Air Soil Pollut., 7, 41–47, https://doi.org/10.1007/s11267-006-9102-x, 2007.
Greenwood, N., Devlin, M. J., Best, M., Fronkova, L., Graves, C. A., Milligan, A., Barry, J., and van Leeuwen, S. M.: Utilizing Eutrophication Assessment Directives From Transitional to Marine Systems in the Thames Estuary and Liverpool Bay, UK, Front. Mar. Sci., 6, 116, https://doi.org/10.3389/fmars.2019.00116, 2019.
Grennfelt, P. and Hov, Ø.: Regional air pollution at a turning point, Ambio, 34, 2–10, https://doi.org/10.1579/0044-7447-34.1.2, 2005.
Hallsworth, S., Dore, A. J., Bealey, W. J., Dragosits, U., Vieno, M., Hellsten, S., Tang, Y. S., and Sutton, M. A.: The role of indicator choice in
quantifying the threat of atmospheric ammonia to the `Natura 2000' network,
Environ. Sci. Policy, 13, 671–687, https://doi.org/10.1016/j.envsci.2010.09.010, 2010.
Hanna, S. R. and Chang, J.: Setting Acceptance Criteria for Air Quality Models, Air Pollut. Model. Appl., 5, 479–484, 2012.
Hellsten, S., Dragosits, U., Place, C. J., Vieno, M., and Sutton, M. A.:
Modelling and assessing the spatial distribution of ammonia emissions in the UK. Environ. Pollut., 154, 370–379, https://doi.org/10.1016/j.envpol.2008.02.017, 2008.
Hempel, S., Saha, C. K., Fiedler, M., Berg, W., Hansen, C., Amon, B., and
Amon, T.: Non-linear temperature dependency of ammonia and methane emissions
from a naturally ventilated dairy barn, Biosyst. Eng., 145, 10–21,
https://doi.org/10.1016/j.biosystemseng.2016.02.006, 2016.
Levy, P. E., Martin Hernandez, C., Smith, R. I., Dore, A. J., Tang, Y. S.,
and Stedman, J. R.: Sulphur and nitrogen atmospheric Concentration Based
Estimated Deposition (CBED) data for the UK 2016–2018, NERC Environmental
Information Data Centre, https://doi.org/10.5285/5999d471-fe1d-45fa-889d-3156edb785a7, 2020.
MapEire: National mapping of GHG and non-GHG emissions sources, available at:
https://projects.au.dk/mapeire/ (last access: 1 November 2020), 2019.
NAEI – National Atmospheric Emissions Inventory: Data, available at:
https://naei.beis.gov.uk/data/ (last access: 1 November 2020), 2019.
Nowak, D., Jovan, S., Branquinho, C., Augusto, S., Ribeiro, M. C., and Kretsch, C. E.: Chapter 4: Biodiversity, air quality and human health, in:
Connecting Global Priorities – Biodiversity and Human Health: A State of Knowledge Review, edited by: Romanelli, C., Cooper, D., Campbell-Lendrum, D., Maiero, M., Karesh, W. B., Hunter, D., and Golden, C. D., World Health
Organization and Secretariat of the Convention on Biological Diversity,
WHO Press, Geneva, 63–74, 2015.
Nowak, D. J., Hirabayashi, S., Doyle, M., McGovern, M., and Pasher, J.: Air
pollution removal by urban forests in Canada and its effect on air quality
and human health, Urban Forest. Urban Green., 29, 40–48, https://doi.org/10.1016/j.ufug.2017.10.019, 2018.
Payne, R. J., Dise, N. B., Field, C., Dore, A., Caporn, S. J. M., and Stevens, C. J.: Nitrogen deposition and plant biodiversity: past, present, and future, Front. Ecol. Environ., 15, 431–436, https://doi.org/10.1002/fee.1528, 2017.
Payne, R. J., Campbell, C., Britton, A. J., Mitchell, R. J., Pakeman, R. J.,
Jones, L., Ross, L. C., Stevens, C. J., Field, C., Caporn, S. J. M., Carroll,
J., Edmondson, J. L., Carnell, E. J., Tomlinson, S. J., Dore, A. J., Dise, N. B., and Dragosits, U.: What is the most ecologically-meaningful metric of
nitrogen deposition?, Environ. Pollut., 247, 319–331, https://doi.org/10.1016/j.envpol.2019.01.059, 2019.
Payne, R. J., Campbell, C., Stevens, C. J., Pakeman, R. J., Ross, L. C., Britton, A. J., Mitchell, R. J., Jones, L., Field, C., Caporn, S. J. M., Carroll, J., Edmondson, J. L., Carnell, E. J., Tomlinson, S. J., Dore, A.,
Dragosits, U., and Dise, N. B.: Disparities between plant community responses
to nitrogen deposition and critical loads in UK semi-natural habitats, Atmos. Environ., 239, 117478, https://doi.org/10.1016/j.atmosenv.2020.117478, 2020.
Plejdrup, M. S., Nielsen, O.-K., and Bruun, H. G.: Spatial high-resolution
mapping of national emissions, WIT Trans. Ecol. Environ., 230, 399–408, https://doi.org/10.2495/AIR180371, 2018.
Richmond, B., Misra, A., Broomfield, M., Brown, P., Karagianni, E.,
Murrells, T. P., Pang, Y., Passant, N. R., Pearson, B., Stewart, R.,
Thistlethwaite, G., Wakeling, D., Walker, C., Wiltshire, J., Hobson, M.,
Gibbs, M., Misselbrook, T., Dragosits, U., and Tomlinson, S.: UK Informative
Inventory Report (1990 to 2017), available at:
https://uk-air.defra.gov.uk/library/reports?report_id=978 (last access: 15 December 2020), 2019.
