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Abstract. Accurate, high-resolution spatial data of paddy rice are indispensable for assessing global food security and
tracking progress toward Sustainable Development Goal 2 (Zero Hunger). However, a consistent global rice map at medium-
to-high resolution has been lacking due to the challenges of cloud contamination and the temporal irregularity of multi-
source satellite archives. Here, we present GlobalRice20, the first global 20m resolution paddy rice dataset for the years
2015 and 2024. We developed a "Time-Series-to-Vision" framework (T2VRCM) that transforms heterogeneous optical and
SAR time-series into standardized 2D visual representations, specifically designed to handle irregular sampling and missing
modalities. The dataset was produced using Sentinel-1/2 and Landsat imagery and rigorously validated against 164,000
reference samples, achieving an overall accuracy of 92.33%. Cross-comparison with national agricultural statistics reveals a
high coefficient of determination (R?> =0.91 for 2024), confirming the dataset's reliability for national-scale accounting.
Spatiotemporal analysis during the first decade of SDGs (2015-2024) indicates a 6.6% expansion in global rice area, with
Africa exhibiting the most significant growth (15.7%). This dataset fills a critical gap in global agricultural monitoring,
providing a baseline for analyzing food production trends and climate impacts. The dataset is available at

https://doi.org/10.5281/zenodo.18168302 (Zhang et al., 2026).

1 Introduction

The year 2025 marks a critical milestone—a decade since the inception of the United Nations Sustainable Development
Goals (SDGs). As we approach the 2030 deadline, conducting a rigorous assessment of the progress toward SDG 2 ('Zero
Hunger') has become an international priority. Rice, a staple food for billions of people and accounting for over 12% of

global cropland area, serves as a key indicator of agricultural sustainability and regional food self-sufficiency (Dong and
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Xiao, 2016). However, accurate quantification of rice production landscapes remains a challenge. Reliable, spatially explicit,
and high-resolution data are indispensable for evaluating the evolution of planting patterns and formulating targeted
interventions. Despite the urgent need to monitor SDG 2 implementation, there is currently a lack of a consistent, high-
resolution global monitoring framework capable of capturing the granular evolution of paddy rice from the 2015 baseline to
the present.

Currently, the landscape of global rice mapping is characterized by a dichotomy between global low-resolution products and
regional high-resolution datasets. At the global scale, prominent datasets—including GDHY (0.5°) (lizumi and Sakai, 2020),
MIRCA2000 (Portmann et al., 2010), M3Crops (Monfreda et al., 2008), and more recent products like GGCP10 (Qin et al.,
2024), GlobalCropYieldSmin (Cao et al., 2025), and GEOGLAM-BACS (Becker-Reshef et al., 2023)—provide valuable
long-term trends essential for macro-level yield analysis. However, these coarse-resolution products suffer from mixed-pixel
issues that obscure fragmentation and boundary details, lacking the spatial fidelity required for precision agricultural
monitoring. In the transition zone, regional products such as MARC (Zhao et al., 2024a), GRIPC (Salmon et al., 2015), and
APRAS500 (Han et al., 2022) have leveraged MODIS and Sentinel time-series to refine cropping intensity maps. Conversely,
at the high-resolution frontier, recent advancements have produced 10-30 m maps using Landsat and Sentinel data.
Representative examples include GCD-Rice for Asia (Li et al., 2025b), CCD-Rice for China (Shen et al., 2025), EARicel0
for East Asia (Song et al., 2025b), and the 2023 Africa Rice Map (Jiang et al., 2025). By integrating multi-source time-series
with machine learning, these efforts have achieved high precision. However, these high-resolution efforts remain largely
confined to specific countries or regions. To date, there remains a critical gap: the absence of a unified, validated, and high-
resolution (20 m) global rice distribution product that covers major production zones consistently across different years.
With the rapid advancement of remote sensing technology, integrated observation systems have provided a wealth of multi-
modal data for agricultural monitoring. Optical imagery (e.g., Landsat series, Sentinel-2, and MODIS) has been widely
utilized to capture the unique spectral signatures of rice during key phenological stages, leveraging its rich spectral
information (Zhang et al., 2023; Hou et al., 2025; Shen et al., 2024; Ni et al., 2021). However, these sensors are susceptible
to cloud and rain interference. In contrast, spaceborne Synthetic Aperture Radar (SAR) offers all-weather and day-and-night
observation capabilities, demonstrating unique advantages in rice mapping (Sun et al., 2022; Ge et al., 2025b; Lin et al.,
2024; Xu et al., 2023a).

Recently, researchers have significantly enhanced the accuracy and robustness of rice mapping across diverse geographical
environments by effectively integrating these optical and SAR data (Shen et al., 2023a; Han et al., 2021; Song et al., 2025a;
Wan et al., 2024; Zhao et al., 2024b; Ge et al., 2025a). Methodologically, remote sensing-based rice mapping has evolved
through three primary pathways: phenology-based, machine learning, and deep learning methods. Phenology-based
approaches utilize specific growth stages; for instance, Xu et al. (2023b) proposed the Sentinel-1-based SPRI index, while
Zhao et al. (2024c¢) developed the "Rice-Sentinel" framework to capture unique flooding signals. Machine learning methods
have further improved automation. Liu et al. (2022a) applied Random Forest for early rice mapping, Li et al. (2025a)
introduced the SPRC framework integrating phenology with probabilistic voting, and Song et al. (2025b) developed the
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SRMI index for optical-SAR fusion. More recently, deep learning has emerged as a dominant paradigm due to its superior
non-linear fitting capabilities. Notable examples include the improved U-Net by Wei et al. (2021), the Full-Resolution
Network (FR-Net) by Xia et al. (2022), and the lightweight XM-UNet by Ge et al. (2025c¢) .

