Articles | Volume 13, issue 4
https://doi.org/10.5194/essd-13-1593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1593-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications
Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH, Zürich, Switzerland
Tomislav Hengl
OpenGeoHub foundation, Wageningen, the Netherlands
EnvirometriX, Wageningen, the Netherlands
Peter Lehmann
Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH, Zürich, Switzerland
Sara Bonetti
Institute for Sustainable Resources, Bartlett School of Environment, Energy and Resources, University College London, London, UK
Soil Physics and Land Management Group, Wageningen University, Wageningen, the Netherlands
Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH, Zürich, Switzerland
Division of Hydrologic Sciences, Desert Research Institute, Reno, NV, USA
Related authors
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336, https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary
Short summary
We used satellite data and thousands of soil samples to create detailed global maps showing how soil changes over time. These maps reveal important patterns in soil health, such as a significant global loss of soil carbon in the past 25 years. Our results help track land degradation and support better land restoration efforts. This work provides a new global tool for understanding and protecting soil, a key resource for food, water, and climate.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data, 17, 1529–1549, https://doi.org/10.5194/essd-17-1529-2025, https://doi.org/10.5194/essd-17-1529-2025, 2025
Short summary
Short summary
Fallout radionuclides (FRNs) such as 137Cs and 239+240Pu are considered to be critical tools in various environmental research. Here, we compiled reference soil data on these FRNs from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine learning algorithm.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336, https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary
Short summary
We used satellite data and thousands of soil samples to create detailed global maps showing how soil changes over time. These maps reveal important patterns in soil health, such as a significant global loss of soil carbon in the past 25 years. Our results help track land degradation and support better land restoration efforts. This work provides a new global tool for understanding and protecting soil, a key resource for food, water, and climate.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data, 17, 1529–1549, https://doi.org/10.5194/essd-17-1529-2025, https://doi.org/10.5194/essd-17-1529-2025, 2025
Short summary
Short summary
Fallout radionuclides (FRNs) such as 137Cs and 239+240Pu are considered to be critical tools in various environmental research. Here, we compiled reference soil data on these FRNs from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine learning algorithm.
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
The Cryosphere, 19, 1453–1468, https://doi.org/10.5194/tc-19-1453-2025, https://doi.org/10.5194/tc-19-1453-2025, 2025
Short summary
Short summary
Glide-snow avalanches release at the soil–snow interface due to a loss of friction, which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal monitoring setup for soil and local snow on an avalanche-prone slope. Seven glide-snow avalanches were released on the monitoring grid (winter seasons 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025, https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Michael Lombardo, Amelie Fees, Anders Kaestner, Alec van Herwijnen, Jürg Schweizer, and Peter Lehmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-304, https://doi.org/10.5194/egusphere-2025-304, 2025
Short summary
Short summary
Water flow in snow is important for many applications including snow hydrology and avalanche forecasting. This work investigated the role of capillary forces at the soil-snow interface during capillary rise experiments using neutron radiography. The results showed that the properties of both the snow and the transitional layer below the snow affected the water flow. This work will allow for better representations of water flow across the soil-snow interface in snowpack models.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Cited articles
Abagandura, G. O., Nasr, G. E.-D. M., and Moumen, N. M.: Influence of tillage
practices on soil physical properties and growth and yield of maize in jabal
al akhdar, Libya, Open Journal of Soil Science, 7, 118–132, 2017. a
Abdi, H. and Williams, L. J.: Tukey's honestly significant difference (HSD)
test, Encyclopedia of research design, 3, 583–585, 2010. a
Amer, A.-M. M., Logsdon, S. D., and Davis, D.: Prediction of hydraulic
conductivity as related to pore size distribution in unsaturated soils, Soil
Sci., 174, 508–515, 2009. a
Amoozegar, A.: A compact constant-head permeameter for measuring saturated
hydraulic conductivity of the vadose zone, Soil Sci. Soc. Am.
J., 53, 1356–1361, 1989. a
Amoozegar, A. and Warrick, A.: Hydraulic conductivity of saturated soils: field
methods, Methods of Soil Analysis: Part 1,
5, 735–770, 1986. a
Andrade, R. B.: The influence of bulk density on the hydraulic conductivity and
water content-matric suction relation of two soils, PhD thesis, Utah State
University, 1971. a
Arend, J. L.: Infiltration rates of forest soils in the Missouri Ozarks as
affected by woods burning and litter removal, J. For., 39, 726–728, 1941. a
Bagarello, V. and Sgroi, A.: Using the single-ring infiltrometer method to
detect temporal changes in surface soil field-saturated hydraulic
conductivity, Soil Till. Res., 76, 13–24, 2004. a
Baird, A. J.: Field estimation of macropore functioning and surface hydraulic
conductivity in a fen peat, Hydrol. Process., 11, 287–295, 1997. a
Bambra, A.: Soil loss estimation in experimental orchard at Nauni in Solan
district of Himachal Pradesh, PhD thesis, Yashwant Singh Parmar,
University of horticulture and forestry, Solan (Nauni) HP, 2016. a
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur.
