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Abstract. Solar-induced chlorophyll fluorescence (SIF) and evapotranspiration (ET) have been widely recognized as proxies 

for carbon gain and water loss at the ecosystem level. However, most SIF and ET products on the global scale are generally at 

coarse temporal resolutions of at least one day, which limits their ability to characterize diurnal carbon and water cycles. In 20 

this study, we extended the spatiotemporal scale of satellite SIF (from OCO-2 and OCO-3) and ET (from ECOSTRESS) data 

using machine learning methods, resulting in a global hourly SIF and ET dataset (HOUR_SIFOCO and HOUR_ETECO) spanning 

from 1982 to 2022, with a spatial resolution of 0.1°. Our product also provides photosystem-level SIF derived from direct 

estimation and simulation of Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model, aiming to offer a 

more accurate description of photosynthesis. Our satellite-derived products show good correlations with in-situ flux tower 25 

measurements from the FLUXNET2015 community (hourly-scale median R2 for SIF: 0.72, and ET: 0.53; daily-scale median 

R2 for SIF: 0.73, and ET: 0.63). Globally, our product shows good consistency with popular SIF and ET gridded products: the 

mean proportions of pixels with monthly R2 exceeding 0.7 are 69.5% and 68.1% when compared with four popular products, 

respectively. The causal-based attribution analysis revealed significant spatial heterogeneity in the lagged effects of different 

environmental factors on SIF, ET, and water use efficiency based on SIF and ET on the global scale. Overall, our dataset will 30 

provide new insights for monitoring the diurnal variations of carbon and water cycles and deepen our understanding of their 

changes over the past 40 years. The global hourly SIF and ET dataset (1982–2022) at 0.1° spatial resolution produced in this 

study is available at https://doi.org/10.57760/sciencedb.ecodb.00177 (Deng et al., 2025b). 
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1 Introduction 

Carbon and water cycles are the key processes within terrestrial ecosystems (Piao et al., 2020; Regnier et al., 2022). In this 35 

cycle, photosynthesis of vegetation forms the gross primary production (GPP), which serves as a major carbon sink in the 

ecosystem (Miller et al., 2023; Yu et al., 2022); transpiration from vegetation and evaporation from soil and water (referred to 

as evapotranspiration, ET) is essential for regulating surface energy balance (Cheng et al., 2017; Yang et al., 2023). Therefore, 

a deeper understanding of photosynthesis and ET is needed especially under global climate change (Rockström et al., 2023; 

Wankmüller et al., 2024; Zhang K. et al., 2024). However, accurately quantifying these processes on the global scale still poses 40 

severe challenges (Fuentes et al., 2024; Lai et al., 2024; Ryu et al., 2019). 

 

In recent years, huge advancements in remote sensing have made it possible to monitor carbon and water cycles on the global 

scale (Huang et al., 2018; Rodell et al., 2023; Xiao et al., 2019). Solar-induced chlorophyll fluorescence (SIF) and ET are two 

representative advancements (Xiao et al., 2021). SIF is the faint signal re-emitted by vegetation after absorbing light energy 45 

during photosynthesis (Jiao et al., 2019; Porcar-Castell et al., 2021; Van der Tol et al., 2014), which addresses the limitations 

of traditional optical vegetation indices and has shown great potential in estimating GPP (Sun et al., 2023a), monitoring 

environmental stress (Mohammed et al., 2019) and plant phenology (Huang et al., 2023). The integration of SIF and ET can 

further enhance our understanding of plants’ functional characteristics, such as analyzing vegetation’s water use strategies 

under various environments through water use efficiency (Zhang Z. et al., 2023a). 50 

 

Despite numerous studies leveraging satellite-based SIF and ET data for large-scale ecosystem monitoring, data availability 

remains a major limitation (Elnashar et al., 2021; Sun et al., 2023b). For SIF, this limitation arises primarily from the lack of 

satellites specifically designed to detect SIF due to its faint signal, resulting in current observations being characterized by 

coarse spatiotemporal resolution and sparse sampling (Quiros-Vargas et al., 2022). To overcome this, machine learning models 55 

and light use efficiency (LUE) models have been developed to upscale low-resolution and temporally discontinuous SIF remote 

sensing products into high-resolution and spatiotemporally continuous datasets, such as CSIF (Zhang Y. et al., 2018), GOSIF 

(Li and Xiao, 2019), and SIF005 (Wen et al., 2020). The temporal resolution of these global products typically ranges from 4 

days to 1 month, with the highest resolution reaching one day (such as TROPOMI SIF (Lorente et al., 2021)), which can meet 

the commonly need for monitoring seasonal vegetation photosynthesis and estimating GPP. However, these products typically 60 

represent fixed-time SIF values, determined by satellite overpass schedules—for instance, around 9:30 AM local time for the 

MetOp-A satellite (August et al., 2012), and approximately 1:30 PM local time for TROPOMI (Lorente et al., 2021), OCO-2 

(Sun et al., 2018), and TanSat satellites (Liu et al., 2018). Most products convert instantaneous SIF values to daily averages 

using scaling factors such as the ratio of the instantaneous cosine of the solar zenith angle (cos(SZA)) to its daily average (Li 

and Xiao, 2019) or ratios derived from atmospheric radiative transfer models (Zhang Y. et al., 2018). However, all these 65 

methods fail to capture the diurnal variations in SIF. Compared to SIF datasets, spatiotemporally expanded ET datasets are 
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even scarce (Leng et al., 2024), limiting the ability to monitor diurnal changes in water fluxes and the joint application of SIF 

and ET (e.g. water use efficiency) on the hourly scale. 

 

Recent satellite missions, such as Orbiting Carbon Observatory-3 (OCO-3) and the Ecosystem Spaceborne Thermal 70 

Radiometer Experiment on Space Station (ECOSTRESS) have provided new opportunities to enhance spatiotemporal 

resolution for SIF and ET (Xiao et al., 2021). OCO-3 and ECOSTRESS, mounted on the International Space Station, enable 

observations of the same region at different times of the day (Taylor et al., 2020). This unique feature offers the potential to 

construct diurnal SIF and ET datasets for specific regions (Xiao et al., 2021). Recent studies have utilized OCO-3 SIF and 

ECOSTRESS ET data to investigate the Amazon rainforest’s response to global warming (Zhang Z. et al., 2023a; Zhang Z. et 75 

al., 2023b). However, these missions provide SIF and ET data with sparse or coarse spatial sampling, necessitating 

spatiotemporal upscaling for broader application in terrestrial ecosystem monitoring (Zhang Y. et al., 2023). Recent studies 

have started to address this issue and have attempted to produce hourly-scale SIF or ET datasets. However, current methods 

still face limitations in spatial resolution and extent (0.5° or non-global scale) due to computational power or data availability, 

which restrict their broader and more in-depth applications (Deng et al., 2025a; Jeong et al., 2024; Zhang Z. et al.,2023b). 80 

Specifically, producing the dataset at an hourly resolution would lead to an order-of-magnitude increase in computational 

demand and require more efficient algorithms. In addition, most SIF retrieval methods are based on satellite-observed optical 

reflectance (from satellites such as MODIS), which limits the temporal range and continuity of the input data, thereby affecting 

the production of SIF datasets. Finally, some studies have pointed out that satellite-observed SIF may be greatly affected by 

hotspot effects, resulting in substantial measurement biases (Zeng et al., 2023). Converting satellite-derived canopy SIF into 85 

photosystem level SIF may help enhance its correlation with GPP (Zhang Z. et al., 2023b), while most SIF datasets do not take 

this into account. 

 

In this study, we aim to develop a long-term (from 1982 to 2022), high-temporal-resolution (one hour) global SIF and ET 

dataset with an efficient algorithm based on the OCO-2 and OCO-3 satellites and the ECOSTRESS mission (HOUR_SIFOCO 90 

and HOUR_ETECO). We also attempted to convert satellite-observed SIF into the total SIF emitted by vegetation, to achieve a 

more accurate modeling of actual photosynthesis. All output data are produced with a spatial resolution of 0.1° and validated 

by site-level observations and popular regional-scale products. Additionally, we conducted a preliminary long-term analysis 

to explore how carbon and water fluxes varied and how they were regulated by environmental factors in the past 40 years. 

2 Data and methodology 95 

The technical workflow of this study, as shown in Fig. 1, involves several critical steps. First, raw satellite observation data 

are collected and pre-processed (Sect. 2.1 to 2.3). Next, photosystem-level SIF is estimated (Sect. 2.4), and the spatiotemporal 
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upscaling model is constructed (Sect. 2.5). Following the production of our dataset, a rigorous validation process is conducted 

before being used for attribution analysis (Sect. 2.6). 

 100 
Figure 1. Technical flowchart of this study. The upper section displays the main data used in this study, the middle section represents the 

production portion of the dataset, and the lower section shows the analysis and application based on the production dataset. 

 

2.1 Data for training and production 

2.1.1 OCO satellite SIF data 105 

OCO-2 and OCO-3 satellites are designed to explore carbon dynamics on the Earth’s surface. Although their primary mission 

is to measure atmospheric CO₂ concentrations rather than detect SIF, their advanced sensors allow them to capture SIF signals 
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with some of the highest spatial resolutions among current SIF-focused satellites (1.3 km × 2.25 km for OCO-2 and 1.6 km × 

2.2 km for OCO-3). This high spatial resolution provides a strong foundation for further spatial upscaling. OCO-2 is onboard 

a sun-synchronous orbit satellite, with an overpass time of approximately 1:30 PM local time and a revisit cycle of about 16 110 

days. In contrast, OCO-3 is mounted on the International Space Station, resulting in less predictable revisit cycles and overpass 

times (Doughty et al., 2021). This unique characteristic of OCO-3 enables monitoring of SIF at various times of the day, 

enabling the study of diurnal SIF variations (Xiao et al., 2021). We utilized the latest version (V11r) of the OCO-2 and OCO-

3 SIF datasets for our study. Since both datasets were derived using nearly identical retrieval algorithms and quality control 

standards, the SIF data provided by OCO-2 and OCO-3 exhibit strong consistency. Both satellites provide SIF values at the 115 

O₂-A band (757 nm and 771 nm), but the SIF signal at 757 nm is stronger and has relatively lower uncertainty (Doughty et al., 

2021; Sun et al., 2018). This makes it particularly advantageous for monitoring sparsely vegetated regions, and thus the 757 

nm SIF values were adopted in our study. Although the official OCO team also provides SIF values at the 740 nm band (near 

the emission peak in the near-infrared spectrum) calculated using measurements at 757 nm and 771 nm, these values are not 

directly retrieved and inherent uncertainties from both bands. Consequently, we excluded them from our analysis, consistent 120 

with common practices for OCO SIF data usage (Li X. et al., 2020; Zhang Y. et al., 2023). 