Despite these substantial advancements, producing a high-resolution global map faces technical bottlenecks stemming from
the heterogeneity of remote sensing archives. Specifically, traditional methods that rely on complex interpolation or temporal
aggregation often introduce noise and smooth out critical short-term phenological details (Song et al., 2025a; Yuan et al.,
2022b; Blickensdorfer et al., 2022). Furthermore, SAR coverage limitations caused by orbital constraints and imaging
modes — exacerbated by the loss of Sentinel-1B — often lead to complete modality missingness, posing a significant
challenge for traditional models that rely on the simultaneous availability of optical and SAR observations (Shen et al., 2015;
Wei et al., 2022). Most critically, fusing optical and SAR modalities is hindered by temporal asynchrony—the revisit cycles
of Landsat, Sentinel-2, and Sentinel-1 do not align, resulting in irregular time-series that traditional models often struggle to
handle robustly.

To bridge this gap, we developed the GlobalRice20 dataset, the first globally consistent 20 m resolution paddy rice map for
the years 2015 and 2024. To overcome the challenges of irregular sampling and modal missingness, we employed an
innovative "Time-series-to-Vision" framework. Unlike conventional methods that require regular time steps, our approach
transforms heterogeneous optical and SAR time-series into standardized 2D visual representations, allowing a customized
vision model (T2VRCM) to robustly identify rice phenological patterns even in the presence of data gaps. In this study, we
present the generation, validation, and analysis of the GlobalRice20 dataset, providing the first verified 20-m resolution
global rice map covering 98 major producing countries for 2015 and 2024. By leveraging a novel “Time-series-to-Vision”
harmonization strategy to alleviate cloud contamination, sensor asynchrony, and modality missingness, we achieved an
overall accuracy of 92.33% and strong agreement with national statistics, supporting the dataset’s reliability and usability at
the global scale. Furthermore, we demonstrate the dataset's utility for tracking SDG 2 progress by quantifying critical
decadal shifts—such as the 15.7% expansion of rice cultivation in Africa—thereby filling a longstanding gap in high-

resolution global agricultural monitoring products.

2 Materials
2.1 Study area

The study covers 98 major rice-producing countries distributed across six continents (Asia, Africa, North America, South
America, Europe, and Oceania), encompassing the world’s primary rice cultivation zones as shown in Fig. 1(a). These
regions exhibit significant diversity in climatic conditions, topographical features, and cropping systems. According to the

Koppen climate classification (Fig. 1(c)), the study area spans Tropical, Arid, Temperate, and Cold zones, with the majority
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of rice cultivation concentrated in the tropical and subtropical monsoon regions of South and East Asia, which account for
over 90% of the global rice sown area (FAOSTAT, 2023).

Rice cropping systems within the study area are categorized into single-season, double-season, and mixed-season regimes, as
illustrated in Fig. 1(b) (Laborte et al., 2017). Double-cropping systems are predominantly located in East and Southeast Asia,
while single-cropping systems are widely distributed across the Americas, Australia, Europe, and most African nations. This
extensive spatial heterogeneity in climate, topography, and cropping intensity poses substantial challenges for producing a
consistent high-resolution global paddy rice map.
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Figure 1. Overview of the study area. (a) Rice planting areas, (b) Rice cropping patterns, (¢) Climate zoning, (d) Distribution of
validation sample points.

2.2 Remote Sensing Data

All satellite data processing was conducted on the Google Earth Engine (GEE) cloud computing platform. The primary input
datasets consist of multi-temporal Synthetic Aperture Radar (SAR) and optical imagery, selected to correspond with the
validation years 2015 and 2024.

For SAR data, we utilized C-band imagery from the Sentinel-1 satellite, which offers all-weather observation capabilities
essential for penetrating cloud cover in tropical rice-growing regions. We selected Interferometric Wide (IW) swath mode

Ground Range Detected (GRD) products with a 10-m spatial resolution. The data underwent standard preprocessing on GEE,



115

120

125

130

Earth System
Science

Data

https://doi.org/10.5194/essd-2026-24
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

including thermal noise removal, radiometric calibration, and terrain correction. Because Sentinel-1B was unavailable for the
2015 baseline and ceased operations before 2024, SAR observations for both years rely primarily on Sentinel-1A. Both VV
and VH polarizations were utilized, and the SAR acquisitions were aggregated into 12-day mean composites for both 2015
and 2024.
Optical data were sourced from different sensors to maximize spatial resolution and availability for the respective target
years. For 2024, we utilized Sentinel-2 MSI Level-2A surface reflectance data (10-m resolution), applying a cloud-masking
algorithm to remove invalid observations. For the 2015 target year, as Sentinel-2 data were not yet available, we utilized
Landsat-8 OLI surface reflectance data with a 30-m spatial resolution. We calculated the Land Surface Water Index (LSWI)
(Xiao et al., 2005) and Enhanced Vegetation Index (EVI) (Huete et al., 1997), widely recognized in optical remote sensing
for rice mapping, to characterize the crop's unique phenological evolution.The specific calculation formulas are expressed as
follows:

Lsw = M swir
nir + swir

QP)

nir — red
nir+6 red—7.5 blue+1

Figure 2 illustrates the resulting spatiotemporal data coverage for these satellite-derived calculations. As shown, Landsat-8

EVI=25

exhibited relatively balanced global coverage in 2015, with slightly fewer observations in northern high-latitude regions.
Sentinel-2, due to its high revisit frequency, showed high data coverage globally in 2024. Specifically, in North America,
South America, Europe, and Asia, southern regions generally had higher coverage frequencies than northern regions. In
Africa, coverage was higher in the north and south but lower in the central region, while Australia exhibited uniformly high
coverage frequencies. Regarding SAR data, due to the unavailability of the Sentinel-1B satellite in both 2015 and 2024,
coverage was affected but remained robust in key areas. Crucially, the SAR coverage was primarily concentrated in tropical

and subtropical regions, effectively compensating for the lack of valid optical observations in these cloud-prone areas.
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Figure 2. Satellite image coverage frequency in 2015 for (a) Landsat-8 and (b) Sentinel-1, and in 2024 for (c) Sentinel-2 and (d)
135 Sentinel-1.

