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Abstract. Accurate information on the location and operational status of offshore oil and gas platforms (OOGPs) is important

to inform decision-making by various stakeholders and to evaluate the environmental impacts of OOGPs. However, existing

OOGP databases are often incomplete or outdated data. In this work, we use satellite data and the Google Earth Engine (GEE)

platform to construct a new database of OOGPs for six major offshore oil and gas basins in the world between 2017 and

2023. We use synthetic aperture radar (SAR) images from the Sentinel-1 satellite mission to detect OOGP candidates due to5

its high sensitivity to OOGPs, dense spatio-temporal sampling, and global coverage. Our main processing steps comprise the

detection of OOGP candidates using monthly averages of SAR images and the removal of noise and false positive objects from

annual image composites. With the resulting dataset of OOGPs, we map the spatiotemporal distribution of OOGPs in the study

regions and analyze platform status after the post-processing of the platform targets. Using these methods, we identified a total

of 5,358 OOGPs distributed in six offshore basins: the Gulf of Mexico (GoM) (1,593), Persian Gulf (PG) (1,437), North Sea10

(440), Caspian Sea (CS) (794), Gulf of Guinea (460), and Gulf of Thailand (634). An independent validation dataset was used

to evaluate the performance of the detection algorithm, which achieved an extraction accuracy of 98%. This OOGPs dataset

substantially enhances and complements the existing offshore platform database in terms of spatial and temporal coverage.

From our analysis of this OOGP dataset, we observed that offshore platform activity has declined in regions like the GoM due to

infrastructure aging and policy shifts, while it has expanded in the PG and CS, reflecting ongoing offshore development. These15

different regional trends highlight the need for targeted environmental oversight and region-specific mitigation strategies.

1 Introduction

Offshore oil and gas platforms (OOGPs) serve as essential infrastructure for energy extraction and are widely used for drilling,

extracting, and processing oil and natural gas, as well as for temporarily storing products before transporting them onshore

for refining and sale (Tan et al., 2021). With advancements in offshore exploration technology and the depletion of onshore20

reserves, the continuous development and utilization of offshore oil and gas resources play an increasingly significant role in

the global energy structure and economic development (Charfeddine and Barkat, 2020; Wang et al., 2023). According to the

International Energy Agency (IEA) World Energy Outlook for 2024, two-thirds of the overall increase in energy demand in
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2023 was met by fossil fuels, with oil and natural gas demand projected to peak by 2030 (IEA, 2024). OOGPs are widely

distributed globally, with variations in design scale, complexity, and operational condition depending on platform type. Aging25

infrastructure nearing the end of its service life often faces challenges related to decommissioning due to structural degradation

and escalating operational costs. These aging platforms typically have three potential decommissioning options: repurposing,

recycling, and disposal, which may include full removal, partial dismantling, or conversion into artificial reefs or aquaculture

facilities, respectively. However, both operational and decommissioned OOGPs pose environmental risks (Ekins et al., 2007;

Cantle and Bernstein, 2015; Henrion et al., 2015; Irakulis-Loitxate et al., 2022), for example, when decommissioned offshore30

platforms are transported to land for dismantling and recycling, fossil fuel consumption can generate significant marine pollu-

tants, posing serious threats to the ocean environment (Ronconi et al., 2015). Additionally, the removal of platforms, oil and

gas processing equipment, and the dredging of accumulated shell mounds and debris beneath the structures can impact water

quality (Bernstein, 2015). Moreover, greenhouse gas (GHG) emissions generated by fossil fuels will directly affect the achieve-

ment of the global carbon neutral and global warming targets (Alvarez et al., 2018; Nguyen et al., 2016; Allen et al., 2018; int,35

2022). Growing concerns about the environmental and socioeconomic impacts of OOGPs have led to increased demand for

effective monitoring (Lee, 2015; Anifowose et al., 2016; Hunt et al., 2022). Consequently, it is important to detect and monitor

OOGPs to better understand their operational status and spatiotemporal patterns.

Despite the critical role of offshore infrastructure, publicly accessible and comprehensive datasets remain limited, especially

beyond the Northern Gulf of Mexico (NGoM). This lack of data constrains our capability to assess offshore economies and their40

environmental impacts. While the Offshore Global Infrastructure Map (OGIM) offers an integrated geospatial perspective, its

reliance on industry and regulatory data sources results in persistent gaps and delayed updates (Omara et al., 2023). Monitoring

OOGPs is further hindered by their remote locations, harsh oceanic conditions, and high operational costs. Missteps can lead

to severe consequences, including oil spills, gas leaks, and human injuries. These challenges underscore the need for advanced

methods to determine the location and operational status of OOGPs. Remote sensing has emerged as a promising approach,45

offering large-scale, long-term, high-resolution, and continuous observational capabilities.

Remote sensing imagery provides rich spectral, textural, and temporal information, making it ideal for monitoring OOGPs.

In recent years, a variety of remote sensing images have been used to monitor activities on the sea surface (Spanier and Kuenzer,

2024). The high reflectance characteristics of the metal-concrete structures, along with the high-temperature exhaust gases of

OOGPs in the visible and near-infrared bands, enable their automatic extraction in nighttime imagery (Casadio et al., 2012;50

Elvidge et al., 2016a; Zhao et al., 2017). Time-series of optical imagery have also been used for the detection of offshore

platforms (Liu et al., 2016; Zhu et al., 2021). However, widely used passive optical sensors are limited by weather conditions

(e.g., clouds and fog), which hinder consistent monitoring. To overcome these limitations, synthetic aperture radar (SAR)

represents a promising alternative for extracting OOGPs because it can easily penetrate clouds and detect metallic objects on

the sea surface with complex backgrounds (Peng et al., 2011; Casadio et al., 2012; Jiasheng et al., 2013; Falqueto et al., 2019;55

Wong et al., 2019). Dual-polarization SAR, such as that provided by Sentinel-1, has a stronger ability to distinguish the details

of the facility structure, which enables facilitates detection more accurate. Nonetheless, existing algorithms based on Sentinel-
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1 SAR data are prone to false positives, especially in complex oceanic surface conditions, limiting large-scale and accurate

extraction of OOGPs.