J. Soil Sci., 47, 151–163, 1996. a
Beyer, M., Gaj, M., Hamutoko, J. T., Koeniger, P., Wanke, H., and Himmelsbach,
T.: Estimation of groundwater recharge via deuterium labelling in the
semi-arid Cuvelai-Etosha Basin, Namibia, Isot. Environ. Healt.
S., 51, 533–552, 2015. a
Bhattacharyya, R., Prakash, V., Kundu, S., and Gupta, H.: Effect of tillage and
crop rotations on pore size distribution and soil hydraulic conductivity in
sandy clay loam soil of the Indian Himalayas, Soil Till. Res., 86,
129–140, 2006. a
Blake, W. H., Theocharopoulos, S. P., Skoulikidis, N., Clark, P., Tountas, P.,
Hartley, R., and Amaxidis, Y.: Wildfire impacts on hillslope sediment and
phosphorus yields, J. Soils Sed., 10, 671–682, 2010. a
Bodhinayake, W., Si, B. C., and Noborio, K.: Determination of hydraulic
properties in sloping landscapes from tension and double-ring infiltrometers,
Vadose Zone J., 3, 964–970, 2004. a
Boike, J., Roth, K., and Overduin, P. P.: Thermal and hydrologic dynamics of
the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia),
Water Resour. Res., 34, 355–363, 1998. a
Bonell, M. and Williams, J.: The two parameters of the Philip infiltration
equation: their properties and spatial and temporal heterogeneity in a red
earth of tropical semi-arid Queensland, J. Hydrol., 87, 9–31,
1986. a
Bonsu, M. and Masopeh, B.: Saturated hydraulic conductivity values of some
forest soils of Ghana determined by a simple method, Ghana Journal of
Agricultural Science, 29, 75–80, 1996. a
Braud, I., Desprats, J.-F., Ayral, P.-A., Bouvier, C., and Vandervaere, J.-P.:
Mapping topsoil field-saturated hydraulic conductivity from point
measurements using different methods, J. Hydrol.
Hydromech., 65, 264–275, 2017. a
Breiman, L.: Random forests, Machine Learn., 45, 5–32, 2001. a
Bruand, A., Duval, O., and Cousin, I.: Estimation des propriétés de
rétention en eau des sols à partir de la base de données
SOLHYDRO: Une première proposition combianant le type d'horizon, sa
texture et sa densité apparente., Étude et Gestion des Sols, 11, 323–334, 2004. a
Campbell, R. E., Baker, J., Ffolliott, P. F., Larson, F. R., and Avery, C. C.:
Wildfire effects on a ponderosa pine ecosystem: an Arizona case study, USDA
For. Serv. Res. Pap. RM-191, US Department of Agriculture,
Forest Service, Rocky Mountain Forest and Range Experimental Station, Fort Collins, CO, 12 pp.,
191, 1977. a
Chang, Y.-J.: Predictions of saturated hydraulic conductivity dynamics in a
midwestern agricultural watershed, Iowa, PhD thesis, University of Iowa, USA,
2010. a
Chief, K., Ferré, T., and Nijssen, B.: Correlation between air permeability
and saturated hydraulic conductivity: Unburned and burned soils, Soil Sci.
Soc. Am. J., 72, 1501–1509, 2008. a
Cisneros, J., Cantero, J., and Cantero, A.: Vegetation, soil hydrophysical
properties, and grazing relationships in saline-sodic soils of Central
Argentina, Can. J. Soil Sci., 79, 399–409, 1999. a
Coelho, M. A.: Spatial variability of water related soil physical properties.,
PhD thesis, The University of Arizona, USA, 1974. a
Conedera, M., Peter, L., Marxer, P., Forster, F., Rickenmann, D., and Re, L.:
Consequences of forest fires on the hydrogeological response of mountain
catchments: a case study of the Riale Buffaga, Ticino, Switzerland, Earth
Surf. Processes Landf., 28, 117–129, 2003. a
Cornelis, W. M., Ronsyn, J., Van Meirvenne, M., and Hartmann, R.: Evaluation of
pedotransfer functions for predicting the soil moisture retention curve, Soil
Sci. Soc. Am. J., 65, 638–648, 2001. a
Daniel, S., Gabiri, G., Kirimi, F., Glasner, B., Näschen, K., Leemhuis, C.,
Steinbach, S., and Mtei, K.: Spatial distribution of soil hydrological
properties in the Kilombero floodplain, Tanzania, Hydrology, 4, 1–13, 2017. a
Davis, S. H., Vertessy, R. A., Dunkerley, D. L., and Mein, R. G.: The
influence of scale on the measurement of saturated hydraulic conductivity in
forest soils, in: National Conference Publication-Institution of Engineers
Australia NCP, 1, 103–108, Institution of Engineers, Australia,
1996. a
Deshmukh, H., Chandran, P., Pal, D., Ray, S., Bhattacharyya, T., and Potdar,
S.: A pragmatic method to estimate plant available water capacity (PAWC) of
rainfed cracking clay soils (Vertisols) of Maharashtra, Central India, Clay
Res., 33, 1–14, 2014. a
Ebel, B. A., Moody, J. A., and Martin, D. A.: Hydrologic conditions controlling
runoff generation immediately after wildfire, Water Resour. Res., 48, 1–13,
2012. a
Elnaggar, A.: Spatial Variability of Soil Physiochemical Properties in Bahariya
Oasis, Egypt, Egyptian J. Soil Sci., 57, 313–328,
https://doi.org/10.21608/EJSS.2017.4438, 2017. a
El-Shafei, Y., Al-Darby, A., Shalaby, A., and Al-Omran, A.: Impact of a highly
swelling gel-forming conditioner (acryhope) upon water movement in uniform
sandy soils, Arid Land Res. Manag., 8, 33–50, 1994. a
Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T. A.,
Hengl, T., Kollet, S., Agam, N., and Avissar, R.: Soil structure is an
important omission in Earth System Models, Nat. Commun., 11, 1–11, 2020. a
Ferreira, A., Coelho, C., Boulet, A., and Lopes, F.: Temporal patterns of
solute loss following wildfires in Central Portugal, Int. J.
