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Abstract. Land surface temperature (LST) is an essential climate variable in geophysical, ecological, and environmental 

researches. Remote sensing provides a unique observation approach for obtaining large-scale LST products. However, 25 

current official LST datasets (such as FY-4A) are limited by the unaddressed thermal radiation directionality effect, and 

suffer the spatial discontinuities due to the pervasive presence of clouds. What’s more, the geostationary LST products have 

relatively coarser resolution than those of polar-orbiting satellites due to trade-off between spatial and temporal resolutions. 

Based on the official hourly FY-4A LST dataset, this study proposes a novel framework for generating angular-normalized, 

cloud-filled, and 0.01°-downscaled LST (ANCFDS-LST) product, encompassing directional (Tdir), nadir (Tnadir), and 30 

hemispherical (Themi) LST layers. First, the angular-normalized Tnadir and Themi were generated using a time-evolving kernel 

driven model (TEKDM) with the inputs of multi-temporal FY-4A Tdir. Subsequently, hypothetical clear-sky LST were 

predicted using a CatBoost model optimized via Bayesian methods. The cloudy-sky LST values were then derived through a 

cloud radiation force (CRF) correction. Finally, the 0.05° all-weather Tdir, Tnadir, and Themi values were downscaled to 0.01° 

resolution using an improved hybrid downscaling algorithm (IHDA) combining fusion and kernel-based methods. Taking 35 

the daytime clear-sky near-nadir VNP21A1 LST as reference, the 0.05° Tdir before angular-normalization has a root mean 
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squared difference (RMSD) of 6.21 K and a mean bias difference (MBD) of -4.04 K, whereas the angularly normalized Tnadir 

has a much smaller RMSD of 3.48 K and a better MBD of -2.13 K. For the all-weather Themi, temperature-based validation 

over 15 sites in the Heihe River Basin and the Tibetan Plateau shows a root mean squared error (RMSE) and mean bias error 

(MBE) of 2.99 K and -0.77 K under clear-sky conditions, 4.56 K and -1.56 K under cloudy-sky conditions. After the spatial 40 

downscaling, the 0.01° all-weather Themi with abundant texture details exhibits an RMSE (MBE) of 3.99 K (-1.32 K) over 15 

sites. The generated LST products from 2018 to 2023 over the FY-4A disk exhibit enhanced angular consistency, spatial 

continuity, and finer resolution, offering valuable support for subsequent LST-related applications. The ANCFDS-LST data 

is freely available at https://doi.org/10.11888/RemoteSen.tpdc.303249 (last access: 30 January 2026; Na et al., 2026). 

1 Introduction 45 

Land Surface Temperature (LST) quantifies the thermal properties of the Earth’s land surface and serves as a driving force of 

climate change, radiation budgets, water cycle, and atmospheric processes (Wei et al., 2020, 2021). Compared to polar-

orbiting satellite LST products, geostationary LSTs have the advantage of enhanced temporal resolution, which is more 

suitable to characterize the dynamic variations of land surface thermal conditions (Li et al., 2023c). To ensure both retrieval 

accuracy and computational efficiency, numerous easy-to-implement methods such as the split-window (SW) and 50 

temperature and emissivity separation (TES) methods have been developed for the geostationary satellites over the past 

decades (Li et al., 2013). These methods have been successfully applied in the generation of official LST products, including 

the Fengyun-4A (FY-4A) Advanced Geosynchronous Radiation Imager (AGRI) LST product (Dong et al., 2013, 2023a), 

Geostationary Operational Environmental Satellites R-Series (GOES-R) Advanced Baseline Imager (ABI) LST products (Yu 

et al., 2009), and the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) LST 55 

product (Freitas et al., 2013; Trigo et al., 2011).  

Despite the significant advancement of LST retrieval methods, current geostationary LST products still suffer from three 

major limitations: 1) Most existing LST retrieval methods assume that surface-emitted radiance is isotropic. However, the 

complex structure and heterogeneous sub-pixel temperature distribution lead to different LST values when observing a pixel 

from different directions at the same time, i.e., the thermal radiation directionality (TRD) effect (Cao et al., 2019a). As a 60 

result, current LST products are directionally dependent, requiring to be normalized into a reference direction. 2) Because 

thermal-infrared (TIR) signals cannot penetrate clouds, current LST products exhibit significant spatial discontinuities, with 

more than half of the land surface often obscured by cloud cover (Stubenrauch et al., 2013). Therefore, generating all-

weather (including clear-sky and cloudy-sky conditions) LST has attracted considerable research interest in the TIR remote 

sensing community (Jia et al., 2024; Wu et al., 2021). 3) A trade-off between spatial and temporal resolution is inherent to 65 

LST products. Hourly LST products from geostationary satellites typically have a spatial resolution of 2~5 km. Improving 

sensor performance is one direct approach, while spatial downscaling methods offer a more practical and efficient alternative 

for enhancing the texture detail of LST products (Sun et al., 2024; Wu et al., 2021; Zhan et al., 2013). 

https://doi.org/10.5194/essd-2026-74
Preprint. Discussion started: 16 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

3 

 

The influence of TRD effect during summer is as large as 4.0 K in sparsely vegetated areas and 5.1 K in urban regions (Coll 

et al., 2019; Du et al., 2023, 2025; Zhan et al., 2025). The semi-physical kernel-driven model (KDM) is regarded as the most 70 

potential approach to reduce the LST angular dependence and achieve the aim of angular normalization (Cao et al., 2019b, 

2021; Michel et al., 2023). It simulates the LST angular distribution through a linear combination of several kernel functions. 

The primary step is to calibrate the kernel coefficients, which then allows for correcting the directional LST (i.e., Tdir) to a 

nadir LST (i.e., Tnadir) or to a hemispherical LST (i.e., Themi) by integrating over the upper hemisphere. Solving for three or 

four unknown kernel coefficients typically requires at least three or four simultaneous multi-angle observations which cannot 75 

be satisfied by current satellite sensors. To address this problem, previous studies have either omitted one anisotropic kernel 

(Qin et al., 2023; Teng et al., 2023) or assumed that certain kernel coefficients remain constant over broad spatial or 

temporal scales (Chang et al., 2025; Ermida et al., 2017, 2018a, b; Vinnikov et al., 2012). Recently, Qin et al. (2025) 

proposed a time-evolving kernel-driven model (TEKDM) with seven parameters which captures the multi-temporal multi-

angle LST patterns within a single day and enables the coefficient calibration in the overlapping region of two geostationary 80 

satellites. To broaden the application region of TEKDM, Na et al. (2024b) normalized the LST in the overlapping region of 

TERRA/AQUA Moderate Resolution Imaging Spectroradiometer (MODIS) and GOES-16 ABI LST products. Results 

showed the root mean squared error (RMSE) was reduced from 3.29 K to 2.34 K. Here, the FY-4A AGRI and 

TERRA/AQUA MODIS official LST products were jointly employed for solving the TEKDM and achieving the angular 

normalization of FY-4A LST (i.e., producing Tnadir and Themi). 85 

Due to the lack of TIR information of the land surface under cloudy-sky conditions, all-weather LST estimation for 

geostationary satellites typically relies on various types of auxiliary data and can be categorized into three main approaches: 

interpolation-based methods, surface energy balance (SEB) based methods, and simulation-based methods. Interpolation-

based methods utilize spatially or temporally adjacent information to estimate missing LST values (Hong et al., 2021, 2022; 

Quan et al., 2018; Wang et al., 2024b). These methods can effectively preserve fine spatial textures, but they are uncertain 90 

under extensive cloud cover (Jia et al., 2024). Furthermore, they do not account for the influence of cloud radiation force 

(CRF). The SEB-based methods are commonly used to calculate the CRF effects in all-weather LST estimation. For example, 

Jia et al. (2021) proposed an iterative CRF correction method, Liu et al. (2023) solved a quartic equation to perform CRF 

correction, and Zhang et al. (2024) developed an analytical CRF correction formula. LST values after CRF correction can 

represent the actual thermal properties of the land surface and are recommended for large-scale applications (Jia et al., 2024; 95 

Wu et al., 2021). Simulation-based methods also show excellent potential for estimating all-weather LST, but they suffer 

from coarse resolution and substantial biases in simulated LST (Ding et al., 2022; Dong et al., 2022). The rapid advancement 

of machine learning (ML) models offers promising opportunities to improve the all-weather LST estimation. Zhang et al. 

(2024) proposed a two-step gap-filling algorithm in recent. In the first step, hypothetical LST values are estimated using an 

ML model with the input of reanalysis data. Then, an SEB-based CRF correction is applied to generate the all-weather LST. 100 

Results showed stable accuracy with the maximum RMSE within 4 K. In this study, Zhang’s method is employed as the 
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basic gap-filling framework. The estimation of hypothetical LST is routinely based on clear-sky directional LST (i.e., Tdir). 

Here, introducing the angular independent clear-sky nadir and hemispherical LST (i.e., Tnadir, Themi) have the potential to 

improve the reliability of hypothetical LST and further enhance the accuracy of generated cloudy-sky LST. 