 

To ensure the quality of our training samples, we implemented a rigorous quality control process. Specifically, (1) only 

observations with a quality flag of 0 (indicating the highest overall retrieval quality) were used; (2) the strictest cloud fraction 

thresholds were applied to minimize the presence of clouds in the observed areas, even though clouds typically have minimal 125 

impact on SIF retrieval (Frankenberg et al., 2012); (3) only nadir mode observations were included to eliminate variations due 

to viewing zenith angle (VZA), ensuring maximum signal-to-noise ratio and highest spatial resolution; (4) following official 

recommendations, negative SIF values were retained if their adjusted values obtained by adding two times the uncertainty 

were greater than zero (Doughty et al., 2021); To further reduce the impact of observational uncertainties, we aggregated the 

raw SIF observations into 0.1° geographic grid cells and retained only those grid cells with at least 15 observations. This 130 

aggregation reduces uncertainty to approximately 1/√15 of the original value (Frankenberg et al., 2014). For the analysis, we 

selected OCO-2 SIF data spanning September 2014 to March 2024 and OCO-3 SIF data spanning August 2019 to November 

2023. Due to the availability of model-driven data (Sect. 2.1.3), only data up to 2023 were used for training. 

2.1.2 ECOSTRESS satellite ET data 

We used the ECO3ETPTJPLv001 instantaneous latent heat flux (ETinst) product from the ECOSTRESS (ECOsystem 135 

Spaceborne Thermal Radiometer Experiment on Space Station) mission (Fisher et al., 2008). Mounted on the International 

Space Station, ECOSTRESS is a high-precision thermal radiation imaging system designed to monitor evapotranspiration at 

the Earth’s surface. Operating in an inclined polar orbit, the mission provides global coverage between latitudes 52°N and 

52°S. By measuring vegetation surface temperature, ECOSTRESS provides valuable insights into vegetation water 

requirements and their responses to climate stress. It offers ET data at a spatial resolution of 70 meters and a various temporal 140 
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resolution (Anderson et al., 2021), which performs well compared with in situ measurements at 82 EC sites globally (Fisher 

et al., 2020). We used only high-quality ET data for training and made every effort to ensure the training distribution covers 

the globe. Compared to SIF data, ET data are at a much higher spatial resolution per observation. Consequently, we did not 

aggregate the ET data in the same way as SIF. Instead, we retained grid cells where ET detection coverage exceeded 99% 

within a 0.1° grid cell, ensuring the ET within these cells accurately represented detected ET. 145 

2.1.3 Auxiliary data for production 

We selected the hourly meteorological dataset provided by ERA5-Land (Muñoz-Sabater et al., 2021), which has a spatial 

resolution of 0.1°, matching the resolution of our training label data and output products. To estimate photosynthetically active 

radiation (PAR), we used the hourly surface solar radiation downwards in ERA5-Land, multiplying it by 0.46. The 2m 

temperature and 2m dewpoint temperature were used to estimate temperature and vapour pressure deficit (VPD). Additionally, 150 

the soil moisture from the top three layers, weighted appropriately, was incorporated into our study. 

 

We utilized the Global Inventory Monitoring and Modeling System (GIMMS) FPAR product, GIMMS FPAR4g (Zhao et al., 

2024), which features a high spatial resolution of 1/12° and a half-month temporal resolution. As the latest FPAR product in 

this series, GIMMS FPAR4g demonstrates excellent spatiotemporal consistency over the 41 years from 1982 to 2022, which 155 

is crucial for constructing long-term SIF and ET datasets. 

 

In addition, we utilized the MODIS land cover product MOD12Q1, which is at 500m spatial resolution. We reclassified it to 

0.1° grid cells based on the dominant plant types. Since MOD12Q1 does not provide products before the 21st century, we 

utilized the most frequent land cover categories from 2001 to 2003 as proxies for the land cover types before 2001, minimizing 160 

potential errors (Li M. et al., 2023). Finally, we used the National Oceanic and Atmospheric Administration (NOAA) DEM 

data to simulate the potential impact of elevation on atmospheric pressure (Cheng et al., 2025). 

2.2 Data for validation 

We utilized site-level observational data from FLUXNET2015 to validate the accuracy of our products at an hourly timescale. 

Based on data quality, we selected 136 sites for SIF validation and 146 sites for ET validation (Table S1). Gross Primary 165 

Production derived from the Daytime Partitioning Method (GPP_DT_VUT_REF) and latent heat flux (LE_F_MDS) were 

employed to validate SIF and ET, respectively, while only high-quality data with QC flags less than 2 were included. Although 

site-scale validation inherently faces spatial scale mismatch issues and may reduce validation accuracy, we directly paired and 

validated our products with the 0.1° grid values corresponding to the site locations due to the lack of effective correction 

methods. Since FLUXNET2015 does not provide SIF observations, we selected SIF data from eight publicly available studies 170 

to evaluate the capacity of predicted SIF to capture diurnal variations (Table S2). Furthermore, we selected four widely 

recognized gridded SIF products—CSIF (Zhang Y. et al., 2018), GOSIF (Li and Xiao, 2019), LT_SIFc (Wang et al., 2022), 
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and SIF005 (Wen et al., 2020)—along with four gridded ET products—BESSv2.0 (Li B. et al., 2023b), BEPS-DP (Leng et al., 

2024), REA (Lu et al., 2021), and ERA5-Land (Muñoz-Sabater et al., 2021) to validate our products. All comparisons were 

conducted at a spatial resolution of 1° and at a monthly timescale. 175 

2.3 Data fusion of OCO-2 and OCO-3 SIF sounding data 

Although OCO-2 and OCO-3 SIF sounding data are derived using nearly identical retrieval algorithms, differences exist due 

to variations in observation altitudes and the new Pointing Mirror Assembly (PMA) provided for OCO-3 on the International 

Space Station, which affect radiometric reception characteristics (Eldering et al., 2019). Consequently, SIF data from the two 

satellites cannot be directly combined (Deng et al., 2025a). To address this, we employed a LightGBM-based (Light Gradient 180 

Boosting Machine, Ke et al., 2017) fusion method to establish a quantitative relationship between OCO-2 and OCO-3 SIF data 

using observational parameters from OCO-2. This relationship was then applied to all OCO-2 SIF grid cells, ensuring their 

characteristics align with those of OCO-3: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂−3 = 𝐹𝐹(𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂−2,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1𝑂𝑂𝑂𝑂𝑂𝑂−2,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2𝑂𝑂𝑂𝑂𝑂𝑂−2 … ) (1) 

Specifically, we used 20 variables—including OCO-2 SIF data and 17 observational parameters such as solar zenith angle and 185 

latitude/longitude—as input features for the quantitative correction model. The full list of variables is detailed in Table S3. 

Each grid cell’s properties were represented by the average values of all observation points within that cell. For training 

samples, we included only grid cells where OCO-2 and OCO-3 observations had identical geographical locations and 

observation times (to the hour), ensuring comparable observation conditions (Fig. 2). 
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 190 
Figure 2 (a) The original uncertainty distribution map of OCO SIF. (b) A schematic of the fusion of OCO-2 and OCO-3 SIF (UTC: August 

18, 2019, 11:00 AM; Location: 25.3°E, 48.1°N). The blue represents SIF grid cells aggregated from OCO-2 detection points, the red 

represents OCO-3, and the purple “O” indicates the overlapping grid cells between both, which serve as our training samples. (c) Comparison 

of OCO-2 and OCO-3 grid cells before and after fusion based on the LightGBM model (on the test set). (d) Fusion results based on a multiple 

linear regression model. 195 
 

We randomly selected 70% of the fusion samples as training data and used the optimized parameters to train the LightGBM 

model with five-fold cross-validation. On the test set, our fusion approach reduced the mean absolute error (MAE) between 

OCO-2 and OCO-3 SIF grid-cell values from 0.102 W/m²/μm/sr to 0.088 W/m²/μm/sr, compared to a linear correction model 

which only reduced the error to 0.099 W/m²/μm/sr (see Fig. 2c, d). The average MAE of raw SIF soundings at the observation 200 
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point level is 0.358 W/m²/μm/sr (Fig. 2a). After grid aggregation, the theoretical uncertainty is approximately 0.0924 

W/m²/μm/sr (calculated as 0.358√15 , Frankenberg et al., 2014). This indicates that the inherent uncertainty in SIF 

observations accounts for most of the residual error after fusion, demonstrating the fusion process’s effectiveness. Following 

data fusion, we obtained 4,661,615 SIF grid data points, of which 2,881,096 (approximately 62%) came from OCO-2, sharply 

increasing the sample size. In addition, SIF retrievals from OCO-2 effectively compensate for the observational gaps of OCO-205 

3 in high-latitude regions, as the latter is limited to observations below 53° latitude. 

2.4 Estimation of photosystem-level SIF 

We employed two methods to convert canopy-level SIF (SIFOCO) observed by OCO-2 and OCO-3 into photosystem-level SIF 

(SIFtotal), both of which are included in our final product. SIFtotal refers to the fluorescence emitted on the microscopic scale (i.e., 

from Photosystem I and Photosystem II) during photosynthesis. This fluorescence undergoes reabsorption within leaf tissues 210 

and multiple scattering and absorption processes within the canopy before reaching the canopy top, where it can be observed. 

To achieve this conversion, it is necessary to estimate the escape ratio of SIF from the photosystem level to the canopy top. 

First, we applied a direct estimation method based on radiative transfer models (Yang and van der Tol, 2018; Zeng et al., 2018): 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉

𝜋𝜋 × 𝑖𝑖0 × 𝐾𝐾𝜆𝜆
(2) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂
𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

(3) 215 

Here, NIRv represents the near-infrared reflectance of vegetation, which can be obtained by multiplying the Normalized 

Difference Vegetation Index (NDVI) by the near-infrared reflectance (NIR). The denominator includes 𝜋𝜋, which is used to 

convert directional fluorescence to canopy hemispherical fluorescence. 𝐾𝐾𝜆𝜆 refers to the ratio of leaf albedo to the escape ratio 

of fluorescence from the photosystem to the leaf surface, with a value of 1.2 adopted in this study (Zhang Z. et al., 2021). 𝑖𝑖0 

denotes canopy interception: 220 

𝑖𝑖0 = 1 − exp (
−𝐺𝐺(𝜃𝜃) × 𝐿𝐿𝐿𝐿𝐿𝐿 × 𝐶𝐶𝐶𝐶

cos (𝑆𝑆𝑆𝑆𝑆𝑆)
) (4) 

𝐺𝐺(𝑆𝑆𝑆𝑆𝑆𝑆) = 𝜙𝜙1 + 𝜙𝜙2 × cos (𝑆𝑆𝑆𝑆𝑆𝑆) (5) 

𝜙𝜙1 = 0.5 − 0.663𝜒𝜒𝐿𝐿 − 0.33𝜒𝜒𝐿𝐿2 (6) 

Here, SZA represents the solar zenith angle. 𝜒𝜒𝐿𝐿  refers to the departure of leaf angles from a random distribution. In this study, 

𝜒𝜒𝐿𝐿  values for different vegetation types were obtained from the Community Land Model 4.5 (Oleson et al., 2023). LAI 225 

represents the Leaf Area Index, with data sourced from the MODIS MCD15A3H product. CI is the clumping index, for which 
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we utilized a set of seasonal CI products (Fang et al., 2021; Wei et al., 2019). It is important to note that OCO-2 and OCO-3 

do not directly provide bidirectional reflectance in the red and near-infrared bands for the observed regions. To eliminate the 

influence of observation geometry, we used the RossThick-LiSparseR (RTLSR) BRDF model to retrieve the corresponding 

reflectance values (Lucht et al., 2000): 230 

𝑅𝑅(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑣𝑣 ,𝜑𝜑,Λ) = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖(Λ)𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣(Λ)𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃𝑖𝑖,𝜃𝜃𝑣𝑣 ,𝜑𝜑) + 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔(Λ)𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑣𝑣 ,𝜑𝜑) (7) 

Here, 𝑅𝑅(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑣𝑣,𝜑𝜑,Λ) represents the bidirectional reflectance distribution function (BRDF) at wavelength Λ. 𝜃𝜃𝑖𝑖, 𝜃𝜃𝑣𝑣 and 𝜑𝜑 are 

the solar zenith angle, sensor zenith angle, and relative azimuth angle (the difference between the solar azimuth angle and the 

observation azimuth angle), respectively. 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖, 𝐾𝐾𝑣𝑣𝑣𝑣𝑣𝑣  and 𝐾𝐾𝑔𝑔𝑔𝑔𝑔𝑔 are the isotropic scattering, volumetric scattering, and geometric-

optical scattering kernels, respectively. We obtained daily kernel parameters from the MCD43A1 product and used satellite-235 

provided observation parameters to drive the RTLSR model. All data retrieved from MODIS were of the highest quality level. 