Wildland Fire, 14, 401–412, 2005. a
Ganiyu, S., Rabiu, J., and Olatoye, R.: Predicting hydraulic conductivity
around septic tank systems using soil physico-chemical properties and
determination of principal soil factors by multivariate analysis, Journal of
King Saud University-Science, 32, 555–562, 2018. a
Ghanbarian, B., Taslimitehrani, V., and Pachepsky, Y. A.: Accuracy of sample
dimension-dependent pedotransfer functions in estimation of soil saturated
hydraulic conductivity, Catena, 149, 374–380, 2017. a
Glinski, J., Ostrowski, J., Stepniewska, Z., and Stepniewski, W.: Soil sample
bank representing mineral soils of Poland, Problemy Agrofizyki (Poland),
1991. a
Gliński, J., Stępniewski, W., Stępniewska, Z., Włodarczyk,
T., Brzezińska, M., et al.: Characteristics of aeration properties of
selected soil profiles from central Europe., Int. Agrophys., 14,
17–31, 2000. a
Greenwood, W. and Buttle, J.: Effects of reforestation on near-surface
saturated hydraulic conductivity in a managed forest landscape, southern
Ontario, Canada, Ecohydrology, 7, 45–55, 2014. a
Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., and Or, D.: SoilKsatDB: global
compilation of soil saturated hydraulic conductivity measurements for
geoscience applications, Zenodo, https://doi.org/10.5281/zenodo.3752721, 2020. a, b, c
Gwenzi, W., Hinz, C., Holmes, K., Phillips, I. R., and Mullins, I. J.:
Field-scale spatial variability of saturated hydraulic conductivity on a
recently constructed artificial ecosystem, Geoderma, 166, 43–56, 2011. a
Habecker, M., McSweeney, K., and Madison, F.: Identification and genesis of
fragipans in Ochrepts of north central Wisconsin, Soil Sci. Soc.
Am. J., 54, 139–146, 1990. a
Habel, A. Y.: The role of climate on the aggregate stability and soil
erodibility of selected El-Jabal Al-Akhdar soils-Libya, Alexandria Journal of
Agricultural Research, 58, 261–271, 2013. a
Hamel, P., Falinski, K., Sharp, R., Auerbach, D. A., Sánchez-Canales, M.,
and Dennedy-Frank, P. J.: Sediment delivery modeling in practice: Comparing
the effects of watershed characteristics and data resolution across
hydroclimatic regions, Sci. Total Environ., 580, 1381–1388,
2017. a
Hao, M., Zhang, J., Meng, M., Chen, H. Y., Guo, X., Liu, S., and Ye, L.:
Impacts of changes in vegetation on saturated hydraulic conductivity of soil
in subtropical forests, Sci. Rep.-UK, 9, 1–9, 2019. a
Hardie, M. A., Cotching, W. E., Doyle, R. B., Holz, G., Lisson, S., and
Mattern, K.: Effect of antecedent soil moisture on preferential flow in a
texture-contrast soil, J. Hydrol., 398, 191–201, 2011. a
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical
Learning; Data Mining, Inference and Prediction, Springer, New York, 2 edn.,
2009. a
Haverkamp, R., Zammit, C., Bouraoui, F., Rajkai, K., Arrúe, J., and
Heckmann, N.: GRIZZLY: Grenoble catalogue of soils: Survey of soil field data
and description of particle-size, soil water retention and hydraulic
conductivity functions, Lab. d'Etude des Transferts en Hydrol. et Environ.,
Grenoble, France, 1998. a
Helbig, M., Boike, J., Langer, M., Schreiber, P., Runkle, B. R., and Kutzbach,
L.: Spatial and seasonal variability of polygonal tundra water balance: Lena
River Delta, northern Siberia (Russia), Hydrogeol. J., 21, 133–147,
2013. a
Hiederer, R., Jones, R. J., and Daroussin, J.: Soil Profile Analytical Database
for Europe (SPADE): reconstruction and validation of the measured data
(SPADE/M), Geografisk Tidsskrift-Danish Journal of Geography, 106, 71–85,
2006. a
Hilton, A. and Armstrong, R. A.: Statnote 6: post-hoc ANOVA tests,
Microbiologist, 2006, 34–36, 2006. a
Horn, A., Stumpfe, A., Kues, J., Zinner, H.-J., and Fleige, H.: Die
Labordatenbank des Niedersächsischen Bodeninformationssystems (NIBIS)-.