Downscaling methods are widely used to produce LST products with high spatial resolution. These methods could be 105 

generally classified into three categories: kernel-based approaches (Dong et al., 2020; Zhan et al., 2013; Zhang et al., 2020; 

Zheng et al., 2024), fusion-based approaches (Tang et al., 2024; Wang et al., 2024b), and hybrid downscaling method 

combining both kernel and fusion-based approaches (Dong et al., 2023b; Li et al., 2023b; Xia et al., 2019). Kernel-based 

methods typically establish a relationship between LST and regression kernels such as the normalized vegetation index 

(NDVI) at a coarse resolution. This relationship is then applied at a finer scale to generate high-resolution LST. These 110 

methods have evolved from simple linear regressions using single variables to ML-based regressions incorporating multiple 

kernels (Agam et al., 2007; Ebrahimy and Azadbakht, 2019; Xu et al., 2024; Zheng et al., 2024). Fusion-based methods aim 

to estimate fine-scale LST variability using multi-resolution LST data as inputs (Tang et al., 2024; Wang et al., 2024b; Wu et 

al., 2015). In these approaches, high-resolution LST temporal variation is typically estimated by weighting the coarse-

resolution LST temporal variation of neighbouring similar pixels. The estimated temporal variation is then added to the high-115 

resolution LST at the initial time to derive the final LST at the target time. Hybrid downscaling method combining both 

kernel and fusion-based approaches offers improved accuracy and computational efficiency than single method (Dong et al., 

2023b), which was adopted in this study. However, this method requires gap-free, high-resolution LST at the initial time as 

input, which is difficult to obtain at the full-disk scale due to widespread presence of clouds over large areas. The annual 

temperature cycle (ATC) model has the potential to provide the necessary gap-free high-resolution LST texture information 120 

(Quan et al., 2018; Zhan et al., 2016) and thereby ensure the generation of 0.01° LST at the full-disk scale. 

The aim of this study is generating hourly, angular-normalized, cloud-filled, and 0.01°-downscaled LST (ANCFDS-LST) 

product based on the FY-4A official LST dataset. The generation of ANCFDS-LST consists of the following key steps: First, 

the TEKDM was calibrated using FY-4A and MODIS official LST products to generate daytime nadir and hemispherical 

LST at a 0.05° resolution. Second, an ML-based model was trained to generate hypothetical clear-sky LST, using angular-125 

normalized LST as labels. Then, the all-weather LST was produced through an analytical CRF correction process. Finally, 

an improved hybrid downscaling algorithm (IHDA) combining fusion and kernel-based methods was developed and carried 

out with the input of ATC-simulated gap-free 0.01° LST for producing the 0.01° all-weather directional, nadir, and 

hemispherical LST products. The hemispherical LST is validated using 15 sites in the Heihe River Basin and the Tibetan 

Plateau, which measure the hemispherical longwave radiation via in-situ pyrgeometer. The nadir LST is cross-validated 130 

using Visible Infrared Imaging Radiometer Suite (VIIRS) near nadir LST. The structure of this study is as follows: Section 2 

describes the remote sensing and reanalysis data, cross-validation data and in-situ validation data. Section 3 presents the 

TEKDM-based angular normalization method, the all-weather LST estimation method, and the IHDA downscaling approach. 
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Section 4 provides the results of the generated LST products. Section 5 gives the discussion and limitation of this study. 

Section 6 and 7 introduce the data availability and the main conclusions, respectively. 135 

2 Data 

2.1 Input remote sensing and reanalysis data 

Table 1 lists the information of the required 15 datasets for the three main steps in the generation of ANCFDS-LST (namely, 

LST angular normalization, all-weather LST estimation, and spatial downscaling). First, FY-4A and MODIS directional 

LSTs (i.e., 2 datasets) were used to generate angular-normalized nadir LST (Tnadir) and hemispherical LST (Themi). Next, 10 140 

remote sensing and reanalysis products were employed to drive the generation of hypothetical clear-sky LST and the 

application of CRF correction, for estimating all-weather Tdir, Tnadir, and Themi at a 0.05° spatial resolution. Finally, these three 

0.05° all-weather LST products were downscaled using 0.01° regression kernels obtained from 3 datasets, including 

MYD11A1, GTOPO30 DEM, and ERA5 Land. 

Table 1. The employed remote sensing and reanalysis dataset.  145 

Step Product Variable Resolution 
Date 

range 
Usage Access Link 

Step 1: LST angular 

normalization 

1) FY-4A LST 
4 km, 

hourly 

2018 - 

2023 

LST angular 

normalization 
http://data.nsmc.org.cn 

2) MxD11A1 LST 1 km, daily 
2018 - 

2023 

LST angular 

normalization 
https://lpdaac.usgs.gov/product_search/ 

Step 2: All-weather 

LST estimation 

3) MCD12Q1 
Land cover 

type (LCT) 

500 m, 

yearly 

2018 - 

2023 

Hypothetical clear-sky 

LST estimation 
https://lpdaac.usgs.gov/product_search/ 

4) Köppen-Geiger 

maps 

Climate 

type (CT) 
1 km - 

Hypothetical clear-sky 

LST estimation 
http://www.gloh2o.org/koppen 

5) GLASS 

Fractional 

vegetation 

cover 

(FVC) 

0.05°, 8 

days 

2018 - 

2023 

Hypothetical clear-sky 

LST estimation 

https://www.glass.hku.hk/download.ht

ml 

6) GTOPO30 

Digital 

elevation 

model 

(DEM) 

1 km - 
Hypothetical clear-sky 

LST estimation 
https://www.usgs.gov/search 

7) ERA5 Land 

Air 

temperature 

and dew-

point 

temperature 

0.1°, 

hourly 

2018 - 

2023 

Hypothetical clear-sky 

LST estimation 
https://cds.climate.copernicus.eu 

8) MxD11A1 LST 1 km, daily 
2018 - 

2023 

Hypothetical clear-sky 

LST estimation 
https://lpdaac.usgs.gov/product_search/ 

9) ERA5 

Cloudless 

and cloudy 

radiation 

0.25°, 

hourly 

2018 - 

2023 

Hypothetical clear-sky 

LST estimation;  
https://cds.climate.copernicus.eu 
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CRF correction 

10) GLASS Albedo 
0.05°, 

daily 

2018 - 

2022 

Hypothetical clear-sky 

LST estimation;  

CRF correction 

https://www.glass.hku.hk/download.ht

ml 

11) MCD43C3 Albedo 
0.05°, 16 

days 
2023 

Hypothetical clear-sky 

LST estimation;  

CRF correction 

https://lpdaac.usgs.gov/product_search/ 

12) FY-3B 

MuSyQ 

Broad band 

emissivity 

(BBE) 

1 km, daily 
2018 - 

2023 

Hypothetical clear-sky 

LST estimation;  

CRF correction 

- 

Step 3:  

Spatial downscaling 

13) MYD11A1 LST 1 km, daily 
2018 - 

2023 

Simulating LST at 

reference time to be fused 
https://lpdaac.usgs.gov/product_search/ 

14) GTOPO30 DEM 1 km - Regression kernel https://www.usgs.gov/search 

15) ERA5 Land 
Air 

temperature 

0.1°, 

hourly 

2018 - 

2023 
Regression kernel https://cds.climate.copernicus.eu 

For the first step (i.e., LST angular normalization), the FY-4A directional LST (LSTFY) and MODIS LST (LSTMxD) products 

(i.e., dataset 1-2 in Table. 1) were jointly utilized to calibrate the TEKDM model, then the clear-sky Tnadir and Themi could be 

generated with the inputs of kernels and calibrated kernel coefficients. The official FY-4A LST was retrieved using a SW 

algorithm with land surface emissivity (LSE) estimated via the NDVI-based threshold method (Dong et al., 2013, 2023a). 

The MODIS MxD11A1 LST was retrieved using a generalized split-window (GSW) algorithm, incorporating land-cover-150 

based LSE as input (Wan and Dozier, 1996). Both FY-4A and MODIS LST products were resampled to a same spatial 

resolution (i.e., 0.05°) using plain average before the jointly estimation. The pixels with the view zenith angle (VZA) greater 

than 70° were masked (Freitas et al., 2013). To reduce systematic discrepancies between these two datasets, the 0.05° FY-4A 

LST was linearly adjusted to match the 0.05° MODIS MxD11A1 LST using a linear transformation (i.e., LSTMxD = a × LSTFY 

+ b). The parameters a and b were determined based on nighttime matchups with the conditions of VZA< 50°, VZA 155 

difference< 5°, and LST difference< 5 K, referenced to Ermida et al. (2017, 2018a). A total of 132,972,698 matchup pairs 

were collected from 2018/1/1 to 2023/12/31 in the disk of FY-4A, resulting in a slope of a = 1.0240 and an intercept of b = -

5.7378. 

The second step (i.e., all-weather LST estimation) includes the estimation of hypothetical clear-sky LST and the CRF 

correction. In the hypothetical clear-sky LST estimation, the dataset 3-7 in Table 1 (including the MCD12Q1 IGBP land 160 

cover type (LCT) product (dataset 3), the Köppen-Geiger climate type (CT) product (dataset 4), the Global LAnd Surface 

Satellite (GLASS) fractional vegetation cover (FVC) product (dataset 5), the GTOPO30 DEM data (dataset 6), the ERA5-

Land 2-m air temperature (T2m), and dew-point temperature (D2m) data (dataset 7)) were employed to depict surface property 

(Wei et al., 2019). Moreover, the dataset 8-12 in Table 1 were further used to calculate three additional variables to depict 

surface thermal conditions (including the ATC-simulated LST, the surface incoming radiation (Rin), and hypothetical clear-165 

sky skin temperature (TERA5-skin)). 
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The ATC model has three parameters as shown in Eq. 1, which was calibrated with the input of MxD11A1 LST product 

(dataset 8). In total, four ATC models were obtained since TERRA and AQUA MODIS sensors provide observations during 

both day and night. A 3 × 3 spatial median filter was applied to fill invalid ATC parameters caused by persistent cloud 

coverage. Then, the LST values simulated using the calibrated ATC model are used in the estimation of hypothetical clear-170 

sky LST. These ATC-simulated LSTs are denoted as TATC,d1, TATC,d2, TATC,n1, and TATC,n2, where subscript “d” and “n” refer to 

daytime and nighttime data, respectively, and “1” and “2” indicate TERRA and AQUA platforms. 