The SIFtotal derived from this method is referred to as SIFtotal-D. 

 

We also employed a newly proposed method to estimate the canopy escape ratio on the satellite scale (Li H. et al., 2024). 

Specifically, we utilized the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model to simulate escape 240 

probabilities under various scenarios (Van der Tol et al., 2009). In version 2.1 of the SCOPE model, it is possible to simulate 

SIF transmission under different conditions by using varied input datasets (Yang et al., 2021). In this study, we used the input 

parameters listed in Table 1 to simulate as many scenarios as possible (Li H. et al., 2024; Liu et al., 2019), resulting in a total 

of 1,469,664 samples. Among these, 70% were randomly selected as the training set, while the remaining data were used as 

the test set. We employed a LightGBM model (detailed in Sect. 2.5) to establish a quantitative relationship between red-band 245 

reflectance, near-infrared reflectance, NIRv, SZA, and LAI with escape ratio. Ultimately, we achieved an R2 close to 1 on the 

test set (Fig. S1). This model was then applied to the extrapolation of satellite-observed SIF. To match SCOPE-simulated 

reflectance with MODIS satellite-provided reflectance as closely as possible, we used bidirectional reflectance outputs from 

SCOPE at 648 nm and 858 nm for training. Additionally, we used reflectance outputs from the RTLSR model to drive our 

framework, enabling the conversion of SIFOCO to photosystem-level SIFtotal. The SIFtotal derived from this method is referred to 250 

as SIFtotal-S. 

Table 1: Input parameters in SCOPE model for simulating different scenarios of SIF transmission. 

Parameter Symbol Values 

Leaf Chlorophyll Content Cab 20, 50, 80 (μg/cm2) 

Maximum Carboxylation Capacity Vcmax25 20, 60, 100 (μmol/ m2⋅s) 

Soil Spectra / Column number [1, 2, 3] 

Leaf Area Index LAI 0.5–7 with steps of 0.5 
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Leaf Angle Distribution (LIDFa, LIDFb) (1, 0), (-1, 0), (0, -1), (0, 1), (-0.35, -

0.15), (0, 0) 

Shortwave Incoming Radiation Rin 100, 400, 800 (W/m2) 

Air Temperature Ta 15, 25, 35 (℃) 

Solar Zenith Angle SZA 0–70 with steps of 10 

View Zenith Angle VZA 0, 0.2, 0.5 

Relative Azimuth Angle RAA 0, 90, 180 

 

2.5 Description of continuous spatiotemporal scale-up model 

We used an efficient machine learning model, LightGBM, to produce our data products. The LightGBM model is capable of 255 

efficiently handling large-scale datasets while capturing complex nonlinear relationships and maintaining high accuracy (Ke 

et al., 2017). As a result, LightGBM has been widely applied in recent years in geoscience and ecological studies (Guo et al., 

2023; Li B. et al., 2023a; Shen et al., 2022). We used the merged SIF and ET grid cells as prediction labels and selected 

different variables for modelling SIF and ET. Specifically, for SIF, we relied on the following light use efficiency model: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 𝜙𝜙𝑓𝑓 × 𝜀𝜀 (8) 260 

In this model, PAR represents photosynthetically active radiation, FPAR is the fraction of PAR absorbed by vegetation, 𝜙𝜙𝑓𝑓 

denotes fluorescence efficiency, and 𝜀𝜀 is the canopy escape ratio of SIF. PAR and FPAR can be represented by the ERA5-

Land and GIMMS FPAR products. 𝜙𝜙𝑓𝑓 primarily depends on photosynthetic physiological factors and has a strong correlation 

with environmental variables such as temperature and moisture. The canopy escape ratio is closely related to canopy structure 

and geometry. Therefore, we ultimately selected land cover types (Landcover), the cosine of the solar zenith angle (cos(SZA)), 265 

absorbed photosynthetically active radiation (APAR = PAR × FPAR), temperature (T2M), soil moisture (SM), vapour pressure 

deficit (VPD), latitude and longitude (Lon and Lat), day of year (DOY), and elevation (DEM) as the input variables for the 

LightGBM model: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑓𝑓(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑇𝑇2𝑀𝑀 , 𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉𝑉𝑉, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷) (9) 

When considering the input variables for ET, we relied on a well-known ET calculation model, the Penman-Monteith 270 

equation (Allen et al., 2006): 

𝐸𝐸𝐸𝐸 =
0.408∆(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝑟𝑟 900

𝑇𝑇2𝑀𝑀 + 273 𝑢𝑢2𝑉𝑉𝑉𝑉𝑉𝑉

∆ + 𝑟𝑟(1 + 0.34𝑢𝑢2)
(10) 
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In this model, 𝑅𝑅𝑛𝑛 represents the net radiation flux density at the surface, G is the sensible heat flux density from the surface to 

the soil, r denotes the psychrometric constant, and u2 is the wind speed at 2 meters above the surface. Given data availability, 

most of the variables used to predict ET are almost similar to those used for SIF. The main difference is that we add the ratio 275 

of vapour pressure deficit to temperature (i.e., VPD/T2M) as the model-driven data according to Eq. 10. 

 

Finally, we used a Bayesian optimization-based hyperparameter tuning framework, Optuna (Akiba et al., 2019), to obtain the 

optimal combination of LightGBM parameters, balancing accuracy and prediction time. To mitigate the negative effects of 

spatial autocorrelation and overfitting, we split the quality-controlled dataset into three parts: training set, validation set, and 280 

test set. The training and validation sets were used to optimize parameters and adjust model performance within the Optuna 

framework, while the test set was reserved for final performance evaluation. For SIFOCO and SIFtotal, we selected data from 2021 

as the validation set, 2022 data as the test set, and data from other years as the training set. For the ET data, which covered 

fewer years (2018–2022), we chose odd months of 2022 as the validation set, even months of 2022 as the test set, and the 

remaining data as the training set. We performed 100 iterations of parameter tuning for training the SIFOCO and SIFtotal models 285 

and 1000 iterations for the ET model due to more complex input data and fewer training samples. The final model achieved 

an R² of 0.87 (for SIFOCO), 0.79 (for SIFtotal-D), 0.80 (for SIFtotal-S), and 0.75 (for ET) on the independent test dataset (Fig. 3). 

For SIF, both model training and subsequent production are conducted at a spatial resolution of 0.1°, whereas the training 

phase for ET is performed at a spatial resolution of 0.05° to increase the number of samples. 
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 290 
Figure 3 The accuracy validation of the (a) SIFOCO, (b) SIFtotal-D (directly calculated SIFtotal), (c) SIFtotal-S (SIFtotal derived from SCOPE 

simulations), and (d) ET prediction models on the test set. The black dashed line represents the 1:1 line, while the red line represents the 

linear regression line. The points are coloured from deep blue to yellow, indicating increasing point density. A random selection of 20,000 

sample points was used for plotting. 

 295 

In addition to using the LightGBM model for the spatiotemporal scaling of SIF and ET data, we also applied it for the fusion 

of OCO-2 and OCO-3 SIF data (see Sect. 2.3) and for the conversion from SIFOCO to SIFtotal-S based on the SCOPE simulation 

(see Sect. 2.4). The parameter optimization for these models was also conducted within the Optuna parameter optimization 

framework. 

2.6 Attribution analysis of SIF, ET, and water use efficiency 300 

Based on daily-scale SIF, ET, and environmental variables (PAR, VPD, SM, and air temperature), we investigated the 

influence of environmental factors on the regulation of vegetation photosynthesis and transpiration. We applied a novel causal 
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analysis algorithm, SURD (Synergistic-Unique-Redundant Decomposition of Causality, Martínez-Sánchez, et al., 2024), 

which provides a robust framework for decomposing causal relationships into three components: redundant, unique, and 

synergistic. This decomposition helps to reveal the complex interactions between variables in a system. Through fine-grained 305 

causal decomposition, SURD can distinguish synergistic and redundant causal effects that traditional methods may not capture. 

It enables the decomposition and quantitative analysis of causal relationships and that’s crucial for understanding the 

interactions between variables in complex systems. For each grid, we tested lag periods ranging from 1 to 60 days and 

iteratively identified the lag period that maximized the combined causal contributions of the four environmental factors. When 

the contribution of a single environmental factor exceeded 1.5 times that of any other factor, it was classified as the dominant 310 

factor; otherwise, no dominant factor was assigned. We also use the feature importance provided by the LightGBM model 

with an interpretability tool SHAP (Broeck., 2022) as a supplementary analysis. We didn’t use it as the main method because 

it failed to capture the potential lag effects of environmental variables. Finally, we calculated water use efficiency (WUE) 

based on the ratio of SIF to ET, which can be considered a proxy for GPP-derived WUE (Zhang Z. et al., 2023a). WUE was 

further utilized in long-term temporal analyses and attribution analyses based on SURD. 315 

3 Results 

3.1 Diurnal dynamic validation of SIF and ET 

 
Figure 4 The diurnal dynamic pattern of global SIFOCO, SIFtotal-D, SIFtotal-S, and ET shown at 6-hour intervals. Each map is plotted using 

the corresponding 6-hour mean values of SIF or ET. The first row represents the results for SIFOCO (a to d), the second row represents the 320 
results for SIFtotal-D (e to h), the third row represents the results for SIFtotal-S (i to l), and the fourth row represents the results for ET (m to 

p). All results are plotted based on the average values from 1982 to 2022. Pixels with a value of exactly 0 are not plotted. 
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The dataset we produced captures the diurnal dynamics of SIF and ET on the global scale (Fig. 4). There is a strong correlation between SIF 

and ET variations throughout the day. From UTC 0:00 to 23:00, high values gradually shift from the Eastern Hemisphere to the Western 325 
Hemisphere, which aligns with the variation in solar radiation at the Earth’s surface. In addition, the value distribution for each time interval 

exhibits a pattern of diffusion from the centre outward. For instance, during the UTC 6-11 interval, high-value regions are located in central 

Africa, with a clear trend of decreasing SIF or ET values as the distance from the centre increases. This pattern aligns with the distribution 

characteristics of the superimposed diurnal variations. Since SIF is only generated under solar radiation, we retained the SIF values only in 

areas where the radiation is greater than 0 in ERA5-Land, setting other regions to 0. This can be easily observed in panels (a), (e), and (i) of 330 
Fig. 4. For consistency, and because most effective observations from ECOSTRESS are during the daytime rather than at night, we similarly 

retained ET values only in areas where solar radiation is greater than 0, setting ET in other pixels to 0 (Fig.4m). 
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Figure 5 Validation of SIF and ET based on FLUXNET2015 sites. (a), (c), (e), and (g) show the global distribution of the coefficient of 335 
determination (R2) for the comparisons of SIFOCO, SIFtotal-D, SIFtotal-S, and ET, respectively. Panels (b), (d), (f), and (h) present the statistical 

distribution of R2 values for SIFOCO, SIFtotal-D, SIFtotal-S, and ET across these sites. All comparisons were conducted on the hourly timescale. 
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Figure 6 Comparison of SIF with observed diurnal variations at eight SIF sites. (a) Ames site during July–August 2017 (Magney et al., 340 
2019a); (b) Niwot Ridge site during July–August 2017 (Magney et al., 2019b); (c) Ca-obs site during July–August 2019 (Chen et al., 2024); 

(d)–(h) five sites in Yangling during April–May 2021 (Liu et al., 2022); The shaded areas represent one standard error of mean. To ensure 

consistency in units, normalized results were used for plotting. 

