

1 **TED: A global temperature-driven thermoelastic displacement dataset**
2 **for GNSS reference stations (2000–2023)**

3 Ran Lu^{1,2,3}, Zhao Li^{1,2}, Lingfeng Ye³, Peng Yuan⁴, Yanming Feng³

4 1. GNSS Research Center, Hubei Luojia Laboratory, Wuhan University, No. 129 Luoyu Road,
5 Wuhan 430079, China
6 2. School of Geodesy and Geomatics, Wuhan University, No. 129 Luoyu Road, Wuhan,
7 430079, China
8 3. Faculty of Science, Queensland University of Technology, Brisbane, 4000, Australia
9 4. GFZ Helmholtz Centre for Geosciences, Potsdam, Germany

10 **Corresponding Author:**

11 * Zhao Li, zhao.li@whu.edu.cn

12 **Abstract**

13 The nonlinear signals in global GNSS station height time series reflects both non-tidal
14 mass loading (atmospheric, oceanic, and hydrological) and temperature-driven
15 thermoelastic deformation (TED). However, a globally consistent and reproducible TED data
16 product has long been lacking. Here we present a global dataset of vertical TED for ~15,000
17 GNSS stations spanning 2000–2023, generated using a full-spectrum, layered finite-element
18 model. The model is driven by hourly ERA5 soil-temperature profiles and parameterized
19 with depth-dependent thermophysical properties from the SoilGrids dataset, enabling
20 consistent quantification of TED from semi-diurnal/diurnal variability through seasonal to
21 interannual timescales. Compared with an identical homogeneous-medium benchmark,
22 subsurface stratification typically changes annual amplitudes by ~0.3 mm and shifts the
23 timing of the annual maximum by ~1 month, yielding regionally coherent and smoothly
24 varying spatial patterns. At stations with independent site characterization, the
25 site-constrained solutions agree closely with SoilGrids-based solutions, with
26 annual-amplitude differences of 0.01–0.03 mm and annual-phase differences mostly within
27 1–3°. Sensitivity tests using ±10% perturbations in thermal expansion, thermal diffusivity,
28 and Young's modulus indicate that annual-cycle amplitude and phase are robust. Globally,
29 annual TED amplitudes are typically 1–2 mm, exceed 2–3 mm at some stations, and reach
30 peak-to-peak values up to ~5 mm, with the largest signals concentrated in arid inland and
31 continental climate regions. When TED corrections are applied together with non-tidal
32 mass-loading corrections, the residual vertical dispersion decreases at most stations, with
33 vertical scatter reduced by up to ~70% at selected sites. The dataset is publicly available for
34 direct use in GNSS coordinate time series correction and related geophysical applications:
35 <https://doi.org/10.5281/zenodo.18256342> (Lu et al., 2026).

36 **1. Introduction**

37 Global Navigation Satellite System (GNSS) reference-station coordinate time series
38 provide a fundamental observational basis for quantifying crustal deformation, vertical land

39 motion, and surface mass redistribution (Clarke et al., 2005; Jiang et al., 2013; Blewitt et al.,
40 2018; Li et al., 2020). In particular, GNSS height records commonly exhibit pronounced
41 annual and semiannual signals together with broadband and nonlinear variability, with
42 amplitudes ranging from several millimetres to about 2 centimetres. A substantial fraction
43 of this variability is non-tectonic, arising from environmental forcing and local site effects,
44 including elastic deformation induced by non-tidal atmospheric, oceanic, and hydrological
45 loading, as well as temperature-driven thermoelastic deformation (van Dam et al., 2007;
46 Fritsche et al., 2012; Fang et al., 2014; Xu et al., 2017; Li et al., 2025). In the absence of
47 consistent, reproducible, and scalable corrections for these contributions, seasonal and
48 nonseasonal motions can bias velocity estimates, inflate apparent noise levels, and obscure
49 subtle geophysical signals, thereby degrading global reference-frame stability and
50 subsequent geophysical interpretation (Altamimi et al., 2023).

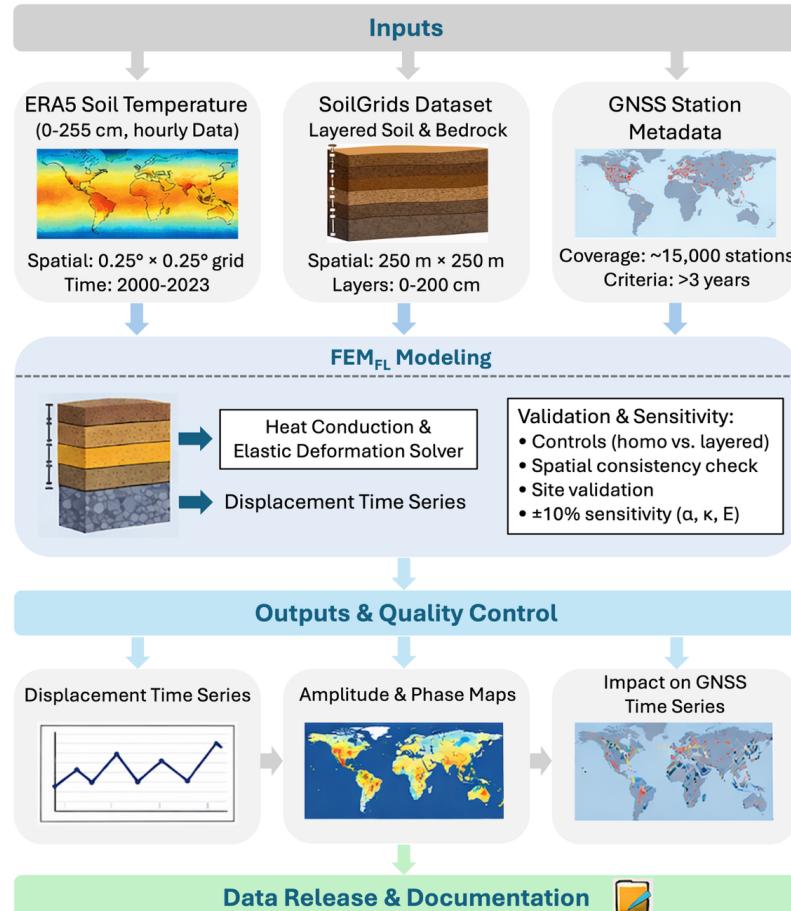
51 Thermoelastic deformation arises from temperature-driven expansion and contraction
52 of the monument and near-surface materials. Temperature perturbations penetrate the
53 ground via heat conduction, generating subsurface thermal strain that is subsequently
54 expressed as elastic displacement (Biot, 1956; Berger, 1975). GNSS observations indicate
55 that shallow thermoelastic effects can explain a substantial portion of the seasonal vertical
56 and horizontal variability in some regions (Romagnoli et al., 2003; Prawirodirdjo et al., 2006).
57 Importantly, the response is not limited to annual timescales: full-spectrum analyses reveal
58 measurable power across a broad frequency range—from semi-diurnal and diurnal bands,
59 through weather-driven variability, to seasonal and interannual fluctuations—with
60 nonseasonal peak-to-peak motions reaching the millimetre level in some areas and
61 therefore detectable by high-precision geodesy (Lei et al., 2020). Thermoelastic deformation
62 can also propagate into global geodetic parameter estimation as a non-loading error source.
63 For example, Wei et al. (2025) reported that thermoelastic effects contribute significantly to
64 the annual variability of the Z component of geocenter motion, implying that improved
65 modelling and mitigation may enhance the consistency of GNSS-based geocenter estimates
66 across independent solutions.

67 Robust quantification of thermoelastic effects requires temperature forcing that
68 resolves the diurnal cycle, together with broad spatial coverage and a long observational
69 span. When the forcing is represented only by daily means or by a single fixed-UTC sample,
70 diurnal variability is undersampled and can alias into longer periods. Such aliasing can
71 introduce longitude-dependent biases in daily GNSS coordinate solutions and generate
72 spurious low-frequency variability (from seasonal to interannual), thereby compromising
73 cross-regional statistics and hindering robust intercomparisons among correction products
74 (Li et al., 2024). At the same time, publicly available global GNSS coordinate archives now
75 comprise on the order of 15,000 stations, shifting the need for thermoelastic correction
76 from regional case studies toward scalable, operational products. A uniform, reproducible
77 dataset with a clear update pathway is therefore required to enable large-scale processing
78 workflows and objective cross-product evaluation and intercomparison.

79 Thermoelastic modelling approaches can be broadly categorized into analytical and
80 numerical methods. Analytical formulations commonly rely on half-space assumptions and
81 idealized boundary conditions; they are compact and computationally efficient and are

82 therefore well suited for rapid first-order estimates and process interpretation (Dong et al.,
83 2002; Yan et al., 2009, 2010). A key limitation, however, is that many analytical models
84 assume depth-invariant—or effectively homogeneous—thermophysical properties, which
85 restricts their ability to capture the amplitude and phase shifts introduced by soil–bedrock
86 stratification. Recent work has moved toward more realistic representations. For example,
87 full-spectrum frameworks now incorporate both seasonal and nonseasonal temperature
88 variability together with bedrock depth and type information (Li et al., 2024). Other studies
89 assess how thermoelastic signals contribute to nonlinear components in GNSS heights
90 across different products and processing strategies (Lu et al., 2024). Collectively, these
91 advances indicate that the interpretability and practical utility of thermoelastic signals
92 depend not only on the model class, but also on how subsurface structure is parameterized
93 and how temperature forcing is temporally sampled.

94 Compared with analytical approaches, finite element methods (FEM) more readily
95 accommodate material heterogeneity and interlayer coupling. They naturally represent the
96 coupled processes of heat conduction and elastic deformation, making them well suited for
97 thermoelastic problems in layered media (Lei et al., 2020). Building on this capability, we
98 implement a full-spectrum layered FEM workflow (FEM_{FL}) at global scale and release a
99 public dataset of temperature-driven vertical thermoelastic displacement (TED) time series
100 for \sim 15,000 GNSS stations worldwide over 2000–2023 (Lu et al., 2025). The model is driven
101 in the time domain by hourly ERA5 temperature forcing and parameterized with
102 depth-resolved thermophysical properties from the SoilGrids dataset. The release includes
103 quality-control metrics and technical validation. The dataset is designed as a reusable
104 environmental correction that can be applied alongside non-tidal mass-loading products in
105 GNSS processing workflows, supporting more robust vertical land motion estimation,
106 reference-frame stability assessment, and geocenter-related investigations (Altamimi et al.,
107 2023; Wei et al., 2025).

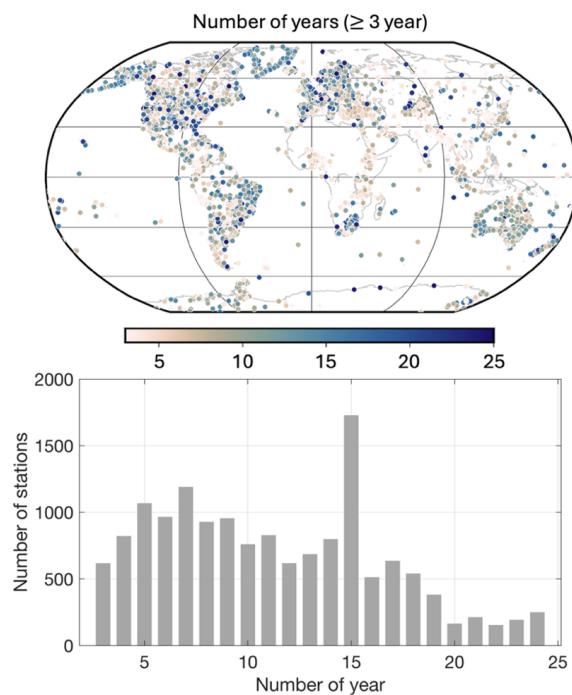

108 The paper is organized as follows. Section 2 describes the input data, model
109 configuration, and computational workflow. Section 3 presents the main spatiotemporal
110 characteristics of the dataset, provides technical validation, and quantifies its impact on the
111 structure of GNSS vertical residuals. Section 4 documents the data records (file organization,
112 variable definitions, quality flags, and usage guidance) and provides access instructions.
113 Section 5 summarizes applicability and limitations and outlines future updates.