Teil: Fachinformationssystem Bodenkunde, Geologisches Jahrbuch. Reihe A,
Allgemeine und regionale Geologie BR Deutschland und Nachbargebiete,
Tektonik, Stratigraphie, Paläontologie, Tagung der Gesellschaft für Geologische Wissenschaften, 4 May 1988, Elbingerode, Stratigraphie, Lithologie, Tektonik und Lagerstätten ausgewählter Bereiche im Unter- und Mittelharz, 59–97, 1991. a
Houghton, T. B.: Hydrogeologic characterization of an alpine glacial till,
Snowy Range, Wyoming, PhD thesis, Colorado State University, USA, Libraries,
2011. a
Hu, W., She, D., Shao, M., Chun, K. P., and Si, B.: Effects of initial soil
water content and saturated hydraulic conductivity variability on small
watershed runoff simulation using LISEM, Hydrol. Sci. J., 60,
1137–1154, 2015. a
Imeson, A., Verstraten, J., Van Mulligen, E., and Sevink, J.: The effects of
fire and water repellency on infiltration and runoff under Mediterranean type
forest, Catena, 19, 345–361, 1992. a
Jabro, J.: Estimation of saturated hydraulic conductivity of soils from
particle size distribution and bulk density data, Transactions of the ASAE,
35, 557–560, 1992. a
Jarvis, N., Koestel, J., Messing, I., Moeys, J., and Lindahl, A.: Influence of soil, land use and climatic factors on the hydraulic conductivity of soil, Hydrol. Earth Syst. Sci., 17, 5185–5195, https://doi.org/10.5194/hess-17-5185-2013, 2013. a
Johansen, M. P., Hakonson, T. E., and Breshears, D. D.: Post-fire runoff and
erosion from rainfall simulation: contrasting forests with shrublands and
grasslands, Hydrol. Process., 15, 2953–2965, 2001. a
Kanemasu, E.: Soil Hydraulic Conductivity Data (FIFE), ORNL Distributed
Active Archive Center, https://doi.org/10.3334/ORNLDAAC/107, 1994. a, b
Katimon, A. and Hassan, A. M. M.: Field hydraulic conductivity of some
Malaysian peat, Malaysian Journal of Civil Engineering, 10, 14–20,, 1997. a
Keisling, T. C.: Precision with which selected physical properties of similar
soils can be estimated, PhD thesis, Oklahoma State University, USA, 1974. a
Kelly, T. J., Baird, A. J., Roucoux, K. H., Baker, T. R., Honorio Coronado,
E. N., Ríos, M., and Lawson, I. T.: The high hydraulic conductivity of
three wooded tropical peat swamps in northeast Peru: measurements and
implications for hydrological function, Hydrol. Process., 28,
3373–3387, 2014. a
Kirby, J., Kingham, R., and Cortes, M.: Texture, density and hydraulic
conductivity of some soils in San Luis province, Argentina, Ciencia del
suelo, 19, 20–28, 2001. a
Klute, A.: Laboratory measurement of hydraulic conductivity of saturated soil,
Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties,
Including Statistics of Measurement and Sampling, 9, 210–221, 1965. a
Klute, A. and Dirksen, C.: Hydraulic conductivity and diffusivity: Laboratory
methods, Methods of Soil Analysis: Part 1,
5, 687–734, 1986. a
Kool, J., Albrecht, K. A., Parker, J., and Baker, J.: Physical and chemical
characterization of the Groseclose soil mapping unit, Tech. rep., Virginia
Agricultural Experiment Station, Virginia, 1986. a
Krahmer, U., Hennings, V., Müller, U., and Schrey, H.-P.: Ermittlung
bodenphysikalischer Kennwerte in Abhängigkeit von Bodenart,
lagerungsdichte und Humusgehalt, Zeitschrift für Pflanzenernährung
und Bodenkunde, 158, 323–331, 1995. a
Kramarenko, V., Brakorenko, N., and Molokov, V.: Hydraulic conductivity of peat
in Western Siberia, in: E3S Web of Conferences, 98, 11003, EDP
Sciences, https://doi.org/10.1051/e3sconf/20199811003, 2019. a
Kutiel, P., Lavee, H., Segev, M., and Benyamini, Y.: The effect of fire-induced
surface heterogeneity on rainfall-runoff-erosion relationships in an eastern
Mediterranean ecosystem, Israel, Catena, 25, 77–87, 1995. a
Kutílek, M., Krejča, M., Haverkamp, R., Rendon, L., and Parlange,
J.-Y.: On extrapolation of algebraic infiltration equations, Soil Technol.,
1, 47–61, 1988. a
Lamara, M. and Derriche, Z.: Prediction of unsaturated hydraulic properties of
dune sand on drying and wetting paths, Electron. J. Geotech. Eng., 13, 1–19,
2008. a
Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J., Cuenca, R., Braud, I.,
and Haverkamp, R.: Beerkan estimation of soil transfer parameters through
infiltration experiments–BEST, Soil Sci. Soc. Am. J., 70,
521–532, 2006. a
Lawrence, I. and Lin, K.: A concordance correlation coefficient to evaluate
reproducibility, Biometrics, 45, 255–268, 1989. a
Leij, F., Alves, W., Van Genuchten, M. T., and Williams, J.: The UNSODA
Unsaturated Soil Hydraulic Database, User's Manual, Version 1.0, Rep.