In this study, we developed a automated and robust framework for systematically extracting OOGPs and unveiling their60

spatial distribution patterns from 2017 to 2023. The key contributions of this study include (1) the development of a high-

accuracy algorithm tailored to Sentinel-1 SAR imagery for detecting OOGPs, and (2) the construction of a comprehensive and

openly available spatiotemporal dataset that enables in-depth analysis of OOGP development from 2017 to 2023.

2 Materials

2.1 Study area65

The selection of Regions of Interest (ROI) was primarily based on their relevance to OOGP activities. This study focused on

six offshore regions with known high concentrations of OOGP activity according to the OGIM database: the Gulf of Mexico

(GoM), Gulf of Thailand (GoT), Caspian Sea (CS), Gulf of Guinea (GoG), Persian Gulf (PG), and North Sea (NS). These areas

are globally significant centers of offshore energy production, representing major hubs of offshore industrial infrastructure.

In five of the six selected regions (GoM, GoT, GoG, PG, and CS), a number of offshore methane plumes were detected70

between 2021 and 2025 based on data from the United Nations Environment Programme (UNEP)’s Methane Alert and Re-

sponse System (MARS) (https://methanedata.unep.org/) and the Carbon Mapper initiative (https://data.carbonmapper.org/)

(See Fig. 1). These detections indicate the presence of methane emissions likely associated with intensive OOGP activities.

While methane plume detection efforts are not globally uniform, the data broadly reinforce the relevance of the chosen re-

gions for emission monitoring and analysis. Although no offshore methane plumes were reported in the NS during this period,75

it is characterized by a high density of oil and gas platforms, as well as a key site for offshore wind infrastructure (Hoeser

et al., 2022). Its inclusion highlights the broader relevance of offshore infrastructure for emission monitoring and mitigation

strategies.

Together, the inclusion of all six regions ensures comprehensive spatial coverage of major offshore energy hubs and provides

a robust foundation for evaluating current methane emissions, offshore infrastructure patterns, and emerging energy transitions.80

OOGPs in upstream operations in offshore areas serve as key facilities for the exploration, production, storage, and trans-

portation of oil and gas resources. To better understand the spatial and functional complexity of these installations, it is essential

to recognize the diversity of OOGP types deployed in various marine environments. This diversity reflects varying engineering

strategies, water depths, and operational requirements across regions. Figure 2 illustrates representative examples of major oil

and gas production infrastructure types, highlighting their structural and functional diversity observed in the selected study85

areas. Understanding the configuration and distribution of these platform types provides an important context for interpreting

satellite-detected infrastructure patterns and assessing their environmental footprints. This foundational overview sets the stage

for the following sections, which detail the methods used to extract, classify, and analyze OOGPs using satellite data.
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Figure 1. Global temporal variation of the total CH4 flux rates from all the emissions and offshore methane plume amount generated by

OOGPs in the leading nations from 2021 to 2025

2.2 Satellite data

The Sentinel-1 mission, part of the Copernicus Joint Initiative of the European Commission (EC) and the European Space90

Agency (ESA), provides dual-polarization C-band SAR data operating at 5.405 GHz. Data are delivered as Level 1 Ground

Range Detected (GRD) scenes containing calibrated backscatter coefficients (σ°) expressed in decibels (dB), with spatial

resolutions of 10, 25, or 40 m depending on the acquisition mode. The available polarization configurations include single-

polarization modes as Vertical transmit/Vertical receive (VV) and Horizontal transmit/Horizontal receive (HH), as well as dual-

polarization modes like Vertical transmit/Horizontal receive (VV + VH) and Horizontal transmit/Vertical receive (HH + HV). In95

this study, Sentinel-1 SAR images were collected and processed using the GEE platform through ‘COPERNICUS/S1_GRD’

image collection, which consists of GRD scenes from 2014 onward. GEE applies automated preprocessing workflow that

includes thermal noise removal, radiometric calibration, and terrain correction using either the SRTM 30 m DEM or ASTER

GDEM for latitudes above 60°, where SRTM data is unavailable. This ensures the production of consistent, analysis-ready

SAR imagery suitable for large-scale time series analysis.100

Sentinel-1’s C-band SAR operates independently of all-weather, day-and-night capability, making it well-suited for continu-

ous observation of offshore environments and detecting changes over time. For OOGPs detection, we used Sentinel-1 imagery
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Figure 2. High resolution images showing major OOGP types (© Google Earth). (a) Single fixed jacket platform. (b) Moveable Offshore

Drilling Unit (MODU) with drilling tower. (c)Jackup Drilling Platforms/Rigs with helideck, hull, leg and apudcan. (d) Central Processing

Platform (CPP). (e) Rectangular-shaped bridged fixed production platform with storage tanks and pipelines. (f) Bridged integrated production

platform with well, mooring buoys (white points), vent flare boom, distillation/absorption tower, tanks, piplines, oil and gas seperation,

helipad and transport vessels. (g) Bridged fixed jacket platform with flaring on South Pars natural gas field. (h) Floating production, storage

and offloading (FPSO) vessels on South Pars natural gas field. (i) Oil rocks combined with residential infrastructure and long interconnected

metal causeways in Caspian Sea. (a) Located in the NS. (b-f) Located in GoM, USA. (g-h) Located in the Persain Gulf. (i) Located in Caspian

Sea, Azerbaijan.

in VH polarization from 2017 to 2023. VH-polarized backscatter is particularly sensitive to complex metallic structures with

depolarizing properties, such as cranes, pipelines, helipads, and OOGPs, which typically involve vertical and horizontal compo-

nents. These structures induce cross-polarized signals through multiple scattering, corner reflections, and geometric complexity,105

making VH band images an effective choice for OOGP detection. Conversely, to exclude Offshore Wind Turbines (OWTs),

we utilized imagery acquired in Interferometric Wide (IW) swath mode and VV polarization. OWTs, usually composed of

tall, smooth metallic towers with rotating blades, produce strong and stable VV backscatter as their regular geometry and high

reflectivity. This makes VV polarization effective for masking OWTs during OOGPs mapping.