 ( )o
2

( )
365

c s
ATC

T DOY MAST dY YAS OT D x
 

 −+ 


= 


 (1) 

where TATC(DOY) is the ATC-simulated LST in the day-of-year (DOY). MAST is the annual mean surface temperature, YAST 

is the yearly temperature amplitude, and dx is the phase shift. The QC band was filtered to ensure high-quality inputs for the 175 

ATC model calibration. 

The Rin is the sum of absorbed shortwave and longwave radiation as calculated in Eq. 2, with the input of surface downward 

shortwave radiation (SDSRclr), land surface albedo (Albedo), surface downward longwave radiation (SDLRclr) and broad band 

emissivity (BBE, εbb). Both SDSRclr and SDLRclr under hypothetical clear-sky condition are extracted from ERA5 products 

(dataset 9). The Albedo is from the GLASS product from 2018 to 2022 (dataset 10) and supplemented by MCD43C3 for 180 

2023 (dataset 11). A Harmonic ANalysis of Time Series (HANTS) method was employed to smooth and fill the gaps in 

MCD43C3 product in this study (Zhou et al., 2023, 2022). The BBE is generated from MUlti-source data SYnergized 

Quantitative (MuSyQ) remote sensing system (dataset 12) (Li et al., 2019). The datasets 9-12 were resampled to 0.05° 

resolution to match the LSTFY. 

 (1 )
in clr bb clr

Albedo SDSR R SDLR= −  +  (2) 185 

Based on the Stefan–Boltzmann's law, the ERA5 hypothetical clear-sky surface thermal radiation (e.g., surface downward 

longwave radiation (SDLRclr) and surface net thermal radiation STRclr) could be used to calculate the hypothetical clear-sky 

skin temperature (TERA5-skin) in the scale of 0.25° to depict temporal dynamics of LST. It was then physically downscaled to 

0.05° resolution using DEM data, assuming a temperature lapse rate (K) of 6.5 K/km (Minder et al., 2010). Therefore, the 

TERA5-skin was calculated by the following equation: 190 

 
( )

( )5

4 1
clr clr bb clr

i m

b

ERA skin

b s

T
SDLR STR SDLR

K DEM DEM


 
−

+  −
−

=
− −

 (3) 

where σs is Stefan–Boltzmann's constant 5.67×10-8. The DEMi and DEMm refer to the elevation of the 0.05° pixel and the 

mean elevation of the corresponding 0.25° pixel, respectively. 
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After generating the hypothetical clear-sky LST, a CRF correction is required to convert it into cloudy-sky LST. This 

correction is physically based on the surface energy balance differences between clear-sky and cloudy conditions. 195 

Specifically, cloud-free and cloudy SDSR from ERA5 reanalysis data (dataset 9), together with albedo data (dataset 10-11), 

are used to describe the shortwave radiation budget. For the longwave radiation budget, ERA5 cloud-free and cloudy-sky 

SDLR data (dataset 9), BBE data (dataset 12), the hypothetical clear-sky LST and cloudy-sky LST are required. Then, the 

only unknown cloudy-sky LST (expressed by the sum of hypothetical clear-sky LST and CRF correction value) can be 

retrieved by solving the SEB equation. More details will be given in section 3.2. 200 

In the third step (i.e., spatial downscaling), a new algorithm combining existing fusion and kernel-based methods was 

proposed to downscale LST to the target time, consisting of two main processes. First, a 0.05° gap-free high-resolution LST 

at the initial time is required. In this study, TATC,d2 simulated by the ATC model (dataset 13) is resampled as the initial LST. 

Second, the 0.05° LST difference between the initial and target time is predicted using an ML method. The input features 

include TATC,d2; AQUA MODIS ATC parameters for both day (MASTd2, YASTd2, and dxd2) and night (MASTn2, YASTn2, and 205 

dxn2), derived from dataset 13; DEM data (dataset 14); and ERA5-Land T2m (dataset 15). Aimed to apply this spatial 

downscaling model at the 0.01° scale, the T2m data were further downscaled to 0.01° resolution using high-resolution DEM 

and the temperature lapse rate (K) of 6.5 K/km. Finally, the gap-free high-resolution LST at the target time is obtained by 

adding the estimated 0.01° LST difference to 0.01° TATC,d2. 

2.2 Cross-validation dataset for Tnadir 210 

For cross-validation of the generated Tnadir, the VIIRS VNP21A1 LST data (https://lpdaac.usgs.gov/product_search/) in 2020 

was adopted as reference. The VIIRS onboarded Suomi National Polar-orbiting Partnership (S-NPP) provides clear-sky TIR 

observations at the local time of 1:30 p.m. The VNP21 LST was retrieved using a TES algorithm taking observations from 

M14 – M16 bands as input. Recent temperature-based (T-based) evaluation showed its RMSE is 1.79 K during nighttime 

and 2.79 K during the day (Na et al., 2024a). Here, the VNP21 LST values with the VZA< 5° was employed for cross 215 

evaluation of Tnadir as did by Wei et al. (2025). Firstly, the 1-km VNP21 LST product was resampled to the 0.05° resolution 

and the normalized FY-4A hourly Tnadir product was temporally interpolated to match the exact overpass time of S-NPP 

VIIRS. Then, the root mean square difference (RMSD), mean bias difference (MBD), and coefficient of determination (R2) 

were used as three evaluation indicators. The extracted VNP21 LST results in four typical days are shown in Fig. 1. Only 

several narrow strips were extracted due to the limitation of VIIRS field-of-view (VZA< 5°). VNP21 LST shows significant 220 

seasonal variation. It is relatively lower in 2020/3/1 and 2020/12/1 than that in 2020/6/1 and 2020/9/1 in the northern 

hemisphere and the situation is reversed in southern hemisphere. 
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Figure 1: Spatial distribution of the extracted VNP21 LST strips in four typical days (a) 2020/3/1, (b) 2020/6/1, (c) 2020/9/1, (d) 

2020/12/1. The FY-4A observed area is marked in orange region. 225 

2.3 In-situ validation dataset for Themi 

T-based evaluation (i.e., directly comparing satellite-derived LST with in-situ LST) is the most widely used validation 

method and should be conducted whenever possible (Guillevic et al., 2018; Li et al., 2014, 2023a; Na et al., 2024a). The in-

situ pyrgeometer measures both upward and downward hemispherical longwave radiation, which can be converted into 

hemispherical LST to perform the T-based validation for the normalized Themi products. As shown in Fig. 2, 11 sites from the 230 

Heihe Watershed Allied Telemetry Experimental Research (HiWATER) experiment within the Heihe River Basin (HRB) 
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and 4 sites from the land-atmosphere interactions dataset over the Tibetan Plateau in 2020 were selected, which had been 

used in the studies of (Che et al., 2019; Li et al., 2025; Ma et al., 2024b). 

 

Figure 2: Spatial distribution of selected in-situ sites. 235 

Table 2. Information of the in-situ sites 

Region Site name Longitude (° E) Latitude (° N) Elevation (m) 

Temporal 

resolution 

(minute) 

Land cover type 

HRB 

AR 100.46 38.05 3038 10 GRA 

DM 100.37 38.86 1562 10 CRO 

DSL 98.94 38.84 3787 10 GRA 

HH 100.48 38.83 1526 10 CRO 

HZZ 100.32 38.77 1722 10 GRA 

DS 100.99 42.11 925 10 BSV 

MF 101.13 41.99 937 10 GRA 

JYL 101.12 37.84 3725 10 GRA 

SDQ 101.14 42.00 932 10 GRA 

YK 100.24 38.01 4070 10 GRA 

ZY 100.45 38.98 1461 10 CRO 

TP 

QOMS 86.95 28.36 4297 60 GRA 

NAMORS 90.98 30.77 4738 60 GRA 

NASED 79.70 33.39 4252 60 BSV 

Ngoring Lake 97.55 34.91 4314 30 GRA 
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As listed in Table 2, three land cover types are represented across the 15 validation sites: 10 grassland (GRA) sites, 3 

cropland (CRO) sites, and 2 barren/sparse vegetation (BSV) sites. The temporal resolution of the in-situ observations varies 

by site: 10 minutes for the HRB sites, 30 minutes for the Ngoring Lake site, and 60 minutes for the remaining TP sites. 

Linear interpolation was applied to align in-situ measurements with the exact satellite observation time. The in-situ LST 240 

(Tinsitu) is calculated using the Stefan–Boltzmann's law, as shown in Eq. 4: 

 
( )4 1

insitu bb i

i

nsitu

b s

i

b

ns tu
T

SULR SDLR

 

−
=

−
 (4) 

where SULRinsitu and SDLRinsitu are the surface upward and downward longwave radiation measured by the in-situ 

pyrgeometer, respectively. εbb is the broadband emissivity derived from the FY-3B MuSyQ product. Outliers were identified 

and removed using the “3σ-Hampel identifier” method for each site (Davies and Gather, 1993; Pearson, 2002). The RMSE, 245 

mean bias error (MBE), and R2 were used as evaluation metrics to validate the LST products. 

