Journal cover Journal topic
Earth System Science Data The data publishing journal
Journal topic

Journal metrics

IF value: 9.197
IF9.197
IF 5-year value: 9.612
IF 5-year
9.612
CiteScore value: 12.5
CiteScore
12.5
SNIP value: 3.137
SNIP3.137
IPP value: 9.49
IPP9.49
SJR value: 4.532
SJR4.532
Scimago H <br class='widget-line-break'>index value: 48
Scimago H
index
48
h5-index value: 35
h5-index35
Preprints
https://doi.org/10.5194/essd-2020-236
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-2020-236
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  21 Sep 2020

21 Sep 2020

Review status
This preprint is currently under review for the journal ESSD.

HydroGFD3.0: a 25 km global near real-time updated precipitation and temperature data set

Peter Berg, Fredrik Almén, and Denica Bozhinova Peter Berg et al.
  • Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden

Abstract. HydroGFD (Hydrological Global Forcing Data) is a data set of bias adjusted reanalysis data for daily precipitation, and minimum, mean, and maximum temperature. It is mainly intended for large scale hydrological modeling, but is also suitable for other impact modeling. The data set has an almost global land area coverage, excluding the Antarctic continent, at a horizontal resolution of 0.25°, i.e. about 25 km. It is available for the complete ERA5 reanalysis time period; currently 1979 until five days ago. This period will be extended back to 1950 once the back catalogue of ERA5 is available. The historical period is adjusted using global gridded observational data sets, and to acquire real-time data, a collection of several reference data sets is used. Consistency in time is attempted by relying on a background climatology, and only making use of anomalies from the different data sets. Precipitation is adjusted for mean bias as well as the number or wet days in a month. The latter is relying on a calibrated statistical method with input only of the monthly precipitation anomaly, such that no additional input data about the number of wet days is necessary. The daily mean temperature is adjusted toward the monthly mean of the observations, and applied to 1 h timesteps of the ERA5 reanalysis. Daily mean, minimum and maximum temperature are then calculated. The performance of the HydroGFD3 data set is on par with other similar products, although there are significant differences in different parts of the globe, especially where observations are uncertain. Further, HydroGFD3 tends to have higher precipitation extremes, partly due to its higher spatial resolution. In this paper, we present the methodology, evaluation results, and how to access to the data set at https://doi.org/10.5281/zenodo.3871707.

Peter Berg et al.

Interactive discussion

Status: open (until 28 Nov 2020)
Status: open (until 28 Nov 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peter Berg et al.

Data sets

HydroGFD3.0 P. Berg, F. Almén, and D. Bozhinova https://doi.org/10.5281/zenodo.3871707

Peter Berg et al.

Viewed

Total article views: 331 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
268 61 2 331 10 1 1
  • HTML: 268
  • PDF: 61
  • XML: 2
  • Total: 331
  • Supplement: 10
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 21 Sep 2020)
Cumulative views and downloads (calculated since 21 Sep 2020)

Viewed (geographical distribution)

Total article views: 176 (including HTML, PDF, and XML) Thereof 174 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 28 Oct 2020
Download
Short summary
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set daily precipitation and temperature intended for use in hydrological modeling. The method uses different observational data sources to correct the variables from a model estimation of precipitation and temperature. An openly available data set covers the years 1979–2019, and times after this are available by request.
HydroGFD3.0 (Hydrological Global Forcing Data) is a data set daily precipitation and temperature...
Citation