114 2. Materials and methods

115 This dataset addresses the need for globally consistent modeling and correction of
116 non-tectonic vertical deformation at continuously operating GNSS stations by providing
117 temperature-driven vertical thermoelastic displacement (TED) time series for \sim 15,000
118 stations spanning 2000–2023. The product is generated using a standardized end-to-end
119 workflow (Fig. 1). The workflow harmonizes station selection and temporal coverage,
120 constructs and resamples the temperature forcing, parameterizes vertically layered
121 subsurface properties, runs FEM_{FL} at scale, and performs quality control and consistency
122 checks prior to packaging and release. Station locations and observation spans are compiled
123 from publicly available GNSS station metadata. Near-surface thermal forcing is derived from

124 ERA5 soil-temperature profiles, and site-specific layered thermo-mechanical properties are
125 constructed from SoilGrids and related global datasets. The resulting vertical thermoelastic
126 response is computed with the FEM_{FL} and distributed in a GNSS-ready, standardized format.

127


128 **Figure 1** Schematic workflow of dataset production: station selection and metadata
129 compilation; extraction and resampling of ERA5 temperature forcing; retrieval and unified
130 parameterization of layered SoilGrids properties; large-scale FEM_{FL} computation; output
131 quality control and evaluation; and product release (file organization and metadata
132 archiving).

133 2.1. GNSS station and temporal coverage

134 GNSS station metadata and coordinate time series are obtained from multi-network
135 solutions compiled and maintained by the Nevada Geodetic Laboratory (NGL), which
136 integrate continuous observations from the International GNSS Service (IGS) and numerous
137 regional and national networks (Blewitt et al., 2018). To support stable estimation of annual
138 and semiannual signals—and to facilitate assessment of potential aliased components

139 associated with diurnal temperature variability—we retain continuous stations with at least
140 three years of valid observations within 2000–2023, while maximizing the sample size
141 subject to broad global coverage. The resulting dataset includes ~15,000 stations distributed
142 across the major continents and climate zones (Fig. 2), with particularly dense coverage in
143 North America, Europe, East Asia, and Australia. This spatial sampling enables robust
144 regional statistics and provides a basis for internal consistency and quality checks.

145

146 **Figure 2** Spatial distribution and temporal coverage of GNSS stations. (a) Global station
147 distribution and available record length (color denotes time-series duration); (b) frequency
148 distribution of available record length.

149 2.2. Temperature forcing data

150 The temperature-driven thermoelastic deformation (TED) is induced by near-surface
151 temperature perturbations that propagate downward through heat conduction, generate
152 thermal strain, and are expressed as elastic displacement. The reliability of a TED dataset
153 therefore depends critically on the temporal resolution and phase fidelity of the
154 temperature forcing. We use soil temperatures from ECMWF ERA5 reanalysis as the
155 external forcing and adopt the shallowest layer (soil temperature level 1, 0–7 cm) as a
156 practical proxy for the surface-temperature boundary condition (Hersbach et al., 2018).

157 To retain sub-daily variability and mitigate the aliasing of diurnal power into lower
158 frequencies associated with fixed-UTC sampling, we sample the hourly ERA5 record at 00,
159 06, 12, and 18 UTC and apply these values as the upper-boundary forcing at a 6-hour

160 interval. This strategy maintains global-scale computational tractability while resolving
161 diurnal and semi-diurnal thermal responses. It also reduces spurious
162 seasonal-to-interannual artifacts that can arise when forcing is represented by daily means
163 or by a single-epoch temperature series. In addition to the 0–7 cm layer, we use the full
164 ERA5 soil-temperature profile (0–7, 7–28, 28–100, and 100–255 cm) to better constrain
165 near-surface thermal gradients and to represent background heat transfer at depths.

166 2.3. Layered thermophysical and mechanical properties

167 The thermal diffusivity, thermal expansion coefficient, and elastic moduli control how
168 temperature perturbations attenuate and phase-lag with depth and how efficiently
169 thermally induced strain is converted into displacement. Globally consistent TED estimates
170 therefore benefit from site-specific, vertically layered parameterization wherever possible.
171 Here we represent the shallow subsurface using the globally gridded, depth-resolved soil
172 information from SoilGrids (Hengl et al., 2017). SoilGrids provides a suite of soil properties
173 on standard depth intervals (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm), enabling
174 characterization of thermophysical contrasts within the upper ~2 m. We adopted the latest
175 SoilGrids 2.0 dataset that used state-of-the-art machine learning methods to build the
176 required models and produced global maps of soil properties at medium spatial resolution
177 (250 m grid cells) (Poggio et al., 2021).

178 For each station, we extract the SoilGrids depth profiles and consistently translate them
179 into the thermophysical parameters required by the model (e.g., thermal conductivity or
180 diffusivity and volumetric heat capacity). Mechanical properties (e.g., Poisson's ratio) and
181 the linear thermal expansion coefficient are assigned using a uniform, reproducible lookup
182 table. They are then mapped onto the layered structure, so that spatial variations in soil
183 thickness and shallow properties propagate into the coupled thermo-mechanical response.
184 Below 2 m, where globally consistent high-resolution stratigraphic information is generally
185 unavailable, we represent the deeper medium as a bedrock half-space. Its thermophysical
186 and mechanical properties are prescribed using a unified rule set. This parameterization
187 treatment maintains global computational feasibility and reproducibility while retaining the
188 dominant influence of shallow-layer heterogeneity on the modeled response.

189 2.4. TED modeling framework

190 We compute temperature-driven vertical TED using full-spectrum layered finite element
191 model (FEM_{FL}; Lu et al., 2025). Beneath each station, the subsurface is represented as a
192 one-dimensional, vertically layered soil–bedrock column. Layer-specific thermophysical and
193 mechanical properties are derived from SoilGrids and related datasets and are assumed
194 uniform within each layer. The time-varying near-surface temperature is prescribed as the
195 upper boundary condition. Temperature perturbations then propagate downward through
196 transient heat conduction and attenuate with depth, producing depth-dependent thermal
197 strain. Contrasts in thermal diffusivity, linear thermal expansion, and elastic stiffness among
198 layers control both the amplitude damping and phase lag of the temperature field and the
199 efficiency with which thermal strain is converted into elastic deformation. Together these
200 effects produce a measurable vertical displacement at the surface. This unified framework

201 enforces heat transfer within layers, continuity across interfaces, and thermo-mechanical
202 coupling, enabling consistent and scalable site-specific TED estimates at the global scale.

203 In the thermal component, the temperature evolution in each layer follows the
204 one-dimensional transient heat-conduction equation. Continuity of temperature and heat
205 flux is imposed at all layer interfaces, ensuring physically consistent energy transfer through
206 the stratified column. The upper boundary temperature is prescribed from the ERA5
207 soil-temperature forcing, while the lower boundary condition is formulated to represent a
208 stable deep thermal background, thereby limiting nonphysical drift associated with
209 truncating the domain at finite depth. The model is advanced at the same cadence as the
210 forcing (6-hour time steps), retaining variability from sub-daily to seasonal timescales.

211 In the mechanical component, FEM_{FL} treats temperature-induced thermal strain as an
212 eigenstrain term in the constitutive relation and solves the resulting vertical displacement in
213 a one-dimensional layered finite element system. Within each element, thermal strain is
214 determined by the temperature departure from a reference state and the linear thermal
215 expansion coefficient, whereas elastic moduli govern how this strain translates into
216 displacement and how deformation is transmitted across layer interfaces. Solving the
217 assembled layered column yields the surface-node vertical displacement time series directly,
218 rather than relying on simplified depth-integration approximations, and therefore captures
219 stratification effects on both amplitude and phase more consistently. To suppress start-up
220 transients associated with uncertain deep-temperature initial conditions, we apply a spin-up
221 procedure in which a representative year of temperature forcing is repeated until the deep
222 temperature field converges to a stable annually periodic state. The TED series for 2000–
223 2023 is then generated from this equilibrated initialization.

224 Daily GNSS coordinate solutions are typically referenced to a fixed UTC epoch, whereas
225 sub-daily temperature forcing—and the resulting thermoelastic response—are phased
226 primarily by local solar time. Using a single UTC sampling time can therefore introduce
227 longitude-dependent artifacts and alias diurnal energy into longer periods. To reduce this
228 sensitivity, we drive FEM_{FL} with temperature forcing sampled at four UTC epochs (00, 06, 12,
229 and 18 UTC). This yields four TED realizations. We then combine them using a
230 phase-consistent strategy. For dominant harmonic components (e.g., annual and
231 semiannual), we apply amplitude–phase vector averaging to preserve both magnitude and
232 phase. The remaining non-harmonic variability is merged on a common sampling basis and
233 added to form the final series. The resulting TED product is less sensitive to the chosen UTC
234 epoch. It is also more compatible with daily GNSS solutions. As a result, it is better suited to
235 large-scale correction workflows.

236 2.5. Quality control and consistency checks

237 To facilitate reuse, traceability, and verification, all released time series are subjected to
238 multi-level quality control and consistency checks. First, numerical artefacts are screened,
239 including spikes, step-like discontinuities, and unrealistic long-term drift. For the small
240 subset of stations that fail these checks, likely causes are examined (e.g., gaps or
241 interpolation issues in the temperature forcing, fallback/default parameter assignments, or
242 problems in the layered configuration), and the affected records are either assigned quality

243 flags or excluded from the release. Second, spectral consistency is assessed by estimating
244 the amplitude and phase of the principal periodic components (semi-diurnal, diurnal,
245 semiannual, and annual), and by verifying that these quantities vary smoothly within
246 comparable climate regimes; this helps limit spurious spatial discontinuities introduced by
247 gridding or parameter transitions. Third, application-oriented checks are performed by
248 applying TED together with non-tidal loading corrections at representative stations and
249 across regional scales, followed by quantifying the resulting changes in GNSS vertical
250 residual statistics (e.g., residual dispersion).

251 2.6. Model performance metrics

252 To consistently quantify the key amplitude characteristics of the TED product and its
253 correction impact on GNSS vertical time series, we compute the annual-cycle amplitude and
254 phase, the nonseasonal variability, and the WRMS improvement of GNSS residuals. For each
255 TED series $u(t)$, we fit an annual and semiannual harmonic model with a linear term:

256
$$u(t) = a_0 + bt + \sum_{k=1}^2 [c_k \cos(\omega_k t) + s_k \sin(\omega_k t)] + \varepsilon(t) \quad (1)$$

257 where a_0 is the constant term, b is the linear term, ω_1 and ω_2 correspond to the
258 annual and semiannual frequencies, respectively, and $\varepsilon(t)$ denotes the residual. The
259 annual amplitude and phase are defined as:

260
$$A_{ann} = \sqrt{c_1^2 + s_1^2} \quad (2a)$$

261
$$\phi_{ann} = \text{atan2}(s_1, c_1) \quad (2b)$$

262 To quantify the remaining variability after removing the linear term and the
263 annual/semiannual harmonics, let $\hat{u}(t)$ denote the fitted reconstruction. The residual is
264 $r(t) = u(t) - \hat{u}(t)$, and the nonseasonal variability is measured by the root-mean-square
265 (RMS) of $r(t)$:

266
$$RMS_{nonsea} = \sqrt{\frac{1}{N} \sum_{i=1}^N r(t_i)^2} \quad (3)$$

267 where N is the number of valid samples.