2.3 Reference and Validation Data
2.3.1 Reference Sample Set

To train and validate the T2ZVRCM model, a comprehensive reference dataset was constructed containing 164,000 samples
across 98 countries. The samples were generated through a rigorous visual interpretation process integrating high-resolution
140 optical imagery and existing regional rice maps. Crucially, to ensure temporal consistency and reduce label noise, we
adopted a "stable sample" strategy: selected samples were restricted to locations that maintained a consistent land cover type
(either persistent rice or persistent non-rice) in both 2015 and 2024. A balanced 1:1 ratio between rice and non-rice samples

was maintained to prevent class imbalance.

2.3.2 Existing Rice Maps and Statistical Data

145 To assess the quality of the GlobalRice20 dataset, we compiled two types of reference data:

First, we selected 12 representative global and regional datasets for spatial cross-comparison to evaluate geometric accuracy
and boundary detail. These include APRAS00 (Han et al., 2022), a 500-m product mapping cropping intensity across 21
Asian countries using MODIS data; SingleSeasonRice-China (Shen et al., 2023b), a 10/20-m Sentinel-based dataset covering
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21 Chinese provinces; CCD-Rice (Shen et al., 2025), the first long-term (1990-2016) 30-m dataset for China’s eastern
monsoon region; ChinaCropArealkm (Luo et al., 2020) and SPAM-China (Dai et al., 2025), two 1-km products generated
from GLASS LAI and disaggregated statistics, respectively, serving as coarse-resolution baselines; Open-SEA-Rice-10
(Ginting et al., 2025), a recent 10-m map distinguishing triple-cropping systems in Southeast Asia; AsiaRiceYielddkm (Wu
et al., 2022), a long-term (1995-2015) 4-km gridded product generated via machine learning to estimate seasonal rice yields
across Asia; GCD-Rice (Li et al., 2025), a long-term (1990-2023) 30-m dataset mapping seasonal rice distribution across 16
Asian countries using Landsat and Sentinel-1 data; the Japan Historical Rice Map (Carrasco et al., 2022), a long-term (1985—
2019) Landsat-based dataset mapping rice field distribution in Japan using phenology and temporal aggregation; the South
Korean Dynamic Rice Map (Jo et al., 2023), a dynamic paddy rice mapping product using a Recurrent U-Net deep learning
model; NESEA-Rice (Han et al., 2021), a 10-m annual paddy rice dataset covering Northeast and Southeast Asia (2017—
2019) developed by integrating Sentinel-1 and MODIS data; and the USDA Cropland Data Layer (Boryan et al., 2011), a 30-
m crop land cover product for the United States generated by the USDA using decision-tree classification of satellite
imagery. Comparing our results against this diverse set—ranging from 10 m to 4 km and covering both single- and multi-
cropping systems—ensures a robust assessment of GlobalRice20's consistency across scales.

Second, to validate the extraction results at a macroscopic level, national-scale rice harvested area statistics for 2015 and
2024 were integrated from two authoritative sources: the United States Department of Agriculture (USDA) and the Food and
Agriculture Organization (FAO). These standardized records served as the primary ground truth for assessing the aggregate

reliability of our global maps.

3 Methodology

To generate the global 20-m rice map, the comprehensive technical workflow of this study is illustrated in Fig. 3. The core of
the methodology lies in the unified encoding of multi-source, heterogeneous remote sensing time-series data—incorporating
both SAR and optical observations—into a standardized 2D line-graph visual representation. This visual proxy is
subsequently analyzed using a specially designed deep learning vision-based classifier, the T2VRC Model (T2VRCM), to

extract sophisticated phenological patterns and achieve high-precision global rice distribution mapping.
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3.1 Problem Definition and Notation

The remote sensing data sources used in this study encompass SAR data (Sentinel-1) and optical remote sensing data
(Sentinel-2 for 2024, Landsat-8 for 2015). These are integrated with field-collected ground truth sample points to construct a
global-scale rice classification dataset. Formally, we define the time series dataset as = {(S;,y;)[i=1,...,N}, containing N
samples. Each sample S; is associated with a binary label y; {0,1}, where y; = 1 represents "rice" and y; =0 represents
"non-rice." S; is a multivariate time series consisting of D variables. In this study, D = 4, corresponding to the optical indices
{LSWI,EVI} and the SAR backscatter coefficients {GY,, 0%y }. For each variable d, its observations are given by a series of
(time, value) tuples: [(td, V‘f), s (tﬂ " vd d)] , where t represents the observation Day of Year (DOY), and v is the
corresponding feature value.

The inherent nature of this dataset is that of an irregularly-sampled time series (Spinnato and Landi, 2025; Weerakody et al.,
2021), which is primarily manifested in three aspects: (1) Inconsistent revisit cycles: Different sensors have varying revisit
cycles (e.g., 5-day composites for Sentinel-2 and 12-day composites for Sentinel-1); (2)Partial feature missingness: Optical
data often suffers from missing observations due to cloud cover, and SAR data may have missing acquisitions during certain
periods. (3)Complete modality absence: In some regions, an entire data modality (e.g., SAR) might be completely missing.
Therefore, the research problem is defined as follows: Given this irregular time series dataset , learn a deep learning model

G that can accurately predict the class label y;  {0,1} for each time series sample S;.