To support the detection of offshore gas flaring (GF) activities, we incorporated Sentinel-2 imagery as a complementary110

data source. GF refers to the combustion of excess or unusable gases released during oil and gas extraction, typically through

flare stacks at production facilities (Elvidge et al., 2015). These flaring activities are often characterized by high-temperature

signatures that can be captured in the shortwave infrared (SWIR) bands of Sentinel-2 imagery (Faruolo et al., 2023). Sentinel-2,

launched by the European Space Agency (ESA) under the Copernicus program, provides high-resolution multispectral imagery

with frequent global coverage. Its SWIR bands are particularly useful for identifying thermal anomalies, making it suitable for115
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Table 1. Nominal parameters of optical passive and SAR active sensors whose data were used in this study.

Sensor Acquisition mode Swath (km) Spec. range Band no. Temporal res. (day) Spatial res. (m)

Sentinel-1 SAR IW 250 C-band SAR (5.405 GHz) 1 6 5x20

Sentinel-2 MSI Push-broom scanning 290 0.4-2.2 um 13 5 10/20/60

Figure 3. Statistics of the number of Sentinel-1 and Sentinel-2 images used in this study.

detecting and validating offshore GF events in high resolution. The imagery used in this study was obtained from the GEE

platform (‘COPERNICUS/S2_HARMONIZED’), covering the period from 2017 to the present.

The main geometric and spectral characteristics of each sensor are summarized in Table 1. A total of 99,784 Sentinel-1

images were used for the OOGPs detection algorithm and time series analysis, and 416,070 Sentinel-2 MSI images were used

for locating and monitoring GFs. The number used per month is shown in Fig. 3.120

2.3 Auxiliary data

2.3.1 Maritime zoning

To contextualize offshore platform distribution by national jurisdiction, we used the Exclusive Economic Zones (EEZs)

database, which defines maritime boundaries established by the 1982 United Nations Convention on the Law of the Sea.
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Within these boundaries, a sovereign nation has exclusive rights to explore and utilize marine resources. The EEZ data used in125

this study were obtained from the Open Data Platform Marine Regions (https://www.marineregions.org/eezsearch.php), which

provides EEZ boundaries for all countries. This dataset was used to explain the geographical features of OOGPs within the

EEZ of each country.

2.3.2 Validation datasets

We utilized four primary geospatial platform datasets to validate the OOGP detection results, as described in Table S1 in the130

Supplementary Material. A detailed description of each dataset is provided below.

The Bureau of Safety and Environmental Enforcement (BSEE) provides offshore platform information on the federal waters

of the NGoM (from the boundary of state waters to 200 nautical miles), including detailed attributes such as structure type,

installation and removal dates, operational status, and production flags. The latest BSEE release contains 7,303 records de-

scribing both existing and removed platforms (https://www.data.bsee.gov/). However, BSEE does not cover platforms located135

within state jurisdictions. To complement this limitation, we also used the NOAA Offshore Oil and Gas Platforms dataset

(https://hub.marinecadastre.gov/datasets/noaa::offshore-oil-and-gas-platforms/about), which provides point locations of plat-

forms in both state and federal waters. NOAA’s product with broader spatial coverage makes it a robust supplementary dataset

for validating satellite-derived detections in the NGoM.

For the NS, we used the Offshore Energy Structures in the North Sea (later on, referred to as OESNS) dataset from the140

University of St Andrews as the primary validation source (Martins et al., 2023). To assist in identifying and removing false

positives, we also used vessel traffic management zones from the UK Hydrographic Office (https://datahub.admiralty.co.uk/

portal/home/index.html, which delineate major shipping corridors.

The global geospatial database named OGIM also provides information on major global oil and gas facilities, including

type, location, operational status, operators’ name in some countries, and installation dates (Omara et al., 2023). Overall, these145

dataset was acquired, curated, and integrated from public domain geospatial datasets reported by official government sources,

industries, academic research institutions, and other non-governmental entities. It is limited by the open-access availability of

geospatial datasets and cannot efficiently obtain spatiotemporal continuity changes in real time.

Among the total records of existing platforms, some structures belonging to the same platform were recorded individually

in the first three platform database (Fig.S1). Thus, we determined the actual counts of existing platforms through the unique150

identifiers. This process eliminated redundant data and ensured the accuracy of the validation data.

Together, these databases provide reliable references for validating OOGP detections. Moreover, the detection results of this

study will supplement the previously mentioned data records.

To further verify platform activity status and cross-reference with our OOGPs detections, we incorporated active fire data dis-

tributed by the Fire Information for Resource Management System (FIRMS : https://firms.modaps.eosdis.nasa.gov/) (Elvidge155

et al., 2016b, a) and dense ship regulated area provided by UK Hydrographic Office (https://www.admiralty.co.uk/access-data/

marine-data in this study. Detected hot spots in the FIRMS portal within proximity to known OOGPs locations are interpreted

as active GF events. By overlaying fire points and dense ship lane polygons onto satellite-detected platform locations, these
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Figure 4. Framework of the study used to develop OOGPs data set. OF:Occurance Frequency, BC:Backscattering Coefficients. See text for

acronyms.

auxiliary datasets ensure the accuracy of platform identification and distinguish operational platforms from other structures

or false positives. The temporal and spatial consistency between the FIRMS fire product and primary satellite datasets further160

enhances the robustness of platform detection and analysis.