3 Method 

The generation of 0.01° ANCFDS-LST involves three main steps: 1) angular normalization of daytime LST; 2) generation of 

0.05° all-weather LST using clear-sky LST as training labels; 3) downscaling of all-weather LST to 0.01° resolution using an 

IHDA method. The overall flowchart is shown in Fig. 3. First, 0.05° clear-sky FY-4A and resampled MxD11A1 directional 250 

LST products were matched and bias corrected for solving the unknown parameters of TEKDM using auxiliary information 

of viewing geometry and local time. For generating Tnadir and Themi with the inputs of FY-4A Tdir and calibrated KDM 

coefficients, the calibrated coefficients were temporally aggregated within a window of 17 days to ensure a complete spatial 

coverage of the FY-4A disk. Second, clear-sky Tdir, Tnadir, and Themi during the day, as well as nighttime FY-4A LST (where 

Tdir = Tnadir = Themi due to the negligible angular effect at night) were used as training labels to predict the hypothetical clear-255 

sky LST under cloudy conditions. A Bayesian optimization-based categorical boosting (CatBoost) model was trained with 

these variables described in Subsection 2.1. The training samples were spatially determined using a widely-used conditioned 

Latin hypercube sampling (cLHS) approach. The predicted hypothetical clear-sky LST requires a CRF correction using the 

cloudless and cloudy radiation budget variables, yielding the final cloudy-sky LST of three viewing angles. In the third step, 

the 0.05° all-weather LST was downscaled to 0.01° resolution using a proposed IHDA method. This approach downscales 260 

the LST difference (ΔLST) between the 0.05° all-weather LST and the 0.05° TATC,d2 at the reference time (i.e., 13:30) using 

another CatBoost model. After predicting three ΔLSTs at 0.01° resolution and applying a residual redistribution procedure, 

the final downscaled 0.01° ΔLSTs was obtained. The final 0.01° all-weather Tdir, Tnadir, and Themi were derived by summing 

their own downscaled 0.01° ΔLST with the corresponding 0.01° ATC-simulated LST. 

 265 
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Figure 3: The overall workflow in this study. 
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3.1 Angular normalization of clear-sky LST 

The FY-4A LST disk has different viewing geometries for each pixel, and these values need to be normalized to a reference 

direction before subsequent applications. The KDM offers a solution by simulating the LST angular distribution through a 270 

linear combination of several kernel functions. However, traditional KDM typically requires three or four simultaneous 

clear-sky LST observations to calibrate the unknown kernel coefficients, which cannot be satisfied by FY-4A satellite. To 

enhance its applicability, Qin et al. (2023, 2025) proposed a time-evolving KDM (TEKDM) by coupling a diurnal 

temperature cycle (DTC) model (i.e., depicting LST temporal variation) and a KDM model (i.e., depicting LST angular 

variation) as shown in Eq. 5. Based on this TEKDM model, Na et al. (2024b) further estimated daytime nadir LST using 275 

GOES-16 and MODIS LST products, and obtained a significantly improved accuracy. 

 ), , c( , ) ( ( )1 os , ),( ,
s Hotspodir v iso GapFraction v s vt s

T f Kt Wt K            +   =  +   (5) 

where Tdir(t,θs,θv,Δφ) represents the directional LST observed at the local time of t, with the solar zenith angle (SZA) of θs, 

the VZA of θv, and the relative azimuth angle (RAA) of Δφ. The term fiso(t) is the isotropic kernel coefficient. The 

coefficients α and β are unknowns corresponding to the gap fraction kernel (KGapFraction) and hotspot kernel (KHotspot), 280 

respectively. W is another unknown parameter related to the hotspot width. The temporal dynamics of isotropic kernel 

coefficient (i.e., fiso(t)) during daytime can be effectively modeled using a DTC model as given in Eq. 6: 

 ( )0
( )

iso a m
t tf t T T





 
  −+ 


= 


 (6) 

where T0 is the temperature at sunrise, Ta represents the amplitude of daily LST variation, ω is the length of the daytime 

period, tm is the local time when the LST reaches its maximum. The nighttime LST was not processed here, as the angular 285 

effect is generally negligible during nighttime. In this study, the LSF kernel and the Chen kernel were selected to represent 

KGapFraction and KHotspot respectively, as shown in Eq. 7-9. 

 ( ) ( )
0.75

cos1 2cos cos1
0.15 1 1.0304

4 1 2cos0.96 1.92cos

vv v

GapFraction v LSF v

vv

K K e
 

 


− +
= −  +  − − 

+  

=
+

 (7) 

 ( ) ( ), ,, , , , W
Hotspot s C vev h n s

K W K W e



     
−

= =   (8) 

 ( )arccos cos cos sin sin cos
s sv v

     =  +     (9) 290 

where ξ is the angular distance between the viewing direction and the solar direction. The TEKDM involves seven unknown 

parameters to be calibrated: T0, Ta, ω, tm, α, β, and W, therefore, at least seven clear-sky daytime observations are required as 

inputs. To abundant the angular information of the input data, two daytime clear-sky MODIS observations (i.e., TERRA and 
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AQUA) were utilized. Then, the TEKDM can be solved for the condition with ≥ 5 clear-sky FY-4A observations. A “trust-

region-reflective” algorithm was employed for the non-linear optimization of Eq. 5, with initial values and parameter 295 

boundaries set according to Qin et al. (2025). Then, a 17-day moving average (i.e., covering 8 days before and after the 

target day) was applied to the parameters of α, β, and W for each pixel for two purposes: filling gaps in pixels with fewer 

than seven observations, and reducing the impact of outliers in the estimated TEKDM parameters. As shown in Eq. 10, the 

LST at any direction (i.e., the Tdir(t,θs,θv,Δφ)) can be simulated with the inputs of FY-4A direction LST (i.e., 

Tdir(t,θs,θv
FY

,ΔφFY) and averaged α, β, and W parameters. 300 

 
( )

( )
( ) ( )

( ) ( )
, , , ,

, ,

, 1 cos ,

1 cos, , , ,
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Y FY
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C es nv s v

T t K K W

K K WT t

         

         

 +  +   
=

 ++   
 (10) 

Specifically, the nadir LST can be derived when setting θv = 0° as shown in Eq. 11: 
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 (11) 

Correspondingly, the normalized hemispherical LST (Themi) could be calculated through the integration as shown in Eq. 12. 
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 (12) 305 

To accelerate the computation of Themi, the integral in the numerator of Eq. 12 was approximated using a third-order 

polynomial fit based on the input variables α, β, W, θs and KChen at nadir. This approach significantly reduces computational 

cost while introducing an uncertainty less than 0.05 K. 

3.2 All-weather LST estimation method 

The all-weather LST estimation method consists of two main sub-steps. First, a hypothetical clear-sky LST was predicted 310 

using a Bayesian optimization-based CatBoost model. Second, the CRF correction was applied to estimate the cloudy-sky 

LST, ultimately producing cloud-filled 0.05° all-weather directional, nadir, and hemispherical LST. 

ML-based LST reconstructing have been widely used because it could accurately simulate the non-linear correlation between 

the hypothetical clear-sky LST and vegetative, meteorological, and topographical parameters (Li et al., 2024a; Ma et al., 

2024a; Zhang et al., 2024). The CatBoost is a recently developed model based on the traditional gradient-boosting decision 315 
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tree (GBDT) framework with several enhancements: 1) Ordered target statistics, which encode categorical features without 

target leakage by using permutation-based strategies; 2) Ordered boosting, which minimizes gradient bias by employing 

permutation-driven training to reduce over fitting; 3) Oblivious trees, which apply the same splitting criterion across all 

nodes at each level, thereby improving speed and regularization (Prokhorenkova et al., 2018). These improvements enhance 

the model’s robustness and efficiency, especially when handling large-scale data-sets containing categorical variables, and 320 

have proven effective in LST reconstruction studies (Dai et al., 2025). Here, the CatBoost model was used to capture the 

complex non-linear relationship (i.e., fclr) between hypothetical clear-sky LST and auxiliary parameters, as represented in Eq. 

13. 

 ( )5, 1 , 2 , 1 , 2 2 2
, , , , , , , , , , , , , , ,

clr clr s ATC d ATC d ATC n ATC n in m mERA skin
T f DOY Lat Lon LCT CT FVC DEM T T T T R T T D

−
=  (13) 

where the input features include the geolocation and temporal parameters, such as the DOY, θs, latitude (Lat), longitude 325 

(Lon). The other parameters in Eq. 13 have been introduced in Table 1. 

During the model training, the target labels consisted of daytime Tdir, Tnadir, and Themi, along with nighttime FY-4A LST from 

2018/1/1 to 2023/12/31. Considering the large volume of label data, a two-step approach was employed to determine the 

number and geolocation of sample points as introduced in Appendix A. As shown in Fig. A1, 37,000 locations distributed 

over the FY-4A disk were selected for each year. Then, the clear-sky LST and corresponding input features were extracted to 330 

train the CatBoost model in Eq. 13. To better align with the 0.25° spatial resolution of ERA5, a FY-4A pixel was strictly 

considered as clear-sky only when all surrounding pixels within a 5 × 5 neighbourhood were under clear-sky conditions. Six 

CatBoost models were trained for each year from 2018 to 2023. The average number of extracted samples per year was 

138,817,085, which were randomly divided into training, testing, and Bayesian optimization sets in a ratio of 6:3:1. The 

Bayesian optimization method adjusted the CatBoost hyperparameters by reconstructing the posterior distribution of the cost 335 

function, defined as the average fitting RMSE from two-fold cross-validation. After the ML training, the CatBoost model 

can predict the hypothetical clear-sky Tdir, Tnadir, and Themi under cloudy-sky conditions, which requires CRF correction. 

The core of the CRF correction lies in establishing the relationship between net radiation changes and CRF-induced LST 

changes, based on the surface radiation budget equation. The CRF-corrected LST is equal to the sum of hypothetical clear-

sky LST with CRF-induced LST variation (i.e., ΔTCRF). In this study, an analytical correction equation (Eq. 14) proposed by 340 

Zhang et al. (2024) was adopted for the CRF correction of Themi. 

 ( ) ( )
4 4

hemi hemi

CRF in bb s clr CRF clr
R TTTT  


  = − +


 −


 (14) 

where ΔTCRF is the correction value for hemispherical LST; γ is an energy transfer parameter, which could be estimated by 

Eq. 15. A temporal median filter with a 17-day window and a spatial median filter with a 3 × 3 window were applied to 
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replace outlier values in the calculation of γ. ΔRin is the change in surface incoming radiation induced by the CRF effect, 345 

which could be estimated by Eq. 16; Tclr
 hemi is predicted hypothetical clear-sky hemispherical LST using Eq. 13. 