EPA/600/R-96, US Environmental Protection Agency, Ada, Oklahoma, 95, 103, 1996. a
Li, X., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Wang, W., Hu, X., Xu, Z.,
Wen, J., and Wang, L.: A multiscale dataset for understanding complex
eco-hydrological processes in a heterogeneous oasis system, Sci. Data,
4, 170083, https://doi.org/10.1038/sdata.2017.83, 2017. a, b
Lopes, V. S., Cardoso, I. M., Fernandes, O. R., Rocha, G. C., Simas, F. N. B.,
de Melo Moura, W., Santana, F. C., Veloso, G. V., and da Luz, J. M. R.: The
establishment of a secondary forest in a degraded pasture to improve
hydraulic properties of the soil, Soil Till. Res., 198, 104538, https://doi.org/10.1016/j.still.2019.104538,
2020. a
Lopez, O., Jadoon, K., and Missimer, T.: Method of relating grain size
distribution to hydraulic conductivity in dune sands to assist in assessing
managed aquifer recharge projects: Wadi Khulays dune field, western Saudi
Arabia, Water, 7, 6411–6426, 2015. a
Mahapatra, S. and Jha, M. K.: On the estimation of hydraulic conductivity of
layered vadose zones with limited data availability, J. Earth Syst.
Sci., 128, 75, https://doi.org/10.1007/s12040-019-1101-1, 2019. a
Martin, D. A. and Moody, J. A.: Comparison of soil infiltration rates in burned
and unburned mountainous watersheds, Hydrol. Process., 15, 2893–2903,
2001. a
McKenzie, N., Jacquier, D., and Gregory, L.: Online soil information
systems–recent Australian experience, in: Digital soil mapping with limited
data, Springer, https://doi.org/10.1007/978-1-4020-8592-5_24, pp. 283–290, 2008. a
Mohsenipour, M. and Shahid, S.: Estimation OF saturated hydraulic conductivity:
A Review, Malasia: Academia Edu, available at: http://bit.ly/2WShxfW (last access: 3 February 2021), 2016. a
Mott, J., Bridge, B., and Arndt, W.: Soil seals in tropical tall grass pastures
of northern Australia, Soil Res., 17, 483–494, 1979. a
Mualem, Y.: Catalogue of the hydraulic properties of unsaturated soils,
Technion Israel Institute of Technology, Technion Research & Development, Israel,
1976. a
Muñoz-Carpena, R., Regalado, C. M., Álvarez-Benedi, J., and Bartoli,
F.: Field evaluation of the new Philip-Dunne permeameter for measuring
saturated hydraulic conductivity, Soil Sci., 167, 9–24, 2002. a
Naik, A. P., Ghosh, B., and Pekkat, S.: Estimating soil hydraulic properties
using mini disk infiltrometer, ISH Journal of Hydraulic Engineering, 25,
62–70, 2019. a
National Cooperative Soil Survey: National cooperative soil survey
characterization database, United States Department of Agriculture, Natural
Resoucres Conservation, Lincoln, NE, 2016. a
Nemes, A.: Unsaturated soil hydraulic database of Hungary: HUNSODA,
Agrokémia és Talajtan, 51, 17–26, 2002. a
Nemes, A.: Databases of soil physical and hydraulic properties, Encyclopedia of
agrophysics, 194–199, https://doi.org/10.1007/978-90-481-3585-1_39, 2011. a
Niemeyer, R., Fremier, A. K., Heinse, R., Chávez, W., and DeClerck, F. A.:
Woody vegetation increases saturated hydraulic conductivity in dry tropical
Nicaragua, Vadose Zone J., 13, 1–11, 2014. a
Nyman, P., Sheridan, G. J., Smith, H. G., and Lane, P. N.: Evidence of debris
flow occurrence after wildfire in upland catchments of south-east Australia,
Geomorphology, 125, 383–401, 2011. a
Ouattara, M.: Variation of saturated hydraulic conductivity with depth for
selected profiles of Tillman-Hollister soil, PhD thesis, Oklahoma State
University, Oklahoma, 1977. a
Päivänen, J.: Hydraulic conductivity and water retention in peat
soils, Suomen metsätieteellinen seura, Finland, 1973. a
Parks, D. S. and Cundy, T. W.: Soil hydraulic characteristics of a small
southwest Oregon watershed following high-intensity wildfires, in: Proceedings of the Symposium on Fire and Watershed