3 Methodology

The OOGPs dataset was developed using geospatial analysis with Sentinel-1 SAR and Sentinel-2 time-series imagery on the

GEE platform and Python-based workflows. The detailed framework is presented in Fig. 4. It mainly includes: (1) detecting

platforms based on monthly averages of Sentinel-1 images; (2) removing noise and false positive objects from long time-series165

images; and (3) mapping platform spatial distribution and analyzing platform status after the post-processing of the platform

targets.
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3.1 Processing of Sentinel-1 data

In this study, we selected Sentinel-1 imagery from the IW swath mode and VH polarization for the initial inspection of the

platforms. As described in Section 2.2, this configuration was selected because it is more effective in detecting OOGPs than170

others. As shown in Fig. 5, we compared the backscatter coefficients of the Sentinel-1 VH polarization band of the subset area

of the ROI. The backscattering coefficients in the VH band of Sentinel-1 effectively distinguish offshore platforms from open

water. Specifically, if the maximum backscatter coefficient of a pixel (BCmax) from one monthly average image is less than -20,

no platform facilities are present in that area. Therefore, the initial inspection of OOGPs in this study was performed based on

the following criteria.175

Pixel (include or not) =





exclude, BCmax <−20 (dB)

include, otherwise
(1)

3.2 OOGPs candidates detection

Selecting an appropriate detection threshold for monthly averages of Sentinel-1 VH images is a critical step in initially iden-

tifying candidate targets. In regions with existing platforms, radar backscatter coefficients tend to be significantly higher than

in surrounding open waters. This difference is reflected in the backscatter intensity curves in Fig. 5, where non-platform ar-180

eas show peak at lower values. Considering regional variability in sea surface backscatter, we applied an adaptive threshold

strategy. For each month (m), the adaptive threshold (Tm) was set to the 90th percentile of each monthly averages backscatter

intensity (Am) within ROIs and used to classify pixels into potential target areas as binary images. Here, the choice of the 90th

percentile was informed by threshold sensitivity experiments, as shown in Table S2 and Fig.S2 in the supplementary material,

which evaluated detection performance using three percentile levels (85th, 90th, and 95th). Lower thresholds lead to increased185

sea surface noise, whereas higher thresholds miss small or weakly reflective platforms. The 90th percentile provides the most

balanced trade-off between completeness and the suppression of noise-induced artifacts. Although this inclusive threshold may

retain some transient objects, they are subsequently removed through the temporal persistence filtering procedure described

in Section 3.3.1. This percentile-based thresholding ensures the robust and regionally consistent detection of OOGPs under

varying marine conditions. The detailed rules are as follows:190

Bm =





1, Am > Tm

0, Am ≤ Tm

(2)

Am =
1
n

n∑

i=1

BCi,m (3)
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Figure 5. VH backscattering coefficient variation curves of the examples OOGPs from 2017 to 2023 and Sentinel-2 MSI true color images

cover the example region. (a) Example OOGP in the GoM (92.18◦ W, 19.07◦ N). (b) Example OOGP in the Persian Gulf (52.02◦ E, 26.44◦

N).

Tm = 0.9×Am, m = 1,2, . . . ,12 (4)195
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Where Bmis the monthly binary image, Tm is the dynamic threshold of every monthly Sentinel-1 VH image, BCm is the

backscatter coefficient of each pixel in the single monthly average image, and n is the number of Sentinel-1 images every

month.

3.3 OOGPs refinement and post-processing

OOGPs refinement and post-processing were performed systematically by applying following three steps: (1) Removal of noise200

and mobile objects. (2) Removal of OWTs. (3) Post-processing of platforms dataset. A detailed explanation of each section

follows.

3.3.1 Removal of noise and mobile objects

The binary images produced with the methods described in Section 3.2 may be distorted by noise and texture, and some

islands or small objects may be present. These false objective targets often have spatiotemporal discontinuities and are small205

in size. A morphological operation was applied to the binary images to eliminate interference and improve the accuracy of

target detection. This operation employed eight-connected component analysis and an opening operation on the binary image.

Specifically, the morphological opening operation refers to erosion processing in a 3× 3 window, which replaces each pixel

with the minimum value of its neighborhood to remove isolated islands and small noise points. Dilation processing assigns each

pixel with the maximum value in its 3× 3 neighborhood to restore the original target area boundary and fill holes caused by210

erosion. After spatial noise reduction through morphological processing, advanced statistical analysis based on the Occurrence

Frequency (OF) of the VH signal was performed to remove floating or temporarily moving objects (e.g., ships and sun glints)

using Sentinel-1 monthly averages per year. Platforms, which are stationary infrastructures, maintain stable radar backscatter

and thus exhibit high OF values. In contrast, mobile objects such as ships appear only intermittently and therefore display a low

OF (Fig.S3). To account for different sea states and shipping intensities, we applied region-specific OF thresholds determined215

through sensitivity testing and manual inspection: OF ≥ 2 in the GoG and GoT; OF ≥ 3 in the GoM, inner PG and CS;

OF ≥ 6 in the open-water North Sea and nearshore PG; and OF = 12 in the heavily trafficked English Channel. Based on

this processing, false-positive targets caused by sea surface conditions, such as ocean clutter and frequent passing ships, were

eliminated, and the resulting vector polygons were used for the platform’s post-processing.

3.3.2 Removal of offshore wind turbines220

Offshore wind farms (OWFs), consisting of OWTs, are widely distributed in the vicinity of oil and gas production facilities in

offshore economic zones, mainly in the NS and coastal areas of China. Their local spatiotemporal distribution characteristics are

similar to those of OOGPs, making them typical false-positive targets. Owing to the increasing expansion of OWFs at existing

and recently developed wind energy production sites, a holistic understanding and detailed insights into their distribution are

gaining importance for obtaining accurate OOGP locations. Considering that the VV polarization band is more effective in225

detecting OWFs, this study used Sentinel-1 imagery in IW swath mode and VV polarization to improve detection accuracy. A
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Figure 6. Detection results of OWTs in NS. (a) Points of OOGPs detected using Sentinel-1 VH images and OWTs identified from Sentinel-1

VV imagery in NS. (b-c) Selected examples of OWTs within the OWF boundaries in NS. All data were collected from 2017 to 2023.