Riddick, S. N., Dragosits, U., Blackall, T. D., Tomlinson, S. J., Daunt, F.,
Wanless, S., Hallsworth, S., Braban, C. F., Tang, Y. S., and Sutton, M. A.:
Global assessment of the effect of climate change on ammonia emissions from
seabirds, Atmos. Environ., 184, 212–223, https://doi.org/10.1016/j.atmosenv.2018.04.038, 2018.
RoTAP – Review of Transboundary Air Pollution: Acidification, Eutrophication, Ground Level Ozone and Heavy Metals in the UK, Defra Contract Number AQ0703, UK Centre for Ecology & Hydrology, available at: https://uk-air.defra.gov.uk/library/reports?report_id=701 (last access: 10 April 2020), 2012.
Rowland, C. S., Morton, R. D., Carrasco, L., McShane, G., O'Neil, A. W., and
Wood, C. M.: Land Cover Map 2015 (1 km dominant aggregate class, GB), NERC
Environmental Information Data Centre, https://doi.org/10.5285/711c8dc1-0f4e-42ad-a703-8b5d19c92247, 2017.
Sickles II, J. E. and Shadwick, D. S.: Air quality and atmospheric deposition
in the eastern US: 20 years of change, Atmos. Chem. Phys., 15, 173–197,
https://doi.org/10.5194/acp-15-173-2015, 2015.
Singles, R., Sutton, M. A., and Weston, K. J.: A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain, Atmos. Environ., 32, 393–399, https://doi.org/10.1016/S1352-2310(97)83467-X, 1998.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J.,
Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X.-Y.: A
Description of the Advanced Research WRF Version 4, NCAR Tech. Note NCAR/TN-556+STR, National Center forAtmospheric Research, Boulder, Colorado, 145 pp., https://doi.org/10.5065/1dfh-6p97, 2019.
Smart, S. M., Stevens, C. J., Tomlinson, S. J., Maskell, L. C., and Henrys, P. A.: Comment on Pescott & Jitlal 2020: Failure to account for measurement error undermines their conclusion of a weak impact of nitrogen deposition on plant species richness, Peer J., 9, e10632, https://doi.org/10.7717/peerj.10632, 2020.
Stevens, C. J., David, T. I., and Storkey, J.: Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels, Funct. Ecol., 32, 1757–1769, https://doi.org/10.1111/1365-2435.13063, 2018.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald,
M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J., Mitchell, R. F.,
Wanless, S., Daunt, F., Fowler, D., Blackall, T. D., Milford, C., Flechard,
C. R., Loubet, B., Massad, R., Cellier, P., Coheur, P. F., Clarisse, L., van Damme, M., Ngadi, Y., Clerbaux, C., Skjøth, C. A., Geels, C., Hertel, O., Wickink Kruit, R. J., Pinder, R. W., Bash, J. O., Walker, J. D., Simpson, D., Horvath, L., Misselbrook, T., Bleeker, A., Dentener, F., and de Vries, W.: Toward a climate-dependent paradigm of ammonia emission & deposition, P. Roy. Soc. B, 368, 1621, https://doi.org/10.1098/rstb.2013.0166, 2013.
Tan, J., Fu, J. S., and Seinfeld, J. H.: Ammonia emission abatement does not
fully control reduced forms of nitrogen deposition, P. Natl. Acad. Sci. USA, 117, 9771–9775, https://doi.org/10.1073/pnas.1920068117, 2020.
Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D. G., and Keller, V. D. J.: Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890–2017) [CEH-GEAR], NERC Environmental Information Data Centre, https://doi.org/10.5285/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556, 2019.
Theobald, M. R., Simpson, D., and Vieno, M.: A sub-grid model for improving
the spatial resolution of air quality modelling at a European scale, Geosci. Model Dev., 9, 4475–4489, doi10.5194/gmd-9-4475-2016, 2016.
Tomlinson, S. J., Carnell, E. J., Dore, A. J., and Dragosits, U.: Nitrogen
deposition in the UK at 1 km resolution, 1990–2017, NERC Environmental
Information Data Centre, https://doi.org/10.5285/9b203324-6b37-4e91-b028-e073b197fb9f, 2020.
UK AIR – Air Information Resource: United Kingdom Eutrophying & Acidifying Network (UKEAP), available at: https://uk-air.defra.gov.uk/networks/network-info?view=ukeap (last access: 2 February 2021), 2020.
Vieno, M., Dore, A. J., Bealey, W. J., Stevenson, D. S., and Sutton, M. A.:
The importance of source configuration in quantifying footprints of regional
atmospheric sulphur deposition, Sci. Total Environ., 408, 985–995, https://doi.org/10.1016/j.scitotenv.2009.10.048, 2010.
Walsh, S.: A Summary of Climate Averages 1981–2010 for Ireland, Climatological Note No. 14, Met Éireann, Dublin, 2012.
Short summary
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the terrestrial surface is of interest. N deposition data have not been generated at a high resolution (1 km × 1 km) over a long time series in the UK before now. This study concludes that N deposition has reduced by ~ 40 % from 1990. The impact of these results allows analysis of environmental impacts at a high spatial and temporal resolution, using a consistent methodology and consistent set of input data.
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the...
Altmetrics
Final-revised paper
Preprint