Management, edited by: Berg,
N. H., 26–28 October 1988, Sacramento, California, Gen. Tech. Rep.
PSW-109, US Department of Agriculture, Forest Service,
Pacific Southwest Forest and Range Experiment Station, Berkeley, Calif., 109, 63–67, 1989. a
Price, K., Jackson, C. R., and Parker, A. J.: Variation of surficial soil
hydraulic properties across land uses in the southern Blue Ridge Mountains,
North Carolina, USA, J. Hydrol., 383, 256–268, 2010. a
Purdy, S. and Suryasasmita, V.: Comparison of hydraulic conductivity test
methods for landfill clay liners, in: Advances in Unsaturated Soil, Seepage,
and Environmental Geotechnics, GeoShanghai International Conference 2006, China, pp. 364–372, 2006. a
Quinton, W. L., Hayashi, M., and Carey, S. K.: Peat hydraulic conductivity in
cold regions and its relation to pore size and geometry, Hydrol.
Process., 22, 2829–2837, 2008. a
Rab, M.: Soil physical and hydrological properties following logging and slash
burning in the Eucalyptus regnans forest of southeastern Australia, Forest
Ecol. Manag., 84, 159–176, 1996. a
Radcliffe, D., West, L., Ware, G., and Bruce, R.: Infiltration in adjacent
Cecil and Pacolet soils, Soil Sci. Soc. Am. J., 54,
1739–1743, 1990. a
Rahimy, P.: Effects of Soil Depth and Saturated Hydraulic Conductivity Spatial
Variation on Runoff Simulation by the Limburg Soil Erosion Model, LISEM: A
Case Study in Faucon Catchment, University of Twente Faculty of
Geo-Information and Earth Observation (ITC), France, 2011. a
Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., Moosavi, N., Kheirfam, H., Montzka, C., Van Looy, K., Toth, B., Hazbavi, Z., Al Yamani, W., Albalasmeh, A. A., Alghzawi, M. Z., Angulo-Jaramillo, R., Antonino, A. C. D., Arampatzis, G., Armindo, R. A., Asadi, H., Bamutaze, Y., Batlle-Aguilar, J., Béchet, B., Becker, F., Blöschl, G., Bohne, K., Braud, I., Castellano, C., Cerdà, A., Chalhoub, M., Cichota, R., Císlerová, M., Clothier, B., Coquet, Y., Cornelis, W., Corradini, C., Coutinho, A. P., de Oliveira, M. B., de Macedo, J. R., Durães, M. F., Emami, H., Eskandari, I., Farajnia, A., Flammini, A., Fodor, N., Gharaibeh, M., Ghavimipanah, M. H., Ghezzehei, T. A., Giertz, S., Hatzigiannakis, E. G., Horn, R., Jiménez, J. J., Jacques, D., Keesstra, S. D., Kelishadi, H., Kiani-Harchegani, M., Kouselou, M., Kumar Jha, M., Lassabatere, L., Li, X., Liebig, M. A., Lichner, L., López, M. V., Machiwal, D., Mallants, D., Mallmann, M. S., de Oliveira Marques, J. D., Marshall, M. R., Mertens, J., Meunier, F., Mohammadi, M. H., Mohanty, B. P., Pulido-Moncada, M., Montenegro, S., Morbidelli, R., Moret-Fernández, D., Moosavi, A. A., Mosaddeghi, M. R., Mousavi, S. B., Mozaffari, H., Nabiollahi, K., Neyshabouri, M. R., Ottoni, M. V., Ottoni Filho, T. B., Pahlavan-Rad, M. R., Panagopoulos, A., Peth, S., Peyneau, P.-E., Picciafuoco, T., Poesen, J., Pulido, M., Reinert, D. J., Reinsch, S., Rezaei, M., Roberts, F. P., Robinson, D., Rodrigo-Comino, J., Rotunno Filho, O. C., Saito, T., Suganuma, H., Saltalippi, C., Sándor, R., Schütt, B., Seeger, M., Sepehrnia, N., Sharifi Moghaddam, E., Shukla, M., Shutaro, S., Sorando, R., Stanley, A. A., Strauss, P., Su, Z., Taghizadeh-Mehrjardi, R., Taguas, E., Teixeira, W. G., Vaezi, A. R., Vafakhah, M., Vogel, T., Vogeler, I., Votrubova, J., Werner, S., Winarski, T., Yilmaz, D., Young, M. H., Zacharias, S., Zeng, Y., Zhao, Y., Zhao, H., and Vereecken, H.: Development and analysis of the Soil Water Infiltration Global database, Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, 2018. a, b, c, d, e, f, g
Ramli, M.: Management of Groundwater Resources from Peat in Sarawak, Paper presented at the Workshop Working Towards Integrated Peatland Management, Kuching, Sarawak, 1999. a
Ravi, S., Wang, L., Kaseke, K. F., Buynevich, I. V., and Marais, E.:
Ecohydrological interactions within “fairy circles” in the Namib Desert:
Revisiting the self-organization hypothesis, J. Geophys. Res.-Biogeo., 122, 405–414, 2017. a
Rawls, W. J., Brakensiek, D. L., and Saxtonn, K.: Estimation of soil water
properties, Transactions of the ASAE, 25, 1316–1320, 1982. a
Reynolds, W. and Elrick, D.: In situ measurement of field-saturated hydraulic
conductivity, sorptivity, and the α-parameter using the Guelph
permeameter, Soil Sci., 140, 292–302, 1985. a
Reynolds, W., Bowman, B., Brunke, R., Drury, C., and Tan, C.: Comparison of
tension infiltrometer, pressure infiltrometer, and soil core estimates of
saturated hydraulic conductivity, Soil Sci. Soc. Am. J.,
64, 478–484, 2000. a
Robbins, C. W.: Hydraulic conductivity and moisture retention characteristics
of southern Idaho's silt loam soils, Tech. rep., University of Idaho College
of Agriculture, USA, 1977. a
Romano, N. and Palladino, M.: Prediction of soil water retention using soil
physical data and terrain attributes, J. Hydrol., 265, 56–75,
2002. a
Rubel, F. and Kottek, M.: Observed and projected climate shifts 1901–2100
depicted by world maps of the Köppen-Geiger climate classification,
Meteorol. Z., 19, 135–141, 2010. a
Rycroft, D., Williams, D., and Ingram, H.: The transmission of water through
peat: I. Review, The Journal of Ecology, 63, 535–556, https://doi.org/10.2307/2258734, 1975. a
Sanzeni, A., Colleselli, F., and Grazioli, D.: Specific surface and hydraulic
conductivity of fine-grained soils, J. Geotech.
