Preprints
https://doi.org/10.5194/essd-2022-272
https://doi.org/10.5194/essd-2022-272
13 Oct 2022
 | 13 Oct 2022
Status: this preprint was under review for the journal ESSD but the revision was not accepted.

The recovery and re-calibration of a 13-month aerosol extinction profiles dataset from searchlight observations from New Mexico, after the 1963 Agung eruption

Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman

Abstract. We report the recovery and re-calibration of an extensive dataset of vertical profile measurements of the 1963/64 stratospheric aerosol layer measured from a two-site searchlight measurement facility at White Sands missile base and Sacramento Peak observatory, in New Mexico, US. The recovered dataset comprises 105 profiles of 550 nm aerosol extinction (βp (z)) and is part of a longer program of measurements with the US Air Force Cambridge Research Laboratories (AFCRL) searchlight facility that began in February 1963. The recovered series of βp (z) profiles span the 13-month period December 1963 to December 1964 and provide a unique record of the altitude and vertical extent of the Northern Hemisphere dispersed portion of the aerosol cloud from the March 1963 Agung volcanic eruption. The data recovery methodology involved first re-digitizing the 105 original βp (z) profiles (βpOrig (z)) from individual Figures within an AFCRL research report (Elterman, 1966a). The re-calibration involves inverting the original equation used to compute βp (z) in Elterman (1966a; 1966b) to retrieve a normalized detector response ((Erp (z))/(Erp (35))) profile for each of the 105 re-digitized βpOrig (z) profiles. An iterative procedure was then used to compute the re-calibration βpOrig (z) profiles (βpRecal (z)), with the molecular extinction profile calculated with the corresponding daily molecular extinction profile calculated from local soundings, rather than the US Standard Atmosphere 1962 in the original dataset. Two-way molecular and aerosol transmittance corrections are applied using the MODTRAN (MODerate resolution atmospheric TRANsmission) code in transmission mode, applying a best-estimate aerosol phase function calculated from measurements, applied for the entire 2.76 to 35.2 km column. For the tropospheric aerosol transmittance, the AERONET aerosol phase function from White Sands High Energy Laser Systems Test Facility (HELSTF) was applied (2.76 to 10.7 km), a separate stratospheric phase function applied between 11.2 and 35.2 km, calculated from a set of particle size distributions measured by the U-2 high-altitude aircraft over a US region in the vicinity of White Sands in early 1964. Errors were estimated taking as a reference the errors determined in the computation of βpOrig (z). Using available tabulated data from the original procedure the errors in the re-digitalization of βpOrig (z) and in the retrieval of the (Erp (z))/(Erp (35)) procedures were calculated and later added to the original estimates. Both the βpRecal (z) and the stratospheric aerosol optical depth magnitudes showed higher magnitudes than βpOrig (z) and the original stratospheric aerosol optical depth, however their magnitudes show a reasonable agreement with other contemporary observations. Both the original and re-calibration datasets are being submitted to PANGAEA data repository for its storage and public access.

Juan-Carlos Antuña-Marrero et al.

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on essd-2022-272', Anonymous Referee #1, 14 Nov 2022
    • AC1: 'Reply on RC1', Juan Carlos Antuna-Marrero, 05 Mar 2023
  • RC2: 'Comment on essd-2022-272', Anonymous Referee #2, 30 Nov 2022
    • AC2: 'Reply on RC2', Juan Carlos Antuna-Marrero, 05 Mar 2023
  • RC3: 'Comment on essd-2022-272', Anonymous Referee #3, 07 Dec 2022
    • AC3: 'Reply on RC3', Juan Carlos Antuna-Marrero, 05 Mar 2023

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on essd-2022-272', Anonymous Referee #1, 14 Nov 2022
    • AC1: 'Reply on RC1', Juan Carlos Antuna-Marrero, 05 Mar 2023
  • RC2: 'Comment on essd-2022-272', Anonymous Referee #2, 30 Nov 2022
    • AC2: 'Reply on RC2', Juan Carlos Antuna-Marrero, 05 Mar 2023
  • RC3: 'Comment on essd-2022-272', Anonymous Referee #3, 07 Dec 2022
    • AC3: 'Reply on RC3', Juan Carlos Antuna-Marrero, 05 Mar 2023

Juan-Carlos Antuña-Marrero et al.

Juan-Carlos Antuña-Marrero et al.

Viewed

Total article views: 915 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
645 241 29 915 64 16 15
  • HTML: 645
  • PDF: 241
  • XML: 29
  • Total: 915
  • Supplement: 64
  • BibTeX: 16
  • EndNote: 15
Views and downloads (calculated since 13 Oct 2022)
Cumulative views and downloads (calculated since 13 Oct 2022)

Viewed (geographical distribution)

Total article views: 873 (including HTML, PDF, and XML) Thereof 873 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 01 Dec 2023
Download
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Altmetrics