 
  4 4

( ) ( ) ( ) ( )

( ) ( )

hemi hemi

in n in bb s clr n clr
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clr r
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r

srn l
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T t T t

 

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−
 (15) 

 ( ) ( )(1 )
in clr cld bb clr cld

R Albedo SDSR SDSR SDLR SDLR − +−= −  (16) 

where Rin is the clear-sky surface incoming radiation calculated by Eq. 2. tn and tsr denote the noon time and sunrise time. 

The subscripts “clr” or “cld” indicate that the parameter is under hypothetical clear-sky or actual cloudy-sky conditions. 350 

After the determination of γ and ΔRin, the only unknown parameter ΔTCRF in Eq. 14 can be estimated. Here, it was 

analytically solved through neglecting its quartic and cubic terms (see Eq. 17). 

 ( ) ( )( )2
32

6 4 0
hemi hemi

b Rb s clr bCR Fb sF inCclr
T TT T R     + +  −  =  (17) 

After the pixel-by-pixel estimation of ΔTCRF, the mean (μCRF) and standard deviation (σCRF) of ΔTCRF could be calculated for 

each image. To reduce the impact of extreme values, the maximum and minimum limits of ΔTCRF were set to μCRF ± 3σCRF. In 355 

the end, the cloudy-sky Tdir, Tnadir, and Themi are obtained by summing CatBoost-estimated hypothetical clear-sky LST (i.e., 

using Eq. 13) and ΔTCRF  (i.e., using Eq. 17). 

3.3 IHDA combining fusion and kernel-based methods 

To meet the 1-km spatial resolution and 1-hour temporal resolution requirement of GCOS (https://gcos.wmo.int/site/global-

climate-observing-system-gcos/essential-climate-variables/land-surface-temperature), downscaling methods have garnered 360 

more and more attention for enhancing the spatial textures of low-resolution LST products (e.g., FY-4A LST). Fusion-based 

downscaling approaches typically require high-resolution LST data as input, whereas kernel-based methods require LST-

related auxiliary data (i.e., regression kernels). Combining fusion-based and kernel-based downscaling methods could 

achieve higher accuracy than using either method alone (Li et al., 2023b; Xia et al., 2019). Dong et al. (2023b) recently 

proposed a simple and effective downscaling (SED) method that utilizes clear-sky, high-resolution Landsat 8 LST at an 365 

initial time to downscale low-resolution MODIS data at a target time. However, this requirement is difficult to be satisfied 

over the full-disk region due to the frequent presence of clouds. To address this limitation, an IHDA method is proposed 

leveraging the ATC-fitted spatiotemporal trend surface of LST (Liang et al., 2025). First, the ATC model is adopted to 

estimate gap-free LST at the initial time of 13:30 (TATC,d2) using Eq. 1 with the driven data of MYD11A1 LST products. 

Although ATC model may introduce additional uncertainty, recent studies have shown that incorporating meteorological 370 

data can further reduce the modeling residuals (Liu et al., 2019; Yang et al., 2024). Here, a CatBoost model is employed to 

establish the non-linear relationship (i.e., fdownscale) between the resampled 0.05° regression kernels and the 0.05° LST bias 
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(i.e., ΔLST0.05 = T0.05 - TATC,d2, where T0.05 is the 0.05° all-weather LST at the target time to be downscaled) as shown in Eq. 

18. 

 ( )0.05 , 2 2 2 2 2 2 2 2
, , , , , , ,,

downscale ATC d d d d n n n m
f T YAST dx YAST dx T DEMLST MAST MAST=  (18) 375 

The ATC parameters of daytime (13:30) and nighttime (01:30) MODIS LST were included as regression kernels to 

characterize surface thermal properties. Additionally, ERA5-Land air temperature (i.e., T2m) was incorporated to capture 

cloud information, whereas the DEM was introduced to represent the topographic information. For model training, two 

typical days (i.e., the mid-month of January in winter and July in summer) were initially used to tune the hyperparameters of 

the CatBoost model using a Bayesian optimization approach. Then, the fdownscale was established individually for each image, 380 

covering 157,680 images in total (i.e., 6 years × 365 days × 24 hours × 3 types of LST). For each image, 70% of the samples 

were used to train the CatBoost model, while the remaining 30% were reserved for testing. The 0.01° LST difference 

(∆LST0.01
 pred

) was then predicted using the trained CatBoost model with 0.01° regression kernels as input: 

 ( )0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 , 2 2 2 2 2 2 2 2
,, , , , , , ,

pred

downscale ATC d d d d n n n m
f T YAST dx YASLST MAST MAS T dx T DEMT=  (19) 

where the “0.01” means the input features are in 0.01° resolution. Finally, a residual redistribution process was applied to 385 

produce the final ΔLST0.01 as shown in Eq. 20. 

 ( )0.01 0.01 0.05 0.05
0.01

pred pred
LST LST LST LST− +=  (20) 

where ΔLST0.05 represents the difference between the 0.05° all-weather LST and the ATC-simulated LST. ∆LST0.05
 pred

 means 

the 0.05° LST difference obtained by aggregating the predicted ∆LST0.01
 pred

. The second term in the right of Eq. 20 is the 

CatBoost modeling residual to be redistributed. A 3 × 3 median filter was applied to reduce the impact of extreme outliers in 390 

the residuals. The notation (·)0.01 indicates the process that the 0.05° residual (i.e., ΔLST0.05 - ∆LST0.05
 pred

) was resampled to 

0.01° using the widely-used bilinear interpolation. Finally, the downscaled 0.01° all-weather directional, nadir, and 

hemispherical LST (T0.01) could be calculated by summing the 0.01° ATC simulated LST at initial time (TATC,d2(0.01°)) and 

the Eq. 20 estimated ΔLST0.01 as below. 

 
0.01 , 2 0.01

(0.01 )
ATC d

T T LST


= +  (21) 395 
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4 Results 

4.1 Results of normalized nadir LST 

The spatial distributions of FY-4A directional LST Tdir, normalized nadir LST Tnadir, the LST difference between Tnadir and 

Tdir, the FY-4A VZA, and the histogram of these two LST products on 2020/6/24 at the UTC time of 3:00 (i.e., the Beijing 400 

time of 11:00) are shown in Fig. 4. As shown in Fig. 4c-d, the Tnadir closely resembles Tdir (with a small value of Tnadir-Tdir) 

when the VZA is within 40°. Tnadir becomes significantly higher than Tdir as VZA increases, with a correction value of Tnadir-

Tdir exceeding 5 K near the edge of the FY-4A disk. When the VZA is small, the FY-4A observation angle is close to the 

nadir direction, resulting in a small correction value from Tdir to Tnadir. However, more cool vegetated elements were viewed 

as the VZA increases (i.e., the well-known gap fraction effect), which resulted in a much lower Tdir compared to Tnadir and 405 

further led to a larger angular correction value. The MBD between nadir and directional LST of the whole image is 1.51 K as 

shown in Fig. 4e. The fraction of lower LST values between 290 K and 300 K was significantly reduced after the angular 

correction of TRD effect. 

 

Figure 4: The spatial distribution of (a) directional LST, (b) nadir LST, (c) LST difference between nadir and directional LST, 410 
and (d) VZA on 2020/6/24 at the UTC time of 3:00. (e) histogram comparison of directional LST and nadir LST. 

The cross-validation between FY-4A Tdir, Tnadir, and the VNP21A1 near-nadir LST (i.e., the VZA< 5°) in 2020 is shown in 

Fig. 5. The root mean squared difference (RMSD) and mean bias difference (MBD) are 6.21 K and -4.04 K for Tdir as shown 

in Fig. 5a. However, the RMSD and MBD for Tnadir is 3.48 K and -2.13 K as shown in Fig. 5b, with a 2.73 K (i.e., 44%) 

reduction in RMSD and a 1.91 K (i.e., 47%) reduction in the MBD. Fig. 5c shows the RMSD values of Tdir and Tnadir 415 

across different VZA intervals with a step of 10°. The RMSD difference between them remains within 0.2 K when VZA is 
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less than 40°. However, when VZA exceeds 40°, the RMSD for Tdir increases substantially (from 4.8 K to 8.6 K), while the 

RMSD for normalized Tnadir remains lower than 4.0 K. The large RMSD of Tdir at large VZA can be partially attributed to its 

significant underestimation as shown in Fig. 5d. The MBD of Tdir exceeds -6 K when the VZA is between 60° and 70°, 

whereas it is only -1.1 K for the normalized Tnadir. The gap fraction effect could explain this angular dependence of MBD, 420 

i.e., a larger VZA leads to a smaller Tdir compared with nadir LST. 

 

Figure 5: The cross-validation of (a) directional and (b) nadir LST against VNP21 near-nadir LST at 0.05° resolution. The angular 

dependence of (c) RMSD and (d) MBE for directional and nadir LST at 0.05° resolution. 
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The accuracy of fclr in reconstructing hypothetical clear-sky Tdir and Tnadir over the test set from 2018 to 2023 is summarized 425 

in Table 3. The average annual sample size is 41,312,444. The RMSE ranges from 2.22 K to 2.46 K for Tdir, and from 2.28 K 

to 2.52 K for Tnadir. RMSE values remain relatively stable from 2018 to 2021, followed by an increase of approximately 

0.2 K in 2022 – 2023. On average, the RMSE for Tnadir is 0.06 K higher than that for Tdir, indicating comparable fitting 

performance across different CatBoost models. The mean absolute error (MAE) ranges from 1.54 K to 1.69 K for Tdir and 

from 1.60 K to 1.75 K for Tnadir, with an average difference of 0.06 K too. The MBE is zero for all models, indicating that no 430 

significant systematic bias was introduced in the predicted hypothetical clear-sky LST. 