3.2 Time-Series- to-Vision Transformation

To address the challenge of integrating multi- source heterogeneous time-series data, this study proposes an innovative
methodology that transforms the time-series classification problem into an image classification problem. By mapping
irregularly sampled multimodal time- series data into a standardized two-dimensional image representation, this approach
converts challenges such as sensor temporal asynchrony, discontinuous observations, and incomplete data modalities into a
visual pattern-recognition task in image space. Consequently, it leverages the powerful feature-extraction capabilities of
deep- learning vision models to achieve end- to- end high- precision classification (Ni et al., 2025; Li et al., 2023).

The method adopts a dual- subplot design to explicitly separate and align the optical and SAR modalities. Specifically, the
upper subplot displays the two optical features, LSWI and EVI, within the same coordinate system, while the lower subplot
plots the two SAR features, 0% and 0%, in a separate coordinate system. In both subplots, the horizontal X- axis represents
the Day of Year (DOY, range 1-365), and the vertical Y-axis represents the value of the remote- sensing feature. Only the
valid observation points (tji, de) for each feature d are connected sequentially by straight lines according to DOY order. This
design intuitively represents data missingness: if Sentinel- 2 data is absent for a period due to clouds, the line graph directly
connects the valid observations before and after the gap; if an entire modality (e.g., Sentinel- 1) is completely missing, the
corresponding lower subplot remains blank. To enable the model to distinguish between the different lines, four distinct yet

consistent colors are assigned to the four features throughout the dataset.

9
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Finally, the two subplots are stacked vertically and uniformly resized to a standard RGB image X; with dimensions 224 X
224 pixels. This “Time-Series-to-Vision” transformation strategy cleverly encodes all heterogeneous, irregular, and
incomplete one-dimensional time- series data into a standardized two- dimensional image representation. It systematically
addresses critical challenges in multi-source fusion: heterogeneous feature representations, asynchronous acquisitions, intra-

series data gaps, and complete modality missingness.

3.3 T2VRCM Visual Classification Model
3.3.1 Overall Architecture

To efficiently analyze the generated 2D time-series graphs, this study proposes the T2ZVRCM (Time-series to Vision Rice
Classification Model), a vision model specifically designed for this classification task. Its overall architecture is shown in Fig.
4. T2VRCM is a hierarchical vision encoder, consisting of four cascaded feature extraction stages (Stages 1-4), a Full-Scale

Feature Interaction (FSFI) block, and a Multi-Layer Perceptron (MLP) classification head.
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Figure 4. Overall Architecture of T2ZVRCM

Given an input visual representation X RP*W*C (H=W =224, C=3) , its forward propagation process is as follows.

X first passes through a Stem layer (composed of two 3x3 convolutions with stride 2), performing 4xdownsampling to

10
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reduce the resolution to %X %. The output of the Stem, S(X), is then fed into N, stacked Gate Convolution Blocks (G),

producing the Stage 1 output feature O; = Gl(S(X)). Each subsequent stage i (i {2,3,4}) consists of a downsampling
layer (Dj, a 3%3 convolution with stride 2) and N;stacked G; blocks, yielding O; = G; (Di(Oi_l)).

W H
o b x 2
8 167 16”32 32

w H W H w
—,—X—= AL
4 8

The features {O,0,,05,0,} output from the four stages have spatial resolutions of ;X

respectively. They are all fed into the FSFI block to obtain the fused feature Fy . . After processing by Global Average
Pooling (GAP) and Layer Normalization (LayerNorm), the final binary logits are produced by the MLP Head, which can be

formulated as:

Logits = MLP (LayerNorm(GAP (F fuse))) 2

3.3.2 Gate Conv Blocks

The Gate Conv Block is the fundamental feature extraction unit of the T2ZVRCM encoder (Fig. 4), specifically designed to
simultaneously capture local fine-grained patterns and long-range temporal dependencies of rice phenological evolution
from the 2D time-series graphs. Its core functionality stems from the synergistic design of a dynamic gating mechanism and
Inception-style depthwise separable convolution.

The dynamic gating mechanism adaptively fuses features from two parallel processing paths (the information processing
path and the gating path) and incorporates residual connections to facilitate the training of deep networks (Yu and Wang,
2025; Dauphin et al., 2017). Its core role is to perform position-wise adaptive recalibration of features, aiming to amplify
discriminative patterns, suppress noise and anomalies, and automatically reduce the contribution of unreliable data sources
when modalities are missing or when temporal observations are absent (Dauphin et al., 2017; Yu et al., 2022).

Specifically, given an input feature X, the module first normalizes it to obtain X' = Norm(X). Its core computation can then

be summarized by the following formula:
Y = (TokenMixer(X'W,)  0(X'W,))W; +X (3)

Here, X'W; and X'W, are the linear projections for the information processing path and the gating path,
respectively; TokenMixer(-) is the core feature extraction operator; o(-) is the gating activation function; and © denotes
element-wise multiplication for gating modulation.

In our design, the core feature extraction operator TokenMixer(-) is specifically implemented as an Inception Depthwise
Convolution (InceptionDWC) operator (Yu et al., 2024). InceptionDWC is an efficient convolution operator that splits the
input channels into four parallel branches: an identity mapping branch, a 3x3 square depthwise convolution branch, and
decomposed 1xk and kx1 strip depthwise convolution branches. Its core advantage lies in its ability to simultaneously
capture local fine-grained patterns, long-range phenological temporal dependencies, and cross-modal (optical-SAR) feature

relationships in the input time-series graph in a computationally efficient manner. Furthermore, this Inception-style multi-

11
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branch design significantly improves computational efficiency while maintaining model accuracy (Yu et al., 2024).
Specifically, for the input Z=X"W,, we split it along the channel dimension into four groups:

Ziws Zws Zn, Zig = Split(Z
h hs Lid plit(Z) (4)

