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Abstract. Land surface temperature (LST) is an essential climate variable in geophysical, ecological, and environmental
researches. Remote sensing provides a unique observation approach for obtaining large-scale LST products. However,
current official LST datasets (such as FY-4A) are limited by the unaddressed thermal radiation directionality effect, and
suffer the spatial discontinuities due to the pervasive presence of clouds. What’s more, the geostationary LST products have
relatively coarser resolution than those of polar-orbiting satellites due to trade-off between spatial and temporal resolutions.
Based on the official hourly FY-4A LST dataset, this study proposes a novel framework for generating angular-normalized,
cloud-filled, and 0.01°-downscaled LST (ANCFDS-LST) product, encompassing directional (7u-), nadir (Zair), and
hemispherical (7jemi) LST layers. First, the angular-normalized 7T)qqi» and Themi Were generated using a time-evolving kernel
driven model (TEKDM) with the inputs of multi-temporal FY-4A 7. Subsequently, hypothetical clear-sky LST were
predicted using a CatBoost model optimized via Bayesian methods. The cloudy-sky LST values were then derived through a
cloud radiation force (CRF) correction. Finally, the 0.05° all-weather Tuir, Thadir, and Themi values were downscaled to 0.01°
resolution using an improved hybrid downscaling algorithm (IHDA) combining fusion and kernel-based methods. Taking

the daytime clear-sky near-nadir VNP21A1 LST as reference, the 0.05° T, before angular-normalization has a root mean
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squared difference (RMSD) of 6.21 K and a mean bias difference (MBD) of -4.04 K, whereas the angularly normalized Tyqair
has a much smaller RMSD of 3.48 K and a better MBD of -2.13 K. For the all-weather Tjem, temperature-based validation
over 15 sites in the Heihe River Basin and the Tibetan Plateau shows a root mean squared error (RMSE) and mean bias error
(MBE) of 2.99 K and -0.77 K under clear-sky conditions, 4.56 K and -1.56 K under cloudy-sky conditions. After the spatial
downscaling, the 0.01° all-weather Tj..; with abundant texture details exhibits an RMSE (MBE) of 3.99 K (-1.32 K) over 15
sites. The generated LST products from 2018 to 2023 over the FY-4A disk exhibit enhanced angular consistency, spatial
continuity, and finer resolution, offering valuable support for subsequent LST-related applications. The ANCFDS-LST data
is freely available at https://doi.org/10.11888/RemoteSen.tpde.303249 (last access: 30 January 2026; Na et al., 2026).

1 Introduction

Land Surface Temperature (LST) quantifies the thermal properties of the Earth’s land surface and serves as a driving force of
climate change, radiation budgets, water cycle, and atmospheric processes (Wei et al., 2020, 2021). Compared to polar-
orbiting satellite LST products, geostationary LSTs have the advantage of enhanced temporal resolution, which is more
suitable to characterize the dynamic variations of land surface thermal conditions (Li et al., 2023c). To ensure both retrieval
accuracy and computational efficiency, numerous easy-to-implement methods such as the split-window (SW) and
temperature and emissivity separation (TES) methods have been developed for the geostationary satellites over the past
decades (Li et al., 2013). These methods have been successfully applied in the generation of official LST products, including
the Fengyun-4A (FY-4A) Advanced Geosynchronous Radiation Imager (AGRI) LST product (Dong et al., 2013, 2023a),
Geostationary Operational Environmental Satellites R-Series (GOES-R) Advanced Baseline Imager (ABI) LST products (Yu
et al., 2009), and the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) LST
product (Freitas et al., 2013; Trigo et al., 2011).

Despite the significant advancement of LST retrieval methods, current geostationary LST products still suffer from three
major limitations: 1) Most existing LST retrieval methods assume that surface-emitted radiance is isotropic. However, the
complex structure and heterogeneous sub-pixel temperature distribution lead to different LST values when observing a pixel
from different directions at the same time, i.e., the thermal radiation directionality (TRD) effect (Cao et al., 2019a). As a
result, current LST products are directionally dependent, requiring to be normalized into a reference direction. 2) Because
thermal-infrared (TIR) signals cannot penetrate clouds, current LST products exhibit significant spatial discontinuities, with
more than half of the land surface often obscured by cloud cover (Stubenrauch et al., 2013). Therefore, generating all-
weather (including clear-sky and cloudy-sky conditions) LST has attracted considerable research interest in the TIR remote
sensing community (Jia et al., 2024; Wu et al., 2021). 3) A trade-off between spatial and temporal resolution is inherent to
LST products. Hourly LST products from geostationary satellites typically have a spatial resolution of 2~5 km. Improving
sensor performance is one direct approach, while spatial downscaling methods offer a more practical and efficient alternative

for enhancing the texture detail of LST products (Sun et al., 2024; Wu et al., 2021; Zhan et al., 2013).
2
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The influence of TRD effect during summer is as large as 4.0 K in sparsely vegetated areas and 5.1 K in urban regions (Coll
etal., 2019; Du et al., 2023, 2025; Zhan et al., 2025). The semi-physical kernel-driven model (KDM) is regarded as the most
potential approach to reduce the LST angular dependence and achieve the aim of angular normalization (Cao et al., 2019b,
2021; Michel et al., 2023). It simulates the LST angular distribution through a linear combination of several kernel functions.
The primary step is to calibrate the kernel coefficients, which then allows for correcting the directional LST (i.e., 74) to a
nadir LST (i.e., Thair) Or to a hemispherical LST (i.e., Themi) by integrating over the upper hemisphere. Solving for three or
four unknown kernel coefficients typically requires at least three or four simultaneous multi-angle observations which cannot
be satisfied by current satellite sensors. To address this problem, previous studies have either omitted one anisotropic kernel
(Qin et al., 2023; Teng et al., 2023) or assumed that certain kernel coefficients remain constant over broad spatial or
temporal scales (Chang et al., 2025; Ermida et al., 2017, 2018a, b; Vinnikov et al., 2012). Recently, Qin et al. (2025)
proposed a time-evolving kernel-driven model (TEKDM) with seven parameters which captures the multi-temporal multi-
angle LST patterns within a single day and enables the coefficient calibration in the overlapping region of two geostationary
satellites. To broaden the application region of TEKDM, Na et al. (2024b) normalized the LST in the overlapping region of
TERRA/AQUA Moderate Resolution Imaging Spectroradiometer (MODIS) and GOES-16 ABI LST products. Results
showed the root mean squared error (RMSE) was reduced from 3.29 K to 2.34 K. Here, the FY-4A AGRI and
TERRA/AQUA MODIS official LST products were jointly employed for solving the TEKDM and achieving the angular
normalization of FY-4A LST (i.e., producing Tz and Thems)-

Due to the lack of TIR information of the land surface under cloudy-sky conditions, all-weather LST estimation for
geostationary satellites typically relies on various types of auxiliary data and can be categorized into three main approaches:
interpolation-based methods, surface energy balance (SEB) based methods, and simulation-based methods. Interpolation-
based methods utilize spatially or temporally adjacent information to estimate missing LST values (Hong et al., 2021, 2022;
Quan et al., 2018; Wang et al., 2024b). These methods can effectively preserve fine spatial textures, but they are uncertain
under extensive cloud cover (Jia et al., 2024). Furthermore, they do not account for the influence of cloud radiation force
(CRF). The SEB-based methods are commonly used to calculate the CRF effects in all-weather LST estimation. For example,
Jia et al. (2021) proposed an iterative CRF correction method, Liu et al. (2023) solved a quartic equation to perform CRF
correction, and Zhang et al. (2024) developed an analytical CRF correction formula. LST values after CRF correction can
represent the actual thermal properties of the land surface and are recommended for large-scale applications (Jia et al., 2024;
Wau et al., 2021). Simulation-based methods also show excellent potential for estimating all-weather LST, but they suffer
from coarse resolution and substantial biases in simulated LST (Ding et al., 2022; Dong et al., 2022). The rapid advancement
of machine learning (ML) models offers promising opportunities to improve the all-weather LST estimation. Zhang et al.
(2024) proposed a two-step gap-filling algorithm in recent. In the first step, hypothetical LST values are estimated using an
ML model with the input of reanalysis data. Then, an SEB-based CRF correction is applied to generate the all-weather LST.
Results showed stable accuracy with the maximum RMSE within 4 K. In this study, Zhang’s method is employed as the

3
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basic gap-filling framework. The estimation of hypothetical LST is routinely based on clear-sky directional LST (i.e., Tu).
Here, introducing the angular independent clear-sky nadir and hemispherical LST (i.e., Tuadir, Themi) have the potential to

improve the reliability of hypothetical LST and further enhance the accuracy of generated cloudy-sky LST.

Downscaling methods are widely used to produce LST products with high spatial resolution. These methods could be
generally classified into three categories: kernel-based approaches (Dong et al., 2020; Zhan et al., 2013; Zhang et al., 2020;
Zheng et al., 2024), fusion-based approaches (Tang et al., 2024; Wang et al., 2024b), and hybrid downscaling method
combining both kernel and fusion-based approaches (Dong et al., 2023b; Li et al., 2023b; Xia et al., 2019). Kernel-based
methods typically establish a relationship between LST and regression kernels such as the normalized vegetation index
(NDVI) at a coarse resolution. This relationship is then applied at a finer scale to generate high-resolution LST. These
methods have evolved from simple linear regressions using single variables to ML-based regressions incorporating multiple
kernels (Agam et al., 2007; Ebrahimy and Azadbakht, 2019; Xu et al., 2024; Zheng et al., 2024). Fusion-based methods aim
to estimate fine-scale LST variability using multi-resolution LST data as inputs (Tang et al., 2024; Wang et al., 2024b; Wu et
al., 2015). In these approaches, high-resolution LST temporal variation is typically estimated by weighting the coarse-
resolution LST temporal variation of neighbouring similar pixels. The estimated temporal variation is then added to the high-
resolution LST at the initial time to derive the final LST at the target time. Hybrid downscaling method combining both
kernel and fusion-based approaches offers improved accuracy and computational efficiency than single method (Dong et al.,
2023b), which was adopted in this study. However, this method requires gap-free, high-resolution LST at the initial time as
input, which is difficult to obtain at the full-disk scale due to widespread presence of clouds over large areas. The annual
temperature cycle (ATC) model has the potential to provide the necessary gap-free high-resolution LST texture information

(Quan et al., 2018; Zhan et al., 2016) and thereby ensure the generation of 0.01° LST at the full-disk scale.