268 For the GNSS vertical time series $x(t)$, we quantify scatter using the weighted
269 root-mean-square (WRMS):

270
$$WRMS = \sqrt{\frac{\sum_{i=1}^N \omega_i [x(t_i) - \bar{x}_\omega]^2}{\sum_{i=1}^N \omega_i}} \quad (4)$$

271
$$\bar{x}_\omega = \frac{\sum_{i=1}^N \omega_i x(t_i)}{\sum_{i=1}^N \omega_i} \quad (5)$$

272 where the weights are $\omega_i = 1/\sigma_i^2$; when observation uncertainties are unavailable, we use
273 equal weights ($\omega_i = 1$). The WRMS reduction rate is defined as:

274
$$\Delta WRMS(\%) = \frac{WRMS_{raw} - WRMS_{corr}}{WRMS_{raw}} \times 100\% \quad (6)$$

275 where $WRMS_{raw}$ and $WRMS_{corr}$ denote the series before and after correction,
276 respectively. We evaluate WRMS improvements for each single correction (NTAL, NTOL,
277 HYDL, and TED) as well as for the combined correction (NTAL+NTOL+HYDL+TED) to quantify
278 the spatially varying contributions of different environmental processes.

279 In the parameter-sensitivity analysis, we apply a $\pm 10\%$ relative perturbation to a
280 selected key parameter at each station and recompute TED. The difference between the
281 perturbed and baseline solutions in the annual cycle is then quantified as:

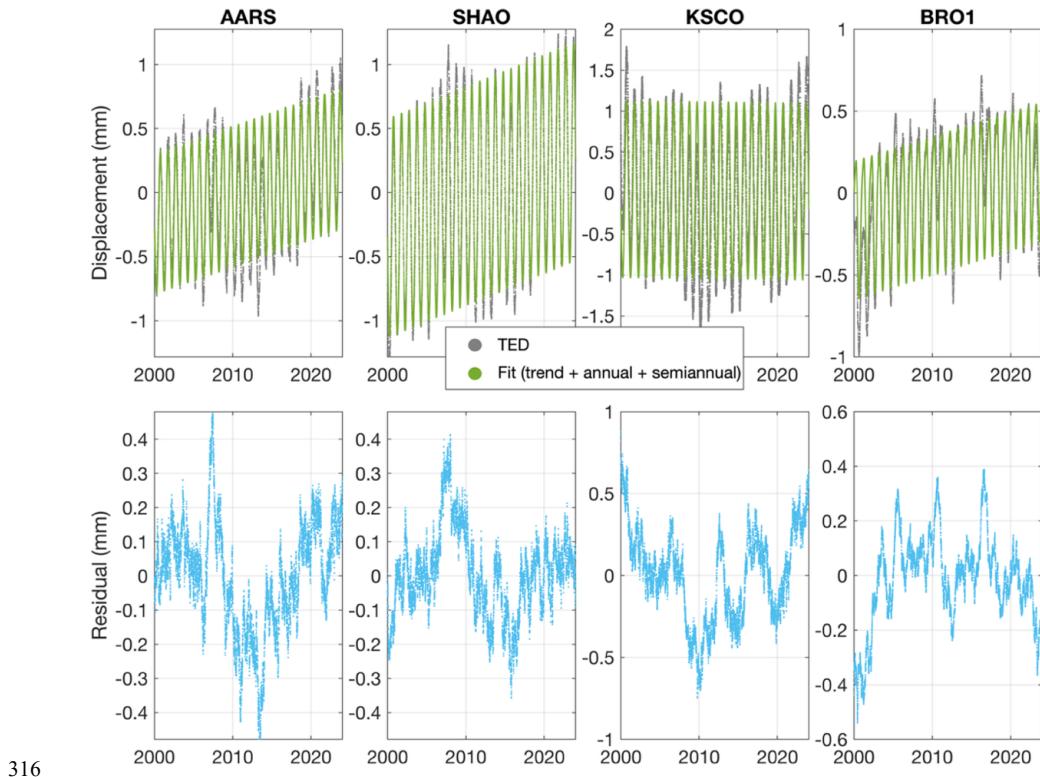
$$282 \Delta A_{ann} = A_{ann}^{(\pm 10\%)} - A_{ann}, \Delta \phi_{ann} = \phi_{ann}^{(\pm 10\%)} - \phi_{ann} \quad (7)$$

283 where $A_{ann}^{(\pm 10\%)}$ denotes the annual-cycle amplitude after applying a $+10\%$ (or -10%)
284 perturbation to the parameter, and $\phi_{ann}^{(\pm 10\%)}$ denotes the corresponding annual-cycle
285 phase. For summary statistics, we use the absolute values $|\Delta A_{ann}|$ and $|\Delta \phi_{ann}|$ to
286 represent the “sensitivity magnitude.” For the volcano plots, the empirical significance
287 p_{emp} is defined as the two-sided empirical tail probability within the same (region \times
288 parameter) subset:

$$289 p_{emp} = 2\min(F(\Delta), 1 - F(\Delta)) \quad (8)$$

290 where $F(\Delta)$ is the empirical cumulative distribution function. We plot $-\log_{10}(p_{emp})$ as
291 an index of “extremeness” or tail magnitude, emphasizing that it is an empirical measure
292 rather than a hypothesis-test p-value based on a specific statistical assumption.

293 3. Results and analysis


294 This section summarizes the spatiotemporal characteristics and practical performance
295 of the global TED time series (2000–2023) generated with FEM_{FL}. We first use representative
296 stations to illustrate TED variability across multiple timescales, and then present global
297 patterns of annual amplitude, annual phase, peak-to-peak range, and nonseasonal
298 variability. Next, regional transects and validation windows are used to evaluate the
299 sensitivity and internal consistency of the layered parameterization. Finally, using GNSS
300 vertical time-series together with residual-dispersion and spectral analyses, we quantify
301 how applying TED in combination with non-tidal mass-loading corrections reduces residual
302 scatter and apparent noise levels. All metrics and their computations are defined in Section
303 2.6.

304 3.1. Thermoelastic displacement characteristics

305 We illustrate typical temperature-driven vertical thermoelastic displacement (TED)
306 behavior using four representative GNSS reference stations—AARS, SHAO, KSCO, and BRO1
307 (Fig. 3)—selected to span contrasting climatic regimes. At all sites, TED shows a coherent
308 periodic signal with superimposed short-term fluctuations (upper panels). Residuals after
309 removing a linear trend and the annual and semiannual harmonics are shown in the lower
310 panels. Seasonally, TED closely follows the temperature cycle: warm-season expansion

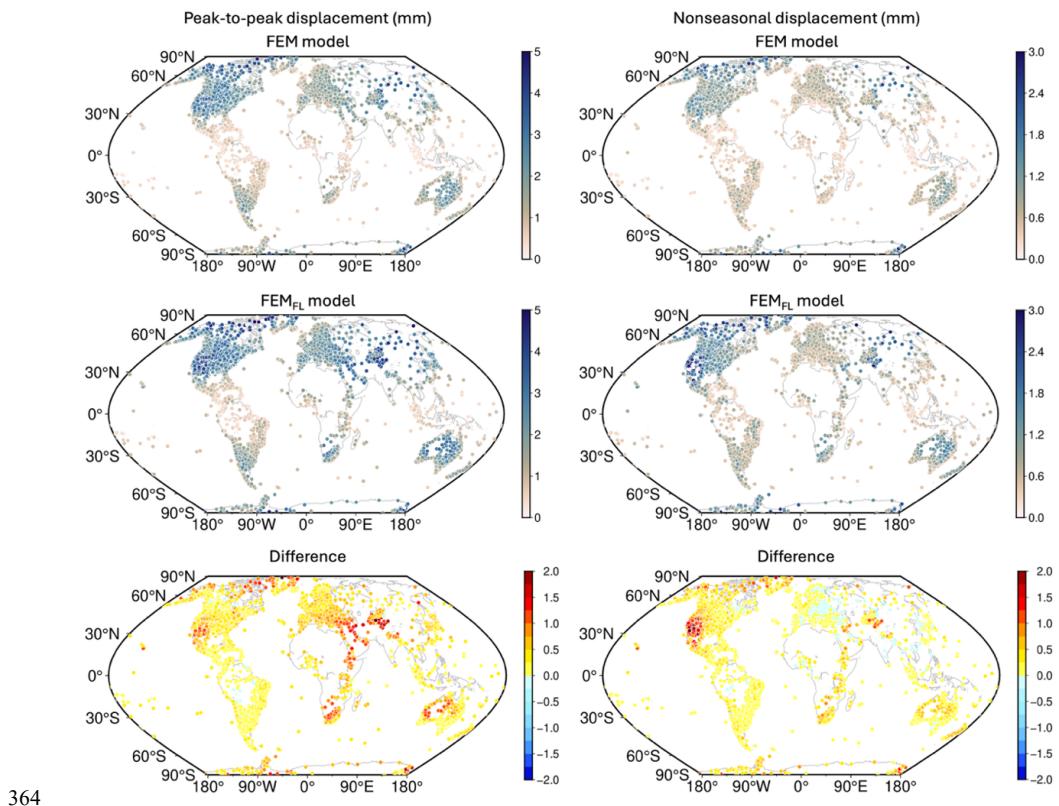
311 produces uplift, and cold-season contraction produces subsidence. At SHAO, for example,
312 TED typically peaks in July–August and reaches a minimum around January, with an annual
313 amplitude of ~1 mm. Sub-daily variability is also evident, with diurnal fluctuations of ~0.1–
314 0.3 mm that are particularly clear at arid sites with large day–night temperature contrasts
315 (e.g., AARS), highlighting a seasonally dominated signal with detectable sub-daily structure.


316
317 **Figure 3** Examples of vertical thermoelastic displacement series at four representative GNSS
318 stations (top: original series with fitted trend plus annual and semiannual harmonics;
319 bottom: residuals after removing trend, annual and semiannual harmonics).

320 To characterize global TED, we decompose the FEM_{FL} time series at all stations and
321 derive four metrics: annual amplitude and phase, peak-to-peak displacement, and
322 nonseasonal variability. [Figure 4](#) maps the annual amplitude and phase from the
323 homogeneous FEM and layered FEM_{FL} models, along with their differences. Both models
324 display consistent first-order patterns, with larger annual amplitudes over mid–high-latitude
325 continents and continental climates, smaller amplitudes in maritime and humid tropical
326 regions, and pronounced latitudinal structure in annual phase.