= Z:,:ga Z:,g:2g9 Z:,2g:3g9 Z:,Sg:
where g is the number of channels per convolution branch. We can set a ratio r, to determine the branch channel count
via g = r,C, where C is the total number of channels in Z. The split inputs are then fed into different parallel branches:
Zy' = DWConvy 3 (Zyy)

Z,,' = DWConvi (Z,) (5)
Z,'= DWConvt £ (Z,)

kpx1
Ziy'=Zy
Here, k, denotes the size of the small square convolution kernel (default 3), and k, denotes the size of the strip convolution
kernel (default 7). Finally, the outputs from each branch are concatenated:
Z' = Concat(Xy,,, Xy, Xp', Xiq") (6)
In summary, the Gate Convolution Block combines the efficient multi-dimensional feature extraction capability of the
InceptionDWC operator with the adaptive recalibration function of the dynamic gating mechanism. This enables it to

intelligently extract and enhance the most discriminative phenological features from complex 2D time-series graphs while

maintaining robustness to data missingness and noise.

3.3.3 FSFI Block

While downsampling operations in the backbone network effectively extract high-dimensional semantic information, the
continuously reduced spatial resolution inevitably leads to the loss of crucial fine-grained spatial details. To enhance the
model's perception and modeling capabilities for both global and local regions of the line graphs, achieving collaborative
interaction across hierarchical features in both channel and spatial dimensions is essential (Yuan et al., 2024a; Song et al.,
2025¢). For this purpose, we designed the Full-Stage Feature Interaction (FSFI) block, aiming to effectively fuse feature
information from different encoder levels, thereby improving the model's classification capability.

Specifically, given the outputs from the four stages as {O;,0,,03,0,}. First, a patch embedding is applied to unify the
features from all scales to a common spatial resolution, denoted as F; RS MV where i = 1,2,3,4, h = H/32, and w = W/32.
The core of FSFI lies in computing the local-spatial channel similarity between the deepest feature F, and features from all
levels, thereby establishing global semantic associations. Concretely, the SCA (Spatial Channel Attention) mechanism
takes F;  as the Query, and the concatenated features from all four levels (F ) as the key and value.

FSFI first employs 1x1 convolutions to integrate cross-channel, pixel-wise contextual information, followed by 3x3

depthwise convolutions to capture local spatial context. This process can be formalized as:

12
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Q= WHWRLN(F,)
K=WiWPLN(F ) 7

V=W{WLLN(F )
where W, RC4X3X3,WPQ RO Wi REPS Wb RO W RO wh - RE*1X1 gre distinct convolution

kernels, and LN(+) denotes Layer Normalization.
Subsequently, reshape Q RE*MW K RE*w . REXPW into the forms R, RE*MW - respectively. Then,

compute the local spatial-channel similarity using cross-attention:

QKT
CrossAtt(Q, K, V) = Softmax o \Y% (8

Next, the output of CrossAtt(Q, K, V) is reshaped back to € RC4>h*W ' restored to the original feature dimension via a 1x1
convolution, and combined with a skip connection to produce Fy:

F4 = W, CrossAtt(Q, K, V) +Fy 9
To further enhance the model's multi-scale feature representation capability and strengthen its ability to capture key features
in the 2D graphs, F, is fed into another InceptionDWC module (employing 3x3, 1x7, 7x1, and identity mapping branches)
for re-enhancement, followed by another residual connection (Yu et al., 2024). The final output of this block, Fy,., is
represented as:

Ffuse =  inceptionDWC (F4) + F4 (10)

In summary, the FSFI Block effectively combines the high-level semantic understanding from the deeper encoder layers
with the fine-grained details from the shallower layers, significantly enhancing the model's global and local perception of the
2D time-series graphs. Finally, its highly refined output feature Fg,. is fed into a Global Average Pooling layer and the MLP

Head to achieve the final high-precision rice/non-rice classification.

3.4 Accuracy Assessment

To comprehensively evaluate model performance, we adopted the following four metrics: Overall Accuracy (OA),
Producer's Accuracy for the rice class (PA.), User's Accuracy for the rice class (UA.), and the F1 Score. Their specific

formulas are as follows:

B TP+ TN

~ TP+TN+FP+FN
TP

TP +FN D
TP

TP + FP

PA e X UAjice

PAjice + UArice

where TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False Negatives, respectively.

OA

PAricc =

UArice =

F1=2x%
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3.5 Model Comparison

To validate the effectiveness and superiority of the proposed T2ZVRCM model and its time-series-to-visualization strategy,
this study comprehensively compares T2ZVRCM with two categories of baseline models. The first category comprises Vision
Classification Models, including ResNet-18 (He et al., 2016), ConvNeXt-Atto (Liu et al., 2022b), MambaOut-Femto (Yu
and Wang, 2025), ViT-Tiny (Dosovitskiy, 2020), and Swin-Tiny (Liu et al., 2021). These models cover major paradigms
from classical Convolutional Neural Networks (CNNs) to modern Transformers. The second category is Native Time-Series
Classification Models, commonly used in remote sensing for rice classification. This category includes Random Forest (RF)
(Lu et al., 2025) and deep learning models such as Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)
and Transformer (Vaswani et al.,, 2017). To meet these models' prerequisite for regular time-series inputs, we applied
corresponding preprocessing strategies: (1) for missing temporal phases, linear interpolation was used to fill gaps; (2) for
regions with completely missing single modalities or features that could not be filled via interpolation, values were
uniformly set to zero.

Training Configuration and Experimental Environment. To ensure fair comparison, all deep learning models were trained
with a unified configuration: the optimizer was AdamW with an initial learning rate of 1e-3 combined with a cosine learning
rate decay schedule; batch size was set to 64; and the number of training epochs was uniformly set to 100. All deep learning

models were implemented using the PyTorch framework and trained on NVIDIA RTX 3090 GPU.