The aim of this study is generating hourly, angular-normalized, cloud-filled, and 0.01°-downscaled LST (ANCFDS-LST)
product based on the FY-4A official LST dataset. The generation of ANCFDS-LST consists of the following key steps: First,
the TEKDM was calibrated using FY-4A and MODIS official LST products to generate daytime nadir and hemispherical
LST at a 0.05° resolution. Second, an ML-based model was trained to generate hypothetical clear-sky LST, using angular-
normalized LST as labels. Then, the all-weather LST was produced through an analytical CRF correction process. Finally,
an improved hybrid downscaling algorithm (IHDA) combining fusion and kernel-based methods was developed and carried
out with the input of ATC-simulated gap-free 0.01° LST for producing the 0.01° all-weather directional, nadir, and
hemispherical LST products. The hemispherical LST is validated using 15 sites in the Heihe River Basin and the Tibetan
Plateau, which measure the hemispherical longwave radiation via in-situ pyrgeometer. The nadir LST is cross-validated
using Visible Infrared Imaging Radiometer Suite (VIIRS) near nadir LST. The structure of this study is as follows: Section 2
describes the remote sensing and reanalysis data, cross-validation data and in-situ validation data. Section 3 presents the

TEKDM-based angular normalization method, the all-weather LST estimation method, and the IHDA downscaling approach.
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Section 4 provides the results of the generated LST products. Section 5 gives the discussion and limitation of this study.

Section 6 and 7 introduce the data availability and the main conclusions, respectively.

2 Data

2.1 Input remote sensing and reanalysis data

Table 1 lists the information of the required 15 datasets for the three main steps in the generation of ANCFDS-LST (namely,
LST angular normalization, all-weather LST estimation, and spatial downscaling). First, FY-4A and MODIS directional
LSTs (i.e., 2 datasets) were used to generate angular-normalized nadir LST (744i-) and hemispherical LST (Themi). Next, 10
remote sensing and reanalysis products were employed to drive the generation of hypothetical clear-sky LST and the
application of CRF correction, for estimating all-weather T, Thadir, and Themi at a 0.05° spatial resolution. Finally, these three
0.05° all-weather LST products were downscaled using 0.01° regression kernels obtained from 3 datasets, including

MYDI11A1, GTOPO30 DEM, and ERAS5 Land.

Table 1. The employed remote sensing and reanalysis dataset.

Step Product Variable Resolution Date Usage Access Link
range
1) FY-4A LST l? knll’ 220012%_ LST alr.lgul.ar http://data.nsmc.org.cn
Step 1: LST angular ourly normalization
normalization
. 2018 - LST angular .
2) MxDI11A1 LST 1 km, daily 2023 normalization https://lpdaac.usgs.gov/product_search/
Land cover 500 m, 2018 - Hypothetical clear-sky .
3) MCD12Q1 type (LCT) yearly 2023 LST estimation https://lpdaac.usgs.gov/product search/
4) Koppen-Geiger Climate Hypothetical clear-sky )
maps type (CT) 1 km - LST estimation http://www.gloh20.org/koppen
Fractional
vegetation 0.05°, 8 2018 - Hypothetical clear-sky https://www.glass.hku.hk/download.ht
5) GLASS L
cover days 2023 LST estimation ml
(FVO)
Digital
elevation Hypothetical clear-sky .
Step 2: All-weather 6) GTOPO30 model I'km . LST estimation hitps://www.usgs.gov/search
LST estimation (DEM)
Air
temperature .
0.1°, 2018 - Hypothetical clear-sky . . .
7) ERAS Land and @ew- hourly 2023 LST estimation https://cds.climate.copernicus.eu
point
temperature
. 2018 - Hypothetical clear-sky .
8) MxD11Al LST 1 km, daily 2023 LST estimation https://Ipdaac.usgs.gov/product_search/
Cloudless
0.25°, 2018 - Hypothetical clear-sky . . .
9) ERAS a?:d?alzl;iy hourly 2023 LST estimation; https://cds.climate.copernicus.eu
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CREF correction

Hypothetical clear-sky

10) GLASS Albedo 0.0§ R 2018 - LST estimation; https://www.glass.hku.hk/download.ht
daily 2022 ) ml
CREF correction
0.05°. 16 Hypothetical clear-sky
11) MCD43C3 Albedo : dsa y’s 2023 LST estimation; hitps://lpdaac.usgs.gov/product_search/
CREF correction
Broad band Hypothetical clear-sky
;ﬁ;;; B emissivity 1 km, daily 22001;3' LST estimation; -
(BBE) CREF correction
. 2018 - Simulating LST at .
- 13) MYDI11A1 LST 1 km, daily 2003 reference time to be fused https://lpdaac.usgs.gov/product_search/
tep 3:
) ) 14) GTOPO30 DEM 1 km - Regression kernel https://www.usgs.gov/search
Spatial downscaling A o1 S018
ir .1°, - . . . .
15) ERAS Land temperature hourly 2023 Regression kernel https://cds.climate.copernicus.eu

For the first step (i.e., LST angular normalization), the FY-4A directional LST (LSTry) and MODIS LST (LSTxp) products
(i.e., dataset 1-2 in Table. 1) were jointly utilized to calibrate the TEKDM model, then the clear-sky Taqir and Themi could be
generated with the inputs of kernels and calibrated kernel coefficients. The official FY-4A LST was retrieved using a SW
algorithm with land surface emissivity (LSE) estimated via the NDVI-based threshold method (Dong et al., 2013, 2023a).
The MODIS MxD11A1 LST was retrieved using a generalized split-window (GSW) algorithm, incorporating land-cover-
based LSE as input (Wan and Dozier, 1996). Both FY-4A and MODIS LST products were resampled to a same spatial
resolution (i.e., 0.05°) using plain average before the jointly estimation. The pixels with the view zenith angle (VZA) greater
than 70° were masked (Freitas et al., 2013). To reduce systematic discrepancies between these two datasets, the 0.05° FY-4A
LST was linearly adjusted to match the 0.05° MODIS MxD11A1 LST using a linear transformation (i.e., LSTyxp = a X LSTry
+ b). The parameters a and b were determined based on nighttime matchups with the conditions of VZA< 50°, VZA
difference< 5°, and LST difference< 5 K, referenced to Ermida et al. (2017, 2018a). A total of 132,972,698 matchup pairs
were collected from 2018/1/1 to 2023/12/31 in the disk of FY-4A, resulting in a slope of @ = 1.0240 and an intercept of b = -
5.7378.

The second step (i.e., all-weather LST estimation) includes the estimation of hypothetical clear-sky LST and the CRF
correction. In the hypothetical clear-sky LST estimation, the dataset 3-7 in Table 1 (including the MCD12Q1 IGBP land
cover type (LCT) product (dataset 3), the Koppen-Geiger climate type (CT) product (dataset 4), the Global LAnd Surface
Satellite (GLASS) fractional vegetation cover (FVC) product (dataset 5), the GTOPO30 DEM data (dataset 6), the ERAS-
Land 2-m air temperature (72x), and dew-point temperature (D,,) data (dataset 7)) were employed to depict surface property
(Wei et al., 2019). Moreover, the dataset 8-12 in Table 1 were further used to calculate three additional variables to depict
surface thermal conditions (including the ATC-simulated LST, the surface incoming radiation (R;,), and hypothetical clear-

sky skin temperature (7Er4s-skin))-
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The ATC model has three parameters as shown in Eq. 1, which was calibrated with the input of MxD11A1 LST product
(dataset 8). In total, four ATC models were obtained since TERRA and AQUA MODIS sensors provide observations during
both day and night. A 3 X 3 spatial median filter was applied to fill invalid ATC parameters caused by persistent cloud
coverage. Then, the LST values simulated using the calibrated ATC model are used in the estimation of hypothetical clear-
sky LST. These ATC-simulated LSTs are denoted as Turcai, Turc.a2, Tarcni, and Tarcn2, Where subscript “d” and “n” refer to

daytime and nighttime data, respectively, and “1” and “2” indicate TERRA and AQUA platforms.
2
T,,-(DOY)=MAST +YAST x cos %(DOY—dx) (1)

where Tyrc(DOY) is the ATC-simulated LST in the day-of-year (DOY). MAST is the annual mean surface temperature, YAST
is the yearly temperature amplitude, and dx is the phase shift. The QC band was filtered to ensure high-quality inputs for the
ATC model calibration.