Table 3. The prediction accuracy for reconstructing hypothetical clear-sky nadir and directional LST 

Year 

RMSE (K) MAE (K) MBE (K) 

Counts 

Tdir Tnadir Tdir Tnadir Tdir Tnadir 

2018 2.22 2.28 1.54 1.60 0.00 0.00 40,534,869 

2019 2.25 2.30 1.56 1.61 0.00 0.00 43,285,823 

2020 2.27 2.34 1.57 1.63 0.00 0.00 41,883,982 

2021 2.26 2.32 1.57 1.63 0.00 0.00 39,331,441 

2022 2.46 2.52 1.69 1.75 0.00 0.00 41,833,769 

2023 2.44 2.50 1.68 1.74 0.00 0.00 41,004,779 

mean 2.32 2.38 1.60 1.66 0.00 0.00 41,312,444 

As shown in Fig. 6, two typical locations (i.e., corresponding to the DM and SDQ sites) were selected to compare the time 

series of all-weather Tdir and Tnadir. The VNP21A1 near-nadir LST is also exhibited as a reference in Fig. 6. The hourly Tdir 

and Tnadir values were interpolated to match the VIIRS overpass times using linear interpolation. Overall, Tnadir closely aligns 435 

with Tdir as shown in Fig. 6a-b. However, Tnadir tends to be higher than Tdir in summer (see Fig. 6c-d) and lower than Tdir in 

winter (see Fig. 6e-f). This seasonal variation may be attributed to the varying temperature contrasts between soil and 

vegetation (Liu et al., 2020, 2025). In summer, more hot soil components are viewed in nadir direction, resulting in a higher 

Tnadir compared to Tdir. Conversely, in winter, soil temperatures become cooler than vegetation temperatures, leading to a 

lower Tnadir compared to Tdir. The VNP21A1 near-nadir LST confirmed this explanation of the seasonal variation of Tnadir. 440 
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Figure 6: The time series of Tdir, Tnadir, and VNP21A1 near-nadir LST in 2020 in (a) DM site, (b) SDQ site, (c) the summer of DM 

site, (d) the summer of SDQ site, (e) the winter of DM site, (f) the winter of SDQ site. 

In the spatial resolution downscaling process, the CatBoost model was used to establish the relationship between regression 

kernels and the LST difference (e.g., the nadir LST minus ATC-simulated LST) at 0.05° resolution. The prediction accuracy 445 

of each month over the test set from 2018/1/1 to 2023/12/31 for daytime and nighttime conditions is shown in Fig. 7. The 

nighttime RMSE ranges from 1.97 K to 2.43 K, which is consistently lower than the daytime RMSE (2.62 K – 3.04 K). This 

discrepancy can be partially attributed to the fact that daytime LST tends to be more heterogeneous than nighttime LST, 

leading to greater modeling errors during the day. The daytime RMSE increases from January to May and then decreases, 

with a total variation of 0.42 K. In contrast, the nighttime RMSE decreases from January to July and then rises, with a 450 

variation of 0.46 K. Overall, the results demonstrate the reliable capability of the CatBoost model in the spatial resolution 

downscaling. 
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Figure 7: The prediction RMSE over test set for nadir LST during the day and night for each month. 

The spatial distributions of all-weather 0.05° daytime Tnadir (Fig. 8a), nighttime Tnadir (Fig. 8c), and downscaled 0.01° 455 

daytime Tnadir (Fig. 8b), nighttime Tnadir (Fig. 8d) on 2020/6/24 are shown in Fig. 8. Generally, the spatial distribution is 

almost the same between 0.05° and 0.01° Tnadir. It demonstrates pronounced patterns of latitudinal and elevational variation 

(i.e., the Tnadir is lower in high-latitude and high-altitude regions both during the day and night). The downscaled Tnadir (Fig. 

8b and 8d) reveals rich spatial texture, particularly in areas with rugged terrain such as in southeastern Tibetan Plateau. The 

temperature contrast between mountain tops and bases is more pronounced than in the 0.05° LST, which verifies the 460 

effectiveness of the IHDA downscaling method.  
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Figure 8: The spatial distribution of (a) 0.05° nadir LST, (b) 0.01° nadir LST at the UTC time of 4:00 on 2020/6/24, and (c) 0.05° 

nadir LST, (d) 0.01° nadir LST at the UTC time of 16:00 on 2020/6/24. 

  465 
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4.2 Results of normalized hemispherical LST 

The spatial distribution of FY-4A directional LST Tdir, normalized hemispherical LST Themi, the LST difference between 

Themi and Tdir, the FY-4A VZA, and the histogram of these two LST products on 2020/6/24 at the UTC time of 3:00 are 

shown in Fig. 9. In Australia, the Themi (Fig. 9b) is approximately 2 K lower than Tdir (Fig. 9a). In the northern China, the 

Themi is very close to Tdir. However, the Themi is around 3 K higher than Tdir at the edge of the FY-4A disk (where the VZA 470 

exceeds 60°, see Fig. 9c-d). This spatial pattern can be partially explained by the value of the hemispherical equivalent angle 

(i.e., the VZA at which Tdir = Themi), which has been reported to range from 44° to 53° in relevant studies (Hu et al., 2023; 

Zhang et al., 2025). When the VZA is smaller than 44°, Tdir tends to be higher than Themi due to more hotter soil component 

was viewed. Conversely, for the large VZAs over 53° (e.g., at the edge of FY-4A disk), Tdir becomes lower than Themi as 

more cooler vegetation component was viewed. It is interesting that the distribution of Themi is more concentrated that that of 475 

Tdir since the relative lower (i.e., in the range of 290 K – 295 K) and higher (i.e., in the range of 307 K – 312 K) values of Tdir 

were normalized to be close to 300 K (Fig. 9e). Thus, the MBD between the unnormalized Tdir and the normalized Themi is as 

small as 0.2 K. 

 

Figure 9: The spatial distribution of (a) 0.05° directional LST, (b) 0.05° hemispherical LST, (c) LST difference between 480 
hemispherical and directional LST, (d) VZA on 2020/6/24 at the UTC time of 3:00. (e) histogram comparison of directional LST 

and hemispherical LST. 
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To quantitatively evaluate the 0.05° FY-4A Tdir and Themi, they were compared with daytime in-situ LST measurements over 

15 stations (Fig. 10a-b). The results show that the RMSE decreased from 3.45 K to 3.19 K, with an improvement of 0.26 K. 485 

The MBE was reduced from 0.43 K to -0.36 K. For the temperatures between 280 K to 300 K with most densely distribution, 

the scatter points become closer to the 1:1 line after the angular normalization. Fig. 10c-d shows the RMSE and MBE of FY-

4A Tdir and Themi at different local times. Tdir exhibits a pronounced overestimation with higher RMSE in the morning, and an 

underestimation with smaller RMSE in the afternoon. After the angular normalization, the Themi shows significantly 

improved performance in the morning, with a RMSE reduced by approximately 0.4-0.8 K (Fig. 10c). As shown in Fig. 10d, 490 

the MBEs of Themi is much smaller than those of Tdir in the morning, with a maximum reduction of 2.0 K at 11:00. 

 

Figure 10: The accuracy of (a) FY-4A directional LST, and (b) FY-4A hemispherical LST. The temporal variation of (c) RMSE 

and (d) MBE for directional and hemispherical LST. 
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The accuracy of reconstructing hypothetical clear-sky 0.05° Tdir and 0.05° Themi over the test set from 2018 to 2023 is 495 

summarized in Table 4. The RMSE ranges from 2.22 K to 2.46 K for Tdir and from 2.23 K to 2.46 K for Themi. The average 

RMSE for Themi is equal to that of Tdir (i.e., 2.32 K), indicating comparable performance across the different CatBoost models. 

The MAE ranges from 1.54 K to 1.69 K for Tdir (with a mean value of 1.60 K), and ranges from 1.55 K to 1.70 K for Themi 

(with a mean value of 1.61 K). The MBE is zero for all models, which indicates that the reconstructed hypothetical clear-sky 

Tdir and Themi are unbiased. 500 

Table 4. The prediction accuracy for reconstructing hypothetical clear-sky hemispherical and directional LST 

Year 

RMSE (K) MAE (K) MBE (K) 

Counts 

Tdir Themi Tdir Themi Tdir Themi 

2018 2.22 2.23 1.54 1.55 0.00 0.00 40,534,869 

2019 2.25 2.25 1.56 1.56 0.00 0.00 43,285,823 

2020 2.27 2.28 1.57 1.58 0.00 0.00 41,883,982 

2021 2.26 2.26 1.57 1.58 0.00 0.00 39,331,441 

2022 2.46 2.46 1.69 1.70 0.00 0.00 41,833,769 

2023 2.44 2.44 1.68 1.68 0.00 0.00 41,004,779 

mean 2.32 2.32 1.60 1.61 0.00 0.00 41,312,444 

The estimated 0.05° all-weather Themi results were further evaluated by the in-situ hemispherical LSTs from 15 in-situ 

stations (Fig. 11). The samples are divided into clear-sky (Fig. 11a) and cloudy-sky (Fig. 11b) conditions. The “3σ-Hampel 

identifier” method applied to minimize the influence of outliers at each in-situ site. Both daytime and nighttime Themi values 

were considered here. Under clear-sky conditions, 0.05° Themi shows an RMSE of 2.99 K and an MBE of -0.77 K. The 505 

distribution of residuals (ΔLST=Themi-Tinsitu) approximately follows a normal distribution. Under cloudy-sky conditions, Themi 

shows a higher RMSE of 4.56 K and a more significant negative MBE of -1.56 K. It is challenging to maintain the same 

accuracy under cloudy-sky condition as under clear-sky condition since the uncertainty under cloudy skies is composed of 

the estimation of CatBoost-predicted hypothetical LST and the estimation of ΔTCRF. 
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 510 

Figure 11: The accuracy of generated all-weather hemispherical LST under (a) clear-sky condition and (b) cloudy-sky condition.  