 

Our SIF and ET products demonstrated strong consistency with FLUXNET2015 sites on the global scale (Fig. 5). The median 345 

coefficient of determination (R2) was 0.72 for SIFOCO, 0.69 for SIFtotal-D, 0.74 for SIFtotal-S (in 136 sites), and 0.53 for ET (in 

146 sites) on a daily timescale. On the hourly timescale, the corresponding R2 values were 0.73 for SIFOCO, 0.69 for SIFtotal-D, 

0.73 for SIFtotal-S, and 0.63 for ET (Fig. S2). The consistency of the three SIF products remained relatively stable across hourly 

and daily scales, while ET showed a notable improvement (R2=0.1) on the daily scale. At these sites, the R2 values did not 

exhibit a clear spatial distribution pattern and appeared to be randomly distributed. It should be noted that SIF and GPP are 350 

not inherently linearly correlated, and these comparisons were conducted at different spatial scales (0.1° and site-scale). 

Furthermore, we compared our products with observations from eight sites that feature concurrent SIF and GPP measurements 

(Fig. 6). The results showed that both SIFOCO and SIFtotal-S exhibited good agreement with observed SIF and GPP across all 

eight sites. SIFtotal-D performed well at the Ca-obs site but showed significantly lower accuracy at the other seven sites 

compared to SIFOCO and SIFtotal-S, and this pattern is consistent with the validation results from the FLUXNET2015 sites. 355 
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3.2 Spatial and temporal patterns of SIF, ET, and WUE 

 
Figure 7 The spatial patterns of the mean values for global SIFOCO (a), ET (c), and WUE (e) from 1982 to 2022. The mean values of SIFOCO 

(b), ET (d), and WUE (f) are presented by plant functional types (PFTs): ENF represents evergreen needleleaf forests, EBF represents 360 
evergreen broadleaf forests, DNF represents deciduous needleleaf forests, DBF represents deciduous broadleaf forests, SH represents 

shrublands, SAV represents savannas, GRA represents grasslands, and CRO represents croplands. 
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Figure 8 Trends of global SIFOCO (a), ET (c), and WUE (e) from 1982 to 2022. Trends were calculated on a per-pixel using linear regression. 365 
Pixels were retained for visualization only if they passed the 95% significance level of the Mann-Kendall trend test. The latitudinal profiles 

of the global average trends of SIFOCO (b), ET (d), and WUE (f) from 1982 to 2022, with shaded areas representing ±1 standard deviation. 

 

The spatial distribution patterns of SIF, ET, and WUE are largely consistent with the global distribution of vegetation (Fig. 7, 

Fig. S3). High-value regions are primarily concentrated in the Amazon Rainforest, Central Africa, and the Malay Archipelago. 370 

In North America, the SIF, ET, and WUE values in the eastern region are significantly higher than those in the west. The high 
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values in the northern hemisphere’s high-latitude regions are predominantly found in Europe. Notably, along the central 

mountain range of New Guinea, stretching from the northwest to the southeast at approximately 140°E, 10°S, both SIF, ET, 

and WUE exhibit markedly lower values in comparison to the northern and southern regions. This observation underscores 

the high spatial detail capture capability of our product at the global scale. From the perspective of different vegetation types, 375 

SIF, ET, and WUE values in broadleaf forests (EBF and DBF) are significantly higher than those in needleleaf forests (ENF 

and DNF), with SIF showing the most pronounced difference—ranging from 2 to 4 times higher. It is followed by ET (1.2 to 

2.2 times) and, to a lesser extent, WUE (1.2 to 1.7 times). In addition, the disparity between the two broadleaf types is 

considerably greater than that between the two needleleaf types (Fig. 7b, d, f). Shrublands exhibit the lowest average SIF, ET, 

and WUE, while their heterogeneity in savannas is the highest. 380 

 

The long-term trends from 1982 to 2022 reveal significant spatial heterogeneity in photosynthesis (Fig. 8). SIF generally shows 

an increasing trend in the Northern Hemisphere and a decreasing trend in the Southern Hemisphere. For example, regions such 

as northern Eurasia, northern America, the Indian subcontinent, and southern Africa exhibit a clear increasing trend in SIF (0 

to 0.001 W/m2/μm/sr per year), whereas regions like western North America, southern South America, and central Africa 385 

display a declining trend (0 to -0.001 W/m2/μm/sr per year). Results from SIF at the photosystem level confirm this pattern as 

well (0 to 0.01 W/m2/μm/sr per year, Fig. S4a, b). Similar to SIF, ET also shows increasing trends in the aforementioned 

regions, with a notable exception being the Amazon rainforest, where ET also increases significantly (0.1 to 0.2 W/m2 per year, 

Fig. 8c). For WUE calculated from SIF and ET, a distinct spatial heterogeneity and hemispheric symmetry emerge (Fig. 8f): 

WUE increases remarkably in the Northern Hemisphere while decreasing in the Southern Hemisphere, with most trends being 390 

statistically significant. This hemispheric asymmetry is also supported by the results from the two photosystem-level SIF 

calculations (Fig. S4c, d). 
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Figure 9 Validation based on global gridded products. (a) to (d) represent the validation of SIFOCO using CSIF, GOSIF, LT_SIFc, and 

SIF005, respectively. (e) to (h) illustrate the validation of ET using BESS, BEPS-DP, LT_SIFc, and SIF005, respectively. All comparisons 395 
were conducted based on the R2 of the monthly time series for each grid cell. The plot in the bottom-left corner of each map illustrates the 

long-term global grid-averaged normalized trends for predicted data (red) and the validation products (blue). The global mean was calculated 

using area-weighted averaging based on grid sizes. The comparison periods are as follows: (a) CSIF, 2001–2022; (b) GOSIF, 2001–2022; 

(c) LT_SIFc, 1996–2018; (d) SIF005, 2003–2017; (e) BESS, 1982–2022; (f) BEPS-DP, 2001–2020; (g) REA, 1982–2017; and (h) ERA5-

Land, 1982–2021. 400 
 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



22 
 

In the validation of global gridded products on the monthly timescale, SIFOCO demonstrated strong consistency with most 

products across the Northern Hemisphere (Fig. 9). Specifically, the proportions of monthly pixels with R² values exceeding 

0.7 for SIFOCO and the four products are 71.2% (CSIF), 72.9% (GOSIF), 67.2% (LT_SIFc), and 66.8% (SIF005), respectively. 

However, significant uncertainties (R2 less than 0.7) were observed in regions such as the Amazon rainforest, Central Africa, 405 

the Indonesian archipelago, and the desert areas of Australia. These discrepancies are likely associated with differences in the 

methods used to calculate daily SIF: in our study, daily SIF was obtained by aggregating SIF over all 24 hours of the day, 

whereas the four validation SIF products derived daily SIF using diurnal correction factors applied to instantaneous SIF 

observations. This approach typically accounts only for variations in solar radiation and viewing angles. Our SIF product 

showed good long-term consistency with CSIF and GOSIF. However, it showed some discrepancies with LT_SIFc and larger 410 

differences with SIF005. This disparity may be attributed to the fact that LT_SIFc and SIF005 are both fused datasets 

integrating SIF observations from multiple satellites, and their fusion methods may not fully preserve the original long-term 

trends. As a result, SIF005 displayed a decreasing trend in SIF from 2003 to 2017, which deviates from the trends observed in 

the other SIF products. For ET, the proportions of monthly pixels with R² values greater than 0.7 for the four products are 

67.0% (BESS), 70.4% (BEPS-DP), 70.0% (REA), and 65.1% (ERA5-Land), respectively. Similar uncertainties were primarily 415 

found in the aforementioned regions, while good consistency was observed in other areas. This could also be related to the 

methods used for calculating daily ET. One supporting evidence is that our ET product exhibited the best spatial and long-

term consistency with BEPS-DT, which, like our approach, predicts ET on the hourly scale and then aggregates it to obtain 

daily ET. Another factor contributing to the uncertainties is the observational characteristics of ECOSTRESS. Our ET product 

is limited to daytime values, whereas nighttime ET is not zero in reality. Overall, our SIF and ET product effectively capture 420 

their diurnal and seasonal variation characteristics. 
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3.3 Attribution of drivers for SIF, ET, and WUE 

 
Figure 10 Dominant factor analysis for SIFOCO (a), ET (b), and WUE (c) based on the SURD algorithm. Blue pixels represent dominance 

by soil moisture (SM), purple pixels indicate dominance by VPD, orange pixels represent dominance by PAR, red pixels indicate dominance 425 
by air temperature (T), and white pixels indicate there is no dominant factor. Calculations were performed using daily-aggregated data from 

1982 to 2022. The bar chart in each map represents the proportion of pixels dominated by each factor. 
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Figure 11 SHAP-based attribution analysis for (a) SIFobs, (b) SIFtotal-D, (c) SIFtotal-S, and (d) ET. The input variables used for explanation 430 
are divided into five categories: Solar, Water, Temp, Location, and Others. Among them, Solar represents radiation factors (PAR and 

cos(SZA)), Water represents moisture factors (VPD and soil moisture), Temp represents air temperature, Location represents longitude and 

latitude, and Others include DOY, DEM, and land use types. For the models in (a), (b), and (c), the same model used for retrieval was directly 

applied. For the model in (d), retraining was conducted using the variables from (a), (b), and (c) to ensure consistency. 

 435 

Through a driver analysis that accounts for lag effects, we created maps of the dominant factors and found that for SIF, ET, 

and WUE, over 60% of the global area exhibits distinct dominant factors, with a certain degree of spatial similarity (Fig. 10). 

For example, temperature plays a strongly dominant role in eastern Eurasia, and this pattern is similarly evident in eastern 

North America (Fig. 10a, c). In high-latitude regions, PAR emerges as the absolute dominant factor. VPD-dominated areas are 
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primarily concentrated in sub-Saharan Africa, while VPD does not show dominance in other regions. Similar conclusions were 440 

obtained for the two photosystem-level SIF datasets and the corresponding WUE (Fig. S5). Soil moisture has a strong dominant 

influence on SIF, ET, and WUE in South America. To supplement this analysis, we conducted a SHAP-based attribution 

analysis (Fig. 11). The result reveals that radiation factors (Solar) are the absolute dominant factors for both SIF and ET, 

contributing over 50% of the total influence on SIF and 41.5% on ET. The main inconsistency lies in the fact that SHAP-based 

attribution analysis struggles to account for the lag effects of environmental factors, instead primarily reflecting the 445 

instantaneous effects of environmental drivers. Nevertheless, water and temperature factors also show significant importance, 

contributing between 20% and 30% (Fig. 11). 

