SHEDIS-Temperature: Linking temperature-related disaster impacts to subnational data on meteorology and human exposure
Abstract. International databases of disaster impacts are crucial for advancing disaster risk research, particularly as climate change intensifies the frequency and intensity of many natural hazards – including temperature extremes. However, many widely-used disaster impact databases lack information on the physical dimension of the hazards associated with an impact, and on the exposure to such hazards. This hinders analysing drivers of severe disaster outcomes. To bridge this knowledge gap, we present SHEDIS-Temperature, a dataset that provides Subnational Hazard and Exposure information for temperature-related DISaster impact records (https://doi.org/10.7910/DVN/WNOTTC; Lindersson and Messori, 2025). This open-access dataset links temperature-related impact records from the Emergency Events Database (EM-DAT) with subnational data on their locations, associated meteorological time series, and population maps. SHEDIS-Temperature provides hazard and exposure data for 2,835 subnational locations associated with 382 disaster records from 1979 to 2018 in 71 countries. Detailed hazard metrics, derived from 0.1° 3-hourly data, encompass absolute indicators, such as the heat stress measure apparent temperature accounting for humidity and wind speed, as well as percentile-based indicators of when and where temperatures exceeded local thresholds. Population exposure data include annual population figures for impacted subnational administrative units and person-days of exposure to threshold-exceeding temperatures. Outputs are available at grid-point level as well as zonally aggregated to administrative subdivision units, and disaster-record levels. By providing comprehensive attributes across the hazard-exposure spectrum, SHEDIS-Temperature supports interdisciplinary research on past temperature-related disasters, offering valuable insights for future risk mitigation and resilience strategies.