Articles | Volume 9, issue 1
https://doi.org/10.5194/essd-9-91-2017
https://doi.org/10.5194/essd-9-91-2017
14 Feb 2017
 | 14 Feb 2017

Meteorological, snow, streamflow, topographic, and vegetation height data from four western juniper-dominated experimental catchments in southwestern Idaho, USA

Patrick R. Kormos, Danny G. Marks, Frederick B. Pierson, C. Jason Williams, Stuart P. Hardegree, Alex R. Boehm, Scott C. Havens, Andrew Hedrick, Zane K. Cram, and Tony J. Svejcar

Abstract. Meteorological, snow, streamflow, topographic, and vegetation height data are presented from the South Mountain experimental catchments. This study site was established in 2007 as a collaborative, long-term research laboratory to address the impacts of western juniper encroachment and woodland treatments in the interior Great Basin region of the western USA. The data provide detailed information on the weather and hydrologic response from four highly instrumented catchments in the late stages of woodland encroachment in a sagebrush steppe landscape. Hourly data from six meteorologic stations and four weirs have been carefully processed, quality-checked, and are serially complete. These data are ideal for hydrologic, ecosystem, and biogeochemical modeling. Data presented are publicly available from the USDA National Agricultural Library administered by the Agricultural Research Service (https://data.nal.usda.gov/dataset/data-weather-snow-and-streamflow-data-four-western-juniper-dominated-experimental-catchments, doi:10.15482/USDA.ADC/1254010).

Download
Short summary
Data are presented that are essential to assessing the impacts of western juniper encroachment and woodland treatments in the interior Great Basin region of the western USA. This woodland expansion into sagebrush ecosystems influences the vegetation community and the hydrology and soil resources of an area, which affect wildlife habitat, ecosystem quality, and local economies. Data include weather, snow, and stream time series, as well as lidar-derived topographic and vegetation height data.
Altmetrics
Final-revised paper
Preprint