percentile-based yearly image reduction method, combined with an auto-adaptive threshold algorithm on the GEE platform,

was applied to suppress false positives and better isolate OOGP targets (Fig.S4) (Zhang et al., 2021). We detected 5481 OWTs

within 53 OWFs in NS from 2017 to 2023. The OWTs dataset will also be open access and distributed along with our OOGPs

dataset as ancillary information. Figure 6 provides an overview of all detected objects and their boundaries throughout the entire230

time series in the OOGPs dataset, from which our OWTs detection contributes to distinguishing OOGPs from widespread wind

energy infrastructures. See procedure details of OWTs detection in appendix.
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Figure 7. Detection of GFs in the GoT. (a) Boundaries of OOGPs detected using Sentinel-1 VH images and GFs identified from Sentinel-2

imagery within different EEZs in the GoT. (b1–b6) Selected examples of GFs produced by OOGPs. Red areas represent gas flaring (GF)

signals derived from Sentinel-2 SWIR bands. Green polygons indicate the outlines of offshore oil and gas platforms (OOGPs) detected by

Sentinel-1. Sentinel-2 RGB images were used as the basemap. All data are from 2023.

3.3.3 Postprocessing of platforms dataset

To estimate the detailed status of OOGPs, we need to further determine the location, installation date, EEZ, and GF flag for each

OOGP. Here, we converted the raster data without false positive targets and noise into a vector polygon layer and calculated235

the centroid to obtain the location of each platform.

As to the indicator of whether there is approved burning or disposition of produced gas through a single OOGP (Fig. 7), we

adopted the Thermal Anomaly Index (TAI) method to detect High-Temperature Anomalies (HTA) from single-phase Sentinel-

2 MSI Top-Of-Atmosphere (TOA) reflectance images, and then refined offshore GF site candidates among the time-series

detections (Liu et al., 2023).240

As shown before in Fig. 5, the backscatter coefficient increased substantially after the construction of the platform. To

further determine the status and construction time of the platform facilities, we used long time-series SAR data to identify

annual drastic change points using the Mann-Kendall (MK) method (Mann, 1945; Kendall, 1948; Hamed, 2008). The MK test

is a non-parametric statistical test that determines the trend direction by comparing the relationships between all data points in

continuous time series. We created a candidate zone on the platform facility and extracted the monthly maximum backscatter245

coefficient from this buffer as the input value for the MK test. The operation was performed using GEE and MATLAB.
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Table 2. Attributes and descriptions of the OOGP dataset

Attribute Data Type Description

Latitude Float Latitude of the OOGP centroid

Longitude Float Longitude of the OOGP centroid

Area Float Footprint area of the OOGP (km2)

Country String Country where the OOGP is located

EEZ String EEZ where the OOGP is located

Installation date Integer Date when the OOGP was installed (yyyymm)

Removal date Integer Date when the OOGP was removed (yyyymm)

Flaring status Integer (0/1) Indicator of flaring activity (1 = flaring)

It is important to note that some platforms have a long lifespan and early installation time, but Sentinel-1 imagery (starting in

2014) is not sufficient to fully cover the installation time of all platforms, which introduces an incomplete capture of the actual

installation date. Despite the partial biases, the MK method and long-term Sentinel-1 data are still reliable choices for detecting

the installation date of OOGPs by signal variation. In this study, the statistical values with a significant trend of time series were250

selected by setting serial values with Z-value greater than 0.05 of the MK statistic of long time series backscatter coefficient.

Two representative sites were chosen for a detailed visual assessment of the OOGP installation dates on a monthly scale.

Finally, using auxiliary data, spatial analysis was conducted to compile attribute tables for each platform to obtain complete

status information. Description of attributes are tabulated in Table 2.

3.4 Validation and uncertainty analysis255

OOGPs detection is subject to uncertainty due to a variety of background factors, including sun glint, water turbidity, wind

farms, and temporary moving objects. However, there is currently no set of consistent OOGPs to verify the precision and

accuracy of this algorithm. To comprehensively assess the performance of our OOGPs dataset, we collected and generated a

validation dataset in our study areas to quantify the accuracy metrics. Validation data include: (1) comparisons across mul-

tiple source datasets, including the BSEE and OGIM databases; (2) high-resolution imagery and Google satellite images for260

comprehensive visual interpretation and extensive internal review; and (3) time-series VIIRS fire products.

Because the latest available OGIM data records for 2023 are limited, the OGIM data for 2022 and BSEE data for 2023 were

filtered for comparative analysis. Subsequently, we evaluated the performance of the proposed framework in detecting OOGPs

from 2017 to 2023 using an independent accuracy assessment approach at the facility and regional levels.

We used the spatial analysis tools of ArcGIS software to match the locations of the detected OOGPs with reference datasets265

and evaluate their spatial positioning errors. The spatial deviation between the detected platforms and reference data was

quantified by calculating the mean, standard deviation, median, maximum, and minimum values of the distance errors between

matched points.
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In addition, the robustness of the detection method was investigated by calculating the accuracy P, recall rate R, and F1-

score, the harmonic mean of precision and recall that balances the trade-off between the two metrics. These metrics are defined270

as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

275

F1-score =
2×P ×R

P +R
(7)

where TP is the number of accurately identified offshore platforms, FP is the number of falsely identified offshore platforms,

and FN is the number of offshore platforms omitted.