327 Relative to the homogeneous FEM, FEM_{FL} generally yields modestly larger annual
328 amplitudes, most notably in continental interiors. This behavior is physically consistent with
329 layered media: reduced near-surface thermal conductivity and diffusivity steepen shallow

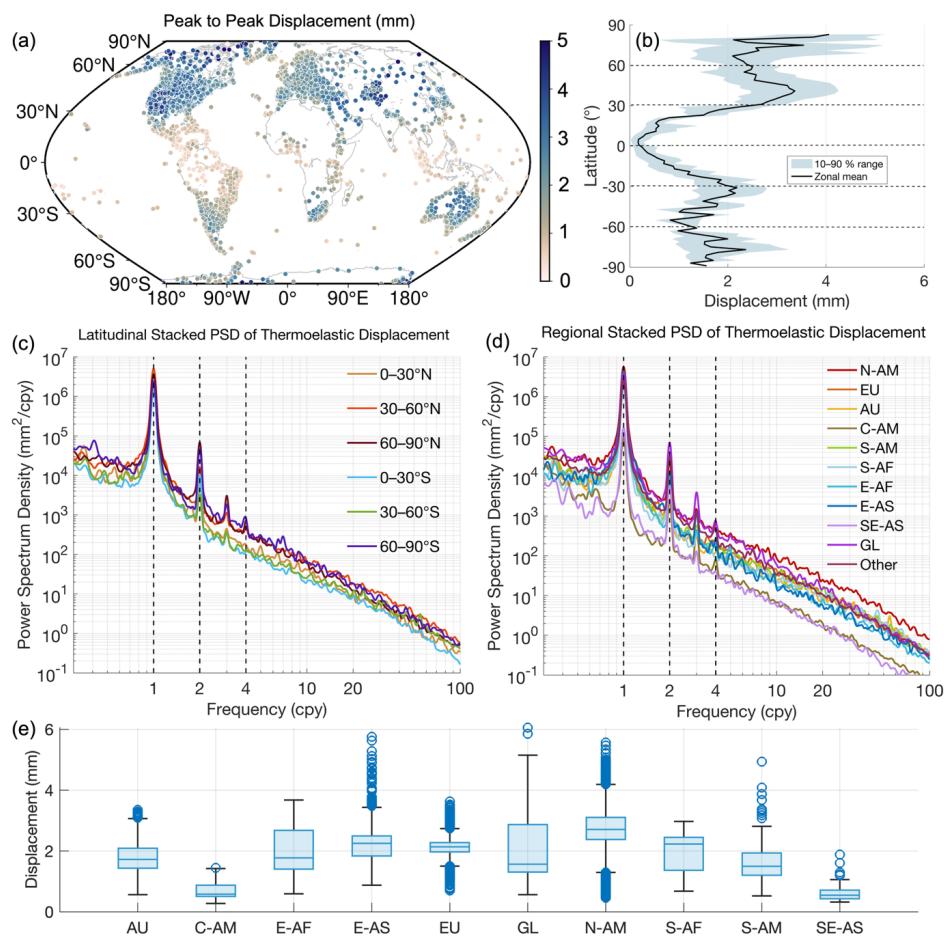
330 temperature gradients and concentrate thermal strain closer to the surface, which amplifies
331 the vertical response. In contrast, effective homogeneous properties tend to smooth this
332 insulating effect. Amplitude differences are predominantly positive, typically \sim 0–0.3 mm
333 and locally up to \sim 0.4 mm and are smaller in humid coastal or densely vegetated regions
334 where seasonal temperature forcing is damped. Annual-phase patterns remain broadly
335 similar, but FEM_{FL} introduces measurable shifts in some continental interiors: differences
336 are mostly within $\pm 40^\circ$ and commonly on the order of a few to a few tens of degrees (e.g.,
337 10° – 30°). These shifts are consistent with layering-induced changes in the attenuation and
338 phase lag of downward-propagating temperature variations, and hence in the timing of
339 peak displacement.


341 **Figure 4** Comparison of annual-cycle amplitude and phase estimated by the homogeneous
342 FEM and FEM_{FL} .

343 **Figure 5** shows global distributions of TED peak-to-peak displacement and nonseasonal
344 variability by comparing results from the homogeneous FEM and layered FEM_{FL} models.
345 Peak-to-peak displacement is defined as the difference between the maximum and
346 minimum TED values over 2000–2023, representing the total range at a site due to the
347 seasonal cycle together with shorter-period fluctuations. The two models show broadly
348 similar spatial patterns, but FEM_{FL} generally yields larger ranges: peak-to-peak values are
349 typically \sim 2–4 mm and reach \sim 5 mm at the upper end. The FEM_{FL} minus FEM differences are

350 predominantly positive, commonly 0–1 mm and locally approaching ~2 mm, indicating that
351 layered parameterization tends to increase the total displacement range, particularly where
352 short-period temperature variability is strong.

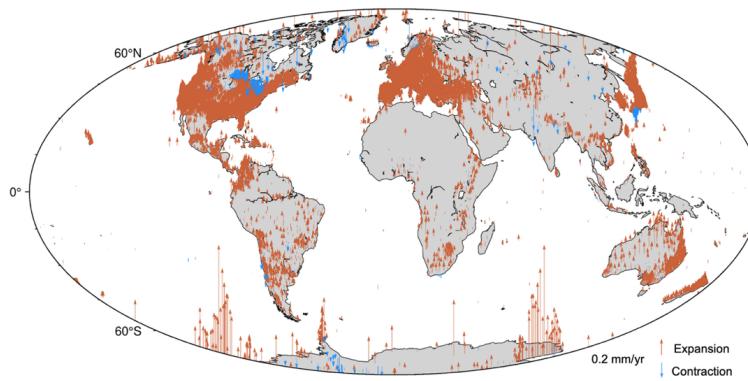
353 Nonseasonal variability is quantified from the residual series after removing a linear
354 trend and the annual and semiannual harmonics, and thus reflects TED variations from
355 diurnal-to-weather timescales as well as interannual to multi-year fluctuations. Relative to
356 the homogeneous FEM, FEM_{FL} produces slightly higher nonseasonal variability overall: the
357 differences are dominated by small positive values, but locally reach contrasts of up to ~±2
358 mm. This pattern is consistent with reduced near-surface conductivity and diffusivity
359 concentrating temperature perturbations within shallow layers, which amplifies
360 higher-frequency thermoelastic strain and, in turn, increase the residual variance. Figure 5
361 therefore indicates that subsurface layering influences not only seasonal amplitudes, but
362 also the overall displacement range and nonseasonal variability, with the largest impacts in
363 continental interiors.



364
365 **Figure 5** Comparison of peak-to-peak displacement and nonseasonal displacement intensity
366 estimated by the homogeneous FEM and FEM_{FL} .

367 **Figure 6** further summarizes FEM_{FL} -estimated TED peak-to-peak displacement through (i)
368 latitudinal statistics, (ii) regional groupings, and (iii) spectral characteristics. The latitudinal

369 analysis shows a clear, systematic dependence of peak-to-peak displacement on latitude.
370 However, the substantial within-band spread (10th–90th percentile range) indicates that
371 latitude alone does not control TED magnitude. Regional climate regimes and shallow
372 subsurface conditions also matter, particularly soil–bedrock stratification and its
373 thermophysical properties. Regional boxplots highlight these contrasts: North America and
374 East Asia show higher median peak-to-peak values, whereas Southeast Asia and Central
375 America are lower, consistent with differences in temperature forcing and near-surface
376 thermal responsiveness. To characterize the frequency content, we compute and stack TED
377 power spectral densities (PSDs) across stations within latitude bands and regions. The
378 stacked spectra show a dominant peak near 1 cycle per year (cpy; annual), secondary peaks
379 at 2 cpy (semiannual) and higher-integer harmonics, and a smoothly decaying
380 high-frequency tail. These patterns prove that TED represents a broadband thermoelastic
381 response with a strong seasonal component and appreciable nonseasonal variability
382 extending from monthly to weather timescales.

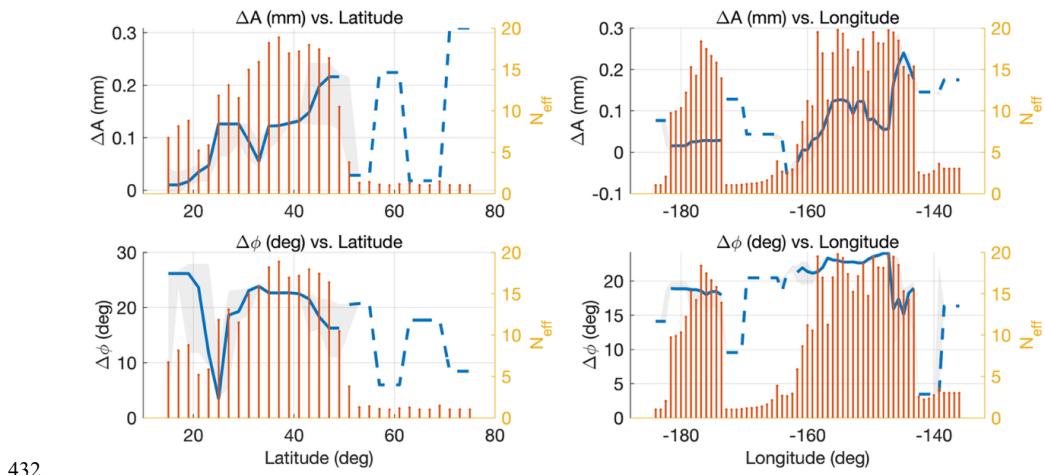

383
384 **Figure 6** Global distribution, regional statistics, and representative PSD characteristics of

385 FEM_{FL}-derived TED peak-to-peak displacement. Region abbreviations: N-AM (North America),
386 EU (Europe), AU (Australia), C-AM (Central America), S-AM (South America), S-AF (Southern
387 Africa), E-AF (Eastern Africa), E-AS (East Asia), SE-AS (Southeast Asia), GL (Greenland).

388 Notably, a weak long-term component is present in TED at some stations. We estimate
389 linear trends for the vertical TED series at each site (Fig. 7) and find that they are generally
390 small, with the vast majority within $\pm 0.2 \text{ mm yr}^{-1}$. However, the trends exhibit coherent
391 spatial structure instead of random scatter. Positive trends dominate globally, whereas
392 negative trends are more localized and may be associated with regional differences in
393 climate and surface conditions, including land cover, soil moisture, and snow or freeze-thaw
394 regimes. Such trend-like behavior may reflect multi-year non-stationarity in the
395 temperature forcing (e.g., regional warming/cooling or long-term drift in reanalysis
396 temperatures) and/or gradual adjustment of the shallow soil–bedrock thermal state toward
397 a shifting multi-year mean. These signals therefore require cautious interpretation and
398 should not be treated as tectonic or other secular geophysical trends. Although small from
399 year to year, these effects can accumulate into millimeter-level offsets over years to
400 decades, biasing long-term vertical velocity estimates and reference-frame stability metrics.
401 We therefore recommend treating the TED trend as a quantifiable temperature-related
402 background term in sensitivity analyses and uncertainty budgets for long-term GNSS velocity
403 and reference-frame applications.