Fig. 12a-b show the temporal consistency of FY-4A official LST, Themi, and in-situ LST, at the DM and SDQ sites 

throughout 2020 at 04:00 and 16:00 UTC (i.e., 12:00 and 00:00 Beijing time). Overall, the all-weather Themi aligns well with 

the in-situ LST. At the DM site during daytime (Fig. 12a), the clear-sky RMSE (MBE) of FY-4A official LST is 3.20 K 

(2.43 K), whereas the corresponding values for Themi are 2.15 K (0.46 K), indicating that the systematic overestimation is 515 

significantly mitigated after angular normalization. Similarly, at the SDQ site during daytime (Fig. 12b), the clear-sky RMSE 

(MBE) decreases from 4.77 K (4.02 K) for the FY-4A official LST to 3.60 K (2.55 K) for Themi. During nighttime, the clear-

sky Themi is the same as FY-4A official LST, showing lower RMSE than in daytime. The RMSE (MBE) values are 2.38 K (-

0.94 K) at the DM site and 2.2 K (-0.17 K) at the SDQ site. Under cloud-sky conditions, the RMSE (MBE) values are 3.54 K 

(-0.53 K) at the DM site and 4.09 K (1.97 K) at the SDQ site during daytime, and 4.58 K (-3.77 K) at the DM site and 3.46 K 520 

(-1.36 K) at the SDQ site during nighttime. In summary, the all-weather LST could effectively capture the annual 

temperature cycle characteristics. 
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Figure 12: The temporal variation trend of in-situ LST, Themi, and FY-4A official LST in 2020 for (a) DM site at the UTC time of 

4:00, (b) SDQ site at the UTC time of 4:00, (c) DM site at the UTC time of 16:00, (d) SDQ site at the UTC time of 16:00. Note that 525 
the clear-sky Themi is the same as FY-4A LST during nighttime because the TRD effect is ignored at night. 

The 0.05° LST difference (i.e., the hemispherical LST minus ATC-simulated LST) fitting accuracy of the CatBoost model in 

the downscaling process over the test set is shown in Fig. 13a. The nighttime RMSE (1.87 K – 2.40 K) is lower than the 
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daytime RMSE (2.59 K – 2.99 K), with a difference ranging from 0.26 K to 1.00 K. The maximum daytime RMSE occurs in 

May, while the minimum RMSE is observed in February, with a variation of 0.4 K. The maximum nighttime RMSE is in 530 

January, and the minimum RMSE occurs in July, with a variation of 0.53 K. As shown in Fig. 13b-c, the accuracy of the 

0.01° all-weather Themi is comparable to that of the all-weather 0.05° Themi, indicating that the downscaling method did not 

introduce additional uncertainty. The RMSE slightly decreased from 4.23 K at the 0.05° resolution to 3.99 K at the 0.01° 

resolution, and the absolute value of the MBE reduced by 0.08 K. Since a residual redistribution (Zheng et al., 2024) was 

performed during the downscaling process, the accuracy of the 0.01° Themi remains highly dependent on the original 0.05° 535 

LST product. 

 

Figure 13: The fitting RMSE over test set for hemispherical LST during the day and night for each month (a). The accuracy of all-

weather hemispherical LST products before (b) and after (c) downscaling.  
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The spatial distributions of all-weather 0.05° daytime Themi (Fig. 14a), nighttime Themi (Fig. 14c), and downscaled 0.01° 540 

daytime Themi (Fig. 14b), nighttime Themi (Fig. 14d) on 2020/6/24 are shown in Fig. 14. The Themi is much lower in high-

latitude and high-altitude regions for both daytime and nighttime, which demonstrates pronounced patterns of latitudinal and 

elevational variation of LST. Generally, the spatial distribution of 0.01° Themi is consistent with that of 0.05° Themi. The 

downscaled 0.01° Themi (Fig. 14b and 14e) reveals richer spatial texture (e.g., in southeastern Tibetan Plateau). 

 545 

Figure 14: The spatial distribution of (a) 0.05° Themi, (b) 0.01° Themi at the UTC time of 4:00 on 2020/6/24, and (c) 0.05° Themi, (d) 

0.01° Themi at the UTC time of 16:00 on 2020/6/24. 

https://doi.org/10.5194/essd-2026-74
Preprint. Discussion started: 16 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

31 

 

5 Discussion 

5.1 The temporal aggregation method for KDM parameters 

In this study, a temporal aggregation method spanning 8 days before and after the target day (a total of 17 days) was 550 

employed to aggregate the KDM parameters (i.e., α, β, and W). It not only filtered out extreme values in the TEKDM results 

but also filled the gaps for pixels where TEKDM could not be solved. The 17-day compositing method was comprehensively 

compared with three other aggregation approaches: 1) 9-day composition: averaging values from four days before and after 

the target day (a total of 9 days). 2) Monthly composition (i.e., ~30 days in total): calculating the monthly average of KDM 

parameters, assuming they remain constant throughout each month. 3) Yearly composition (i.e., ~365 days in total): 555 

calculating the yearly average of KDM parameters, assuming they remain constant throughout the whole year. After 

calibrating the KDM parameters using each approach, FY-4A directional LST could be normalized to Tnadir. Then, the Tnadir 

result of 2020 were cross-validated using VNP21A1 near-nadir LST (i.e., VZA < 5°) as did in Fig 5. 

Fig. 15a-e shows the cross-validation result between the Tdir/Tnadir and VNP21A1 near-nadir LST, whereas Fig. 15f shows 

the fraction of valid pixels (i.e., the ratio of pixels with valid KDM parameters to the total number of land surface pixels) of 560 

above temporal aggregation methods. The RMSD (MBD) of the FY-4A official LST is 6.21 K (-4.04 K), while the RMSD 

(MBD) for the four compositing methods ranges from 3.45 K to 3.79 K (-2.31 K to -2.12 K). The RMSD in ascending order 

is monthly method< 17-day method< 9-day method< yearly method. In terms of valid pixel fractions, the order is the 9-day 

method (89.3%)< 17-day method (93.6%)< monthly method (95.9%)< yearly method (99.5%). The significant lower 

fractions for the 9-day and 17-day methods in 2020/8 (Fig. 15f) are due to the absence of MYD11A1 LST products between 565 

2020/8/16 and 2020/8/31 (induced by a Formatter-Multiplexer Unit/Solid State Recorder (FMU/SSR) error, more details can 

be found at https://ladsweb.modaps.eosdis.nasa.gov/alerts-and-issues/168889). The yearly method was not adopted since it 

has the largest RMSD, whereas the 9-day method was not used since it has the lowest valid pixel fraction. The 17-day and 

monthly methods could achieve comparable and acceptable accuracy. The 17-day method was ultimately selected referenced 

to the parameter aggregation method in optical domain (Liu et al., 2013). 570 
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Figure 15: The cross-validation results of (a) FY-4A directional LST, (b) Tnadir generated using 9-day composition method, (c) 

using 17-day composition method, (d) using monthly composition method, (e) using yearly composition method. (f) The fraction of 

valid pixels for different composition methods.  

5.2 Feature Importance for CatBoost models in hypothetical clear-sky LST estimation and LST downscaling 575 

The relative feature importance of CatBoost model was determined based on each feature’s contribution to the reduction of 

the loss function. We employed the logarithmic value of log(1 + scorenorm) to quantify the importance of each model (where 

scorenorm is the max-min normalized feature scores). The average relative feature importance across all CatBoost models is 

shown in Fig. 16. In the estimation of hypothetical clear-sky LST (Fig. 16a), TERA5-skin exhibited the highest importance. The 

T2m and Rin were also identified as influential predictors, aligning with the findings of Zhang et al. (2024). The θs accounted 580 

for a significant 9.9% of the importance, reflecting the strong influence of solar radiation on LST. Most other features had 

relatively low importance (below 5%), and ATCd1, CT, FVC, and LCT contribute less than 1%. In the LST downscaling task 

from 0.05° to 0.01° using CatBoost model (Fig. 16b), the ATC-simulated LST at the initial time had the highest importance 

of 30.8%. The air temperature (T2m) and MASTd2 also had high importance exceeding 10%. The YASTd2, DEM, and dxn2 

showed moderate importance between 5% and 10%, while the dxd2, MASTn2, and YASTn2 contributed less than 5%. 585 

Eliminating those features with low importance has the potential to enhance computational efficiency and reduce 

dependency on related auxiliary datasets, which should be carefully assessed in future studies. 
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Figure 16: The relative importance for the CatBoost model when (a) estimating the hypothetical clear-sky LST using Eq. 13, and 

(b) downscaling the 0.05° LST difference using Eq. 18. 590 

5.3 The spatial representativeness of in-situ sites 

The Tnadir was evaluated by the VNP21A1 near-nadir LST, whereas the 0.05° and 0.01° Themi were validated using the in-situ 

measurements. The T-based validation of Themi requires that in-situ sites exhibit high spatial representativeness. To assess the 

spatial heterogeneity of 15 sites, the standard deviation (STD) of Landsat 8 LST values in 2020 was calculated for each site 

at both 0.01° and 0.05° resolution (see Fig. 17a). At the 0.05° scale, STD values range from 1.0 K to 6.4 K, which are 595 

significantly higher than those at 0.01° resolution (i.e., 0.5 K – 2.7 K). Almost half of the sites at 0.05° scale have STD 

values greater than 3 K, indicating a potential influence on validation accuracy due to the limited representativeness. As 

spatial resolution improved, landscapes within a single pixel tend to become more homogeneous, leading to an decrease in 

STD. At 0.01° resolution, all site have a STD below 3 K (11 sites among them have STD values below 2 K). Therefore, 

downscaling LST products could mitigate the impact of site representativeness error on T-based validation result. Fig. 17b 600 

shows the relationship between the STD of each site and corresponding RMSE of Themi at 0.01° resolution. A significant 

linear relationship is observed, with a Pearson’s R of 0.54 and a p-value< 0.05. The slope of the linear regression is 0.73, 

indicating that a decrease of 1 K in STD of in-situ site (i.e., better spatial representativeness) corresponds to an RMSE 

decrease of 0.73 K for Themi. 
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 605 

Figure 17: (a) The STD of Landsat 8 LST at 0.01° and 0.05° resolution for all 15 sites in 2020. (b) The relationship between the 

STD of each site and corresponding RMSE of hemispherical LST at 0.01° resolution. 