4 Results and discussion

4.1 Assessment of OOGP detection results280

4.1.1 Detection accuracy assessment and comprehensive visual interpretation

A total of 3934 sample points covering six offshore regions were selected for validation in 2023. The validation was conducted

using a combination of authoritative databases and visual interpretation, based on validation datasets composed of NOAAB-

SEE, OGIM, OESNS, FIRMS, Sentinel-2 MSI imagery, and Google Earth high-resolution images. Specifically: In the federal

waters of NGoM (US), 1349 OOGPs were validated using the NOAA and BSEE database with detailed information on platform285

location and structure type. In the Southern Gulf of Mexico (SGoM), 195 OOGPs were cross-validated by visual inspection

using Sentinel-2 MSI imagery and Google Earth. For the PG, GoT, GoG, NS, and CS, a combined total of 2585 OOGPs were

verified through multi-source visual inspection using Sentinel-2 MSI imagery, OGIM and OESNS records, FIRMS data, and

high-resolution Google Earth images. The evaluation results are reported in Table 3. Precision scores for identified platforms

reached 100% in the CS and GoG, 99% in the NS and PG, 97% in the GoM, and 96% in the GoT. Minor false positives were290

primarily associated with coastal structures such as antennas, fishing facilities, and historical landmarks with similar spatial

signatures, as illustrated in Fig. 8. Recall scores, representing detection completeness, reached 99% in the NS, GoG and CS,

followed by 96% in the GoT. Lower recall was observed in the GoM (84%), largely due to small-scale wellhead platforms be-

low Sentinel-1’s detection threshold. The F1 scores (harmonic mean of precision and recall) indicate the highest performance

in the GoG and CS (100%), followed by the NS (99%).295

Overall, the detection framework demonstrates robust accuracy and completeness across diverse offshore regions. Our results

offer high accuracy in both spatial precision and temporal consistency, effectively complementing existing data products.
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Table 3. Overview of all validation matrics for the OOGPs detections using Sentinel-1 imagery in 2023.

Region Number of Samples TP FP FN P R F1

PG 400 367 3 33 0.99 0.92 0.95

CS 830 827 0 3 1.00 0.99 1.00

GoM 1886 1544 46 296 0.97 0.84 0.90

GoG 427 423 0 4 1.00 0.99 1.00

GoT 100 96 4 4 0.96 0.96 0.96

NS 443 436 4 3 0.99 0.99 0.99

Total 3934 3713 57 343 0.98 0.92 0.95

Figure 8. Examples of false positive targets in high-resolution imagery (© Google Earth). (a, f) Old pier structure with dome and extented

corridors, located in Herne Bay, England. (b, g) A cluster of seven towers known as the Shivering Sands Army Fort, located offshore from

Herne Bay, England. (c, h) Hexagonal Haile Sand Fort made of armored concrete, located off the coast of Cleethorpes, England. (d, i) Knock

John Fort made of concrete and steel platform decks, situated near Essex, England. (e, g) Coastal transmission tower near Sabancuy, Mexico.

4.1.2 Site-scale accuracy assessment and cross-comparisons

We spatially matched the dataset of OOGPs generated in this work with the BSEE dataset based on the nearest neighbor

distance. Then, we calculated the distance between each detection point and its corresponding BSEE reference point and300

performed a statistical analysis of the distance error. Table 4 presents the spatial distribution and distance error statistics of

our OOGPs points and platform points in comparative products. Based on spatial analysis within a nearest neighbor distance

of 10 m, 5180 points were matched with the corresponding validation data points. The number of sample points in the GoM

and PG was significantly higher than that in other regions, at 1451 and 1397, respectively. Overall, OOGPs achieved a mean

error of 0.35 m, median error of 0.05m, standard deviation error of 0.64m, maximum error of 3.29 m, and minimum error of305

0 m. Among all regions, the GoM demonstrated the highest spatial consistency, with a mean error of 0.06 and a median error

16

https://doi.org/10.5194/essd-2026-63
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



approximating 0 m. Its high accuracy is attributed to the type of platform and the large number of validation sample points

in the GoM. In contrast, the GoT exhibited the highest distance error, likely because of the limited validation sample points.

Notably, the type and design of platforms differ across varying offshore areas; therefore, the size of these offshore structures

should be considered when validating their locations.310

Table 4. Transposed error distance statistics (meter) for different regions.

Region Mean Median Standard deviation Maximum Minimum Points matched

PG 0.18 0.06 0.24 1.04 0.00 1451

CS 0.13 0.04 0.38 4.09 0.00 839

GoM 0.06 0.00 0.12 0.84 0.00 1397

GoG 0.61 0.03 1.11 4.38 0.00 423

GoT 0.95 0.16 1.48 6.33 0.00 626

NS 0.19 0.00 0.49 3.04 0.00 444

Total 0.35 0.05 0.64 3.29 0.00 5180

We further visually compared our OOGPs map product with the existing datasets from BSEE and OGIM platform for 2023

at the offshore basin scale (Fig. 9). The unmatched red points in Fig.9 (c) represent platforms removed before 2023. Since the

absence of detailed removal dates in the OGIM dataset, such inactive platforms could not be excluded from the records, limiting

its temporal accuracy. In contrast, our OOGPs dataset provides enhanced temporal resolution by focusing on actively present

platforms. This enables clearer and more timely detection of platform distribution changes, especially in dynamic production315

areas where some OGIM platforms may have been removed but not updated in attribution. Spatially, our dataset offers broader

and denser platform coverage in marginal seas and nearshore zones that are often underrepresented in existing products. As

shown in panels (a–c) of Fig. 9, the OOGPs map shows more comprehensive distributions in key oil and gas regions such

as the NGoM, GoG, and GoT. More detailed validation were described in Fig.S5 and Fig.S6 in the supplymentary material.

Overall, the proposed OOGPs dataset holds significant international value by filling critical gaps in existing global offshore320

infrastructure inventories. Existing datasets, such as BSEE or OGIM, often suffer from low update frequencies, incomplete

metadata, and inconsistent reporting standards. Our approach provides a unified, timely, and spatially detailed view of offshore

platforms using time-series Sentinel-1 SAR imagery based on an adaptive detection framework. Beyond spatial and temporal

completeness, the dataset also incorporates key platform attributes such as flaring activity, derived from long-term thermal

anomaly detection. This attribute provides insights into operational status and potential environmental impact, which are often325

lacking in existing inventories.