404

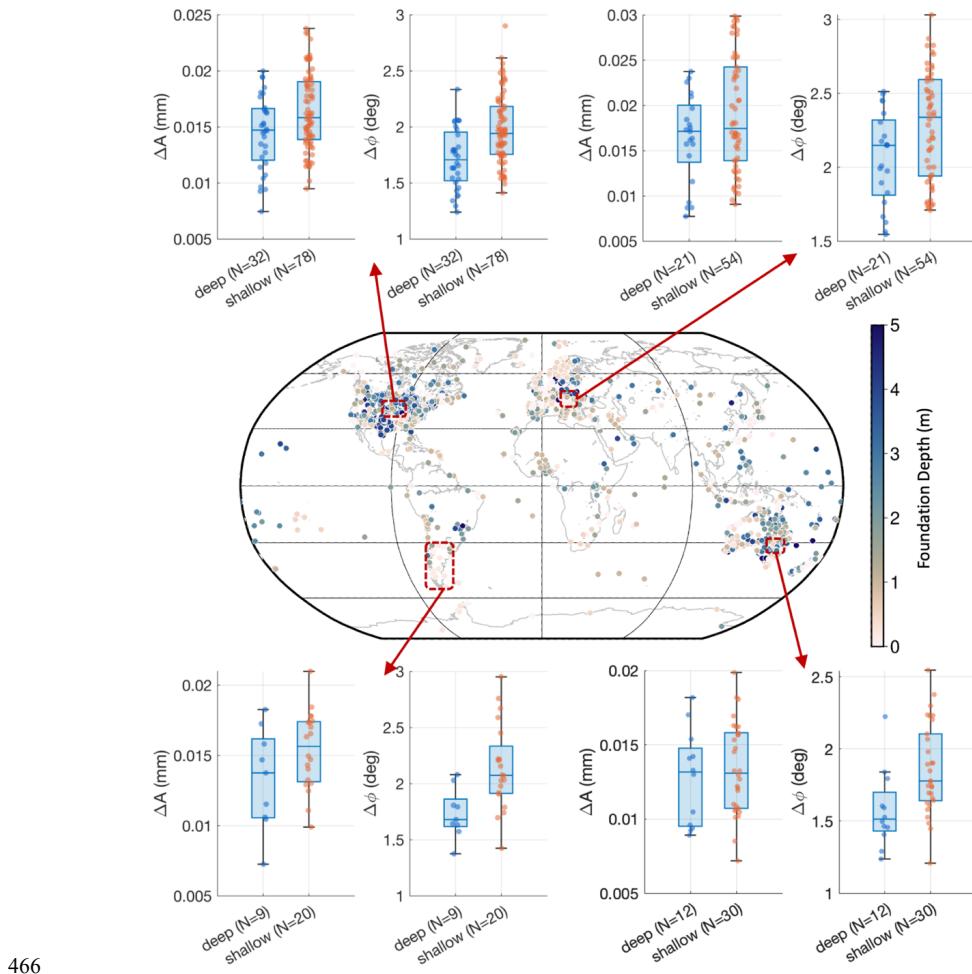
405 **Figure 7** Estimated linear trends of FEM_{FL}-derived thermoelastic displacement time series.


406 3.2. Reliability assessment of the thermoelastic dataset

407 To better isolate the influence of subsurface layering on the annual TED signal, we focus
408 on North America as a representative subregion and examine meridional and zonal
409 transects of the SoilGrids-based layered minus the homogeneous solution differences (Fig.
410 8). These transects summarize how the annual vertical amplitude difference (ΔA) and phase
411 difference ($\Delta\phi$) vary with latitude and longitude. The blue curve shows the weighted median
412 after two-dimensional k-nearest-neighbor (2D-kNN) smoothing, the gray envelope denotes
413 the interquartile range (IQR), and the orange tick marks indicate the effective number of
414 stations (N_{eff}) contributing within each smoothing window. Segments with $N_{\text{eff}} < 5$ are

415 plotted as dashed lines and are intended to convey only the broad trend.

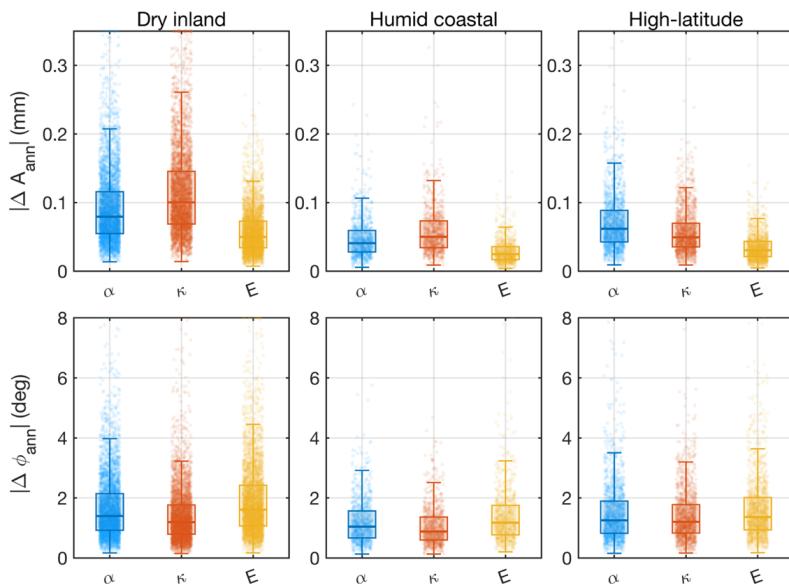
416 The layered model yields slightly larger annual amplitudes than the homogeneous
417 model across most North America locations. The amplitude difference (ΔA) is predominantly
418 positive, typically 0–0.2 mm and reaching ~ 0.25 mm in a few latitude–longitude segments.
419 This pattern is consistent with shallow thermophysical contrasts strengthening near-surface
420 temperature gradients and concentrating thermoelastic strain toward the surface, thereby
421 modestly enhancing the annual vertical response. Phase differences show greater spatial
422 variability: $\Delta\phi$ is generally on the order of tens of degrees (about 10–25° across most
423 segments) and forms coherent structures where station density is high. This indicates that
424 subsurface layering affects not only the amplitude but also the timing of the annual
425 maximum, most likely by modifying the effective penetration depth and phase lag of the
426 downward-propagating temperature wave and, in turn, the resulting thermo-mechanical
427 coupling. The differences remain modest overall (ΔA up to ~ 0.3 mm; $\Delta\phi$ up to ~ 30 °).
428 Nonetheless, the persistent positive ΔA in continental interiors, together with systematic
429 phase adjustments, is consistent with the expectation that reduced near-surface thermal
430 diffusivity (i.e., stronger insulation) enhances shallow thermoelastic expansion and alters
431 the phase lag.


432
433 **Figure 8** North America case study: meridional and zonal profiles of annual amplitude and
434 phase differences between the SoilGrids-layered solution and the homogeneous solution:
435 $\Delta A = (A_{\text{SoilGrids}} - A_{\text{homo}})$, $\Delta \phi = (\phi_{\text{SoilGrids}} - \phi_{\text{homo}})$. The blue curve shows the 2D-kNN–
436 smoothed weighted median, the gray shading denotes the IQR, and the orange bars indicate
437 N_{eff} ; segments with $N_{\text{eff}} < 5$ is shown as dashed lines.

438 To evaluate the robustness of FEM_{FL} across varying site conditions, we select GNSS
439 stations with relatively complete site documentation and perform an independent
440 comparison within four well-instrumented validation windows (Fig. 9). For each station, we
441 construct a site-constrained layered model using available information on

442 monument/foundation type, embedment depth, and material properties, estimate the
443 annual TED amplitude and phase, and compare these against the SoilGrids-based layered
444 solution. For interpretability, stations are grouped by foundation embedment depth: deep
445 foundations are expected to be more strongly coupled to the stable deeper medium (e.g.,
446 bedrock or competent deep soil), whereas shallow foundations are more strongly
447 influenced by near-surface soils. The map in Fig. 9 shows the validation sites and their
448 foundation depths (color-coded), and the boxplots summarize the annual amplitude
449 difference (ΔA) and phase difference ($\Delta \phi$) between the site-constrained and SoilGrids-based
450 solutions for the deep and shallow groups in each window (sample sizes in parentheses).

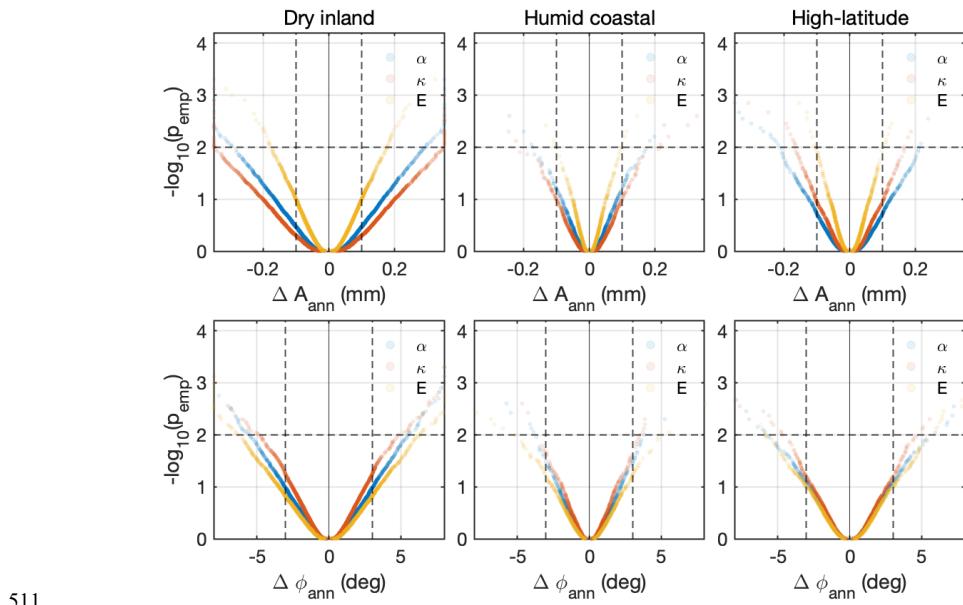
451 The two parameterizations agree closely. Across the four validation windows, ΔA is on
452 the order of 10^{-2} mm (typically 0.01–0.03 mm) and $\Delta \phi$ is generally within a few degrees
453 (about 1–3°). This indicates that, where site surveys are unavailable, gridded SoilGrids
454 thermophysical properties provide a reasonable statistical representation of typical
455 conditions and that FEM_{FL} is not unduly sensitive to moderate parameter differences.
456 Shallow-foundation sites show slightly higher medians and larger dispersion in both ΔA and
457 $\Delta \phi$, consistent with greater sensitivity to near-surface thermal processes and local material
458 heterogeneity, whereas deep-foundation sites exhibit tighter distributions and more
459 consistent behavior across windows. This independent validation supports the
460 transferability of FEM_{FL} for global application and suggests that incorporating
461 station-specific information, where available, can further refine local estimates of annual
462 amplitude and phase. Since detailed foundation-depth and material metadata remain
463 sparse across global GNSS networks, the small discrepancies observed here also support
464 SoilGrids-based layering as a practical and physically plausible default for global
465 thermoelastic corrections.



467 **Figure 9** Local validation of FEM_{FL} using stations with known foundation depth and material
468 information: the annual amplitude and phase differences between site-specific layered
469 solution and the SoilGrids-layered solution, shown separately for deep and shallow
470 foundation stations.

471 **Figure 10** summarizes the distribution of absolute changes in annual TED amplitude and
472 phase ($|\Delta A_{\text{ann}}|$ and $|\Delta \phi_{\text{ann}}|$) induced by $\pm 10\%$ perturbations to key thermo-mechanical
473 parameters, stratified into three representative climate–geographic groups (arid inland,
474 humid coastal, and high-latitude). Across all groups, the responses are concentrated at small
475 values with a limited long tail, indicating that FEM_{FL} is generally robust to moderate
476 parameter uncertainty while allowing for stronger sensitivity at a small subset of stations.
477 The arid-inland group shows the largest dispersion in both $|\Delta A_{\text{ann}}|$ and $|\Delta \phi_{\text{ann}}|$, consistent
478 with stronger annual temperature forcing and steeper near-surface thermal gradients that
479 can amplify uncertainty in thermal expansion and diffusivity. The humid-coastal group
480 exhibits the tightest distributions (smaller medians and interquartile ranges), reflecting

481 smoother, ocean-moderated forcing and more stable downward propagation of thermal
482 signals. The high-latitude group is intermediate overall but displays a more pronounced tail
483 at some sites, plausibly linked to snow/freeze–thaw conditions and strong seasonal
484 temperature contrasts. In terms of parameter influence, the linear thermal expansion
485 coefficient α most directly controls $|\Delta A_{\text{ann}}|$ (amplitudes scale approximately with α),
486 thermal diffusivity κ primarily affects $|\Delta \phi_{\text{ann}}|$ by governing penetration depth and phase lag,
487 and Young's modulus E modulates amplitudes through material stiffness with typically
488 intermediate sensitivity. These patterns provide a basis for uncertainty propagation and
489 help prioritize parameters for further refinement.