4. Experimental Results
4.1 Model Performance and Robustness
4.1.1 Comparison Results of Different Models

To validate the proposed strategy, we compared T2VRCM against baseline models on the global dataset (Table 1) .
Experimental results demonstrate significant advantages across all metrics.

Among native time-series models, RF showed basic performance (OA=83.01%) due to limited feature extraction capabilities.
Deep learning models (LSTM, Transformer) improved accuracy to 84.99% and 85.52% by modeling temporal dependencies
but remained significantly lower than vision-based approaches.

Applying the time-series-to-vision strategy enabled all vision models to outperform traditional methods. ResNet-18 achieved
an OA of 87.75% (a 2.23% gain over the Transformer), highlighting the efficacy of convolutions in extracting 2D patterns.
Modern architectures, such as ViT-Tiny and Swin-Tiny, surpassed an OA of 88%. Notably, MambaOut-Femto emerged as
the top performer among the baselines, reaching an OA of 89.44%, largely due to its dynamic gating mechanism which
effectively handles noisy graphs.

T2VRCM achieved state-of-the-art performance with an OA of 92.33% and an F1 score of 92.32%, surpassing the best-
performing baseline (MambaOut-Femto) by margins of 2.89% and 2.96%, respectively. This stems from three designs: (1)
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Inception Depthwise Separable Convolution captures local patterns and cross-modal correlations via multi-branch processing.
(2) Dynamic Gating Mechanism adaptively enhances discriminative features while suppressing noise from missing data. (3)
Full-Stage Feature Interaction (FSFI) fuses multi-scale features to enhance global-local perception.

In summary, the experimental results validate that the time-series-to-vision strategy effectively elevates the performance of
vision-based models above native time-series approaches. Building on this foundation, the proposed T2ZVRCM achieves the
optimal accuracy among all competitors, proving that its specialized visual encoder successfully addresses the critical
challenges of multi-source data fusion in global rice classification.

Table 1. Performance Comparison of Different Models

Model UA PA F1 OA
RF 83.59% 82.15% 82.87% 83.01%
LSTM 85.93% 83.68% 84.79% 84.99%
Transformer 85.87% 85.03% 85.45% 85.52%
ResNet-18 87.88% 87.57% 87.73% 87.75%
ViT-Tiny 88.35% 88.15% 88.25% 88.27%
Swin-Tiny 88.54% 88.64% 88.59% 88.58%
ConvNeXt-Atto 88.90% 88.51% 88.70% 88.73%
MambaOut-Femto 90.03% 88.70% 89.36% 89.44%
T2VRCM(Ours) 92.52% 92.12% 92.32% 92.33%

4.1.2 Ablation Experiments

To systematically evaluate the core components of the T2ZVRCM architecture, we designed ablation experiments. The
baseline model was constructed by stacking MambaOut encoding units using standard Depthwise Separable Convolution
(DWConv), excluding the Full-Stage Feature Interaction (FSFI) module. Based on this, three variants were tested:(1)
Baseline+Inception: Replacing standard DWConv with Inception Depthwise Separable Convolution (InceptionDWC); (2)
Baseline+FSFI: Integrating the FSFI module for cross-stage feature fusion; (3) T2ZVRCM: Integrating both InceptionDWC
and FSFI.

Experimental results in Table 2 clearly quantify the contributions of each component. The baseline model yielded an OA of
89.19%. Integrating the InceptionDWC module boosted the performance to an OA of 90.75% (a 1.56% gain), validating the
efficacy of multi-branch convolutions in capturing local textures within the 2D graphs. Independently, adding the FSFI
module increased the OA to 91.17% (a 1.98% gain), highlighting the crucial role of cross-stage interaction.

The complete T2ZVRCM achieved peak performance with an OA of 92.33%, marking a substantial total gain of 3.14% over

the baseline. This synergy arises because InceptionDWC enriches semantic information, while FSFI further refines fine-
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grained discriminative features. Their collaborative interaction allows T2VRCM to fully leverage the representational
advantages of the time-series-to-vision strategy.

Table 2. Independent Contributions and Synergistic Gains of Components

Model UA PA F1 OA
T2VRCM 92.52% 92.12% 92.32% 92.33%
Baseline+FSFI 91.32% 90.98% 91.15% 91.17%
Baseline+Inception 91.14% 90.27% 90.71% 90.75%
Baseline 89.95% 88.25% 89.09% 89.19%

4.2 Global Rice Distribution Maps at 20 m Resolution (2015 and 2024)

Based on the proposed T2VRCM, we generated the Global Rice Distribution Maps at 20 m resolution (GlobalRice20).
Figure 5 presents the rice cultivation area maps for 2015 and 2024 across 98 rice-producing countries, along with the area
proportion statistics for five continents. The maps are displayed aggregated at a 1° grid. Spatially, global rice cultivation
areas are widely distributed across Asia, Africa, and the Americas. Asia is the world's primary core rice cultivation region,
accounting for nearly 90% of the global total area. Rice cultivation is concentrated in East Asia, South Asia, and Southeast
Asia, forming extensive contiguous belts of high-density cultivation. Africa and the Americas are secondary cultivation
regions, primarily located in Africa's Nile Delta, coastal West Africa, Madagascar, as well as southern Brazil and the

southeastern United States. Cultivation areas in Europe and Oceania are relatively very limited.
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Figure 5. Global spatial distribution maps of rice in 2015 and 2024, along with the proportion of rice cultivation area across five
continents. Basemap sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User

Community.
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Between 2015 and 2024, the overall pattern of global rice cultivation remained stable, though the proportional contribution

of each continent to the total area underwent several shifts; meanwhile, the total global area increased, with Africa emerging

as the most significant region in terms of both area expansion and growth in global share.