The R;, is the sum of absorbed shortwave and longwave radiation as calculated in Eq. 2, with the input of surface downward
shortwave radiation (SDSR.:-), land surface albedo (A4lbedo), surface downward longwave radiation (SDLR.;-) and broad band
emissivity (BBE, &x). Both SDSR.;- and SDLR.;- under hypothetical clear-sky condition are extracted from ERAS products
(dataset 9). The Albedo is from the GLASS product from 2018 to 2022 (dataset 10) and supplemented by MCD43C3 for
2023 (dataset 11). A Harmonic ANalysis of Time Series (HANTS) method was employed to smooth and fill the gaps in
MCD43C3 product in this study (Zhou et al., 2023, 2022). The BBE is generated from MUIti-source data SYnergized
Quantitative (MuSyQ) remote sensing system (dataset 12) (Li et al., 2019). The datasets 9-12 were resampled to 0.05°

resolution to match the LSTFy.
R, =(1-Albedo)-SDSR, +¢,,-SDLR , ()

Based on the Stefan—Boltzmann's law, the ERAS hypothetical clear-sky surface thermal radiation (e.g., surface downward
longwave radiation (SDLR.;-) and surface net thermal radiation STR.;-) could be used to calculate the hypothetical clear-sky
skin temperature (7zr4s-skin) in the scale of 0.25° to depict temporal dynamics of LST. It was then physically downscaled to
0.05° resolution using DEM data, assuming a temperature lapse rate (K) of 6.5 K/km (Minder et al., 2010). Therefore, the

Teras-skin Was calculated by the following equation:

ERAS—skin —

. B z\t/SDLRdr ~STR,, —(1-&,,)SDLR,, +K-(DEM, — DEM,) G

&0

where o, is Stefan—Boltzmann's constant 5.67x10°*. The DEM; and DEM,, refer to the elevation of the 0.05° pixel and the

mean elevation of the corresponding 0.25° pixel, respectively.
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After generating the hypothetical clear-sky LST, a CRF correction is required to convert it into cloudy-sky LST. This
correction is physically based on the surface energy balance differences between clear-sky and cloudy conditions.
Specifically, cloud-free and cloudy SDSR from ERAS reanalysis data (dataset 9), together with albedo data (dataset 10-11),
are used to describe the shortwave radiation budget. For the longwave radiation budget, ERAS cloud-free and cloudy-sky
SDLR data (dataset 9), BBE data (dataset 12), the hypothetical clear-sky LST and cloudy-sky LST are required. Then, the
only unknown cloudy-sky LST (expressed by the sum of hypothetical clear-sky LST and CRF correction value) can be

retrieved by solving the SEB equation. More details will be given in section 3.2.

In the third step (i.e., spatial downscaling), a new algorithm combining existing fusion and kernel-based methods was
proposed to downscale LST to the target time, consisting of two main processes. First, a 0.05° gap-free high-resolution LST
at the initial time is required. In this study, T4rc.« simulated by the ATC model (dataset 13) is resampled as the initial LST.
Second, the 0.05° LST difference between the initial and target time is predicted using an ML method. The input features
include Tyrca; AQUA MODIS ATC parameters for both day (MAST.», YASTx, and dxa2) and night (MAST,2, YAST,», and
dxy2), derived from dataset 13; DEM data (dataset 14); and ERAS5-Land 7>, (dataset 15). Aimed to apply this spatial
downscaling model at the 0.01° scale, the 72, data were further downscaled to 0.01° resolution using high-resolution DEM
and the temperature lapse rate (K) of 6.5 K/km. Finally, the gap-free high-resolution LST at the target time is obtained by
adding the estimated 0.01° LST difference to 0.01° Tyrc.a.

2.2 Cross-validation dataset for Tuadir

For cross-validation of the generated T4, the VIIRS VNP21A1 LST data (https://Ipdaac.usgs.gov/product_search/) in 2020
was adopted as reference. The VIIRS onboarded Suomi National Polar-orbiting Partnership (S-NPP) provides clear-sky TIR
observations at the local time of 1:30 p.m. The VNP21 LST was retrieved using a TES algorithm taking observations from
M14 — M16 bands as input. Recent temperature-based (T-based) evaluation showed its RMSE is 1.79 K during nighttime
and 2.79 K during the day (Na et al., 2024a). Here, the VNP21 LST values with the VZA< 5° was employed for cross
evaluation of T,.q- as did by Wei et al. (2025). Firstly, the 1-km VNP21 LST product was resampled to the 0.05° resolution
and the normalized FY-4A hourly T,.ar product was temporally interpolated to match the exact overpass time of S-NPP
VIIRS. Then, the root mean square difference (RMSD), mean bias difference (MBD), and coefficient of determination (R?)
were used as three evaluation indicators. The extracted VNP21 LST results in four typical days are shown in Fig. 1. Only
several narrow strips were extracted due to the limitation of VIIRS field-of-view (VZA< 5°). VNP21 LST shows significant
seasonal variation. It is relatively lower in 2020/3/1 and 2020/12/1 than that in 2020/6/1 and 2020/9/1 in the northern

hemisphere and the situation is reversed in southern hemisphere.
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Figure 1: Spatial distribution of the extracted VNP21 LST strips in four typical days (a) 2020/3/1, (b) 2020/6/1, (c) 2020/9/1, (d)
225  2020/12/1. The FY-4A observed area is marked in orange region.

2.3 In-situ validation dataset for Themi

T-based evaluation (i.e., directly comparing satellite-derived LST with in-situ LST) is the most widely used validation

method and should be conducted whenever possible (Guillevic et al., 2018; Li et al., 2014, 2023a; Na et al., 2024a). The in-

situ pyrgeometer measures both upward and downward hemispherical longwave radiation, which can be converted into
230  hemispherical LST to perform the T-based validation for the normalized Them products. As shown in Fig. 2, 11 sites from the

Heihe Watershed Allied Telemetry Experimental Research (HIWATER) experiment within the Heihe River Basin (HRB)
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and 4 sites from the land-atmosphere interactions dataset over the Tibetan Plateau in 2020 were selected, which had been

used in the studies of (Che et al., 2019; Li et al., 2025; Ma et al., 2024b).

80.0°E _ A 110.0°E  98.0°E 100.0°E 102.0°E

t iM% . B Ll
90.0°E 100.0°E 110.0°E  98.0°E 100.0°E 102.0°E

A HRBSites A TP Sites

Land Cover Types [ Mixed Forests [0 Grasslands [ Permanent Snow and Ice
B Evergreen Needleleaf Forests B Closed Shrublands B Permanent Wetlands | Barren

B Evergreen Broadleaf Forests [71 Open Shrublands B Croplands Bl Water Bodies

B Deciduous Needleleaf Forests [ Woody Savannas Bl Urban and Built-up Lands

[ Deciduous Broadleaf Forests "] Savannas B Cropland/Natural Vegetation Mosaics

235  Figure 2: Spatial distribution of selected in-situ sites.

Table 2. Information of the in-situ sites

Temporal
Region Site name Longitude (° E) Latitude (° N) Elevation (m) resolution Land cover type

(minute)

AR 100.46 38.05 3038 10 GRA

DM 100.37 38.86 1562 10 CRO

DSL 98.94 38.84 3787 10 GRA

HH 100.48 38.83 1526 10 CRO

HZZ 100.32 38.77 1722 10 GRA

HRB DS 100.99 42.11 925 10 BSV

MF 101.13 41.99 937 10 GRA

JYL 101.12 37.84 3725 10 GRA

SDQ 101.14 42.00 932 10 GRA

YK 100.24 38.01 4070 10 GRA

Y 100.45 38.98 1461 10 CRO

QOMS 86.95 28.36 4297 60 GRA

NAMORS 90.98 30.77 4738 60 GRA

T NASED 79.70 33.39 4252 60 BSV

Ngoring Lake 97.55 3491 4314 30 GRA

10
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As listed in Table 2, three land cover types are represented across the 15 validation sites: 10 grassland (GRA) sites, 3
cropland (CRO) sites, and 2 barren/sparse vegetation (BSV) sites. The temporal resolution of the in-situ observations varies
by site: 10 minutes for the HRB sites, 30 minutes for the Ngoring Lake site, and 60 minutes for the remaining TP sites.
Linear interpolation was applied to align in-situ measurements with the exact satellite observation time. The in-situ LST

(Tinsinu) 1s calculated using the Stefan—Boltzmann's law, as shown in Eq. 4:

4|SULR.

insitu

- (1 - gbb ) SDLRinsitu (4)

insitu
€T
where SULR;nsiv and SDLR;usin, are the surface upward and downward longwave radiation measured by the in-situ
pyrgeometer, respectively. e is the broadband emissivity derived from the FY-3B MuSyQ product. Outliers were identified
and removed using the “30-Hampel identifier” method for each site (Davies and Gather, 1993; Pearson, 2002). The RMSE,

mean bias error (MBE), and R? were used as evaluation metrics to validate the LST products.

3 Method

The generation of 0.01° ANCFDS-LST involves three main steps: 1) angular normalization of daytime LST; 2) generation of
0.05° all-weather LST using clear-sky LST as training labels; 3) downscaling of all-weather LST to 0.01° resolution using an
IHDA method. The overall flowchart is shown in Fig. 3. First, 0.05° clear-sky FY-4A and resampled MxD11A1 directional
LST products were matched and bias corrected for solving the unknown parameters of TEKDM using auxiliary information
of viewing geometry and local time. For generating Tyuai- and Themi With the inputs of FY-4A Ty and calibrated KDM
coefficients, the calibrated coefficients were temporally aggregated within a window of 17 days to ensure a complete spatial
coverage of the FY-4A disk. Second, clear-sky Tuir, Thadgir, and Themi during the day, as well as nighttime FY-4A LST (where
Tair = Thadir = Themi due to the negligible angular effect at night) were used as training labels to predict the hypothetical clear-
sky LST under cloudy conditions. A Bayesian optimization-based categorical boosting (CatBoost) model was trained with
these variables described in Subsection 2.1. The training samples were spatially determined using a widely-used conditioned
Latin hypercube sampling (cLHS) approach. The predicted hypothetical clear-sky LST requires a CRF correction using the
cloudless and cloudy radiation budget variables, yielding the final cloudy-sky LST of three viewing angles. In the third step,
the 0.05° all-weather LST was downscaled to 0.01° resolution using a proposed IHDA method. This approach downscales
the LST difference (ALST) between the 0.05° all-weather LST and the 0.05° T4rc at the reference time (i.e., 13:30) using
another CatBoost model. After predicting three ALSTs at 0.01° resolution and applying a residual redistribution procedure,
the final downscaled 0.01° ALSTs was obtained. The final 0.01° all-weather Tair, Thadir, and Themi were derived by summing
their own downscaled 0.01° ALST with the corresponding 0.01° ATC-simulated LST.