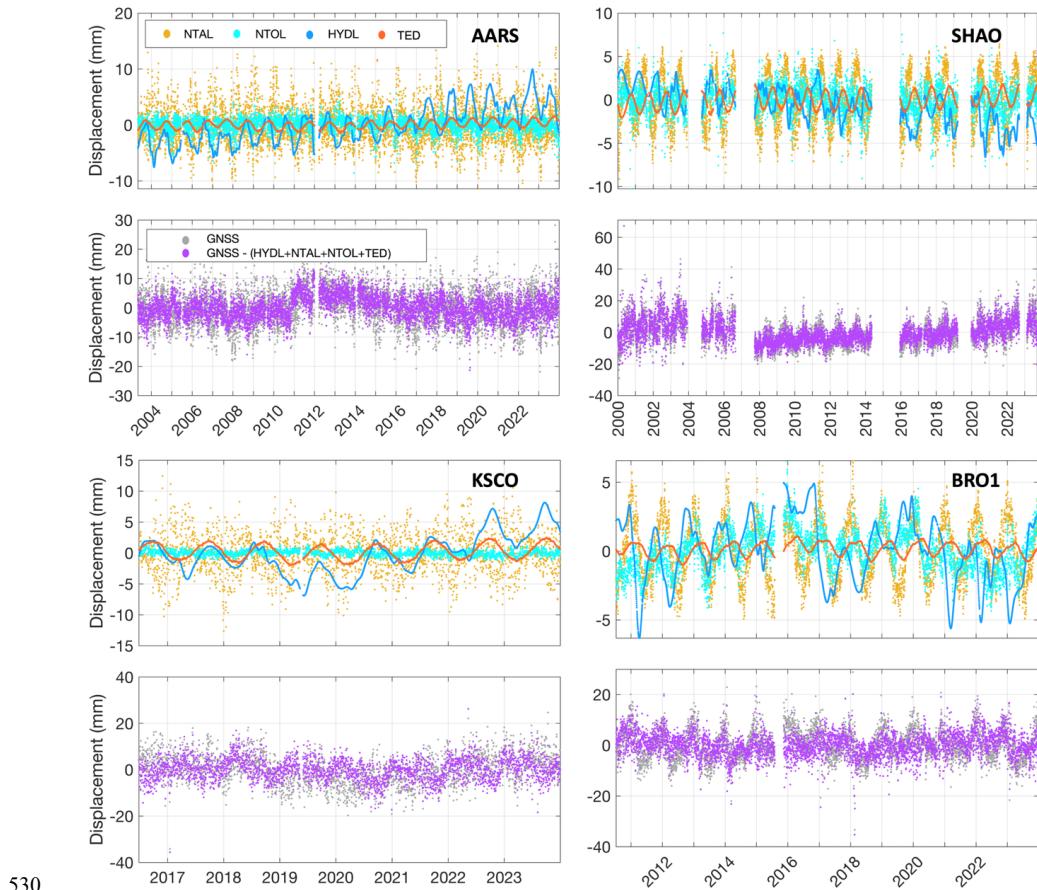


490
491 **Figure 10** Distribution of TED annual-cycle sensitivity under $\pm 10\%$ parameter perturbations.
492 Box-and-scatter summaries for three region types (arid interior, humid coastal, and high
493 latitude), showing changes in the TED annual cycle when α (linear thermal expansion
494 coefficient), κ (thermal diffusivity), and E (Young's modulus) are perturbed by $\pm 10\%$.

495 **Figure 11** further quantifies sensitivity using a perturbation-magnitude–
496 empirical-significance framework. The x-axis shows the signed perturbation-induced
497 changes in annual amplitude and phase (ΔA_{ann} and $\Delta \phi_{\text{ann}}$), and the y-axis plots $-\log_{10}(p_{\text{emp}})$,
498 where p_{emp} is the within-group empirical tail probability and measures how atypical a
499 station's response is for a given (region, parameter) combination. The resulting volcano
500 plots exhibit a characteristic V-shape: most stations cluster near zero change (large p_{emp} ; low
501 significance), whereas a small subset shows larger responses (small p_{emp} ; high significance)
502 and therefore appears higher on the y-axis. This representation captures both response
503 magnitude and relative rarity, separating pervasive low-level variability from a limited
504 number of genuinely sensitive sites. It enables efficient global identification of station

505 classes and regions that merit closer scrutiny (e.g., arid-inland and some high-latitude
506 environments) and supports rapid screening using threshold lines. The volcano plots are
507 consistent with boxplot summaries, indicating that annual TED estimates are generally
508 robust to moderate parameter uncertainty while exhibiting interpretable high-sensitivity
509 tails under specific environmental conditions, motivating the use of sensitivity flags or
510 screening rules in quality control and downstream applications.

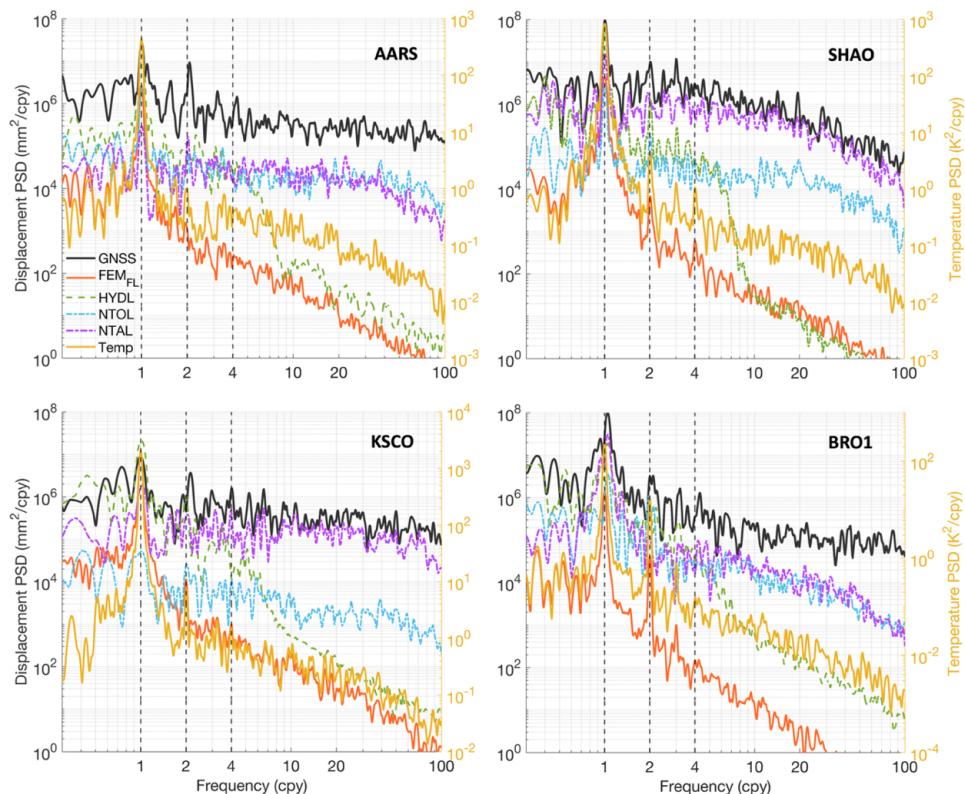
511


512 **Figure 11** Volcano plots of TED annual-cycle sensitivity: ΔA_{ann} and $\Delta \phi_{\text{ann}}$ induced by $\pm 10\%$
513 parameter perturbations and their empirical significance (p_{emp}).

514 3.3. Contribution of thermoelastic effects to GNSS motion

515 To illustrate how temperature-driven TED and non-tidal mass-loading corrections affect
516 GNSS vertical time series, we show examples for four representative stations (AARS, SHAO,
517 KSCO, and BRO1; Fig. 12). For each station, the upper panel displays the four environmental
518 displacement components (NTAL, NTOL, HYDL, and TED), highlighting their relative
519 contributions across seasonal and subseasonal timescales. The lower panel compares the
520 original GNSS vertical series with the corrected residual obtained after removing the
521 combined signal (NTAL+NTOL+HYDL+TED). Before correction, all stations exhibit
522 pronounced seasonal variability along with varying levels of nonseasonal fluctuations; after
523 correction, both the residual dispersion and the seasonal peak-to-trough range are
524 substantially reduced, indicating that these processes account for a large fraction of the
525 non-tectonic vertical signal. At SHAO, for example, the strong annual cycle in the raw series
526 is largely suppressed after correction, leaving mainly small-amplitude higher-frequency

527 variability and slowly varying residual structure. The dominant contributors vary by site:
528 HYDL is often larger in monsoon-influenced regions, TED tends to be more prominent in arid
529 or continental climates, and coastal stations show an additional NTOL contribution.

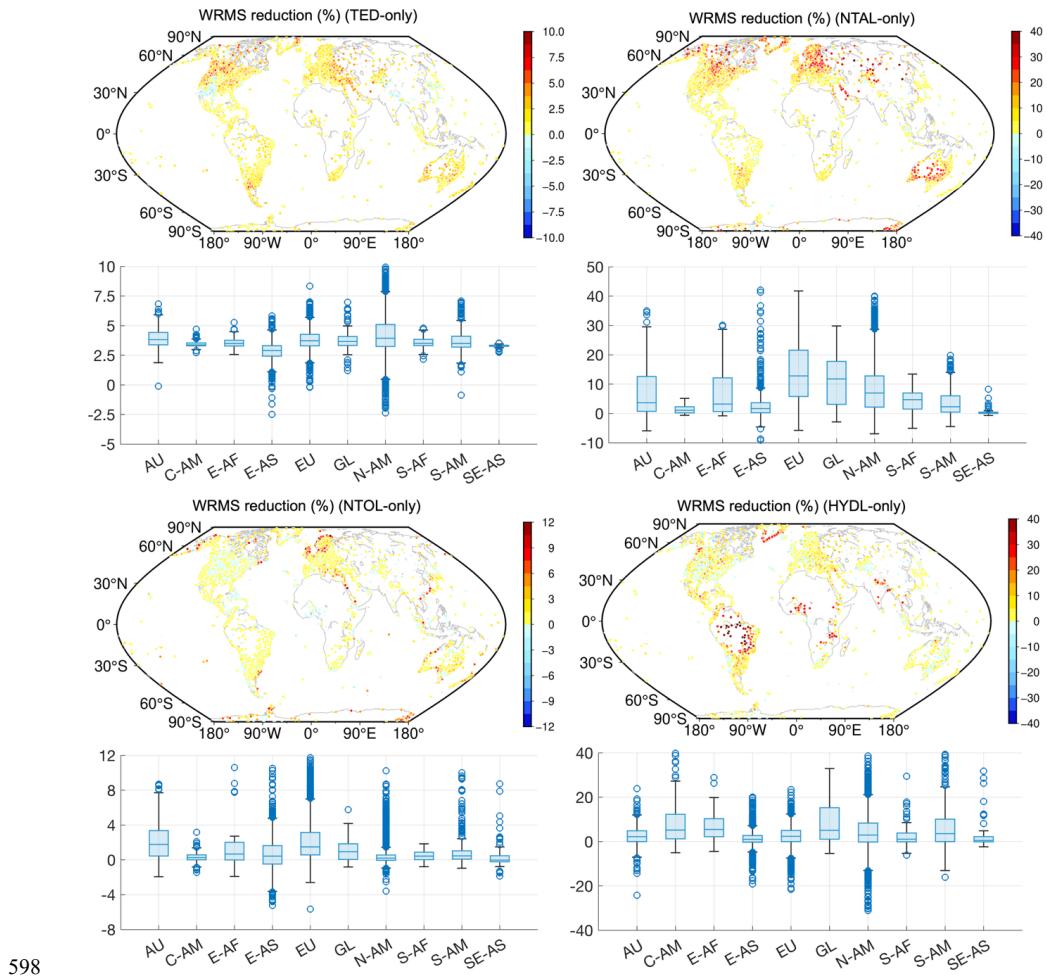


530
531 **Figure 12** Component comparison and correction effect at four representative stations: the
532 top panels show modeled displacements from NTAL, NTOL, HYDL, and TED, and the bottom
533 panels compare the raw GNSS vertical series with the corrected series after removing these
534 components.