Geoenviron., 139, 1828–1832, 2013. a
Sayok, A., Ayob, K., Melling, L., Goh, K., Uyo, L., and Hatano, R.: Hydraulic conductivity and moisture characteristics of tropical peatland-preliminary investigation, Malaysian Society of Soil Science (MSSS), Malaysian, 2007. a
Schwärzel, K. and Punzel, J.: Hood infiltrometer—a new type of tension
infiltrometer, Soil Sci. Soc. Am. J., 71, 1438–1447, 2007. a
Scotter, D., Clothier, B., and Harper, E.: Measuring saturated hydraulic
conductivity and sorptivity using twin rings, Soil Res., 20, 295–304,
1982. a
Sepehrnia, N., Hajabbasi, M. A., Afyuni, M., and Lichner, L.: Extent and
persistence of water repellency in two Iranian soils, Biologia, 71,
1137–1143, 2016. a
Sharma, S. K., Mohanty, B. P., and Zhu, J.: Including topography and vegetation
attributes for developing pedotransfer functions, Soil Sci. Soc.
Am. J., 70, 1430–1440, 2006. a
Simmons, L. A.: Soil hydraulic and physical properties as affected by logging
management, PhD thesis, University of Missouri–Columbia, USA, 2014. a
Singh, I., Awasthi, O., Sharma, B., More, T., and Meena, S.: Soil
properties, root growth, water-use efficiency in brinjal (Solanum melongena)
production and economics as affected by soil water conservation practices,
Ind. J. Agric. Sci., 81, 84–87, 2011. a
Singh, R., Van Dam, J., and Feddes, R. A.: Water productivity analysis of
irrigated crops in Sirsa district, India, Agric. Water Manage., 82,
253–278, 2006. a
Smettem, K. and Ross, P.: Measurement and prediction of water movement in a
field soil: The matrix-macropore dichotomy, Hydrol. Process., 6, 1–10,
1992. a
Sonneveld, M., Everson, T., and Veldkamp, A.: Multi-scale analysis of soil
erosion dynamics in Kwazulu-Natal, South Africa, Land Degrad.
Dev., 16, 287–301, 2005. a
Southard, R. and Buol, S.: Subsoil saturated hydraulic conductivity in relation
to soil properties in the North Carolina Coastal Plain, Soil Sci. Soc. Am. J., 52, 1091–1094, 1988. a
Sutejo, Y., Saggaff, A., Rahayu, W., and Hanafiah: Hydraulic conductivity and
compressibility characteristics of fibrous peat, in: IOP Conference Series:
Materials Science and Engineering, IOP Publishing, Bristol, 620, 012053, 2019. a
Szabó, B., Szatmári, G., Takács, K., Laborczi, A., Makó, A., Rajkai, K., and Pásztor, L.: Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics, Hydrol. Earth Syst. Sci., 23, 2615–2635, https://doi.org/10.5194/hess-23-2615-2019, 2019. a
Takahashi, H.: Studies on microclimate and hydrology of peat swamp forest in
Central Kalimantan, Indonesia, in: Biodiversity and Sustainability of
Tropical peatlands, Samara Publishing Limited, Indonesia, 178–198, 1997. a
Terzaghi, K.: Geotechnical investigation and testing-Laboratory testing of soil-Part 5: Incremental loading oedometer test 2, W3C XML, 1, 2006, 2004. a
Tete-Mensah, I.: Evaluation of Some Physical and Chemical Properties of Soils
Under two Agroforestrv Practices, PhD thesis, University of Ghana, Ghana, 1993. a
Tomasella, J., Pachepsky, Y., Crestana, S., and Rawls, W.: Comparison of two
techniques to develop pedotransfer functions for water retention, Soil
Sci. Soc. Am. J., 67, 1085–1092, 2003. a
Tuller, M. and Or, D.: Unsaturated Hydraulic Conductivity of Structured Porous
MediaA Review of Liquid Configuration–Based Models, Vadose Zone J., 1,
14–37, 2002. a
Varela, M., Benito, E., and Keizer, J.: Influence of wildfire severity on soil
physical degradation in two pine forest stands of NW Spain, Catena, 133,
342–348, 2015. a
Verburg, K., Bridge, B. J., Bristow, K. L., and Keating, B. A.: Properties of
selected soils in the Gooburrum–Moore Park area of Bundaberg, CSIRO Land and