4 Discussion 

4.1 Advantages of our dataset and rationality of production 

Hourly-scale SIF and ET data have been scarce in previous studies. Popular SIF datasets such as CSIF, GOSIF, and SIF005 450 

(Li and Xiao, 2019; Wen et al., 2020; Zhang Y. et al., 2018) are only available on a daily scale due to fixed overpass times. 

This limitation restricts the ability to conduct diurnal research on carbon and water cycles. Recent missions like OCO-3 and 

ECOSTRESS are able to monitor SIF and ET data at varying times of day (Xiao et al., 2021). This feature provides a 

fundamental feasibility for constructing the hourly SIF and ET datasets. Based on the hourly SIF and ET datasets, we can 

capture diurnal vegetation physiological activities on the global scale that were previously difficult to explore in the past. For 455 

instance, we calculated pixel-level changes in the peak timing during the day based on predicted SIF (Fig. S6) and found a 

clear delaying trend (0 to 0.5 minutes per year) is evident in high-latitude regions of both hemispheres, while clustered 

advancing trends are observed in regions such as the Amazon rainforest, central Africa, eastern Asia, and northern North 

America. Research on related phenomena has recently been proven to encapsulate some profound vegetation physiological 

implications (Li X. et al., 2023; Liu et al., 2024; Zhang Z. et al., 2023a). Moreover, by providing both hourly SIF and ET data, 460 

our dataset makes it possible to analyze global WUE on a diurnal rather than a daily scale (Li F. et al., 2023). 

 

While recent studies have produced hourly SIF products leveraging these advancements (Deng et al., 2025a; Jeong et al., 2024; 

Zhang Z. et al., 2023b), limitations persist. For instance, Jeong et al.’s study utilized OCO-3 SIF data combined with 

geostationary satellite observations to reconstruct the spatial distribution of SIF from August 2019 to July 2021, covering 465 

Eastern Asia and Oceania (Jeong et al., 2024). However, this dataset’s restricted spatial coverage and reliance on specific input 

data limit its utility for global and long-term applications. In fact, long-term temporal analysis has become a key focus in 

current research, such as the weakening of the CO2 fertilization effect (Wang et al., 2020) and drought stress (Deng et al., 

2025a). Additionally, the SIF dataset produced by Zhang Z. et al. is at a coarser spatial resolution (0.5°) and does not offer 

hourly datasets for each day, which may limit its use in accurately estimating GPP or analysing sudden disaster events. In 470 

contrast, our study produced a long-term, hourly SIF, and ET dataset covering the entire globe, offering new insights into 
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large-scale vegetation photosynthesis in the context of climate change (Li X. et al., 2023; Zhang Z. et al., 2023a). A potential 

limitation of the above studies is computational power, as simulating hourly data products requires much more computational 

resources compared to commonly used 4-day or 8-day data products. In response, we developed an efficient method to enable 

rapid sampling of input raster data (see code in Code Availability for details). Additionally, the efficient machine learning 475 

model LightGBM we used improved accuracy while maintaining high performance (Cheng et al., 2025; Zhao et al., 2024). 

 

Previous studies on scale-up predominantly relied on reflectance data from optical satellites such as MODIS and Landsat, or 

vegetation indices derived from them (Li and Xiao, 2019; Tao et al., 2024; Zhang Y. et al., 2018). However, these satellite 

observations frequently suffer from severe data gaps under strict quality control conditions. While these gaps may be 480 

manageable during the model training phase—where only high-quality data are utilized—they can lead to numerous low-

quality predictions during the production phase. Although various data imputation methods (e.g., Zhang Y. et al., 2017) are 

commonly employed to address such gaps, this study sought to minimize reliance on optical remote sensing satellite data 

wherever possible. Instead, we relied on complete and temporally consistent input datasets, namely ERA5-Land and GIMMS 

FPAR4g. This approach ensures temporal consistency in the dataset, covering the long-term period from 1982 to 2022 (Zhao 485 

et al., 2024). We used these two data as the main input to drive our LightGBM model, ensuring that the produced dataset 

maintained the highest level of consistency over the 41 years. This consistency supports long-term analyses of photosynthesis 

and transpiration variations. In addition, the OCO-2 SIF data product after calibration also demonstrates excellent consistency 

(Doughty et al., 2021; Rosenberg et al., 2020), which justifies the fusion of OCO-2 and OCO-3 SIF data and the expansion of 

the training samples. 490 

4.2 Comparison of the two methods to estimate SIFtotal 

To this day, almost all SIF products directly obtained from satellite spectral inversions are at the canopy level. This limitation 

arises because atmospheric correction cannot account for transmission losses within the canopy and from the photosystem to 

the leaf surface. In other words, it is currently not possible to directly estimate the escape ratio of SIF or the SIF emitted at the 

photosystem level from satellite observations (Regaieg et al., 2025). However, the photosystem-level SIF is likely more 495 

directly related to actual photosynthesis (Liu et al., 2021; Guo et al., 2024). Therefore, exploring methods to obtain 

photosystem-level SIF is both beneficial and necessary. We used two methods to estimate the canopy escape ratio: one directly 

based on a radiative transfer model and the other based on radiative transfer probabilities from the SCOPE simulation. Both 

methods share the common feature of considering the vegetation reflectance in the near-infrared band as a crucial parameter 

(Eq. 2). The method that directly calculates the escape ratio involves the use of the Canopy Index (CI), but relevant products 500 

on the global scale over long periods are still lacking. From the retrieval of SIFtotal estimated by both methods using the 

LightGBM model, the accuracy difference between them appears to be minimal but their absolute magnitudes show notable 

differences (Fig. 3). Our results show that SIFtotal simulated based on the SCOPE model (SIFtotal-S) appears to have a higher 
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correlation with site-level GPP (Figs. 3 and 4) and gridded GPP products (Fig. S7), but it remains uncertain which product 

better reflects the true SIFtotal. Therefore, we provide both SIFtotal products for users to choose from. 505 

 

In our study, we found that the estimation accuracy of both SIFtotal for GPP does not appear to be significantly higher than that 

of SIFOCO (Fig. 5, 6, and S2). This may be because the canopy information carried by SIFOCO can also, to some extent, explain 

the variation in GPP, particularly in terms of seasonal changes (Liu et al., 2019). Moreover, the input data used to calculate 

the two escape probabilities inherently contain certain uncertainties, such as the MODIS LAI and BRDF parameter products. 510 

Although we have used the highest-quality data as input, uncertainties remain unavoidable (Zhang Z. et al., 2021). For SIFtotal 

directly calculated based on the radiative transfer model (SIFtotal-D), the mixing of vegetation types within the 0.1° grid 

inevitably affects parameters set according to vegetation types, such as leaf angle distribution. For the canopy escape 

probability simulated using the SCOPE model, previous studies have shown that it has a higher correlation with GPP in 

sparsely vegetated areas compared to results directly calculated from the radiative transfer model (Li H. et al., 2024). However, 515 

the SCOPE model struggles to fully represent the vertical heterogeneity of vegetation (Yang et al., 2017), and systematic 

differences may exist between the reflectance in the SCOPE model and the satellite-scale input reflectance. Recent studies 

have simulated the transmission process of SIF using three-dimensional models (e.g., DART) (Liu et al., 2019; Regaieg et al., 

2023, 2025), but there is still a lack of validation regarding the feasibility of these methods at the satellite scale. 

4.3 Uncertainties and limitations 520 

In addition to the uncertainties associated with the two photosystem-level SIF estimation methods mentioned in Sect. 4.2, our 

study also faces other uncertainties and limitations. First, although we incorporated OCO-2 SIF data as a supplement to the 

SIF training samples, the training samples only cover the period from 2014 to 2022. This means that we lack stable reference 

samples for earlier SIF data, which has rarely been considered in current studies. Second, since the primary input data come 

from the ERA5-Land dataset with a spatial resolution of 0.1°, it is challenging to achieve higher spatial resolution in our dataset. 525 

A recent study focused on the spatial resolution (500m) of the product rather than the temporal resolution (8 days) (Tao et al., 

2024), primarily due to the use of MODIS products (500m, 8 days) as input data for retrieval. This also indicates the limitation 

of input data, rather than computational power, is the main reason why it is difficult to produce products that simultaneously 

feature high spatial and temporal resolutions. 

 530 

Regarding the dataset validation, the lack of publicly available SIF site datasets similar to FLUXNET2015 makes it difficult 

to conduct comparable validation. In fact, as shown in the validation results from the eight SIF sites used in this study, the 

predicted SIF appears to have a stronger correlation with site-level GPP than with site-level SIF. This is mainly because SIF 

sites typically only capture SIF emissions over relatively small areas (Hao et al., 2022), whereas GPP is often estimated based 

on CO2 concentrations measured over several kilometres (Chen et al., 2024), making it better aligned with the 0.1° grid 535 

resolution. Moreover, differences in the spectral bands used for observed SIF measurements may lead to significant differences 
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in magnitude, further hindering the direct comparison between produced gridded SIF and site-level observed SIF. Future work 

should focus on finding a more compatible validation approach that could enhance the credibility of regional-scale hourly 

dataset validation and promote its development. The retrieval of ET exhibits greater uncertainties compared to SIF, especially 

in regions with high ET values (Fig. 3). This is primarily due to the more complex origins of ET, which include not only 540 

vegetation transpiration but also soil water evaporation. In future work, more accurate ET retrieval may require consideration 

of additional influencing factors, such as nighttime processes and canopy conductance (Zheng et al., 2025). 

5 Data availability 

The global hourly SIF and ET dataset (1982–2022) at a 0.1° spatial resolution produced in this study is available at 

https://doi.org/10.57760/sciencedb.ecodb.00177 (Deng et al., 2025b). All products are provided in NetCDF4 format. Our 545 

dataset contains four main fields: SIFOCO, which represents continuous SIF data obtained by extending canopy-level SIF from 

OCO-2 and OCO-3 observations; SIFtotal-D, which represents photosystem-level SIF directly calculated based on the radiative 

transfer method; SIFtotal-S, which represents photosystem-level SIF obtained from the simulation of SCOPE model; and ETECO, 

which represents continuous ET data obtained by scaling ECOSTRESS observations. Detailed descriptions of these four main 

fields, including units, coverage, and other relevant information, are included in the NetCDF4 files. 550 

6 Code availability 

The code for training the models and producing the dataset can be directly downloaded from 

https://doi.org/10.57760/sciencedb.ecodb.00177 (Deng et al., 2025b). 