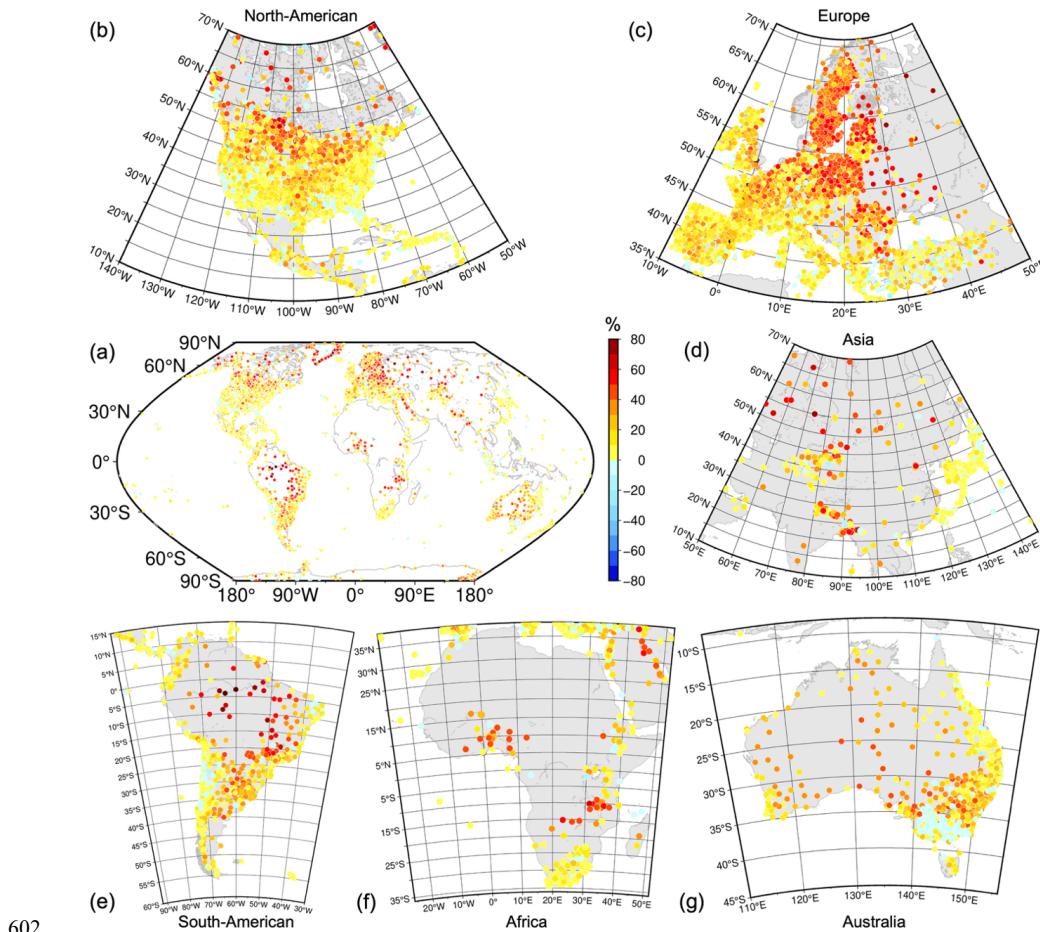
535 To compare the frequency-domain contributions of TED and non-tidal mass loading to
536 vertical variability of GNSS stations, we compute power spectral densities (PSDs) for four
537 representative stations (Fig. 13). We show PSDs for the raw GNSS height series, the modeled
538 components (FEM_{FL} -TED, HYDL, NTOL, and NTAL), and the temperature forcing (right axis).
539 The GNSS spectra displays a dominant peak near 1 cpy (annual), with secondary peaks near
540 2 cpy (semiannual) at some sites, together with elevated power at lower frequencies,
541 indicating the coexistence of seasonal and longer-period variability. The temperature forcing
542 concentrates power near 1 cpy, and TED exhibits a co-located annual peak, indicating that

543 the surface-temperature cycle is efficiently expressed as thermoelastic motion. HYDL and
544 NTAL (and NTOL at coastal sites) also contribute appreciable power in the same seasonal
545 bands, implying that the observed GNSS seasonal peaks typically reflect superposition of
546 multiple environmental processes. [Figure 13](#) is limited to ≤ 100 cpy and therefore does not
547 include diurnal and semi-diurnal frequencies (≥ 365 cpy). For daily solutions, sub-daily
548 thermoelastic variability is more likely to influence this band through aliasing rather than as
549 resolvable spectral peaks. The PSD comparison thus provides complementary evidence that
550 both TED and non-tidal loading contribute substantially to GNSS vertical power at the key
551 seasonal frequencies.

552


553 **Figure 13** Power spectral density (PSD) comparison for representative GNSS stations:
554 vertical GNSS displacement versus modeled components, including FEM_{FL} thermoelastic
555 displacement, HYDL, NTOL, NTAL, and the temperature-forcing spectrum.

556 To quantify the contribution of individual environmental processes to GNSS vertical
557 scatter, we apply four corrections separately at each station—NTAL, NTOL, HYDL, and
558 TED—using an identical processing and evaluation scheme. The benefit of each single
559 correction is quantified as the percentage change in the weighted root-mean-square (WRMS)
560 residual dispersion relative to the uncorrected series. [Figure 14](#) summarizes these changes
561 using global maps and regional boxplots for each component. The correction effectiveness is



562 strongly region dependent and broadly reflects the underlying forcing. HYDL yields the
563 largest reductions in regions with strong seasonal water-storage variability (e.g., monsoon
564 regions, the Amazon basin, and snow-affected high latitudes), where residual dispersion
565 commonly decreases by ~10–30% and locally by ~30–40%. NTAL shows a more spatially
566 extensive impact, with larger improvements in mid–high latitudes and some high-elevation
567 areas, typically reducing dispersion by a few percent to >10%. NTOL primarily affects coastal
568 and island stations and is weak inland, but can still reduce dispersion by a few percent and
569 locally by up to ~10% near coasts with strong seasonal sea-level variability or complex
570 geometry. TED provides a more ubiquitous but generally modest benefit: dispersion
571 reductions are typically a few percent (often ~5%) and are more pronounced in continental
572 arid/semi-arid interiors with large diurnal temperature ranges. For each component, a small
573 subset of stations shows increased dispersion after correction, indicating limited benefit or
574 slight degradation where local effects dominate, noise levels are high, or the correction is
575 not well matched to site conditions. These results underscore that atmospheric, oceanic,
576 hydrological, and thermoelastic effects dominate in different regions, and that no single
577 correction can substitute for the others at global scale.

578 When the major environmental corrections—NTAL, NTOL, HYDL, and TED—are applied
579 jointly, a larger fraction of the seasonal and low-frequency non-tectonic variability in GNSS
580 vertical time series is explained, resulting in a substantial reduction in residual scatter.
581 [Figure 15](#) maps the resulting percentage reduction in WRMS residual dispersion relative to
582 the uncorrected series, with regional zoom-ins for North America, Europe, Asia, South
583 America, Africa, and Australia. Relative to the single-component corrections (Fig. 14), the
584 combined correction produces a more spatially continuous and regionally coherent
585 improvement. WRMS reductions exceed 10% at most stations and are largest where
586 multiple environmental signals are pronounced and station coverage is dense (e.g., North
587 America, Europe, and parts of East Asia), typically reaching 20–35% and peaking at ~70% in
588 the best cases. This pattern indicates that vertical scatter in these regions is largely driven by
589 the superposition of atmospheric, hydrological, oceanic, and temperature-related effects
590 acting within overlapping frequency bands. Improvements are generally smaller in humid
591 tropical regions, some islands, and sparsely instrumented areas, and a small subset of
592 stations shows near-zero or negative changes, consistent with limited benefit where local
593 nonlinear processes, site effects, or observational noise dominate. Applying TED along with
594 non-tidal loading thus provides an effective global strategy for suppressing major
595 non-tectonic signals, reducing residual noise and low-frequency scatter, and yielding cleaner
596 time series for reference-frame stability assessment, vertical land motion studies, and
597 detection of subtler geophysical signals.

Figure 14 Percentage reduction in WRMS after applying NTAL, HYDL, NTOL, and TED corrections individually, shown as global maps and regional boxplots. Regional abbreviations are consistent with those in Fig. 6e.

602

603 **Figure 15** Vertical WRMS reduction after jointly applying NTAL, HYDL, NTOL, and TED
604 corrections: global map and regional zoom-ins.

605 **4. Data availability**

606 The global dataset of temperature-driven vertical thermoelastic displacement (TED)
607 time series for continuous GNSS stations was produced following the workflow described in
608 Section 2 and covers ~15,000 stations for 2000–2023. The archived release is available via
609 Zenodo (DOI: 10.5281/zenodo.18256342; [Lu et al., 2026](#)) and is mirrored on the Ground
610 Motion Data Service (GMDS) platform, where users can query by station name and time
611 span and download station-level TED time series together with associated metadata. Data
612 files are organized by station and provide time tags (UTC) and vertical TED displacements
613 (mm), along with essential metadata (e.g., station latitude/longitude, record start/end dates,
614 dataset version, and quality flags), enabling direct alignment with GNSS height time series
615 for correction and evaluation workflows. Users should cite the Zenodo DOI and, when

616 accessing data through GMDS, also cite the GMDS landing page together with the dataset
617 version (if applicable) and the access date.

618 **5. Conclusion and discussion**

619 Correction-ready, multi-decade non-tectonic displacement time series are essential for
620 GNSS reference-frame stability assessments and long-term, wide-area deformation analyses.
621 However, strong heterogeneity in site conditions, temperature forcing, and temporal
622 sampling has hindered a globally consistent and reproducible characterisation of
623 temperature-driven thermoelastic deformation. To address this gap, hourly ERA5
624 soil-temperature forcing is combined with depth-resolved thermophysical properties from
625 SoilGrids, and a full-spectrum layered finite-element model is implemented globally,
626 producing a global dataset of vertical thermoelastic displacement (TED) time series for
627 ~15,000 continuous GNSS stations over 2000–2023, released openly via the GMDS platform.
628 Methodologically, the dataset couples layered thermo-mechanical physics with a broadband
629 response spanning semi-diurnal/diurnal through seasonal and interannual timescales. To
630 mitigate diurnal aliasing and longitude-dependent artefacts associated with fixed-epoch
631 sampling in daily GNSS solutions, the model is evaluated at four UTC epochs (00/06/12/18)
632 and the four UTC-epoch realizations are combined using a phase-consistent scheme. This
633 strategy retains sub-daily variability while reducing undersampling- and aliasing-related
634 artefacts, yielding daily TED series that align directly with standard daily GNSS height
635 products for practical correction.