5.4 The inter-comparison with other all-weather LST products 

The inter-comparison between the generated all-weather Themi product and four existing all-weather LST products against the 

in-situ LST measurements in the year 2020 is shown in Fig. 18. Although the absolute accuracy is influenced by the spatial 610 

representativeness of 15 sites as analyzed in section 5.3, the relative accuracy of different LST products is comparable. Two 

of the employed datasets are reanalysis products: ERA5-Land LST at 0.1° resolution and China Land Surface Data 

Assimilation System (CLDAS) LST at 0.0625° resolution. Additionally, two remote sensing products were included: a 

global all-weather 0.05° LST dataset generated by Jia et al. (2023), and a regional 0.02° LST product for East Asia region 

developed by Dong et al. (2022). Jia’s method first estimates hypothetical clear-sky LST using a Kalman filter with ERA5, 615 

Himawari-8 and MODIS LSTs as inputs. An iterative CRF correction is then applied to produce the cloudy-sky LST. Dong’s 

approach first retrieves clear-sky LST from Himawari-8 using a TES algorithm, and then estimates cloudy-sky LST using a 

multiresolution Kalman filter based on CLDAS LST. For consistency, all four products were resampled to 0.05° resolution 

to match the 0.05° Themi for inter-comparison. Under clear-sky conditions (Fig. 18a), ERA5 and CLDAS show similar 

accuracy with RMSE values of 4.8 K – 5.0 K during the day and 4.6 K – 4.8 K at night. Our Themi product has the best 620 

accuracy with RMSE values of 3.3 K during the day and 2.8 K at night. Dong’s LST and Jia’s LST have RMSE values 

between the reanalysis products and the Themi. Under cloudy-sky conditions (Fig. 18b), ERA5 LST has the lowest accuracy 

with an RMSE of 6.7 K during the day and an RMSE of 5.0 K at night. CLDAS LST has RMSEs of 5.2 K during daytime 

and 4.2 K at night, which performs slightly better than Jia’s LST. The RMSE of Themi is similar to Dong’s LST during the 

day (5.1 K) and 0.2 K higher than Dong’s LST at night. The superior performance of our Themi product during both clear-sky 625 

and cloudy-sky conditions highlights its good potential in the subsequent applications. 
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Figure 18: The RMSE comparison of five products during the day and night under (a) clear-sky condition and (b) cloudy-sky 

condition. 

5.5 Limitations and future work 630 

The evaluation results of the generated ANCFDS-LST demonstrate its high accuracy and detailed texture. Several limitations 

remain to be addressed in future work: 

1) The TEKDM used in this study is developed for vegetated canopies, which is dominated by the gap fraction and hot spot 

effects. However, the applicability of this model over other land covers, such as bare soil, snow, and urban areas 

requires further exploration and validation (Du et al., 2023, 2024; Wang et al., 2024a; Xiong et al., 2024). Moreover, the 635 

reliability of TEKDM in complex terrain also demands in-depth studies (Zhan et al., 2025). 

2) This study extensively employs machine learning methods, making it challenging to analyse error propagation processes. 

Developing robust error quantification techniques would aid in tracing how uncertainties in input parameters influence 

the final 0.01° all-weather LST, thereby further refining the ANCFDS-LST product (Li et al., 2024b). 

3) The T-based validation in this study is based on 15 in-situ sites located in HRB and Tibetan Plateau, which inevitably 640 

introduces uncertainty due to limited spatial representativeness. Future studies could incorporate radiance-based (R-

based) validation to mitigate this issue, offering a valuable complement to T-based validation (Li et al., 2021). 

6 Data availability 

The hourly, 0.01°, all-weather Tdir, Tnadir, and Themi product (ANCFDS-LST) from 2018 to 2023 is freely available at 

https://doi.org/10.11888/RemoteSen.tpdc.303249 (last access: 30 January 2026; Na et al., 2026). Data are stored in GeoTIFF 645 

format with three sequential bands (Tdir, Tnadir, and Themi respectively), and the units of each file is kelvin. A scale factor of 

0.1 and offset of 0 have been applied for value encoding. 
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7 Conclusion 

In this study, the angular-normalized, cloud-filled, and 0.01°-downscaled LST was generated from 2018 to 2023 on the basis 

of the official FY-4A LST dataset. Firstly, a TEKDM-based angular normalization method was used to generate nadir and 650 

hemispherical LST products. Secondly, an all-weather LST estimation approach was adopted to produce 0.05° cloud-filled 

directional, nadir, and hemispherical LST. Finally, an IHDA method was employed to enhance the spatial resolution of the 

LST products from 0.05° to 0.01°. The main conclusions are summarized as follows: 

1) The TEKDM model significantly normalized the angular dependence of daytime clear-sky Tdir. Taking the near-nadir 

VNP21A1 LST as reference, the RMSD (MBD) decreased from 6.21 K (-4.04 K) of the Tdir to 3.48 K (-2.13 K) of 655 

normalized 0.05° Tnadir. Taking the in-situ hemispherical LSTs in the Heihe River Basin and the Tibetan Plateau as 

reference, the RMSE (MBE) decreased from 3.45 K (0.43 K) of the Tdir to 3.19 K (-0.36 K) of the normalized 0.05° Themi. 

2) For the all-weather 0.05° Themi, the T-based validation shows an RMSE (MBE) of 2.99 K (-0.77 K) under clear-sky 

conditions and 4.56 K (-1.56 K) under cloudy-sky conditions. The generated all-weather Themi outperformed the existing 

four all-weather LST products (i.e., ERA5, CLDAS, Jia2023 and Dong2022). 660 

3) The downscaled all-weather LST successfully recovered fine spatial details with a comparable accuracy. The T-based 

validation shows that the RMSE (MBE) for Themi slightly decreased from 4.23 K (-1.4 K) at 0.05° resolution to 3.99 K (-

1.32 K) at 0.01° resolution. 

Despite the generated directional, nadir, and hemispherical LST products have high accuracy and rich spatial texture, their 

spatial coverage is currently limited to the FY-4A disk. Further work is needed to expand this methodology for producing 665 

global-scale LST products, e.g., gathering Himawari, GOES and MSG satellite datasets. In addition, the T-based validation 

was performed over limited in-situ sites in this study, and a more comprehensive approach such as R-based validation is still 

lacking. Future research should focus on performing robust validation over more land covers and also over complex terrains. 

Appendix A 

The sampling of label data is essential in the estimation of hypothetical clear-sky LST since the large volume of clear-sky 670 

LST observations. In this study, a representative sub-dataset was determined through a two-step sampling approach: 

Step 1) Determining the number of samples by evaluating the CatBoost model’s performance in fitting the annual maximum 

LST (i.e., Tmax = MAST + YAST). Due to its highest level of heterogeneity, Tmax is the most challenging variable for CatBoost 

to fit. Here, a CatBoost model was trained with the inputs of following features: Lat, Lon, LCT, CT, FVC, DEM, and the 

annual mean values of Rin, T2m, and D2m, as shown in Eq. A1.  675 

 ( )2 2
, , , , , , , ,

max CatBoost in m m
T f Lat Lon LCT CT FVC DEM R T D=  (A1) 
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Firstly, 10% of the samples (974,403 samples) were used to tune the hyperparameters of the CatBoost model using a 

Bayesian optimization method. Another 30% of the samples (2,923,400 samples) were allocated as the test set. The training 

set includes a total of 5,847,441 samples (i.e., 60% of the samples). Aimed to determine the optimal sample size, directly 

transverse all the possible sample sizes over training set is impractical. In this study, the number of training samples was 680 

gradually increased from 2,000 to 100,000 with an increment of 2,000. As shown in Fig. A1(a), the optimal sample size (i.e., 

37,000) was determined based on the point at which the RMSE variation (i.e., |ΔRMSE|) remained less than 0.001 K. 

Step 2) determining the exact geolocations of 37,000 points for each year (i.e., 6 years from 2018 to 2023). Here, a 

conditioned Latin hypercube sampling (cLHS) method was employed, which first divides the features into equal partitions 

according to their values and then randomly selects sample points from each partition. It has been demonstrated to be both 685 

efficient and reliable for large datasets (Minasny and McBratney, 2006; Yang et al., 2020). The input features for this step 

are identical to those in Eq. A1. The final spatial distribution of 37,000 selected points per year is shown in Fig. A1b-g, 

indicating a uniform distribution across the FY-4A disk without significant clustering. 

 

Figure A1: The selection of optimal sample number (a) and the geolocation of 37000 sample points in (b) 2018, (c) 2019, (d) 2020, 690 
(e) 2021, (f) 2022, (g) 2023. 
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