Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-2121-2020
https://doi.org/10.5194/essd-12-2121-2020
Data description paper
 | 
09 Sep 2020
Data description paper |  | 09 Sep 2020

Cloud_cci ATSR-2 and AATSR data set version 3: a 17-year climatology of global cloud and radiation properties

Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger

Related authors

Validation and comparison of cloud properties retrieved from passive satellites over the Southern Ocean
Arathy A. Kurup, Caroline Poulsen, Steven T. Siems, and Daniel J. V. Robbins
EGUsphere, https://doi.org/10.5194/egusphere-2025-209,https://doi.org/10.5194/egusphere-2025-209, 2025
Short summary
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024,https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022,https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022,https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020,https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary

Related subject area

Atmospheric chemistry and physics
Global high-resolution fire-sourced PM2.5 concentrations for 2000–2023
Yonghang Hu, Chenguang Tian, Xu Yue, Yadong Lei, Yang Cao, Rongbin Xu, and Yuming Guo
Earth Syst. Sci. Data, 17, 3741–3756, https://doi.org/10.5194/essd-17-3741-2025,https://doi.org/10.5194/essd-17-3741-2025, 2025
Short summary
A high-resolution divergence and vorticity dataset in Beijing derived from radar wind profiler mesonet measurements
Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen
Earth Syst. Sci. Data, 17, 3541–3552, https://doi.org/10.5194/essd-17-3541-2025,https://doi.org/10.5194/essd-17-3541-2025, 2025
Short summary
Development of Level 2 aerosol and surface products from cross-track scanning polarimeter POSP on board the GF-5(02) satellite
Cheng Chen, Xuefeng Lei, Zhenhai Liu, Haorang Gu, Oleg Dubovik, Pavel Litvinov, David Fuertes, Yujia Cao, Haixiao Yu, Guangfeng Xiang, Binghuan Meng, Zhenwei Qiu, Xiaobing Sun, Jin Hong, and Zhengqiang Li
Earth Syst. Sci. Data, 17, 3497–3519, https://doi.org/10.5194/essd-17-3497-2025,https://doi.org/10.5194/essd-17-3497-2025, 2025
Short summary
A global classification dataset of daytime and nighttime marine low-cloud mesoscale morphology based on deep-learning methods
Yuanyuan Wu, Jihu Liu, Yannian Zhu, Yu Zhang, Yang Cao, Kang-En Huang, Boyang Zheng, Yichuan Wang, Yanyun Li, Quan Wang, Chen Zhou, Yuan Liang, Jianning Sun, Minghuai Wang, and Daniel Rosenfeld
Earth Syst. Sci. Data, 17, 3243–3258, https://doi.org/10.5194/essd-17-3243-2025,https://doi.org/10.5194/essd-17-3243-2025, 2025
Short summary
A dataset of ground-based vertical profile observations of aerosol, NO2, and HCHO from the hyperspectral vertical remote sensing network in China (2019–2023)
Peiyuan Jiao, Chengzhi Xing, Yikai Li, Xiangguang Ji, Wei Tan, Qihua Li, Haoran Liu, and Cheng Liu
Earth Syst. Sci. Data, 17, 3167–3187, https://doi.org/10.5194/essd-17-3167-2025,https://doi.org/10.5194/essd-17-3167-2025, 2025
Short summary

Cited articles

Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Merrelli, A., Schmitt, C., and Wang C.: Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. a
Baum, B., Menzel, W. P., Frey, R., Tobin, D., Holz, R., and Ackerman, S.: MODIS Cloud Top Property Refinements for Collection 6, J. Appl. Meteorol. Climatol., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. a
Baran A. J., Shcherbakov, V. N., Baker, B. A., Gayet J. F., and Lawson, R. P.: On the scattering phase function of non-symmetric ice crystals, Q. J. R. Meteor Soc., 131, 260916, https://doi.org/10.1256/qj.04.137, 2005. a
Brodzik, M. J. and Stewart J. S.: Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent, Version 5, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/3KB2JPLFPK3R, 2016. a
Christensen, M. W., Neubauer, D., Poulsen, C. A., Thomas, G. E., McGarragh, G. R., Povey, A. C., Proud, S. R., and Grainger, R. G.: Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate, Atmos. Chem. Phys., 17, 13151–13164, https://doi.org/10.5194/acp-17-13151-2017, 2017. a
Download
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Share
Altmetrics
Final-revised paper
Preprint