636 Results reveal pronounced regional contrasts in TED. Peak-to-peak displacements are
637 typically at the millimeter level, generally larger in arid interiors and continental climates,
638 but smaller in maritime environments and persistently humid regions. Relative to a
639 homogeneous-medium assumption, incorporating subsurface layering produces systematic
640 increases in annual amplitude and shifts in the timing of the annual maximum in some areas,
641 indicating that site-specific parameterization of depth-dependent thermophysical properties
642 is important for globally consistent TED estimates. Independent validation using 256
643 stations with site documentation across four well-instrumented regions shows that the
644 SoilGrids-based layered solution agrees closely with site-constrained layered models, with
645 annual-amplitude differences typically 0.01–0.03 mm and annual-phase differences
646 generally within ~1–3° (with a slightly larger spread at shallow-foundation sites). In practical
647 applications, applying TED together with non-tidal loading corrections (NTAL/NTOL/HYDL)
648 reduces seasonal—and part of the nonseasonal—variability in GNSS vertical time series at
649 most stations and produces broadly consistent decreases in residual dispersion, typically
650 20–35% in densely instrumented regions (e.g., North America, Europe, and parts of East
651 Asia), reaching ~70% at the best-performing sites. Collectively, these improvements support
652 more robust tectonic-velocity estimation, cleaner separation of non-tectonic signals, and
653 millimeter-level reference-frame establishment.

654 Nevertheless, several limitations remain. First, because the dataset relies on globally
655 uniform inputs, we adopt the simplifying assumption that the monument foundation is
656 tightly coupled to the surface and shallow subsurface, and we cannot yet incorporate
657 station-specific engineering information (e.g., foundation type, embedment depth, and

658 materials) in a systematic way. As a result, the obtained TED amplitude and phase may be
659 biased for rooftop installations, deep-anchored monuments, or other atypical configurations.
660 Users are therefore encouraged to consult site logs or independent metadata to filter
661 stations, stratify analyses, or perform sensitivity tests to mitigate structure-related biases.
662 Second, SoilGrids provides static thermophysical properties, and we do not explicitly
663 represent processes such as time-varying soil moisture, freeze–thaw phase change, or
664 pore-water migration that can modulate effective thermal diffusivity and phase lag. These
665 omissions may increase uncertainty in seasonally frozen or permafrost regions and in
666 strongly monsoonal humid climates. Future work could integrate permafrost, soil-moisture,
667 and snow datasets to develop seasonally varying effective-parameter schemes, thereby
668 improving model fidelity in complex environments. Third, the temperature forcing is derived
669 from reanalysis, and regional biases or surface energy-balance errors may project into weak
670 low-frequency components over multi-year periods. We therefore treat the TED linear term
671 primarily as a diagnostic quantity rather than a tectonic indicator, and recommend
672 consistent detrending in long-term velocity analyses and, where possible, cross-validation
673 against independent temperature or surface energy-flux observations.

674 **Author contributions**

675 RL proposed the initial idea, designed the experiments, developed the software, and wrote
676 the manuscript. ZL and YF reviewed and revised the manuscript, focusing on the paper
677 structure, correctness of concept, data, and analysis. LY assisted in developing the GMDS
678 website. PY reviewed and revised the manuscript. All authors approved of the manuscript.

679 **Competing interests**

680 The contact author has declared that none of the authors has any competing interests.

681 **Disclaimer**

682 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional
683 claims made in the text, published maps, institutional affiliations, or any other geographical
684 representation in this paper. While Copernicus Publications makes every effort to include
685 appropriate place names, the final responsibility lies with the authors.

686 **Acknowledgments**

687 We gratefully acknowledge the Nevada Geodetic Laboratory (NGL) for providing the GNSS
688 coordinate time series, GFZ for the non-tidal atmospheric and ocean loading displacement
689 products (NTAL and NTOL), and the GRACE/GRACE-FO Mascon solutions provided by NASA
690 that were used to derive the hydrological loading (HYDL). We also thank ECMWF for the
691 ERA5 temperature datasets. Figures were generated using the Generic Mapping Tools (GMT)
692 software ([Wessel et al., 2013](#)). Ran Lu thanks the China Scholarship Council (CSC) for
693 supporting the portion of this work carried out at the Queensland University of Technology
694 (QUT), Australia.

695 **Financial support**

696 This research was supported in part by the National Natural Science Foundation of China
697 (grant nos: [424B2026](#), [42574041](#), [42192531](#), [42388102](#)) and by the Scientific Research
698 Innovation Capability Support Project for Young Faculty (grant no: [SRICSPYF-ZY2025007](#)),
699 and by the Wuhan Natural Science Foundation (grant no: [2024040701010029](#)).

700 **References**

701 Altamimi Z, Rebischung P, Collilieux X, Métivier L, Chanard K (2023). ITRF2020: an
702 augmented reference frame refining the modeling of nonlinear station motions.
703 *Journal of Geodesy*, 97.

704 Biot MA (1956) Thermoelasticity and irreversible thermodynamics. *Journal of Applied
705 Physics*, 27:240–253.

706 Berger J (1975) A note on thermoelastic strains and tilts. *Journal of Geophysical Research*,
707 80(2), 274– 277. <https://doi.org/10.1029/JB080i002p00274>

708 Blewitt G, Hammond W, Kreemer C (2018) Harnessing the GPS Data Explosion for
709 Interdisciplinary Science. *Eos*, 99. <https://doi.org/10.1029/2018eo104623>

710 Clarke PJ, Lavallée DA, Blewitt G, van Dam TM, Wahr JM (2005) Effect of gravitational
711 consistency and mass conservation on seasonal surface mass loading models.
712 *Geophysical Research Letters* 32(L08306).

713 Dong D, Fang P, Bock Y, Cheng M. K, Miyazaki S. I (2002) Anatomy of apparent seasonal
714 variations from GPS-derived site position time series. *Journal of Geophysical Research*,
715 107(B4), ETG-9. <https://doi.org/10.1029/2001JB000573>

716 Fritsche M, Döll P, Dietrich R (2012) Global-scale validation of model-based load
717 deformation of the Earth's crust from continental watermass and atmospheric pressure
718 variations using GPS. *Journal of Geodynamics*, 59–60(1):133–142.
719 <https://doi.org/10.1016/j.jog.2011.04.001>

720 Fang M, Dong D, Hager H (2014) Displacements due to surface temperature variation on a
721 uniform elastic sphere with its centre of mass stationary. *Geophysical Journal
722 International*, 196:194–203. <https://doi.org/10.1093/gji/gjt335>

723 Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C,
724 Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut JN (2018). ERA5
725 hourly data on single levels from 1940 to present [Dataset]. Copernicus Climate Change
726 Service (C3S) Climate Data Store (CDS).

727 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez, M, Kilibarda M, Blagotić A,
728 Shangguan W, Wadoux A, Ribeiro E, Kempen B, Leenaars J, Walsh MG, Gonzalez MR
729 (2017). SoilGrids250m: Global gridded soil information based on Machine Learning.
730 *PLoS ONE*, 12(2), e0169748.

731 Jiang W, Li Z, van Dam T, Ding W (2013) Comparative analysis of different mass loads
732 methods and their impacts on the GPS height time series. *Journal of Geodesy*, 87(7),
733 687– 703. <https://doi.org/10.1007/s00190-013-0642-3>

734 Lei J, Chen W, Li Z, Li F, Zhang S (2020) A full-spectrum bedrock thermal expansion model
735 and its impact on the global positioning system height time series. *Geophysical*
736 *Research Letters*, 47(1). <https://doi.org/10.1029/2019GL086022>

737 Li Z, Chen W, van Dam Tonie, Rebischung Paul, Altamimi Zuheir (2020) Comparative analysis
738 of different atmospheric surface pressure models and their impacts on daily ITRF2014
739 GNSS residual time series. *Journal of Geodesy*, 94(4), 1-20.
740 <https://doi.org/10.1007/s00190-020-01370-y>

741 Li Z, Lu R, Jiang W, Dong D, Lei J, Lu Y, Ding X, Yang C, Chen H, Chen Q (2024) A refined
742 full-spectrum temperature-induced subsurface thermal expansion model and its
743 contribution to the vertical displacement of global GNSS reference stations. *Journal of*
744 *Geodesy*, 98, 25. <https://doi.org/10.1007/s00190-024-01834-5>

745 Li Z, Jiang W, van Dam T, Zou X, Chen Q, Chen H (2025) A Review on Modeling
746 Environmental Loading Effects and Their Contributions to Nonlinear Variations of
747 Global Navigation Satellite System Coordinate Time Series. *Engineering*, 47, 26-37.
748 <https://doi.org/10.1016/j.eng.2024.09.001>

749 Lu R, Li Z, Chen Q, Ding X, Yang C, Zhang M, Lu Y, Fan W, Chen H, Jiang W (2024) On the
750 contributions of refined thermal expansion model to nonlinear variations in different
751 GNSS height time series products. *GPS Solutions*, 28, 80.
752 <https://doi.org/10.1007/s10291-024-01625-7>

753 Lu R, Li Z, Ye L, Wang J, Yuan P, Ding X, Zhang M, Feng Y (2025) Diurnal temperature forcing
754 and subsurface stratification drive thermoelastic displacements at global GNSS stations,
755 *Journal of Geophysical Research: Solid Earth* (Under Review)

756 Lu, R., Li, Z., Feng, Y. (2026). TED: A global temperature-driven thermoelastic displacement
757 dataset for GNSS reference stations (2000–2023) [Data set]. Zenodo.
758 <https://doi.org/10.5281/zenodo.18256342>

759 Romagnoli C, Zerbini S, Lago L, Richter B, Simon D, Domenichini F, Elmi C, Ghirotti M (2003)
760 Influence of soil consolidation and thermal expansion effects on height and gravity
761 variations. *Journal of Geodynamics*, 35(4-5), 521-539.
762 [https://doi.org/10.1016/S0264-3707\(03\)00012-7](https://doi.org/10.1016/S0264-3707(03)00012-7)

763 Prawirodirdjo L, Ben-Zion Y, Bock Y (2006) Observation and modeling of thermoelastic strain
764 in southern California integrated GPS network daily position time series. *Journal of*
765 *Geophysical Research*, 111, B02408. <https://doi.org/10.1029/2005JB003716>

766 Poggio L, de Sousa L M, Batjes N H, Heuvelink G B M, Kempen B, Ribeiro E, Rossiter D (2021)
767 SoilGrids 2.0: producing soil information for the globe with quantified spatial
768 uncertainty, *SOIL*, 7, 217–240, <https://doi.org/10.5194/soil-7-217-2021>.

769 van Dam T, Wahr J, Lavallée D (2007) A comparison of annual vertical crustal displacements
770 from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. *Journal*
771 *of Geophysical Research: Solid Earth*, 112(B3).

772 Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved
773 version released. *Eos Trans AGU* 94(45):409–410.

774 Wei N, Zhou Y, Shi C, Xu X, Rebischung P, Liu J (2025) Toward a refined estimation of
775 geocenter motion from GNSS displacements: Mitigating thermoelastic deformation and
776 systematic errors. *Journal of Geophysical Research: Solid Earth*, 130(7),
777 e2024JB028967.

778 Xu X, Dong D, Fang M, Zhou Y, Wei N, Zhou F (2017) Contributions of thermoelastic
779 deformation to seasonal variations in GPS station position. *GPS Solutions*, 21(3), 1265–
780 1274. <https://doi.org/10.1007/s10291-017-0609-6>

781 Yan H, Chen W, Zhu Y, Zhang W, Zhong M (2009) Contributions of thermal expansion of
782 monuments and nearby bedrock to observed GPS height changes. *Geophysical
783 Research Letters*, 36. <https://doi.org/10.1029/2009GL038152>

784 Yan H, Chen W, Shu Y, Zhang W, Zhong M, Liu G (2010) Thermal effects on vertical
785 displacement of GPS stations in China. *Chinese Journal of Geophysics* (in Chinese),
786 53(4): 825–832.