11



https://doi.org/10.5194/essd-2026-74 @ Earth System
. . . Q H
Preprint. Discussion started: 16 February 2026 ¢ Science
(© Author(s) 2026. CC BY 4.0 License. § D a ta
o
= e e = = = = = =
! \
, Stepl: LST Agnular normalization 1
1
: [FY—4A directional LST 1
(T, with > 5 values) 1
: - KDM parameter daytime nadir LST 1
. [ MxDI11A1 MODIS ] Resample to 0.05°|  Solving > temporal (i) !
1 directional LST » TEKDM aggregation - - - !
1| (T with=2 VHIUES)J Bias correction model T /daynme hemlsphencal/ !
. dir p . - LST (Them.f) :
1 VZA VAA SZA SAA FY-4A directional LST X
! local time \ (Teaiy) .
e e o e e e ) EpUpp |
A
. N ) ) Trﬁi'=Tlmr.ﬁi':Thurm
Step2: All-weather LST estimation FY-4A nighttime LST Three clear-sky LSTs
ars Input . L
Conditioned S ’ - Label data
/ Input features \ Lati data e L <
EhiTE] »{ based CatBoost models
( Y hypercube
DOY 6, Lat Lon sampling Prediction
A J
s ~ .
ICT CT FVC DEM Hypothetical
L ) clear-sky LST ERAS3 cloudless and
- — — N cloudy SDSR SDLR
Larcar Tarca : STR
Tyrem Taren | L Cirrccnon
( ) [ Albedo BBE ]
Rin Tepas-skin Tam Dam / Cloudy-sky LST /
-
v
Directional, nadir, and hemispherical Z
all-weather LST (0.05°) / N
FTTTTTETEEEEEEEEEEEEEEEE A" ‘; """"""""""""""" 1
1 Step3: Improved hybrid !
1 downscaling method combining 4[ 0.05° ALST ]47 ATC simulated LST 1
| fusion and kernel-based method X
resampled 0.05° 77 ]
: 0.05° resampled regression kernels | ATC.2 :
1 Tyrcan MASTp YAST.p dip T resample 1
1 + %
'\ MAST,y YAST diyy Ty, DEM ——— [ T ——— ] !
1 redistribution i 1
: Input data Lahel data A :
1 A 4 & [Downscaled 0.01° ALST] 1
: CatBoost models — ' :
! —)[ Predicted 0.01° ALST ] !
1 e N ™ add 1
1 0.01° regression kernels A 1
: Tyrem MAST o YAST o dix — Downscaled directional, nadir, and !
1 { MAST,, YAST,, dx,, 15, DEM ) hemispherical all-weather LST (0.01°) :
1 1

Figure 3: The overall workflow in this study.
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3.1 Angular normalization of clear-sky LST

The FY-4A LST disk has different viewing geometries for each pixel, and these values need to be normalized to a reference
direction before subsequent applications. The KDM offers a solution by simulating the LST angular distribution through a
linear combination of several kernel functions. However, traditional KDM typically requires three or four simultaneous
clear-sky LST observations to calibrate the unknown kernel coefficients, which cannot be satisfied by FY-4A satellite. To
enhance its applicability, Qin et al. (2023, 2025) proposed a time-evolving KDM (TEKDM) by coupling a diurnal
temperature cycle (DTC) model (i.e., depicting LST temporal variation) and a KDM model (i.e., depicting LST angular
variation) as shown in Eq. 5. Based on this TEKDM model, Na et al. (2024b) further estimated daytime nadir LST using
GOES-16 and MODIS LST products, and obtained a significantly improved accuracy.

Tvdir (t’ gs > ev > A¢) = -fiso (t) x I:l ta- KGapFraction (6\1) + ﬂ " COS es ) KHotspot (95 > 9\) 4 A@, W)] (5)

where Tyi(2,05,0,,Ap) represents the directional LST observed at the local time of ¢, with the solar zenith angle (SZA) of 6,
the VZA of 6,, and the relative azimuth angle (RAA) of Ag. The term fi(¢) is the isotropic kernel coefficient. The
coefficients a and f are unknowns corresponding to the gap fraction kernel (Kgaprraciion) and hotspot kernel (Kuorspor)s
respectively. W is another unknown parameter related to the hotspot width. The temporal dynamics of isotropic kernel

coefficient (i.e., fiso(?)) during daytime can be effectively modeled using a DTC model as given in Eq. 6:
T
f,-m(t)ZTo+Ta>{—'(f—tm)} ©)
@

where T is the temperature at sunrise, 7, represents the amplitude of daily LST variation, w is the length of the daytime
period, t, is the local time when the LST reaches its maximum. The nighttime LST was not processed here, as the angular
effect is generally negligible during nighttime. In this study, the LSF kernel and the Chen kernel were selected to represent

KGapFraction and Kpowspor respectively, as shown in Eq. 7-9.

1+2cos® 1 cosé 07
K - (0.)=K,..(6.)= 2 - Y 1+0.15-] 1—e*% [-1.0304 (N
GapFracuan( v) LSF( v) ’\/096+192COS0V 4 1+2COS€V { J
-¢
KHDtspot (gs’ GV’A¢’ W) = KChen (es’ev’ A@,W) = eﬂ'W (8)
& =arccos(cos 6, -cos g, +sinf, -sind, -cos Ap) ©9)

where ¢ is the angular distance between the viewing direction and the solar direction. The TEKDM involves seven unknown

parameters to be calibrated: Ty, T, w, tw, a, 5, and W, therefore, at least seven clear-sky daytime observations are required as

inputs. To abundant the angular information of the input data, two daytime clear-sky MODIS observations (i.e., TERRA and
13
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AQUA) were utilized. Then, the TEKDM can be solved for the condition with > 5 clear-sky FY-4A observations. A “trust-
region-reflective” algorithm was employed for the non-linear optimization of Eq. 5, with initial values and parameter
boundaries set according to Qin et al. (2025). Then, a 17-day moving average (i.e., covering 8 days before and after the
target day) was applied to the parameters of a, S, and W for each pixel for two purposes: filling gaps in pixels with fewer
than seven observations, and reducing the impact of outliers in the estimated TEKDM parameters. As shown in Eq. 10, the
LST at any direction (i.e., the Tudt,6s6,,Ap)) can be simulated with the inputs of FY-4A direction LST (i.e.,
T d,-r(tﬁsﬁf Y,AgoF ") and averaged o, 5, and W parameters.

T, (1.6,.6,Ap)  1+a-K,;(0,)+pcosb K, (6,.60,,A0,W) (10
dlr (t 0 0FY FY)_1+a'KLSF (avFY)—Fﬁ'COSHSFY'KChen (QS’HVFYJ ¢FY’W)
Specifically, the nadir LST can be derived when setting 8, = 0° as shown in Eq. 11:
l+a-K,4 (0 )+ B-cosb, - K, (0.,0 ,Ap,W
T (0.0, A0) =T, (£.6,.6" . Ap!" )- 15 (01)+f-c050, - Ke,, (0.0, 0.1 (11)

l+a-K, (ny)+ﬁ-cosefy K (QS,HVFY,Agon,W)

Correspondingly, the normalized hemispherical LST (7jemi) could be calculated through the integration as shown in Eq. 12.

T, (2,6,) ( .[2”_[”/2 e (1,6,,6,,A¢)-cos 6, -sin0,d0 d(pvJ
L (12)
27 pml/2
T, (t,@g,HVFY,A(pr)-(J.O [ (1+a K. (6,)+B-cos, K, (6,.6,, A0, W ))4-cosﬁv-sinﬁvdﬁvd(pv)4

ﬂ-(l+0{~KLSF (QVFY)-i-ﬁ-COS@SFY -KChen(BS,HfY,A(pr,W))

To accelerate the computation of Themi, the integral in the numerator of Eq. 12 was approximated using a third-order
polynomial fit based on the input variables a, S, W, 8; and Kcpen at nadir. This approach significantly reduces computational

cost while introducing an uncertainty less than 0.05 K.

3.2 All-weather LST estimation method
The all-weather LST estimation method consists of two main sub-steps. First, a hypothetical clear-sky LST was predicted
using a Bayesian optimization-based CatBoost model. Second, the CRF correction was applied to estimate the cloudy-sky

LST, ultimately producing cloud-filled 0.05° all-weather directional, nadir, and hemispherical LST.

ML-based LST reconstructing have been widely used because it could accurately simulate the non-linear correlation between
the hypothetical clear-sky LST and vegetative, meteorological, and topographical parameters (Li et al., 2024a; Ma et al,,
2024a; Zhang et al., 2024). The CatBoost is a recently developed model based on the traditional gradient-boosting decision

14



320

325

330

335

340

Earth System
Science

Data

https://doi.org/10.5194/essd-2026-74
Preprint. Discussion started: 16 February 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

tree (GBDT) framework with several enhancements: 1) Ordered target statistics, which encode categorical features without
target leakage by using permutation-based strategies; 2) Ordered boosting, which minimizes gradient bias by employing
permutation-driven training to reduce over fitting; 3) Oblivious trees, which apply the same splitting criterion across all
nodes at each level, thereby improving speed and regularization (Prokhorenkova et al., 2018). These improvements enhance
the model’s robustness and efficiency, especially when handling large-scale data-sets containing categorical variables, and
have proven effective in LST reconstruction studies (Dai et al., 2025). Here, the CatBoost model was used to capture the
complex non-linear relationship (i.e., f;-) between hypothetical clear-sky LST and auxiliary parameters, as represented in Eq.

13.

T, = f.,(DOY.0,Lat,Lon,LCT,CT,FVC,DEM,T

clr ATC,d1°

T

ATC,d2>

T

ATC nl>

T

ATC,n2°

R T

ERA5—skin >

szaDZm) (13)

in?

where the input features include the geolocation and temporal parameters, such as the DOY, 6, latitude (Lat), longitude

(Lon). The other parameters in Eq. 13 have been introduced in Table 1.