7 Conclusion 

In this study, we employed machine learning-based data fusion and scale-up methods to propose, for the first time, a long-term 555 

(1982–2022) and high-temporal resolution (1-hour) dataset of SIF and ET with a spatial resolution of 0.1° (HOUR_SIFOCO and 

HOUR_ETECO). At the same temporal span and resolution, we also provided two comparable photosystem-level SIF datasets 

using two different methods. We thoroughly evaluated the produced products using both site-level and regional-scale data and 

demonstrated the high accuracy of these datasets. The long-term analysis highlighted their unique advantages in capturing the 

diurnal dynamics of carbon and water cycles. We also applied an advanced causal analysis method (SURD) to investigate the 560 

regulatory effects of four environmental factors (PAR, VPD, soil moisture, and air temperature) on SIF, ET, and water use 

efficiency (WUE). The results revealed strong spatial clustering and variability on the global scale. In conclusion, our dataset 

offers great potential for advancing our understanding of terrestrial ecosystem responses to climate change and improving the 

monitoring of diurnal carbon and water cycles on the global scale. 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



29 
 

Author contribution 565 

ZD, TL, JC, and SW devised the conceptual ideas. ZD and TL processed the data. ZD and TL conducted the investigation and 

performed formal analysis. JC and SW acquired the funding., JC, SW, and KH verified the results and supervised the findings 

of this work. ZD and TL drafted the original manuscript. JC, SW, KH, PG, HP, and ZC authors reviewed and commented on 

the manuscript. 

Acknowledgements 570 

This work was financially supported by the National Natural Science Foundation of China [grant number 42250205]. We 

thank Weiqing Zhao for providing the GIMMS FPAR4g dataset; Troy S. Magney, Ruonan Chen, and Xiaoliang Lu for 

providing the site-level SIF data; Yao Zhang, Xing Li, Songhan Wang, and Jiaming Wen for providing the gridded SIF data; 

Bolun Li, Jiye Leng, Jiao Lu, and Joaquín Muñoz-Sabater for providing the gridded ET data; the European Centre for Medium-

Range Weather Forecasts for providing the ERA5-Land data; the National Aeronautics and Space Administration for providing 575 

the OCO-2, OCO-3, and ECOSTRESS data; and the FLUXNET community for providing the site-level GPP and ET data. 

Competing interests 

The authors declare no competing interests. 

References 

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization 580 

Framework, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 

Anchorage, AK, USA, https://doi.org/10.1145/3292500.3330701, 2019. 

Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., 

Yrisarry, J. B., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., and Elliott, R.: A recommendation on 

standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method, 585 

Agricultural Water Management, 81, 1-22, https://doi.org/10.1016/j.agwat.2005.03.007, 2006. 

Anderson, M. C., Yang, Y., Xue, J., Knipper, K. R., Yang, Y., Gao, F., Hain, C. R., Kustas, W. P., Cawse-Nicholson, K., 

Hulley, G., Fisher, J. B., Alfieri, J. G., Meyers, T. P., Prueger, J., Baldocchi, D. D., and Rey-Sanchez, C.: Interoperability 

of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales, Remote Sensing of 

Environment, 252, 112189, https://doi.org/10.1016/j.rse.2020.112189, 2021. 590 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



30 
 

August, T., Klaes, D., Schlüssel, P., Hultberg, T., Crapeau, M., Arriaga, A., O'Carroll, A., Coppens, D., Munro, R., and Calbet, 

X.: IASI on Metop-A: Operational Level 2 retrievals after five years in orbit, Journal of Quantitative Spectroscopy and 

Radiative Transfer, 113, 1340-1371, https://doi.org/10.1016/j.jqsrt.2012.02.028, 2012. 

Broeck, G. V. d., Lykov, A., Schleich, M., and Suciu, D.: On the Tractability of SHAP Explanations, J. Artif. Int. Res., 74, 36, 

https://doi.org/10.1613/jair.1.13283, 2022. 595 

Brunke, M. A., Broxton, P., Pelletier, J., Gochis, D., Hazenberg, P., Lawrence, D. M., Leung, L. R., Niu, G.-Y., Troch, P. A., 

and Zeng, X.: Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 

(CLM4.5), Journal of Climate, 29, 3441-3461, https://doi.org/10.1175/JCLI-D-15-0307.1, 2016. 

Chen, B., Wang, P., Wang, S., Liu, Z., and Croft, H.: Evaluation of Leaf-To-Canopy Upscaling Approaches for Simulating 

Canopy Carbonyl Sulfide Uptake and Gross Primary Productivity, Journal of Geophysical Research: Biogeosciences, 129, 600 

e2023JG007521, https://doi.org/10.1029/2023JG007521, 2024. 

Chen, R., Liu, L., Liu, X., Liu, Z., Gu, L., and Rascher, U.: Improving estimates of sub-daily gross primary production from 

solar-induced chlorophyll fluorescence by accounting for light distribution within canopy, Remote Sensing of 

Environment, 300, 113919, https://doi.org/10.1016/j.rse.2023.113919, 2024. 

Cheng, F., Li, Z., Yang, Z., Li, R., Wang, D., Jia, A., Li, K., Zhao, B., Wang, S., Yin, D., Li, S., Xue, W., Cribb, M., and Wei, 605 

J.: First retrieval of 24-hourly 1-km-resolution gapless surface ozone (O3) from space in China using artificial intelligence: 

Diurnal variations and implications for air quality and phytotoxicity, Remote Sensing of Environment, 316, 114482, 

https://doi.org/10.1016/j.rse.2024.114482, 2025. 

Deng, Z., Chen, J., Wang, S., Li, T., Huang, K., Gu, P., Peng, H., and Chen, Z.: Response of Vegetation Photosynthesis to the 

2022 Drought in Yangtze River Basin by Diurnal OCO-2/3 Satellite Observations, Journal of Remote Sensing, 610 

https://doi.org/10.34133/remotesensing.0445, 2025. 

Deng, Z., Li, T., Chen, J., Wang, S., Huang, K., Gu, P., Peng, H., and Chen, Z.: A Global 24-hourly Retrieval of Solar-Induced 

Chlorophyll Fluorescence and Evapotranspiration from OCO-2, OCO-3 and ECOSTRESS over 1982–2022 [DS/OL], V1, 

Science Data Bank, https://doi.org/10.57760/sciencedb.ecodb.00177, 2025. 

Doughty, R., Kurosu, T. P., Parazoo, N., Köhler, P., Wang, Y., Sun, Y., and Frankenberg, C.: Global GOSAT, OCO-2, and 615 

OCO-3 solar-induced chlorophyll fluorescence datasets, Earth Syst. Sci. Data, 14, 1513-1529, 

https://doi.org/10.5194/essd-14-1513-2022, 2022. 

Elnashar, A., Wang, L., Wu, B., Zhu, W., and Zeng, H.: Synthesis of global actual evapotranspiration from 1982 to 2019, 

Earth Syst. Sci. Data, 13, 447-480, https://doi.org/10.5194/essd-13-447-2021, 2021. 

Fang, H., Li, S., Zhang, Y., Wei, S., and Wang, Y.: New insights of global vegetation structural properties through an analysis 620 

of canopy clumping index, fractional vegetation cover, and leaf area index, Science of Remote Sensing, 4, 100027, 

https://doi.org/10.1016/j.srs.2021.100027, 2021. 

Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse-Nicholson, K., Wang, A., Anderson, R. G., Aragon, 

B., Arain, M. A., Baldocchi, D. D., Baker, J. M., Barral, H., Bernacchi, C. J., Bernhofer, C., Biraud, S. C., Bohrer, G., 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



31 
 

Brunsell, N., Cappelaere, B., Castro-Contreras, S., Chun, J., Conrad, B. J., Cremonese, E., Demarty, J., Desai, A. R., De 625 

Ligne, A., Foltýnová, L., Goulden, M. L., Griffis, T. J., Grünwald, T., Johnson, M. S., Kang, M., Kelbe, D., Kowalska, 

N., Lim, J.-H., Maïnassara, I., McCabe, M. F., Missik, J. E. C., Mohanty, B. P., Moore, C. E., Morillas, L., Morrison, R., 

Munger, J. W., Posse, G., Richardson, A. D., Russell, E. S., Ryu, Y., Sanchez-Azofeifa, A., Schmidt, M., Schwartz, E., 

Sharp, I., Šigut, L., Tang, Y., Hulley, G., Anderson, M., Hain, C., French, A., Wood, E., and Hook, S.: ECOSTRESS: 

NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station, Water Resources 630 

Research, 56, e2019WR026058, https://doi.org/10.1029/2019WR026058, 2020. 

Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the land–atmosphere water flux based on monthly AVHRR 

and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sensing of Environment, 112, 901-919, 

https://doi.org/10.1016/j.rse.2007.06.025, 2008. 

Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., and Taylor, T. E.: Prospects for 635 

chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sensing of Environment, 147, 

1-12, https://doi.org/10.1016/j.rse.2014.02.007, 2014. 

Frankenberg, C., O'Dell, C., Guanter, L., and McDuffie, J.: Remote sensing of near-infrared chlorophyll fluorescence from 

space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO<sub>2</sub> 

retrievals, Atmos. Meas. Tech., 5, 2081-2094, https://doi.org/10.5194/amt-5-2081-2012, 2012. 640 

Fuentes, I., Vervoort, R. W., and McPhee, J.: Global evapotranspiration models and their performance at different spatial 

scales: Contrasting a latitudinal gradient against global catchments, Journal of Hydrology, 628, 130477, 

https://doi.org/10.1016/j.jhydrol.2023.130477, 2024. 

Guo, C., Liu, Z., Jin, X., and Lu, X.: Improved estimation of gross primary productivity (GPP) using solar-induced chlorophyll 

fluorescence (SIF) from photosystem II, Agricultural and Forest Meteorology, 354, 110090, 645 

https://doi.org/10.1016/j.agrformet.2024.110090, 2024. 

Guo, X., Gui, X., Xiong, H., Hu, X., Li, Y., Cui, H., Qiu, Y., and Ma, C.: Critical role of climate factors for groundwater 

potential mapping in arid regions: Insights from random forest, XGBoost, and LightGBM algorithms, Journal of 

Hydrology, 621, 129599, https://doi.org/10.1016/j.jhydrol.2023.129599, 2023. 

Hao, D., Zeng, Y., Zhang, Z., Zhang, Y., Qiu, H., Biriukova, K., Celesti, M., Rossini, M., Zhu, P., Asrar, G. R., and Chen, M.: 650 

Adjusting solar-induced fluorescence to nadir-viewing provides a better proxy for GPP, ISPRS Journal of 

Photogrammetry and Remote Sensing, 186, 157-169, https://doi.org/10.1016/j.isprsjprs.2022.01.016, 2022. 

Huang, K., Xia, J., Wang, Y., Ahlström, A., Chen, J., Cook, R. B., Cui, E., Fang, Y., Fisher, J. B., Huntzinger, D. N., Li, Z., 

Michalak, A. M., Qiao, Y., Schaefer, K., Schwalm, C., Wang, J., Wei, Y., Xu, X., Yan, L., Bian, C., and Luo, Y.: 

Enhanced peak growth of global vegetation and its key mechanisms, Nature Ecology & Evolution, 2, 1897-1905, 655 

https://doi.org/10.1038/s41559-018-0714-0, 2018. 

Huang, Z., Zhou, L., and Chi, Y.: Spring phenology rather than climate dominates the trends in peak of growing season in the 

Northern Hemisphere, Global Change Biology, 29, 4543-4555, https://doi.org/10.1111/gcb.16758, 2023. 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



32 
 

Hoek van Dijke, A. J., Mallick, K., Schlerf, M., Machwitz, M., Herold, M., and Teuling, A. J.: Examining the link between 

vegetation leaf area and land–atmosphere exchange of water, energy, and carbon fluxes using FLUXNET data, 660 

Biogeosciences, 17, 4443-4457, https://doi.org/10.5194/bg-17-4443-2020, 2020. 