The enhanced detail and reliability of the OOGPs dataset enables a wide range of applications, including: (1) global en-

vironmental monitoring, such as tracking emissions, identifying oil spill risks, and assessing marine ecosystem impacts; (2)

maritime domain awareness, including vessel interaction analysis, infrastructure security, and illegal activity surveillance; (3)

energy transition tracking, where timely and accurate data on fossil fuel infrastructure is critical for national decarbonization330
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Figure 9. Comparison of the OOGPs map and BSEE or OGIM production in 2023. Green points represent OOGPs detected by Sentinel-1.

The red circles indicate the referenced production. Panels (a), (b), and (c) indicate comparisons of the NoGM, GoT, and GoG, respectively.
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planning and offshore wind site assessments. By offering a more comprehensive inventory across various regions, this dataset

contributes to improved global transparency, data interoperability, and decision-making in offshore energy management and

remote sensing applications.

4.2 Temporal patterns of OOGPs from 2017 to 2023

An open-source OOGPs dataset with detailed spatial and temporal information plays an important role in understanding tem-335

poral patterns in offshore oil and gas infrastructure and attributing satellite-observed GHG emissions to upstream fossil fuel

operations. In particular, the inclusion of offshore GFs labels enables assessment of the prevalence of unlit flaring, improving

the attribution of satellite-detected methane plumes to specific sources.

We acquired approximately 5,358 existing OOGPs. Its records including point-based OOGP locations, facility areas, EEZs,

and GFs activity labels. Among all records, the GoM accounted for the largest share, nearly 30% of total entries in 2023,340

followed by the PG and CS. The GoG holds the smaller share, around 8.6%, but still displays notable flare activity. This reveals

the environmental relevance of even smaller offshore regions due to the lack of investment or availability of gas infrastructure.

As illustrated in Fig. 10 (a), the temporal analysis reveals trends in the six selected regions from 2017 to 2023. The GoM

showed a gradual decrease in the number of detected platforms, primarily driven by the decommissioning of aging infras-

tructure, reduced investment in new exploration, and broader shifts toward cleaner energy policies. Despite this decrease, the345

number of GoM platforms with GF remained stable or slightly increased, suggesting more intensive production activities at

remaining facilities, as well as the persistence of legacy infrastructure that lacks sufficient gas capture or reinjection systems.

The mismatch between platform decommissioning and flaring mitigation efforts highlights ongoing infrastructure and policy

challenges in managing associated emissions. In contrast, the PG exhibited a gradual increase in both the number of OOGPs

and those with GFs, which may reflect the expansion of production capacity, the deployment of new platforms, or operational350

inefficiencies associated with maintenance. The CS and GoT show smaller but similar trends, with moderate year-to-year

fluctuations likely driven by project-level cycles or maintenance schedules.

The pie charts in Fig. 10 (b–h) present annual distributions of OOGPs across the six offshore basins between 2017 and

2023. The GoM consistently ranked as the leading area in terms of OOGPs count, although its dominance gradually declined

from 37.4% in 2017 to 29.7% in 2023. Meanwhile, the PG’s share gradually increased from 20.4% in 2017 to 26.8% in 2023,355

confirming regional growth.

To further examine national dynamics, Fig. 11 provides the annual OOGPs detection counts and associated flare activity

for individual countries. The United States remained the leader in offshore oil and gas infrastructure among all countries in

this study, despite a slight decline year-over-year. In contrast, Saudi Arabia and the UAE experienced a steady rise in OOGP

detections, reflecting large-scale field development and offshore investment. This makes them the second-largest contributors360

after the United States (Kaiser, 2022; Chen et al., 2024). Other key countries, including Mexico, Iran, Malaysia, Netherlands,

and Nigeria, maintained relatively stable detection counts, each with over 100 platforms annually. Notably, Azerbaijan also ex-

hibited a relatively high number of detected OOGPs despite its more limited offshore area. This can be attributed to the unique

structural configuration of its offshore facilities, particularly the Oil Rocks (Neft Daşları) complex in the CS (See example in
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Figure 10. (a) Temporal evolution of detected OOGPs and numbe of OOGPs with active gas flarings (GFs) in select regions, (b)-(h) the

proportion of each offshore basin based on available data from 2017 to 2023.

Fig. 2 (i)). Unlike traditional standalone platforms, Oil Rocks consists of a network of numerous small interconnected produc-365

tion units and walkways constructed over shallow waters. These discrete elements are often identified as multiple independent

platforms from satellite imagery, leading to a higher overall detection count in Azerbaijan. Similarly, Thailand maintained a

dense distribution of small-scale offshore infrastructure in the GoT. These eleven countries collectively accounted for approxi-

mately 90% of all OOGPs detected in the study areas, reflecting a clear spatial concentration of OOGPs.

In summary, this multi-year dataset offers insights into operational shifts in offshore fossil fuel development. It reveals370

regional changes including the decline of infrastructure and steady GFs in the GoM; platform expansion and increasing GFs

activity in the PG; and flare-associated intensity variations in the GoG. It also highlights national-level strategies, with countries

like the United States and Saudi Arabia pursuing distinct trajectories in offshore energy development. These insights are critical
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for supporting methane monitoring, understanding regulatory effectiveness, and informing climate policy on offshore energy

systems.375

Figure 11. National temporal evolution of OOGPs as detected in this study, and the fraction of OOGPs with active gas flarings (GFs) as

indicated by Sentinel-2 data from 2017 to 2023.

4.3 Spatial distribution patterns of OOGPs in different EEZs

Figure 12 illustrates the distinct spatial distribution patterns of OOGPs detected in various EEZs of the selected ROIs. The

green points represent existing platforms until 2023 and the red points represent platforms removed from 2017 to 2023 in the

corresponding EEZ region. OOGPs are highly clustered in major oil-producing regions, with varying densities and removal

histories. The United States has the most OOGPs in all selected EEZs. The GoM, GoT, and PG EEZs, such as the United States,380

Saudi Arabia, UAE, and Thailand, exhibit the highest density characteristics, with clear spatial linear patterns and small-

scale cluster patterns along structural basin belts, whereas the distribution of platforms in the NS is relatively widespread.