During the model training, the target labels consisted of daytime Tair, Thadir, and Themi, along with nighttime FY-4A LST from
2018/1/1 to 2023/12/31. Considering the large volume of label data, a two-step approach was employed to determine the
number and geolocation of sample points as introduced in Appendix A. As shown in Fig. A1, 37,000 locations distributed
over the FY-4A disk were selected for each year. Then, the clear-sky LST and corresponding input features were extracted to
train the CatBoost model in Eq. 13. To better align with the 0.25° spatial resolution of ERAS, a FY-4A pixel was strictly
considered as clear-sky only when all surrounding pixels within a 5 x 5 neighbourhood were under clear-sky conditions. Six
CatBoost models were trained for each year from 2018 to 2023. The average number of extracted samples per year was
138,817,085, which were randomly divided into training, testing, and Bayesian optimization sets in a ratio of 6:3:1. The
Bayesian optimization method adjusted the CatBoost hyperparameters by reconstructing the posterior distribution of the cost
function, defined as the average fitting RMSE from two-fold cross-validation. After the ML training, the CatBoost model

can predict the hypothetical clear-sky T4ir, Thadir, and Them; under cloudy-sky conditions, which requires CRF correction.

The core of the CRF correction lies in establishing the relationship between net radiation changes and CRF-induced LST
changes, based on the surface radiation budget equation. The CRF-corrected LST is equal to the sum of hypothetical clear-
sky LST with CRF-induced LST variation (i.e., ATcrr). In this study, an analytical correction equation (Eq. 14) proposed by
Zhang et al. (2024) was adopted for the CRF correction of Themi.

clr clr

y-AT... =AR, —&,,0. [(T’“”’” F AT, ) —(T’“""")“] (14)

where ATckr is the correction value for hemispherical LST; y is an energy transfer parameter, which could be estimated by

Eq. 15. A temporal median filter with a 17-day window and a spatial median filter with a 3 x 3 window were applied to

15
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replace outlier values in the calculation of y. AR;, is the change in surface incoming radiation induced by the CRF effect,

which could be estimated by Eq. 16; 7™ is predicted hypothetical clear-sky hemispherical LST using Eq. 13.

_ [Rin (t”) - Rin (tsr )] - gbe-S |:T;’?f,ni (tn )4 - ]-;;l:ml (tsr )4 :l (1 5)
7/ Themi (tn) _ T.hemi (tsr)

clr clr

AR, = (1— Albedo)-(SDSR,, —SDSR )+ €,,-(SDLR,, —SDLR ;) (16)

where R;, is the clear-sky surface incoming radiation calculated by Eq. 2. ¢, and £, denote the noon time and sunrise time.
The subscripts “clr” or “cld” indicate that the parameter is under hypothetical clear-sky or actual cloudy-sky conditions.
After the determination of y and AR;,, the only unknown parameter ATcrr in Eq. 14 can be estimated. Here, it was

analytically solved through neglecting its quartic and cubic terms (see Eq. 17).
N2 \3
6¢,,0, (7::?:"”) ATCZRF + (7 +48,,0, (Tcl/qreml) )ATCRF —AR, =0 (17

After the pixel-by-pixel estimation of ATcrr, the mean (ucrr) and standard deviation (ocrr) of ATcrr could be calculated for
each image. To reduce the impact of extreme values, the maximum and minimum limits of ATcgr were set to ucrr + 3ocrr. In
the end, the cloudy-sky Tair, Thadir, and Themi are obtained by summing CatBoost-estimated hypothetical clear-sky LST (i.e.,
using Eq. 13) and ATcrr (i.e., using Eq. 17).

3.3 IHDA combining fusion and kernel-based methods

To meet the 1-km spatial resolution and 1-hour temporal resolution requirement of GCOS (https://gcos.wmo.int/site/global-
climate-observing-system-gcos/essential-climate-variables/land-surface-temperature), downscaling methods have garnered
more and more attention for enhancing the spatial textures of low-resolution LST products (e.g., FY-4A LST). Fusion-based
downscaling approaches typically require high-resolution LST data as input, whereas kernel-based methods require LST-
related auxiliary data (i.e., regression kernels). Combining fusion-based and kernel-based downscaling methods could
achieve higher accuracy than using either method alone (Li et al., 2023b; Xia et al., 2019). Dong et al. (2023b) recently
proposed a simple and effective downscaling (SED) method that utilizes clear-sky, high-resolution Landsat 8§ LST at an
initial time to downscale low-resolution MODIS data at a target time. However, this requirement is difficult to be satisfied
over the full-disk region due to the frequent presence of clouds. To address this limitation, an IHDA method is proposed
leveraging the ATC-fitted spatiotemporal trend surface of LST (Liang et al., 2025). First, the ATC model is adopted to
estimate gap-free LST at the initial time of 13:30 (T4rc,2) using Eq. 1 with the driven data of MYD11A1 LST products.
Although ATC model may introduce additional uncertainty, recent studies have shown that incorporating meteorological
data can further reduce the modeling residuals (Liu et al., 2019; Yang et al., 2024). Here, a CatBoost model is employed to
establish the non-linear relationship (i.e., fiownscate) between the resampled 0.05° regression kernels and the 0.05° LST bias

16
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(i.e., ALSTo.05s = To.05 - Tarca2, where Tp s is the 0.05° all-weather LST at the target time to be downscaled) as shown in Eq.
18.

ALST, os = fopmeate Tarc.ans MAST,, , YAST,,  dx,,, MAST, ,,YAST, ,  dx,,, T,,,, DEM ) (18)

22 n2?> n2’ n2°"2m?

The ATC parameters of daytime (13:30) and nighttime (01:30) MODIS LST were included as regression kernels to
characterize surface thermal properties. Additionally, ERAS-Land air temperature (i.e., 7>,) was incorporated to capture
cloud information, whereas the DEM was introduced to represent the topographic information. For model training, two
typical days (i.e., the mid-month of January in winter and July in summer) were initially used to tune the hyperparameters of
the CatBoost model using a Bayesian optimization approach. Then, the fiownscate Was established individually for each image,
covering 157,680 images in total (i.e., 6 years x 365 days % 24 hours x 3 types of LST). For each image, 70% of the samples

were used to train the CatBoost model, while the remaining 30% were reserved for testing. The 0.01° LST difference

(ALST} roe,d) was then predicted using the trained CatBoost model with 0.01° regression kernels as input:

ATC,d2> d2 > d2 > d2 >

ALSTE)p(;led — f;lawnswle (TO.OI MASTO.Ol YASTO.OI dXO.OI MASZ:’OzOl , YASZ—;[OZ.OI , d)(sg)l , Z—vz(:n()l , DEMO.OI ) (1 9)

where the “0.01” means the input features are in 0.01° resolution. Finally, a residual redistribution process was applied to

produce the final ALST)01 as shown in Eq. 20.

ALST, ,, = ALST/y* +(ALST, s = ALST/7:" ) 20)

0.01

where ALST, s represents the difference between the 0.05° all-weather LST and the ATC-simulated LST. ALST}’ {f;’ means
the 0.05° LST difference obtained by aggregating the predicted ALST?%’. The second term in the right of Eq. 20 is the
CatBoost modeling residual to be redistributed. A 3 x 3 median filter was applied to reduce the impact of extreme outliers in

the residuals. The notation (-)oo1 indicates the process that the 0.05° residual (i.e., ALSTo.0s - ALST} (rf;d) was resampled to
0.01° using the widely-used bilinear interpolation. Finally, the downscaled 0.01° all-weather directional, nadir, and
hemispherical LST (7v.01) could be calculated by summing the 0.01° ATC simulated LST at initial time (747rc,2(0.01°)) and
the Eq. 20 estimated ALSTo.01 as below.

Iyo = TATC,dz(O'Olo)"'ALST(')m 2n

17



400

405

410

415

https://doi.org/10.5194/essd-2026-74 g Earth System 9
Preprint. Discussion started: 16 February 2026 ¢ Science ¢

Author(s) 2026. CC BY 4.0 License. g )
© Author(s) 2026. CC 0 License § Data g

4 Results

4.1 Results of normalized nadir LST

The spatial distributions of FY-4A directional LST 7, normalized nadir LST Tyair, the LST difference between Tuq:- and
Tuir, the FY-4A VZA, and the histogram of these two LST products on 2020/6/24 at the UTC time of 3:00 (i.e., the Beijing
time of 11:00) are shown in Fig. 4. As shown in Fig. 4c-d, the T,aqir closely resembles 7y (with a small value of Thaai-Tuir)
when the VZA is within 40°. T,,.4i- becomes significantly higher than 7 as VZA increases, with a correction value of Taqir-
Tuirexceeding 5 K near the edge of the FY-4A disk. When the VZA is small, the FY-4A observation angle is close to the
nadir direction, resulting in a small correction value from 7y to Thai. However, more cool vegetated elements were viewed
as the VZA increases (i.e., the well-known gap fraction effect), which resulted in a much lower Ty, compared to T)uqir and
further led to a larger angular correction value. The MBD between nadir and directional LST of the whole image is 1.51 K as
shown in Fig. 4e. The fraction of lower LST values between 290 K and 300 K was significantly reduced after the angular
correction of TRD effect.
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Figure 4: The spatial distribution of (a) directional LST, (b) nadir LST, (¢) LST difference between nadir and directional LST,
and (d) VZA on 2020/6/24 at the UTC time of 3:00. (e) histogram comparison of directional LST and nadir LST.

