Articles | Volume 8, issue 1
Earth Syst. Sci. Data, 8, 165–176, 2016
Earth Syst. Sci. Data, 8, 165–176, 2016

Brief communication 28 Apr 2016

Brief communication | 28 Apr 2016

A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies

Viva Banzon1, Thomas M. Smith2, Toshio Mike Chin3, Chunying Liu1,4, and William Hankins1,4 Viva Banzon et al.
  • 1NOAA National Centers for Environmental Information (NCEI), 151 Patton Ave., Asheville, NC 28801, USA
  • 2NOAA/STAR/SCSB/ESSIC University of Maryland, College Park, MD 20740, USA
  • 3Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  • 4Earth Resources Technology, 14401 Sweitzer Lane Suite 300, Laurel, MD 20707, USA

Abstract. This paper describes a blended sea-surface temperature (SST) data set that is part of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program product suite. Using optimum interpolation (OI), in situ and satellite observations are combined on a daily and 0.25° spatial grid to form an SST analysis, i.e., a spatially complete field. A large-scale bias adjustment of the input infrared SSTs is made using buoy and ship observations as a reference. This is particularly important for the time periods when volcanic aerosols from the El Chichón and Mt. Pinatubo eruptions are widespread globally. The main source of SSTs is the Advanced Very High Resolution Radiometer (AVHRR), available from late 1981 to the present, which is also the temporal span of this CDR. The input and processing choices made to ensure a consistent data set that meets the CDR requirements are summarized. A brief history and an explanation of the forward production schedule for the preliminary and science-quality final product are also provided. The data set is produced and archived at the newly formed National Centers for Environmental Information (NCEI) in Network Common Data Form (netCDF) at doi:10.7289/V5SQ8XB5.

Short summary
A sea surface temperature product that is constructed by blending in situ and satellite data with gaps filled using using optimum interpolation is described. Product format and characteristics (e.g., over 30-year time span; 0.25° (~ 25 km) daily resolution) that make it suitable for climate modeling, monitoring and other long-term studies at regional and local scales are described. The history of the product and earlier versions, a common source of confusion, are also discussed.