Water Technical Report, CSIRO Land and water, Canberra, Australia, 9, 77, 2001. a
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M., and Genuchten,
M. T.: Using pedotransfer functions to estimate the van
Genuchten–Mualem soil hydraulic properties: A review, Vadose Zone J.,
9, 795–820, 2010. a
Vereecken, H., Van Looy, K., Weynants, M., and Javaux, M.: Soil retention and
conductivity curve data base sDB, link to MATLAB files, PANGAEA, https://doi.org/10.1594/PANGAEA.879233, 2017. a, b, c, d
Vereecken, H., Weihermüller, L., Assouline, S., Šimunek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Van derborght, J., Balsamo, G., Bechtold, M., Boone, A., Chadburn, S., Cuntz, Mathias., Decharme, Bertrand., Ducharne, Agnès., Ek, M., Garrigues, S., Goergen, K., Ingwersen, J., Kollet, S., M.Lawrence, David., Li, Q., Or, D., Swenson, S., de Vrese, P., Walko, R., Wu, Y., and Xue, Y.:
Infiltration from the pedon to global grid scales: An overview and outlook
for land surface modeling, Vadose Zone J., 18, 1–53, 2019. a
Vieira, B. C. and Fernandes, N. F.: Landslides in Rio de Janeiro: the role
played by variations in soil hydraulic conductivity, Hydrol. Process.,
18, 791–805, 2004. a
Vogeler, I., Carrick, S., Cichota, R., and Lilburne, L.: Estimation of soil
subsurface hydraulic conductivity based on inverse modelling and soil
morphology, J. Hydrol., 574, 373–382, 2019. a
Waddington, J. and Roulet, N.: Groundwater flow and dissolved carbon movement
in a boreal peatland, J. Hydrol., 191, 122–138, 1997. a
Wang, T., Zlotnik, V. A., Wedin, D., and Wally, K. D.: Spatial trends in
saturated hydraulic conductivity of vegetated dunes in the Nebraska Sand
Hills: Effects of depth and topography, J. Hydrol., 349, 88–97,
2008. a
Weynants, M., Montanarella, L., Toth, G., Arnoldussen, A., Anaya Romero, M.,
Bilas, G., Borresen, T., Cornelis, W., Daroussin, J., Gonçalves, M.
D. C., Haugen, L.-E., Hennings, V., Houskova, B., Iovino, M., Javaux, M., Keay, C. A., Kätterer, T., Kvaerno, S., Laktinova, T., Lamorski, K.,Lilly, A., Mako, A., Matula, S., Morari, F., Nemes, A., Patyka, N. V., Romano, N., Schindler, U., Shein, E., Slawinski, C., Strauss, P., Tóth, B., and Woesten, H.: European HYdropedological Data Inventory (EU-HYDI), EUR
Scientific and Technical Research Series, EUR 26053 EN, 167 pp., 2013. a
Wösten, J.: The HYPRES database of hydraulic properties of European
soils., Adv. GeoEcology, 32, 135–143, 2000. a
Wösten, J., Pachepsky, Y. A., and Rawls, W.: Pedotransfer functions:
bridging the gap between available basic soil data and missing soil hydraulic
characteristics, J. Hydrol., 251, 123–150, 2001. a
Wright, M. N. and Ziegler, A.: Ranger: a fast implementation of random forests
for high dimensional data in C++ and R, arXiv preprint arXiv:1508.04409,
2015. a
Yao, S., Zhang, T., Zhao, C., and Liu, X.: Saturated hydraulic conductivity of
soils in the Horqin Sand Land of Inner Mongolia, northern China,
Environ. Monit. Assess., 185, 6013–6021, 2013. a
Yasin, S. and Yulnafatmawita, Y.: Effects of Slope Position on Soil
Physico-chemical Characteristics Under Oil Palm Plantation in Wet Tropical
Area, West Sumatra Indonesia, AGRIVITA, J. Agric. Sci., 40,
328–337, 2018. a
Zakaria, S.: Water management in deep peat soils in Malaysia, PhD thesis,
Cranfield University, Cranfield, UK, 1992. a
Zhang, S., Xiahou, Y., Tang, H., Huang, L., Liu, X., and Wu, Q.: Study on the
spatially variable saturated hydraulic conductivity and deformation behavior
of accumulation reservoir landslide Based on surface nuclear magnetic
resonance survey, Adv. Civil Eng., 2018, 7290640, https://doi.org/10.1155/2018/7290640, 2018. a
Altmetrics
Final-revised paper
Preprint