The cross-validation between FY-4A Ty, Thaair, and the VNP21A1 near-nadir LST (i.e., the VZA< 5°) in 2020 is shown in
Fig. 5. The root mean squared difference (RMSD) and mean bias difference (MBD) are 6.21 K and -4.04 K for 74 as shown
in Fig. 5a. However, the RMSD and MBD for T4 is 3.48 K and -2.13 K as shown in Fig. 5b, with a 2.73 K (i.e., 44%)
reduction in RMSD and a 1.91 K (i.e., 47%) reduction in the MBD. Fig. 5¢ shows the RMSD values of 7y and Thadir

across different VZA intervals with a step of 10°. The RMSD difference between them remains within 0.2 K when VZA is
18
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less than 40°. However, when VZA exceeds 40°, the RMSD for T, increases substantially (from 4.8 K to 8.6 K), while the

RMSD for normalized 7,44 remains lower than 4.0 K. The large RMSD of T, at large VZA can be partially attributed to its

significant underestimation as shown in Fig. 5d. The MBD of T4 exceeds -6 K when the VZA is between 60° and 70°,

whereas it is only -1.1 K for the normalized T,aq. The gap fraction effect could explain this angular dependence of MBD,

i.e., a larger VZA leads to a smaller 7,; compared with nadir LST.
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Figure 5: The cross-validation of (a) directional and (b) nadir LST against VNP21 near-nadir LST at 0.05° resolution. The angular
dependence of (c¢) RMSD and (d) MBE for directional and nadir LST at 0.05° resolution.
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The accuracy of £ in reconstructing hypothetical clear-sky T and Thaair over the test set from 2018 to 2023 is summarized
in Table 3. The average annual sample size is 41,312,444. The RMSE ranges from 2.22 K to 2.46 K for 7, and from 2.28 K
to 2.52 K for T,aai. RMSE values remain relatively stable from 2018 to 2021, followed by an increase of approximately
0.2 K in 2022 — 2023. On average, the RMSE for T is 0.06 K higher than that for Ty, indicating comparable fitting
performance across different CatBoost models. The mean absolute error (MAE) ranges from 1.54 K to 1.69 K for 7 and
from 1.60 K to 1.75 K for Ty, with an average difference of 0.06 K too. The MBE is zero for all models, indicating that no
significant systematic bias was introduced in the predicted hypothetical clear-sky LST.

Table 3. The prediction accuracy for reconstructing hypothetical clear-sky nadir and directional LST

RMSE (K) MAE (K) MBE (K)
Year Counts
Tair Thadir Tair Thadir Tair T adir

2018 2.22 2.28 1.54 1.60 0.00 0.00 40,534,869
2019 2.25 2.30 1.56 1.61 0.00 0.00 43,285,823
2020 2.27 2.34 1.57 1.63 0.00 0.00 41,883,982
2021 2.26 2.32 1.57 1.63 0.00 0.00 39,331,441
2022 2.46 2.52 1.69 1.75 0.00 0.00 41,833,769
2023 2.44 2.50 1.68 1.74 0.00 0.00 41,004,779
mean 2.32 2.38 1.60 1.66 0.00 0.00 41,312,444

As shown in Fig. 6, two typical locations (i.e., corresponding to the DM and SDQ sites) were selected to compare the time
series of all-weather 7y;- and Tyaair. The VNP21A1 near-nadir LST is also exhibited as a reference in Fig. 6. The hourly 74
and Tqqr values were interpolated to match the VIIRS overpass times using linear interpolation. Overall, T,qq- closely aligns
with T, as shown in Fig. 6a-b. However, T4 tends to be higher than 7;;- in summer (see Fig. 6¢-d) and lower than T in
winter (see Fig. 6e-f). This seasonal variation may be attributed to the varying temperature contrasts between soil and
vegetation (Liu et al., 2020, 2025). In summer, more hot soil components are viewed in nadir direction, resulting in a higher
Thaair compared to Ty Conversely, in winter, soil temperatures become cooler than vegetation temperatures, leading to a

lower Tyadir compared to Ta. The VNP21A1 near-nadir LST confirmed this explanation of the seasonal variation of Tugir.
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In the spatial resolution downscaling process, the CatBoost model was used to establish the relationship between regression
kernels and the LST difference (e.g., the nadir LST minus ATC-simulated LST) at 0.05° resolution. The prediction accuracy
of each month over the test set from 2018/1/1 to 2023/12/31 for daytime and nighttime conditions is shown in Fig. 7. The
nighttime RMSE ranges from 1.97 K to 2.43 K, which is consistently lower than the daytime RMSE (2.62 K — 3.04 K). This
discrepancy can be partially attributed to the fact that daytime LST tends to be more heterogeneous than nighttime LST,
leading to greater modeling errors during the day. The daytime RMSE increases from January to May and then decreases,
with a total variation of 0.42 K. In contrast, the nighttime RMSE decreases from January to July and then rises, with a
variation of 0.46 K. Overall, the results demonstrate the reliable capability of the CatBoost model in the spatial resolution

downscaling.
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Figure 7: The prediction RMSE over test set for nadir LST during the day and night for each month.

The spatial distributions of all-weather 0.05° daytime T,ai (Fig. 8a), nighttime 7. (Fig. 8c), and downscaled 0.01°
daytime Tuair (Fig. 8b), nighttime Thar (Fig. 8d) on 2020/6/24 are shown in Fig. 8. Generally, the spatial distribution is
almost the same between 0.05° and 0.01° T}qq It demonstrates pronounced patterns of latitudinal and elevational variation
(i.e., the Thuair is lower in high-latitude and high-altitude regions both during the day and night). The downscaled 74 (Fig.
8b and 8d) reveals rich spatial texture, particularly in areas with rugged terrain such as in southeastern Tibetan Plateau. The
temperature contrast between mountain tops and bases is more pronounced than in the 0.05° LST, which verifies the

effectiveness of the IHDA downscaling method.
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4.2 Results of normalized hemispherical LST

The spatial distribution of FY-4A directional LST T4, normalized hemispherical LST Themi, the LST difference between
Themi and Tyir, the FY-4A VZA, and the histogram of these two LST products on 2020/6/24 at the UTC time of 3:00 are
shown in Fig. 9. In Australia, the Then (Fig. 9b) is approximately 2 K lower than 7y (Fig. 9a). In the northern China, the
Themi 1s very close to T However, the Themi is around 3 K higher than Ty at the edge of the FY-4A disk (where the VZA
exceeds 60°, see Fig. 9c-d). This spatial pattern can be partially explained by the value of the hemispherical equivalent angle
(i.e., the VZA at which Ty = Themi), which has been reported to range from 44° to 53° in relevant studies (Hu et al., 2023;
Zhang et al., 2025). When the VZA is smaller than 44°, T tends to be higher than 7}, due to more hotter soil component
was viewed. Conversely, for the large VZAs over 53° (e.g., at the edge of FY-4A disk), Ty becomes lower than Ty as
more cooler vegetation component was viewed. It is interesting that the distribution of Tj.n; is more concentrated that that of
T4 since the relative lower (i.e., in the range of 290 K — 295 K) and higher (i.e., in the range of 307 K — 312 K)) values of T4,
were normalized to be close to 300 K (Fig. 9¢). Thus, the MBD between the unnormalized 7y;- and the normalized Themi 1S as

small as 0.2 K.
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Figure 9: The spatial distribution of (a) 0.05° directional LST, (b) 0.05° hemispherical LST, (¢) LST difference between
hemispherical and directional LST, (d) VZA on 2020/6/24 at the UTC time of 3:00. (e) histogram comparison of directional LST
and hemispherical LST.
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To quantitatively evaluate the 0.05° FY-4A T4 and Themi, they were compared with daytime in-situ LST measurements over

15 stations (Fig. 10a-b). The results show that the RMSE decreased from 3.45 K to 3.19 K, with an improvement of 0.26 K.

The MBE was reduced from 0.43 K to -0.36 K. For the temperatures between 280 K to 300 K with most densely distribution,

the scatter points become closer to the 1:1 line after the angular normalization. Fig. 10c-d shows the RMSE and MBE of FY-

4A Tuir and Them at different local times. Ty exhibits a pronounced overestimation with higher RMSE in the morning, and an

underestimation with smaller RMSE in the afternoon. After the angular normalization, the 7jeni shows significantly

improved performance in the morning, with a RMSE reduced by approximately 0.4-0.8 K (Fig. 10c). As shown in Fig. 10d,

the MBEs of Tjeni is much smaller than those of 7, in the morning, with a maximum reduction of 2.0 K at 11:00.
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and (d) MBE for directional and hemispherical LST.
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The accuracy of reconstructing hypothetical clear-sky 0.05° Ty and 0.05° Themi over the test set from 2018 to 2023 is
summarized in Table 4. The RMSE ranges from 2.22 K to 2.46 K for T4 and from 2.23 K to 2.46 K for Tjemi. The average
RMSE for Themi is equal to that of Ty, (i.e., 2.32 K), indicating comparable performance across the different CatBoost models.
The MAE ranges from 1.54 K to 1.69 K for T, (with a mean value of 1.60 K), and ranges from 1.55 K to 1.70 K for Themi
(with a mean value of 1.61 K). The MBE is zero for all models, which indicates that the reconstructed hypothetical clear-sky

Tiir and Them: are unbiased.

