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Supplementary Information: 

Text S1–S5 

Text S1 | Overviews of the study area 

Spanning a vast land area of 9.6 million square kilometers, China encompasses diverse 

landscapes and five major climate zones: cold temperate, temperate, warm temperate, subtropical, 

and tropical. Nationally, the land area comprises 33.3% mountains, 26% plateaus, 18.8% basins, 12% 

plains, and 9.9% hills. According to the Ninth National Forest Inventory (NFI), natural forests 

account for 63.55% of the total forest area in China, while planted forests cover 36.45%. Of these 

planted forests, 72.88% consist of young and middle-aged stands, resulting in a lower average 

AGBD of 59.25 Mg/ha compared to 112.21 Mg/ha for natural forests (National Forestry and 

Grassland Administration, 2019). Natural forests are primarily distributed in the northeastern, 

southwestern, and northwestern regions, which are also key hotspots for forest AGB. Planted forests, 

on the other hand, are mainly distributed in the central, southern, and eastern regions. In the 

northeast, boreal forests and mixed conifer-broadleaf forests dominate, with key species including 

Larix spp. and Abies spp. In the southwest, high-altitude conifer forests and mixed conifer-broadleaf 

forests are prevalent, with species such as Picea spp., Abies spp., and broadleaf species like Quercus 

spp. and Acer spp. The northwest region features arid and semi-arid forests interspersed with desert 

and steppe ecosystems, with drought-resistant species like Haloxylon spp. and Populus euphratica. 

In northern China, temperate deciduous broadleaf forests and forests of Pinus tabuliformis and 

Platycladus orientalis (Chinese arborvitae) are found. In central China, forests are primarily 

temperate deciduous broadleaf forests, thriving in hilly and basin landscapes, with species like 

Robinia pseudoacacia (black locust) and Fraxinus spp. (ash). In the southern regions, there are 

Pinus massoniana (Masson pine) and Cunninghamia lanceolata (China fir) forests, evergreen 

broadleaf forests, and economic forests such as Camellia spp., Vernicia fordii (tung oil tree), and 

other species.  
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Text S2 | AGB Datasets for comparison 

AGB datasets utilized for spatial comparison 

For the spatial comparison of forest AGB, we utilized six external AGB datasets with different 

spatial resolutions and temporal coverage. These datasets provide global and national-scale AGB 

estimates, enabling us to assess the spatial consistency of our AGB model. An overview of these 

datasets is provided in Text Table 1. 

1. Zarin Map (2000, Global, 30 m): This dataset provides a global AGB map based on field 

measurements and remote sensing data. It offers high spatial resolution (30 m) and was 

created by Zarin et al. (2016) for global AGB estimation. 

2. Hu Map (2004, China, 1000 m): Hu et al. (2016) developed this dataset specifically for 

China, providing AGB estimates at a spatial resolution of 1000 meters. It is based on remote 

sensing data and field measurements and is useful for comparing AGB estimates across 

large-scale areas in China. 

3. Su Map (2004, China, 1000 m): Another dataset for China, created by Su et al. (2016) with 

the same spatial resolution as the Hu map (1000 m). It uses similar methods to the Hu map 

but incorporates different field data, making it valuable for cross-validating AGB estimates 

at national scales. 

4. Santoro Map (2010, Global, 100 m): The Santoro et al. (2021) dataset provides global 

AGB estimates at a 100-meter resolution. This map was generated using a combination of 

field data and remote sensing inputs, and it is important for evaluating the global spatial 

patterns of AGB. 

5. Yang Map (2019, China, 30 m): Yang et al. (2023) developed this dataset for China with a 

high spatial resolution of 30 meters. It offers valuable insights into more recent AGB 

conditions in China, serving as a useful comparison for our own AGB estimations. 

6. ESA CCI (2010, 2017–2020, Global, 100 m): The European Space Agency’s Climate 

Change Initiative (ESA CCI) AGB dataset provides global AGB estimates at a resolution 

of 100 meters for multiple years. The dataset, covering 2010 and 2017-2020, is useful for 

comparing spatial variations in AGB across different biomes. 
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These datasets cover various regions and resolutions, and by comparing them with our model’s 

AGB estimates, we can assess both the consistency and accuracy of our spatial predictions. 

Text Table 1. Overview of external AGB datasets utilized for spatial comparison. 

Dataset Regions Temporal scope 
Spatial 

resolution 
Sources 

Zarin map Global 2000 30 m 
Zarin et al., 

(2016) 

Hu map China 2004 1000 m Hu et al., (2016) 

Su map China 2004 1000 m Su et al., (2016) 

Santoro map Global 2010 100 m 
Santoro et al., 

(2021) 

Yang map China 2019 30 m 
Yang et al., 

(2023) 

ESA CCI Global 
2010, 2017–

2020 
100 m 

Santoro et al., 

(2023) 

AGB datasets utilized for dynamic comparison 

In addition to spatial comparisons, we also evaluated the dynamic changes in AGB across time 

using four external datasets. These datasets cover different temporal periods and provide valuable 

insights into the temporal dynamics of forest biomass. The details of these datasets are summarized 

in Text Table 2. 

1. Liu Map (1993–2012, Global, 0.25°): Liu et al. (2015) developed this dataset, which 

provides annual AGB estimates at a spatial resolution of 0.25°. Spanning nearly two 

decades, it allows for the examination of long-term trends in global AGB and serves as a 

basis for comparing dynamic changes in forest biomass. 