®  Asia: Specifically, Asia consistently dominated rice cultivation, although its share of the total area slightly decreased
from 87.15% in 2015 to 86.72% in 2024, yet its absolute area continued to grow from 109,820.4 Kha to 112,948.96
Kha.

® Africa: Africa was the only continent to exhibit a distinct increase in its share of the global total, rising from 8.73% in
2015 to 9.48% in 2024, indicating that rice cultivation in Africa expanded at a faster rate than the global average during
the study period; this trend is further reflected in the spatial distribution maps, where rice cultivation areas in Africa in
2024 visually appear denser and more extensive compared to 2015.

®  Other Regions: The share for the Americas decreased from 3.69% to 3.45%, while Europe’s share dropped from 0.41%
to 0.33%, and Oceania maintained the lowest share with negligible change, shifting from 0.02% to 0.03%.

4.3 Accuracy Assessment of GlobalRice20

To strictly assess the quality of the GlobalRice20 product, we conducted a multi-level validation strategy involving ground-

truth samples, spatial cross-comparison, and national statistical verification.

4.3.1 Sample-based Validation

We computed accuracy metrics using the independent test set derived from 164,000 global samples (Fig. 6). The global
extraction results for 2015 yielded a UA of 90.11%, a PA of 90.36%, and an OA of 90.23%. The corresponding accuracies
for 2024 improved to 92.52%, 92.12%, and 92.33%, respectively, demonstrating a clear performance gain over the 2015
baseline.

Furthermore, accuracy was assessed on a country-by-country basis. Among the 2015 mapping results, 84% of countries (83
countries) achieved an OA of 0.85 or higher. In 2024, over 89% of countries (88 countries) achieved an OA of 0.85 or higher.
This indicates a high level of consistency between the extracted rice distribution and the independent test samples across
diverse regions and observation years.

In Asia, major rice-producing countries such as China, India, Indonesia, and Thailand all achieved overall classification
accuracies above 90%. Key rice-producing regions in Africa—Congo, Guinea, Madagascar, and Nigeria—achieved overall
accuracies above 85%. Additionally, countries like Brazil in South America and the United States in North America also

achieved good accuracy levels.
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(b) 2024 Accuracy Assessment Results
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Figure 6. Accuracy validation results based on sample points. (a) Results for 2015. (b) Results for 2024.
4.3.2 Spatial Consistency with Existing Products

Figure 7 presents a spatial comparison between GlobalRice20 and several mainstream rice distribution datasets across nine
395 distinct rice-cultivating regions. For comparative analysis, we selected existing rice maps with varying spatial resolutions

that are temporally closest to the target years of 2015 and 2024. With a spatial resolution of 20 m, GlobalRice20 generally

surpasses concurrent public regional datasets, thereby meeting the requirements for precise field-level identification.

Taking Anhui and Heilongjiang provinces in China as examples, coarse-resolution datasets such as APRAS500,

ChinaCropArealkm, AsiaRiceYield4km, and CropArea-China exhibit blurred boundaries and fragmented geometries.

400 Meanwhile, CCD-Rice suffers from excessive noise and significant confusion between large water bodies and paddy fields,
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while SingleSeasonRice-China displays substantial noise and misclassification. Consequently, these datasets fail to
accurately represent the actual cultivated landscape. Similarly, in regions like Thailand and Indonesia, characterized by
fragmented plots and complex cropping structures, other high-resolution datasets (e.g., NESEA-Ricel0 and Open-SEA-Rice-
10) also exhibit significant data gaps and insufficient delineation of fine details. In contrast, GlobalRice20 clearly delineates
field boundaries with regular and well-defined patch contours. It demonstrates high spatial consistency with optical remote
sensing imagery, achieving a level of detail comparable to 10-m resolution products.

To further ensure the reliability of the comparison, we validated the accuracy of rice fields in the United States using the
USDA NASS Cropland Data Layer (CDL, https://croplandcros.scinet.usda.gov/) for the corresponding years. The results
reveal a high spatial agreement between the two, demonstrating the robustness of our dataset across different regions and
data standards.

Overall, GlobalRice20 provides a more complete identification scope with clearer contours, effectively and accurately
reflecting the spatial distribution of paddy rice fields. Building on this, this study presents the first global 20-m resolution
rice classification product covering major rice-growing regions. With its clear boundaries and accurate field delineation,
GlobalRice20 fills a critical gap in the availability of high-resolution, timely remote sensing data for global paddy rice

monitoring.
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Figure 7. Detailed comparison of our product with existing rice distribution maps. Basemap sources: Esri, TomTom, Garmin,
FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community.
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By calculating the predicted rice planting area for each country in 2015 and 2024 and comparing it with statistical data, the

results indicate that the estimated areas for both years exhibit a generally high level of consistency with the statistics (Fig. 8).

The fit in 2024 is superior, with R? of 0.91 between the predicted and statistical areas (Fig. 8b), which is notably higher than

that of 0.86 in 2015 (Fig. 8a). The slightly lower accuracy in 2015 can mainly be attributed to the longer revisit cycle of

optical imagery and the limited coverage of SAR data in that year, which weakened the representation of time-series image

features in some regions and thus affected the stability and accuracy of area estimation, as reflected in the overestimation of

rice area in India in 2015. Nevertheless, the 2015 estimates still maintain a good overall fit, demonstrating the robustness of

the proposed method under different year-specific and data availability conditions.

R2=0.86, RMSE=2.05 Mha

R2=0.91, RMSE=1.80 Mha
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Figure 8. Accuracy validation based on statistical data. (a) R? between predicted and statistical rice areas by country in 2015. (b)
R? between predicted and statistical rice areas by country in 2024.