This indicates that the distribution of oil and gas fields is controlled by regional tectonic and geological conditions, with

hydrocarbon resources mainly concentrated in structural highs and fault zones within sedimentary basins. The significant

number of platforms removed in the NGoM, NS, and GoT regions can be attributed to the extensive presence of active movable385
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and decommissioned platforms with long-term exploitation. In contrast, platforms in the GoG are more dispersed, with fewer

platforms removed along the coast over several years. Because our detection relies on persistent backscattering over time,

platforms that undergo rapid, short-distance relocation within the same year may show shifts in their detection location. Such

development activities are expected to be identified in future studies.

Figure 12. Spatial distribution of OOGPs detected in select regions based on available data from 2017 to 2023. Zoom-in insets of the NGoM,

SGOM, NS, GoG, Persian Gulf, and GoT. The colours of OOGPs represent their status (green = existing and red = removed).

4.4 Discussion390

This study aims to improve the automation and timeliness of offshore platform detection, thereby better supplementing existing

government reporting data; however, certain limitations and uncertainties remain in this study. The detection of platforms near

the coastline is constrained by blurred shorelines, rocky coasts, and intertidal mudflats. To mitigate these effects, a 500 m

buffer zone from the coastline was applied, and all objects within this zone were manually checked; objects located within 500
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meters of the coast were excluded from detection. Platforms close to the shore also tend to be smaller in size, which further395

complicates detection.

Detection of platforms using Sentinel-1 SAR imagery is additionally limited by the spatial resolution of the data. Platforms

smaller than approximately 5× 20 m are difficult to detect, and smaller platforms are also affected by sea surface conditions

such as wind speed, ocean clutter, and nearshore sediment content, as well as the radar incidence angle. These factors make it

challenging to distinguish small platforms from a rough sea surface, which may lead to underestimation of platform numbers400

in regions with high platform density, such as the GoM and the PG.

In future research, the fusion of multi-source remote sensing data is expected to improve the completeness and accuracy of

the platform dataset, particularly for small or nearshore platforms.

5 Conclusions

This study produced a vectorized OOGPs dataset that provides OOGPs locations and status in six offshore basins: the GoM, NS,405

GoG, GoT, PG, and CS. We present a framework for OOGPs detection based on an adaptive threshold model and morphological

operations using time-series Sentinel-1 SAR images and Sentinel-2 MSI images from 2017 to 2023. The effectiveness and

robustness of the proposed framework were demonstrated by creating a comprehensive validation dataset and assessing the

accuracy between our detected and validation datasets. Our method can effectively remove different types of false positive

targets, such as OWTs, ships, and signal noise.410

As of 2023, 5,358 OOGPs have been identified with 1,593, 1,437, 440, 794, 460, and 634 in the GoM, PG, NS, CS, GoG,

and GoT, respectively. These six basin regions have distinct numbers of OOGPs, with the GoM and PG leading in terms of

deployment. Most OOGPs exhibit regular linear or clustered spatial distributions, revealing the geographical concentration

and regional variation in offshore energy infrastructure. The attribute information of this updated and completed dataset meets

the critical geospatial data needs to support offshore environmental monitoring, facility-scale pollutant gas emission tracking,415

assessment and mitigation.

The GoM has witnessed a clear trend of decommissioning OOGPs, indicating its long history of exploration and develop-

ment. However, the installation of OOGPs has exhibited a remarkable exponential growth trend in PG from 2017 to 2023.

Despite having the fewest or second-fewest platforms between 2017 and 2023, the GoG exhibited the highest level of GF

activity. These variations provide valuable insights into regional development trajectories and environmental risks associated420

with offshore infrastructure.

The validation and assessment results highlight the effectiveness of our detection method with high precision and recall

rates. The OOGPs dataset achieved an overall accuracy of 0.99 and a mean error distance of 0.35 m. In addition, compared

with the OGIM dataset, our results establish higher coverage detections with detailed location, country, EEZs, area, and GFs

status over a long period.425
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6 Data availability

The OOGPs data is available from https://doi.org/10.5281/zenodo.18350974 (Si et al., 2026) in an open-access vector file

format. All records were produced and tested using GEE, Python, and ArcGIS 10.8. It provides the spatiotemporal distribution

and statue of OOGPs in the GoM, NS, GoG, GoT, PG, and CS from 2017 to 2023.

Appendix A: Acronyms and Abbreviations430

Abbreviation Definition Abbreviation Definition

BSEE Bureau of Safety and Environmental Enforcement CS Caspian Sea

CH4 Methane CPP Central Processing Platform

DEM Digital Elevation Model EC European Commission

EEZ Exclusive Economic Zone ESA European Space Agency

FPSO Floating production, storage and offloading GEE Google Earth Engine

GF Gas Flaring GHG Greenhouse Gas

GoG Gulf of Guinea GoM Gulf of Mexico

GoT Gulf of Thailand GRD Ground Range Detected

HH Horizontal transmit/Horizontal receive HTA High-Temperature Anomaly

HV Horizontal transmit/Vertical receive IW Interferometric Wide

MARS Methane Alert and Response System MK Mann–Kendall

MODU Moveable Offshore Drilling Unit MSI MultiSpectral Instrument

NGoM Northern Gulf of Mexico NRT Near Real-Time

NS North Sea OF Occurrence Frequency

OESNS Offshore Energy Structure in the North Sea

OGIM Oil and Gas Infrastructure Mapping OOGP Offshore oil and gas platform

OWF Offshore Wind Farm OWT Offshore Wind Turbine

PG Persian Gulf RGB Red, Green, Blue

ROI Regions of interest SAR Synthetic Aperture Radar

SGoM Southern Gulf of Mexico SWIR Shortwave Infrared

TAI Thermal Anomaly Index TOA Top-Of-Atmosphere

UAE United Arab Emirates UNEP United Nations Environment Program

VV Vertical transmit/Vertical receive VNIR Visible and Near-Infrared

VH Vertical transmit/Horizontal receive
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