Table 4. The prediction accuracy for reconstructing hypothetical clear-sky hemispherical and directional LST

RMSE (K) MAE (K) MBE (K)
Year Counts
Tair Themi Tair Them Tair Themi

2018 2.22 2.23 1.54 1.55 0.00 0.00 40,534,869
2019 2.25 2.25 1.56 1.56 0.00 0.00 43,285,823
2020 2.27 2.28 1.57 1.58 0.00 0.00 41,883,982
2021 2.26 2.26 1.57 1.58 0.00 0.00 39,331,441
2022 2.46 2.46 1.69 1.70 0.00 0.00 41,833,769
2023 2.44 2.44 1.68 1.68 0.00 0.00 41,004,779
mean 2.32 2.32 1.60 1.61 0.00 0.00 41,312,444

The estimated 0.05° all-weather Then: results were further evaluated by the in-situ hemispherical LSTs from 15 in-situ
stations (Fig. 11). The samples are divided into clear-sky (Fig. 11a) and cloudy-sky (Fig. 11b) conditions. The “3o-Hampel
identifier” method applied to minimize the influence of outliers at each in-situ site. Both daytime and nighttime Them: values
were considered here. Under clear-sky conditions, 0.05° Theni shows an RMSE of 2.99 K and an MBE of -0.77 K. The
distribution of residuals (ALST=Themi- Tinsis) approximately follows a normal distribution. Under cloudy-sky conditions, Themi
shows a higher RMSE of 4.56 K and a more significant negative MBE of -1.56 K. It is challenging to maintain the same
accuracy under cloudy-sky condition as under clear-sky condition since the uncertainty under cloudy skies is composed of

the estimation of CatBoost-predicted hypothetical LST and the estimation of AT cgr.
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Figure 11: The accuracy of generated all-weather hemispherical LST under (a) clear-sky condition and (b) cloudy-sky condition.

Fig. 12a-b show the temporal consistency of FY-4A official LST, Themi, and in-situ LST, at the DM and SDQ sites
throughout 2020 at 04:00 and 16:00 UTC (i.e., 12:00 and 00:00 Beijing time). Overall, the all-weather Tj.n; aligns well with
the in-situ LST. At the DM site during daytime (Fig. 12a), the clear-sky RMSE (MBE) of FY-4A official LST is 3.20 K
(2.43 K), whereas the corresponding values for Tjen; are 2.15 K (0.46 K), indicating that the systematic overestimation is
significantly mitigated after angular normalization. Similarly, at the SDQ site during daytime (Fig. 12b), the clear-sky RMSE
(MBE) decreases from 4.77 K (4.02 K) for the FY-4A official LST to 3.60 K (2.55 K) for Themi. During nighttime, the clear-
sky Themi 1s the same as FY-4A official LST, showing lower RMSE than in daytime. The RMSE (MBE) values are 2.38 K (-
0.94 K) at the DM site and 2.2 K (-0.17 K) at the SDQ site. Under cloud-sky conditions, the RMSE (MBE) values are 3.54 K
(-0.53 K) at the DM site and 4.09 K (1.97 K) at the SDQ site during daytime, and 4.58 K (-3.77 K) at the DM site and 3.46 K
(-1.36 K) at the SDQ site during nighttime. In summary, the all-weather LST could effectively capture the annual

temperature cycle characteristics.
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Figure 12: The temporal variation trend of in-situ LST, Tsemi, and FY-4A official LST in 2020 for (a) DM site at the UTC time of
4:00, (b) SDQ site at the UTC time of 4:00, (c) DM site at the UTC time of 16:00, (d) SDQ site at the UTC time of 16:00. Note that
the clear-sky Themi is the same as FY-4A LST during nighttime because the TRD effect is ignored at night.

The 0.05° LST difference (i.e., the hemispherical LST minus ATC-simulated LST) fitting accuracy of the CatBoost model in
the downscaling process over the test set is shown in Fig. 13a. The nighttime RMSE (1.87 K — 2.40 K) is lower than the
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daytime RMSE (2.59 K — 2.99 K), with a difference ranging from 0.26 K to 1.00 K. The maximum daytime RMSE occurs in

May, while the minimum RMSE is observed in February, with a variation of 0.4 K. The maximum nighttime RMSE is in

January, and the minimum RMSE occurs in July, with a variation of 0.53 K. As shown in Fig. 13b-c, the accuracy of the

0.01° all-weather Them is comparable to that of the all-weather 0.05° Themi, indicating that the downscaling method did not

introduce additional uncertainty. The RMSE slightly decreased from 4.23 K at the 0.05° resolution to 3.99 K at the 0.01°

resolution, and the absolute value of the MBE reduced by 0.08 K. Since a residual redistribution (Zheng et al., 2024) was

performed during the downscaling process, the accuracy of the 0.01° Tj.n; remains highly dependent on the original 0.05°

LST product.
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The spatial distributions of all-weather 0.05° daytime T (Fig. 14a), nighttime Them (Fig. 14c), and downscaled 0.01°
daytime Themi (Fig. 14b), nighttime Themi (Fig. 14d) on 2020/6/24 are shown in Fig. 14. The Them is much lower in high-
latitude and high-altitude regions for both daytime and nighttime, which demonstrates pronounced patterns of latitudinal and
elevational variation of LST. Generally, the spatial distribution of 0.01° Tjeni is consistent with that of 0.05° Themi. The

downscaled 0.01° Thenm: (Fig. 14b and 14e¢) reveals richer spatial texture (e.g., in southeastern Tibetan Plateau).
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Figure 14: The spatial distribution of (a) 0.05° Themi, (b) 0.01° Themi at the UTC time of 4:00 on 2020/6/24, and (c) 0.05° Themi, (d)
0.01° Themi at the UTC time of 16:00 on 2020/6/24.
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5 Discussion

5.1 The temporal aggregation method for KDM parameters

In this study, a temporal aggregation method spanning 8 days before and after the target day (a total of 17 days) was
employed to aggregate the KDM parameters (i.c., a, S, and W). It not only filtered out extreme values in the TEKDM results
but also filled the gaps for pixels where TEKDM could not be solved. The 17-day compositing method was comprehensively
compared with three other aggregation approaches: 1) 9-day composition: averaging values from four days before and after
the target day (a total of 9 days). 2) Monthly composition (i.e., ~30 days in total): calculating the monthly average of KDM
parameters, assuming they remain constant throughout each month. 3) Yearly composition (i.e., ~365 days in total):
calculating the yearly average of KDM parameters, assuming they remain constant throughout the whole year. After
calibrating the KDM parameters using each approach, FY-4A directional LST could be normalized to T4 Then, the Thqdir
result of 2020 were cross-validated using VNP21A1 near-nadir LST (i.e., VZA < 5°) as did in Fig 5.

Fig. 15a-e shows the cross-validation result between the 74i/Tuuai- and VNP21A1 near-nadir LST, whereas Fig. 15f shows
the fraction of valid pixels (i.e., the ratio of pixels with valid KDM parameters to the total number of land surface pixels) of
above temporal aggregation methods. The RMSD (MBD) of the FY-4A official LST is 6.21 K (-4.04 K), while the RMSD
(MBD) for the four compositing methods ranges from 3.45 K to 3.79 K (-2.31 K to -2.12 K). The RMSD in ascending order
is monthly method< 17-day method< 9-day method< yearly method. In terms of valid pixel fractions, the order is the 9-day
method (89.3%)< 17-day method (93.6%)< monthly method (95.9%)< yearly method (99.5%). The significant lower
fractions for the 9-day and 17-day methods in 2020/8 (Fig. 15f) are due to the absence of MYD11A1 LST products between
2020/8/16 and 2020/8/31 (induced by a Formatter-Multiplexer Unit/Solid State Recorder (FMU/SSR) error, more details can
be found at https://ladsweb.modaps.cosdis.nasa.gov/alerts-and-issues/168889). The yearly method was not adopted since it
has the largest RMSD, whereas the 9-day method was not used since it has the lowest valid pixel fraction. The 17-day and
monthly methods could achieve comparable and acceptable accuracy. The 17-day method was ultimately selected referenced

to the parameter aggregation method in optical domain (Liu et al., 2013).
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Figure 15: The cross-validation results of (a) FY-4A directional LST, (b) Trair generated using 9-day composition method, (c)

using 17-day composition method, (d) using monthly composition method, (e) using yearly composition method. (f) The fraction of
valid pixels for different composition methods.

5.2 Feature Importance for CatBoost models in hypothetical clear-sky LST estimation and LST downscaling

The relative feature importance of CatBoost model was determined based on each feature’s contribution to the reduction of
the loss function. We employed the logarithmic value of log(1 + scorenom) to quantify the importance of each model (where
scorenorm 1S the max-min normalized feature scores). The average relative feature importance across all CatBoost models is
shown in Fig. 16. In the estimation of hypothetical clear-sky LST (Fig. 16a), Tgr4s-skin €xhibited the highest importance. The
T>m and R;, were also identified as influential predictors, aligning with the findings of Zhang et al. (2024). The 6, accounted
for a significant 9.9% of the importance, reflecting the strong influence of solar radiation on LST. Most other features had
relatively low importance (below 5%), and ATC41, CT, FVC, and LCT contribute less than 1%. In the LST downscaling task
from 0.05° to 0.01° using CatBoost model (Fig. 16b), the ATC-simulated LST at the initial time had the highest importance
of 30.8%. The air temperature (7>,) and MAST4 also had high importance exceeding 10%. The YASTx», DEM, and dxn
showed moderate importance between 5% and 10%, while the dxa, MAST», and YAST,» contributed less than 5%.
Eliminating those features with low importance has the potential to enhance computational efficiency and reduce

dependency on related auxiliary datasets, which should be carefully assessed in future studies.
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Figure 16: The relative importance for the CatBoost model when (a) estimating the hypothetical clear-sky LST using Eq. 13, and
(b) downscaling the 0.05° LST difference using Eq. 18.