Jiao, W., Chang, Q., and Wang, L.: The Sensitivity of Satellite Solar-Induced Chlorophyll Fluorescence to Meteorological 

Drought, Earth's Future, 7, 558-573, https://doi.org/10.1029/2018EF001087, 2019. 

Jeong, S., Ryu, Y., Li, X., Dechant, B., Liu, J., Kong, J., Choi, W., Fang, J., Lian, X., and Gentine, P.: GEOSIF: A continental-

scale sub-daily reconstructed solar-induced fluorescence derived from OCO-3 and GK-2A over Eastern Asia and Oceania, 665 

Remote Sensing of Environment, 311, 114284, https://doi.org/10.1016/j.rse.2024.114284, 2024. 

Lai, J., Kooijmans, L. M. J., Sun, W., Lombardozzi, D., Campbell, J. E., Gu, L., Luo, Y., Kuai, L., and Sun, Y.: Terrestrial 

photosynthesis inferred from plant carbonyl sulfide uptake, Nature, 634, 855-861, 10.1038/s41586-024-08050-3, 2024. 

Leng, J., Chen, J. M., Li, W., Luo, X., Xu, M., Liu, J., Wang, R., Rogers, C., Li, B., and Yan, Y.: Global datasets of hourly 

carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations, Earth Syst. Sci. 670 

Data, 16, 1283-1300, https://doi.org/10.5194/essd-16-1283-2024, 2024. 

Li, B., Liu, K., Wang, M., Wang, Y., He, Q., Zhuang, L., and Zhu, W.: High-spatiotemporal-resolution dynamic water 

monitoring using LightGBM model and Sentinel-2 MSI data, International Journal of Applied Earth Observation and 

Geoinformation, 118, 103278, https://doi.org/10.1016/j.jag.2023.103278, 2023. 

Li, B., Ryu, Y., Jiang, C., Dechant, B., Liu, J., Yan, Y., and Li, X.: BESSv2.0: A satellite-based and coupled-process model 675 

for quantifying long-term global land–atmosphere fluxes, Remote Sensing of Environment, 295, 113696, 

https://doi.org/10.1016/j.rse.2023.113696, 2023. 

Li, F., Xiao, J., Chen, J., Ballantyne, A., Jin, K., Li, B., Abraha, M., and John, R.: Global water use efficiency saturation due 

to increased vapor pressure deficit, Science, 381, 672-677, https://doi.org/10.1126/science.adf5041, 2023. 

Li, H., Zhang, H., Wang, Y., Zhao, J., Feng, Z., Chen, H., Guo, X., Xiong, T., Xiao, J., and Li, X.: Evaluation of photosynthesis 680 

estimation from machine learning-based solar-induced chlorophyll fluorescence downscaling from canopy to leaf level, 

Ecological Indicators, 166, 112439, https://doi.org/10.1016/j.ecolind.2024.112439, 2024. 

Li, M., Cao, S., Zhu, Z., Wang, Z., Myneni, R. B., and Piao, S.: Spatiotemporally consistent global dataset of the GIMMS 

Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022, Earth Syst. Sci. Data, 15, 4181-4203, 

https://doi.org/10.5194/essd-15-4181-2023, 2023. 685 

Li, X., Ryu, Y., Xiao, J., Dechant, B., Liu, J., Li, B., Jeong, S., and Gentine, P.: New-generation geostationary satellite reveals 

widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave, Science Advances, 9, 

eadi0775, https://doi.org/10.1126/sciadv.adi0775, 2023. 

Li, X. and Xiao, J.: A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, 

and Reanalysis Data, Remote Sensing, 11, 517, https://doi.org/10.3390/rs11050517, 2019. 690 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



33 
 

Li, X., Xiao, J., Kimball, J. S., Reichle, R. H., Scott, R. L., Litvak, M. E., Bohrer, G., and Frankenberg, C.: Synergistic use of 

SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought, Remote Sensing 

of Environment, 251, 112062, https://doi.org/10.1016/j.rse.2020.112062, 2020. 

Liu, X., Guanter, L., Liu, L., Damm, A., Malenovský, Z., Rascher, U., Peng, D., Du, S., and Gastellu-Etchegorry, J.-P.: 

Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest 695 

model, Remote Sensing of Environment, 231, 110772, https://doi.org/10.1016/j.rse.2018.05.035, 2019. 

Liu, Y., Peñuelas, J., Cescatti, A., Zhang, Y., and Zhang, Z.: Atmospheric Dryness Dominates Afternoon Depression of Global 

Terrestrial Photosynthesis, Geophysical Research Letters, 51, e2024GL110954, https://doi.org/10.1029/2024GL110954, 

2024. 

Liu, Y., Wang, J., Yao, L., Chen, X., Cai, Z., Yang, D., Yin, Z., Gu, S., Tian, L., Lu, N., and Lyu, D.: The TanSat mission: 700 

preliminary global observations, Science Bulletin, 63, 1200-1207, https://doi.org/10.1016/j.scib.2018.08.004, 2018. 

Liu, Z., Zhao, F., Liu, X., Yu, Q., Wang, Y., Peng, X., Cai, H., and Lu, X.: Direct estimation of photosynthetic CO2 assimilation 

from solar-induced chlorophyll fluorescence (SIF), Remote Sensing of Environment, 271, 112893, 

https://doi.org/10.1016/j.rse.2022.112893, 2022. 

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh, J., Schneider, A., Wu, L., Hase, F., Kivi, R., Wunch, D., 705 

Pollard, D. F., Shiomi, K., Deutscher, N. M., Velazco, V. A., Roehl, C. M., Wennberg, P. O., Warneke, T., and Landgraf, 

J.: Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of 

measurements, Atmos. Meas. Tech., 14, 665-684, https://doi.org/10.5194/amt-14-665-2021, 2021. 

Lu, J., Wang, G., Chen, T., Li, S., Hagan, D. F. T., Kattel, G., Peng, J., Jiang, T., and Su, B.: A harmonized global land 

evaporation dataset from model-based products covering 1980–2017, Earth Syst. Sci. Data, 13, 5879-5898, 710 

https://doi.org/10.5194/essd-13-5879-2021, 2021. 

Lucht, W., Schaaf, C. B., and Strahler, A. H.: An algorithm for the retrieval of albedo from space using semiempirical BRDF 

models, IEEE Transactions on Geoscience and Remote Sensing, 38, 977-998, https://doi.org/10.1109/36.841980, 2000. 

Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J., Blanken, P. D., Burns, S. P., Cheng, R., Garcia, M. A., 

Kӧhler, P., Lopez, S., Parazoo, N. C., Raczka, B., Schimel, D., and Frankenberg, C.: Mechanistic evidence for tracking 715 

the seasonality of photosynthesis with solar-induced fluorescence, Proceedings of the National Academy of Sciences, 

116, 11640-11645, https://doi.org/10.1073/pnas.1900278116, 2019. 

Magney, T. S., Frankenberg, C., Köhler, P., North, G., Davis, T. S., Dold, C., Dutta, D., Fisher, J. B., Grossmann, K., 

Harrington, A., Hatfield, J., Stutz, J., Sun, Y., and Porcar-Castell, A.: Disentangling Changes in the Spectral Shape of 

Chlorophyll Fluorescence: Implications for Remote Sensing of Photosynthesis, Journal of Geophysical Research: 720 

Biogeosciences, 124, 1491-1507, https://doi.org/10.1029/2019JG005029, 2019. 

Martínez-Sánchez, Á., Arranz, G., and Lozano-Durán, A.: Decomposing causality into its synergistic, unique, and redundant 

components, Nature Communications, 15, 9296, https://doi.org/10.1038/s41467-024-53373-4, 2024. 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



34 
 

Miller, D. L., Wolf, S., Fisher, J. B., Zaitchik, B. F., Xiao, J., and Keenan, T. F.: Increased photosynthesis during spring drought 

in energy-limited ecosystems, Nature Communications, 14, 7828, https://doi.org/10.1038/s41467-023-43430-9, 2023. 725 

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., and Moreno, J.: Remote sensing of solar-induced 

chlorophyll fluorescence: Review of methods and applications, Remote Sensing of Environment, 113, 2037-2051, 

https://doi.org/10.1016/j.rse.2009.05.003, 2009. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 

Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, 730 

C., and Thépaut, J. N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 

13, 4349-4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P., Friedlingstein, P., and Sitch, S.: Interannual variation 

of terrestrial carbon cycle: Issues and perspectives, Global Change Biology, 26, 300-318, 

https://doi.org/10.1111/gcb.14884, 2020. 735 

Porcar-Castell, A., Malenovský, Z., Magney, T., Van Wittenberghe, S., Fernández-Marín, B., Maignan, F., Zhang, Y., Maseyk, 

K., Atherton, J., Albert, L. P., Robson, T. M., Zhao, F., Garcia-Plazaola, J.-I., Ensminger, I., Rajewicz, P. A., Grebe, S., 

Tikkanen, M., Kellner, J. R., Ihalainen, J. A., Rascher, U., and Logan, B.: Chlorophyll a fluorescence illuminates a path 

connecting plant molecular biology to Earth-system science, Nature Plants, 7, 998-1009, https://doi.org/10.1038/s41477-

021-00980-4, 2021. 740 

Quiros-Vargas, J., Siegmann, B., Damm, A., Krieger, V., Muller, O., and Rascher, U.: Spatial dependency of Solar-induced 

Chlorophyll Fluorescence (SIF)-emitting objects in the footprint of a FLuorescence EXplorer (FLEX) pixel: a SIF-

downscaling perspective, EGU General Assembly Conference Abstracts, EGU22-12671, 

https://doi.org/10.5194/egusphere-egu22-12671, 2022. 

Regaieg, O., Lauret, N., Wang, Y., Guilleux, J., Chavanon, E., and Gastellu-Etchegorry, J.-P.: Bi-directional Monte-Carlo 745 

modelling of solar-induced chlorophyll fluorescence images for 3D vegetation canopies in the DART model, International 

Journal of Applied Earth Observation and Geoinformation, 118, 103254, https://doi.org/10.1016/j.jag.2023.103254, 2023. 

Regaieg, O., Malenovský, Z., Siegmann, B., Buffat, J., Krämer, J., Lauret, N., and Le Dantec, V.: DART-based temporal and 

spatial retrievals of solar-induced chlorophyll fluorescence quantum efficiency from in-situ and airborne crop 

observations, Remote Sensing of Environment, 319, 114636, https://doi.org/10.1016/j.rse.2025.114636, 2025. 750 

Regnier, P., Resplandy, L., Najjar, R. G., and Ciais, P.: The land-to-ocean loops of the global carbon cycle, Nature, 603, 401-

410, https://doi.org/10.1038/s41586-021-04339-9, 2022. 

Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong McKay, D. I., Bai, X., Bala, G., Bunn, 

S. E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., 

Liverman, D. M., Mohamed, A., Nakicenovic, N., Obura, D., Ospina, D., Prodani, K., Rammelt, C., Sakschewski, B., 755 

Scholtens, J., Stewart-Koster, B., Tharammal, T., van Vuuren, D., Verburg, P. H., Winkelmann, R., Zimm, C., Bennett, 

E. M., Bringezu, S., Broadgate, W., Green, P. A., Huang, L., Jacobson, L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



35 
 

M., Schulte-Uebbing, L., de Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., and Zhang, X.: Safe and just Earth 

system boundaries, Nature, 619, 102-111, https://doi.org/10.1038/s41586-023-06083-8, 2023. 