4.4 Spatiotemporal Dynamics During the First Decade of SDGs (2015-2024)

Global rice area was aggregated into a 1° grid to calculate the area change between 2015 and 2024, as shown in Figure 9.

Over this period, the global rice footprint exhibited a robust upward trajectory, registering a net growth of approximately

6.6%. Asia maintained its status as the global center of rice cultivation, though it displayed divergent sub-regional trends.

Southeast and South Asia remained the primary drivers of production, benefiting from favorable agro-climatic conditions

and abundant water resources (Taniushkina et al., 2024; Yuan et al., 2022a). Specifically, while West Asia and Southeast
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Asia saw expansions driven by improved irrigation infrastructure and policy support (Ginting et al., 2025), East and North
Asia experienced slight declines, likely attributable to urbanization and cropping structure adjustments. South Asia
experienced particularly dramatic fluctuations driven by environmental constraints; for instance, erratic monsoons and
groundwater depletion in northwestern India have led to localized field abandonment (Devineni et al., 2022). Conversely,
eastern regions of the subcontinent have witnessed expansion supported by government-led irrigation projects, highlighting
the complex interplay between climate resilience and policy intervention in this region.

Most notably, Africa emerged as a new global growth pole, recording a substantial 15.7% increase in planting area. This
expansion is underpinned by proactive agricultural development policies and international partnerships, such as China-Africa
cooperation projects (Zhang et al., 2025). Spatially, a distinct shift in development models was observed across the continent.
Traditional producing nations in West Africa (e.g., Nigeria, Senegal) exhibited a pattern of area stabilization or slight decline,
reflecting a strategic policy shift towards intensifying yield per unit area to reduce import dependency rather than pursuing
further extensive expansion (Yuan et al., 2024b). In contrast, countries in East and Central Africa, such as Uganda, Ethiopia,
and Congo, witnessed rapid extensive growth, driven by increased national investments in new paddy field development and
irrigation infrastructure.

Looking ahead, Africa’s rice production trajectory is poised for continued ascent. Driven by technology dissemination and
infrastructure modernization, the continent is gradually building a resilient and mature value chain. With advancements in
irrigation systems, seed varieties, and mechanization, Africa has the potential to significantly boost its self-sufficiency rates

in the coming decades, providing crucial support for regional food security and the realization of SDG 2.
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Figure 9. Spatiotemporal statistics of global rice area change aggregated at a 1° grid over the decade (2015-2024).
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5. Conclusion

To address the persistent challenges of fusing multi-source time-series remote sensing data for global-scale agricultural
monitoring, this study proposes an innovative "Time-Series-to-Vision" classification framework and develops a specialized
deep learning visual classifier, T2ZVRCM. By leveraging the complementary strengths of multi-source remote sensing data,
we successfully generated GlobalRice20, the first validated global 20-m resolution rice distribution product for the years
2015 and 2024. The core innovation of this study lies in encoding heterogeneous, irregularly sampled Optical and SAR time-
series data into standardized 2D line-graph visual representations. This strategy effectively resolves critical technical
bottlenecks—specifically sensor asynchrony, temporal discontinuity, and modal missingness—enabling high-precision, end-
to-end rice mapping even in complex, cloud-prone environments. Experimental results demonstrate that the proposed
T2VRCM achieves an OA of 92.33% across 98 countries, significantly outperforming existing state-of-the-art native time-
series models and general vision classifiers. The generated global maps exhibit high spatial consistency and statistical
reliability, confirmed through rigorous validation against both ground-truth samples and official national statistics, yielding a
high correlation (R? = 0.91) for 2024. Based on this high-resolution dataset, we systematically analyzed the spatiotemporal
evolution of global rice cultivation over the decade following the inception of SDG 2. The analysis reveals an overall growth
of approximately 6.6% in the total global rice area. Notably, a pivotal geographical shift was observed: Africa emerged as
the most significant growth hotspot with a 15.7% expansion, contrasting with the relative stability of traditional Asian
production hubs, where the total share has slightly decreased. In conclusion, the high-resolution, multi-temporal rice
distribution dataset constructed in this study fills a critical gap in global-scale thematic products. By providing spatially
explicit and timely benchmarks, GlobalRice20 offers essential data support for global food security assessment, agricultural
policy formulation, and tracking progress toward Sustainable Development Goal 2 (Zero Hunger) in the face of climate

change.

Author Contributions: Conceptualization, H.Z., M.S., H.G., L.Z. and W.H.; methodology, M.S., H.Z. and H.G.; software,
M.S., Y.D., Y.X, Z.W. and H.D.; validation, J.G., Y.Z., S.W. and Z.G.; formal analysis, M.S., H.Z. and H.G.; investigation,
M.S. and H.Z.; resources, H.G., W.H., L.Z. and L.X.; data curation, M.S., L.X., Y.D. and Y.X.; writing—original draft
preparation, H.Z., M.S., Y.D, and Y.X.; writing—review and editing, H.G., W.H., L.Z., L.X., H.Z. and J.G.; visualization,
Y.D., Y.X., Z.W. and H.D.; supervision, H.G., W.H., L.Z., L.X. and H.Z.; project administration, H.G., W.H., L.Z. and H.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the International Research Center of Big Data for Sustainable Development Goals
(CBAS) (No. CBASYX0906) and the National Key R&D Program of China (No. 2023YFB3906201).

Acknowledgments: The authors acknowledge the support of data and computational power provided by the Google Earth
Engine platform.

Competing interests: The authors declare no conflict of interest.

25



490

495

500

505

510

515

520

Earth System
Science

Data

https://doi.org/10.5194/essd-2026-24
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

Data availability: The GlobalRice20 dataset is available at https://doi.org/10.5281/zenodo.18168302 (Zhang et al., 2026).
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