5.3 The spatial representativeness of in-situ sites

The Thaair was evaluated by the VNP21A1 near-nadir LST, whereas the 0.05° and 0.01° T} were validated using the in-situ
measurements. The T-based validation of Ty requires that in-situ sites exhibit high spatial representativeness. To assess the
spatial heterogeneity of 15 sites, the standard deviation (STD) of Landsat 8 LST values in 2020 was calculated for each site
at both 0.01° and 0.05° resolution (see Fig. 17a). At the 0.05° scale, STD values range from 1.0 K to 6.4 K, which are
significantly higher than those at 0.01° resolution (i.e., 0.5 K — 2.7 K). Almost half of the sites at 0.05° scale have STD
values greater than 3 K, indicating a potential influence on validation accuracy due to the limited representativeness. As
spatial resolution improved, landscapes within a single pixel tend to become more homogeneous, leading to an decrease in
STD. At 0.01° resolution, all site have a STD below 3 K (11 sites among them have STD values below 2 K). Therefore,
downscaling LST products could mitigate the impact of site representativeness error on T-based validation result. Fig. 17b
shows the relationship between the STD of each site and corresponding RMSE of Ty at 0.01° resolution. A significant
linear relationship is observed, with a Pearson’s R of 0.54 and a p-value< 0.05. The slope of the linear regression is 0.73,
indicating that a decrease of 1 K in STD of in-situ site (i.e., better spatial representativeness) corresponds to an RMSE

decrease of 0.73 K for Themi.
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Figure 17: (a) The STD of Landsat 8 LST at 0.01° and 0.05° resolution for all 15 sites in 2020. (b) The relationship between the
STD of each site and corresponding RMSE of hemispherical LST at 0.01° resolution.

5.4 The inter-comparison with other all-weather LST products

The inter-comparison between the generated all-weather Tjen; product and four existing all-weather LST products against the
in-situ LST measurements in the year 2020 is shown in Fig. 18. Although the absolute accuracy is influenced by the spatial
representativeness of 15 sites as analyzed in section 5.3, the relative accuracy of different LST products is comparable. Two
of the employed datasets are reanalysis products: ERAS5-Land LST at 0.1° resolution and China Land Surface Data
Assimilation System (CLDAS) LST at 0.0625° resolution. Additionally, two remote sensing products were included: a
global all-weather 0.05° LST dataset generated by Jia et al. (2023), and a regional 0.02° LST product for East Asia region
developed by Dong et al. (2022). Jia’s method first estimates hypothetical clear-sky LST using a Kalman filter with ERAS,
Himawari-8 and MODIS LSTs as inputs. An iterative CRF correction is then applied to produce the cloudy-sky LST. Dong’s
approach first retrieves clear-sky LST from Himawari-8 using a TES algorithm, and then estimates cloudy-sky LST using a
multiresolution Kalman filter based on CLDAS LST. For consistency, all four products were resampled to 0.05° resolution
to match the 0.05° Tjem: for inter-comparison. Under clear-sky conditions (Fig. 18a), ERAS and CLDAS show similar
accuracy with RMSE values of 4.8 K — 5.0 K during the day and 4.6 K — 4.8 K at night. Our Tjen product has the best
accuracy with RMSE values of 3.3 K during the day and 2.8 K at night. Dong’s LST and Jia’s LST have RMSE values
between the reanalysis products and the Tjeni. Under cloudy-sky conditions (Fig. 18b), ERAS LST has the lowest accuracy
with an RMSE of 6.7 K during the day and an RMSE of 5.0 K at night. CLDAS LST has RMSEs of 5.2 K during daytime
and 4.2 K at night, which performs slightly better than Jia’s LST. The RMSE of Tjen; is similar to Dong’s LST during the
day (5.1 K) and 0.2 K higher than Dong’s LST at night. The superior performance of our Tjen: product during both clear-sky
and cloudy-sky conditions highlights its good potential in the subsequent applications.

34



630

635

640

645

Earth System
Science

Data

https://doi.org/10.5194/essd-2026-74
Preprint. Discussion started: 16 February 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

8.0 8.0
(a) Clear-sky LST (b) Cloudy-sky LST
701 3 [ Daytime 70 ‘ e I Daytime
I Nighttime I Nighttime
_ 60 _ 60
= )
= =50
2 Z
4.0
3.0

ERAS  DAS 3392“1300‘\%2“126 LSt ERAS  {DAS 3337’“1300 0p 2075 18T

Figure 18: The RMSE comparison of five products during the day and night under (a) clear-sky condition and (b) cloudy-sky
condition.

5.5 Limitations and future work

The evaluation results of the generated ANCFDS-LST demonstrate its high accuracy and detailed texture. Several limitations

remain to be addressed in future work:

1) The TEKDM used in this study is developed for vegetated canopies, which is dominated by the gap fraction and hot spot
effects. However, the applicability of this model over other land covers, such as bare soil, snow, and urban areas
requires further exploration and validation (Du et al., 2023, 2024; Wang et al., 2024a; Xiong et al., 2024). Moreover, the
reliability of TEKDM in complex terrain also demands in-depth studies (Zhan et al., 2025).

2) This study extensively employs machine learning methods, making it challenging to analyse error propagation processes.
Developing robust error quantification techniques would aid in tracing how uncertainties in input parameters influence
the final 0.01° all-weather LST, thereby further refining the ANCFDS-LST product (Li et al., 2024b).

3) The T-based validation in this study is based on 15 in-situ sites located in HRB and Tibetan Plateau, which inevitably
introduces uncertainty due to limited spatial representativeness. Future studies could incorporate radiance-based (R-

based) validation to mitigate this issue, offering a valuable complement to T-based validation (Li et al., 2021).

6 Data availability
The hourly, 0.01°, all-weather Tair, Tpagir, and Themi product (ANCFDS-LST) from 2018 to 2023 is freely available at
https://doi.org/10.11888/RemoteSen.tpdc.303249 (last access: 30 January 2026; Na et al., 2026). Data are stored in GeoTIFF

format with three sequential bands (7uir, Thadir, and Them: respectively), and the units of each file is kelvin. A scale factor of

0.1 and offset of 0 have been applied for value encoding.
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7 Conclusion

In this study, the angular-normalized, cloud-filled, and 0.01°-downscaled LST was generated from 2018 to 2023 on the basis
of the official FY-4A LST dataset. Firstly, a TEKDM-based angular normalization method was used to generate nadir and
hemispherical LST products. Secondly, an all-weather LST estimation approach was adopted to produce 0.05° cloud-filled
directional, nadir, and hemispherical LST. Finally, an IHDA method was employed to enhance the spatial resolution of the

LST products from 0.05° to 0.01°. The main conclusions are summarized as follows:

1) The TEKDM model significantly normalized the angular dependence of daytime clear-sky 7. Taking the near-nadir
VNP21A1 LST as reference, the RMSD (MBD) decreased from 6.21 K (-4.04 K) of the T4 to 3.48 K (-2.13 K) of
normalized 0.05° T, Taking the in-situ hemispherical LSTs in the Heihe River Basin and the Tibetan Plateau as
reference, the RMSE (MBE) decreased from 3.45 K (0.43 K) of the Ty to 3.19 K (-0.36 K) of the normalized 0.05° Them:.

2) For the all-weather 0.05° Tjemi, the T-based validation shows an RMSE (MBE) of 2.99 K (-0.77 K) under clear-sky
conditions and 4.56 K (-1.56 K) under cloudy-sky conditions. The generated all-weather Th.m outperformed the existing
four all-weather LST products (i.e., ERAS5, CLDAS, Jia2023 and Dong2022).

3) The downscaled all-weather LST successfully recovered fine spatial details with a comparable accuracy. The T-based
validation shows that the RMSE (MBE) for Tjen slightly decreased from 4.23 K (-1.4 K) at 0.05° resolution to 3.99 K (-
1.32 K) at 0.01° resolution.

Despite the generated directional, nadir, and hemispherical LST products have high accuracy and rich spatial texture, their
spatial coverage is currently limited to the FY-4A disk. Further work is needed to expand this methodology for producing
global-scale LST products, e.g., gathering Himawari, GOES and MSG satellite datasets. In addition, the T-based validation
was performed over limited in-situ sites in this study, and a more comprehensive approach such as R-based validation is still

lacking. Future research should focus on performing robust validation over more land covers and also over complex terrains.

Appendix A
The sampling of label data is essential in the estimation of hypothetical clear-sky LST since the large volume of clear-sky

LST observations. In this study, a representative sub-dataset was determined through a two-step sampling approach:

Step 1) Determining the number of samples by evaluating the CatBoost model’s performance in fitting the annual maximum
LST (i.e., Tmax = MAST + YAST). Due to its highest level of heterogeneity, T« is the most challenging variable for CatBoost
to fit. Here, a CatBoost model was trained with the inputs of following features: Lat, Lon, LCT, CT, FVC, DEM, and the

annual mean values of R;,, Tom, and D>y, as shown in Eq. Al.

T = fownoon (Lat, Lon, LCT,CT,FVC,DEM R, T,,.,D,,) (A1)

max in®"2m?>
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Firstly, 10% of the samples (974,403 samples) were used to tune the hyperparameters of the CatBoost model using a
Bayesian optimization method. Another 30% of the samples (2,923,400 samples) were allocated as the test set. The training
set includes a total of 5,847,441 samples (i.e., 60% of the samples). Aimed to determine the optimal sample size, directly
transverse all the possible sample sizes over training set is impractical. In this study, the number of training samples was
gradually increased from 2,000 to 100,000 with an increment of 2,000. As shown in Fig. Al(a), the optimal sample size (i.e.,
37,000) was determined based on the point at which the RMSE variation (i.e., ]ARMSE]|) remained less than 0.001 K.

Step 2) determining the exact geolocations of 37,000 points for each year (i.e., 6 years from 2018 to 2023). Here, a
conditioned Latin hypercube sampling (cLHS) method was employed, which first divides the features into equal partitions
according to their values and then randomly selects sample points from each partition. It has been demonstrated to be both
efficient and reliable for large datasets (Minasny and McBratney, 2006; Yang et al., 2020). The input features for this step
are identical to those in Eq. Al. The final spatial distribution of 37,000 selected points per year is shown in Fig. Alb-g,

indicating a uniform distribution across the FY-4A disk without significant clustering.
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Figure Al: The selection of optimal sample number (a) and the geolocation of 37000 sample points in (b) 2018, (c) 2019, (d) 2020,
(e) 2021, () 2022, (g) 2023.
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