Rodell, M. and Reager, J. T.: Water cycle science enabled by the GRACE and GRACE-FO satellite missions, Nature Water, 760 

1, 47-59, https://doi.org/10.1038/s44221-022-00005-0, 2023. 

Rosenberg, R., Chapsky, L., Crisp, D., Keller, G., Lee, R., Marchetti, Y., Yu, S., and Eldering, A.: OCO-2 Calibration 

Refinement Across Versions and Plans for OCO-3, IGARSS 2020 - 2020 IEEE International Geoscience and Remote 

Sensing Symposium, 26 Sept.-2 Oct. 2020, 6381-6384, https://doi.org/10.1109/IGARSS39084.2020.9324511, 2020. 

Ryu, Y., Berry, J. A., and Baldocchi, D. D.: What is global photosynthesis? History, uncertainties and opportunities, Remote 765 

Sensing of Environment, 223, 95-114, https://doi.org/10.1016/j.rse.2019.01.016, 2019. 

Schimel, D., Pavlick, R., Fisher, J. B., Asner, G. P., Saatchi, S., Townsend, P., Miller, C., Frankenberg, C., Hibbard, K., and 

Cox, P.: Observing terrestrial ecosystems and the carbon cycle from space, Global Change Biology, 21, 1762-1776, 

https://doi.org/10.1111/gcb.12822, 2015. 

Shen, H., Wang, Y., Guan, X., Huang, W., Chen, J., Lin, D., and Gan, W.: A Spatiotemporal Constrained Machine Learning 770 

Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction, IEEE Transactions on Geoscience and 

Remote Sensing, 60, 1-17, https://doi.org/10.1109/TGRS.2022.3204885, 2022. 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., and Magney, T.: Overview of Solar-Induced chlorophyll 

Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring 

for GPP, Remote Sensing of Environment, 209, 808-823, https://doi.org/10.1016/j.rse.2018.02.016, 2018. 775 

Sun, Y., Gu, L., Wen, J., van der Tol, C., Porcar-Castell, A., Joiner, J., Chang, C. Y., Magney, T., Wang, L., Hu, L., Rascher, 

U., Zarco-Tejada, P., Barrett, C. B., Lai, J., Han, J., and Luo, Z.: From remotely sensed solar-induced chlorophyll 

fluorescence to ecosystem structure, function, and service: Part I—Harnessing theory, Global Change Biology, 29, 2926-

2952, https://doi.org/10.1111/gcb.16634, 2023. 

Sun, Y., Wen, J., Gu, L., Joiner, J., Chang, C. Y., van der Tol, C., Porcar-Castell, A., Magney, T., Wang, L., Hu, L., Rascher, 780 

U., Zarco-Tejada, P., Barrett, C. B., Lai, J., Han, J., and Luo, Z.: From remotely-sensed solar-induced chlorophyll 

fluorescence to ecosystem structure, function, and service: Part II—Harnessing data, Global Change Biology, 29, 2893-

2925, https://doi.org/10.1111/gcb.16646, 2023. 

Tao, S., Chen, J. M., Zhang, Z., Zhang, Y., Ju, W., Zhu, T., Wu, L., Wu, Y., and Kang, X.: A high-resolution satellite-based 

solar-induced chlorophyll fluorescence dataset for China from 2000 to 2022, Scientific Data, 11, 1286, 785 

https://doi.org/10.1038/s41597-024-04101-6, 2024. 

van der Tol, C., Berry, J. A., Campbell, P. K. E., and Rascher, U.: Models of fluorescence and photosynthesis for interpreting 

measurements of solar-induced chlorophyll fluorescence, Journal of Geophysical Research: Biogeosciences, 119, 2312-

2327, https://doi.org/10.1002/2014JG002713, 2014. 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



36 
 

van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su, Z.: An integrated model of soil-canopy spectral radiances, 790 

photosynthesis, fluorescence, temperature and energy balance, Biogeosciences, 6, 3109-3129, https://doi.org/10.5194/bg-

6-3109-2009, 2009. 

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I. A., Wu, M., Berry, J. A., Campbell, 

E., Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W. K., Yuan, W., He, W., Lombardozzi, D., 

Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T. G. M., Krüger, I., Wang, R., Zeng, N., Tian, H., Vuichard, 795 

N., Jain, A. K., Wiltshire, A., Haverd, V., Goll, D. S., and Peñuelas, J.: Recent global decline of CO<sub>2</sub> 

fertilization effects on vegetation photosynthesis, Science, 370, 1295-1300, https://doi.org/10.1126/science.abb7772, 

2020. 

Wankmüller, F. J. P., Delval, L., Lehmann, P., Baur, M. J., Cecere, A., Wolf, S., Or, D., Javaux, M., and Carminati, A.: Global 

influence of soil texture on ecosystem water limitation, Nature, 635, 631-638, https://doi.org/10.1038/s41586-024-08089-800 

2, 2024. 

Wei, S., Fang, H., Schaaf, C. B., He, L., and Chen, J. M.: Global 500 m clumping index product derived from MODIS BRDF 

data (2001–2017), Remote Sensing of Environment, 232, 111296, https://doi.org/10.1016/j.rse.2019.111296, 2019. 

Wen, J., Köhler, P., Duveiller, G., Parazoo, N. C., Magney, T. S., Hooker, G., Yu, L., Chang, C. Y., and Sun, Y.: A framework 

for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced 805 

chlorophyll fluorescence (SIF), Remote Sensing of Environment, 239, 111644, https://doi.org/10.1016/j.rse.2020.111644, 

2020. 

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, 

G., Yuan, W., Zhang, L., and Zhang, X.: Remote sensing of the terrestrial carbon cycle: A review of advances over 50 

years, Remote Sensing of Environment, 233, 111383, https://doi.org/10.1016/j.rse.2019.111383, 2019. 810 

Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K., and Parazoo, N. C.: Emerging satellite observations for diurnal cycling of 

ecosystem processes, Nature Plants, 7, 877-887, https://doi.org/10.1038/s41477-021-00952-8, 2021. 

Yang, P., Prikaziuk, E., Verhoef, W., and van der Tol, C.: SCOPE 2.0: a model to simulate vegetated land surface fluxes and 

satellite signals, Geosci. Model Dev., 14, 4697-4712, https://doi.org/10.5194/gmd-14-4697-2021, 2021. 

Yang, P. and van der Tol, C.: Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance, 815 

Remote Sensing of Environment, 209, 456-467, https://doi.org/10.1016/j.rse.2018.02.029, 2018. 

Yang, P., Verhoef, W., and van der Tol, C.: The mSCOPE model: A simple adaptation to the SCOPE model to describe 

reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies, Remote Sensing of Environment, 201, 

1-11, https://doi.org/10.1016/j.rse.2017.08.029, 2017. 

Yang, Y., Roderick, M. L., Guo, H., Miralles, D. G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T. R., Tu, Z., Keenan, 820 

T. F., Fisher, J. B., Gan, R., Zhang, X., Piao, S., Zhang, B., and Yang, D.: Evapotranspiration on a greening Earth, Nature 

Reviews Earth & Environment, 4, 626-641, https://doi.org/10.1038/s43017-023-00464-3, 2023. 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



37 
 

Yu, P., Zhou, T., Luo, H., Liu, X., Shi, P., Zhang, Y., Zhang, J., Zhou, P., and Xu, Y.: Global Pattern of Ecosystem Respiration 

Tendencies and Its Implications on Terrestrial Carbon Sink Potential, Earth's Future, 10, e2022EF002703, 

https://doi.org/10.1029/2022EF002703, 2022. 825 

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., and Berry, J. A.: A practical approach for estimating the escape ratio 

of near-infrared solar-induced chlorophyll fluorescence, Remote Sensing of Environment, 232, 111209, 

https://doi.org/10.1016/j.rse.2019.05.028, 2019. 

Zeng, Y., Hao, D., Park, T., Zhu, P., Huete, A., Myneni, R., Knyazikhin, Y., Qi, J., Nemani, R. R., Li, F., Huang, J., Gao, Y., 

Li, B., Ji, F., Köhler, P., Frankenberg, C., Berry, J. A., and Chen, M.: Structural complexity biases vegetation greenness 830 

measures, Nature Ecology & Evolution, 7, 1790-1798, https://doi.org/10.1038/s41559-023-02187-6, 2023. 

Zhang, K., Chen, H., Ma, N., Shang, S., Wang, Y., Xu, Q., and Zhu, G.: A global dataset of terrestrial evapotranspiration and 

soil moisture dynamics from 1982 to 2020, Scientific Data, 11, 445, https://doi.org/10.1038/s41597-024-03271-7, 2024. 

Zhang, Y., Fang, J., Smith, W. K., Wang, X., Gentine, P., Scott, R. L., Migliavacca, M., Jeong, S., Litvak, M., and Zhou, S.: 

Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest 835 

US drought, Global Change Biology, 29, 3395-3408, https://doi.org/10.1111/gcb.16683, 2023. 

Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., and Gentine, P.: A global spatially contiguous solar-induced fluorescence 

(CSIF) dataset using neural networks, Biogeosciences, 15, 5779-5800, https://doi.org/10.5194/bg-15-5779-2018, 2018. 

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A global moderate resolution dataset of gross primary 

production of vegetation for 2000–2016, Scientific Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165, 2017. 840 

Zhang, Z., Cescatti, A., Wang, Y.-P., Gentine, P., Xiao, J., Guanter, L., Huete, A. R., Wu, J., Chen, J. M., Ju, W., Peñuelas, J., 

and Zhang, Y.: Large diurnal compensatory effects mitigate the response of Amazonian forests to atmospheric warming 

and drying, Science Advances, 9, eabq4974, https://doi.org/10.1126/sciadv.abq4974, 2023. 

Zhang, Z., Guanter, L., Porcar-Castell, A., Rossini, M., Pacheco-Labrador, J., and Zhang, Y.: Global modeling diurnal gross 

primary production from OCO-3 solar-induced chlorophyll fluorescence, Remote Sensing of Environment, 285, 113383, 845 

https://doi.org/10.1016/j.rse.2022.113383, 2023. 

Zhang, Z., Zhang, Y., Chen, J. M., Ju, W., Migliavacca, M., and El-Madany, T. S.: Sensitivity of Estimated Total Canopy SIF 

Emission to Remotely Sensed LAI and BRDF Products, Journal of Remote Sensing, 

https://doi.org/10.34133/2021/9795837, 2021. 

Zhao, W., Zhu, Z., Cao, S., Li, M., Zha, J., Pu, J., and Myneni, R. B.: A global dataset of the fraction of absorbed 850 

photosynthetically active radiation for 1982–2022, Scientific Data, 11, 707, https://doi.org/10.1038/s41597-024-03561-

0, 2024. 

Zheng, C., Wang, S., Chen, J. M., Xiao, J., Chen, J., Zhang, Z., and Forzieri, G.: Estimating global transpiration from 

TROPOMI SIF with angular normalization and separation for sunlit and shaded leaves, Remote Sensing of Environment, 

319, 114586, https://doi.org/10.1016/j.rse.2024.114586, 2025. 855 

https://doi.org/10.5194/essd-2025-99
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.