2. Hengeveld Map (1950–2010, Global, 1°): The Hengeveld et al. (2015) dataset offers AGB 

estimates at 1° spatial resolution at five-year intervals from 1950 to 2010. It provides a 

historical perspective on global AGB changes and is valuable for understanding long-term 

biomass trends, especially in regions with limited recent data. 
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3. Chen Map (2002–2021, China, 1000 m): This dataset, developed by Chen et al. (2023), 

provides annual AGB estimates at 1000-meter resolution for China. Spanning nearly two 

decades, it offers insights into the dynamics of forest biomass in China, which is crucial for 

evaluating the performance of our AGB model over time in this region. 

4. ESA CCI (2010, 2017–2020, Global, 100 m): Similar to its use in spatial comparisons, the 

ESA CCI AGB dataset also provides temporal information, offering AGB estimates for 

2010 and 2017-2020. With a 100-meter resolution, this dataset allows for examining recent 

changes in AGB at the global scale, complementing the dynamic comparison of biomass 

changes. 

These datasets enable a comprehensive evaluation of dynamic changes in forest AGB over time. 

By comparing the temporal trends observed in these datasets with our model’s predictions, we can 

assess how well our model captures AGB dynamics and how it performs in comparison to other 

established AGB products. 

Text Table 2. Overview of external AGB datasets utilized for dynamic comparison. 

Dataset Regions Temporal scope 
Spatial 

resolution 
Sources 

Liu map Global 
1993–2012 

(Annual) 
0.25° Liu et al., (2015) 

Hengeveld map Global 

1950–2010 

(5 years 

intervals) 

1° 
HENGEVELD 

et al., (2015) 

Chen map China 

2002–2021 

(Annual) 
1000 m 

Chen et al., 

(2023) 

ESA CCI Global 
2010, 2017–

2020 
100 m 

Santoro et al., 

(2023) 
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Text S3 | Model comparison 

We compared the performance of three machine learning models—Random Forest, XGBoost 

(Extreme Gradient Boosting), and LightGBM (Light Gradient Boosting Machine)—with the 

ResNet model, which was developed for forest AGBD estimation. 

Random Forest 

RF is an ensemble learning method that builds multiple decision trees during training and 

combines their predictions to improve accuracy and reduce overfitting (Breiman, 2001). Each tree 

in the forest is trained on a bootstrap sample of the dataset, and a random subset of features is 

considered for splitting at each node, which increases model robustness and reduces the likelihood 

of overfitting. RF is particularly effective for high-dimensional datasets and is capable of handling 

both regression and classification tasks. The output for regression tasks is the average prediction 

across all trees, providing a stable and reliable result. Key advantages include its ability to capture 

nonlinear relationships and its robustness to noise, but its interpretability is limited due to the 

ensemble structure. 

XGBoost 

XGBoost is a scalable and efficient gradient boosting framework designed for both 

classification and regression tasks (Chen et al., 2016). It employs a sequential ensemble of decision 

trees, where each tree is trained to correct the residual errors of its predecessors, optimizing a 

specified loss function. Key features of XGBoost include regularization techniques (L1 and L2) to 

prevent overfitting, tree pruning based on a minimum loss reduction threshold, and support for 

sparse data handling. It also incorporates parallel processing, making it computationally efficient 

and suitable for large datasets. XGBoost’s flexibility and strong predictive performance have made 

it one of the most widely used machine learning methods in competitions and applications. 

LightGBM 

LightGBM is a gradient boosting framework specifically designed for speed and efficiency on 

large datasets (Ke et al., 2017). Unlike traditional boosting methods, LightGBM uses a histogram-

based algorithm and a leaf-wise tree growth strategy with depth constraints. This approach 

significantly reduces computational cost and memory usage while improving accuracy. It supports 

categorical feature handling, parallel learning, and distributed training. LightGBM is particularly 
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effective for tasks with large-scale data and high dimensionality, achieving faster training times 

compared to XGBoost while maintaining comparable or superior performance. However, it may 

require careful tuning of hyperparameters to avoid overfitting. 

Parameters setting 

Each model was trained using the same set of input features, including Landsat spectral bands, 

vegetation indices, and additional auxiliary variables such as climatic factors (mean annual 

temperature and precipitation), topographic features (elevation, slope, and aspect), geolocation 

(latitude and longitude), and tree cover. For RF model, we set the number of trees to 500, with a 

maximum depth of 30 for each tree and the minimum samples per leaf set to 1 to ensure model 

flexibility. For XGBoost model, the learning rate was set to 0.05, with 1000 boosting rounds and a 

maximum depth of 6 for each tree. The model also used L2 regularization to prevent overfitting. 

For LightGBM model, we used 1000 boosting iterations with a learning rate of 0.05, and the 

maximum depth of trees was set to 6. Additionally, we used the "dart" boosting type for enhanced 

model robustness. We evaluated the accuracy and predictive performance of each model across five 

AGBD intervals: 0–50, 50–100, 100–150, 150–200, and ≥200 Mg/ha. This interval-based analysis 

enabled us to assess model performance under varying biomass conditions, particularly addressing 

the spectral saturation issue often observed in higher AGBD ranges when using only multispectral 

data. 

ResNet outperforms ML ensemble models 

All three traditional machine learning algorithms achieve good fitting accuracy, with Random 

Forest performing the best (R² = 0.90), followed by XGBoost (R² = 0.83) and LightGBM (R² = 

0.74). Although the fitting accuracy of Random Forest is comparable to that of ResNet (R² = 0.92, 

RMSE = 16.01 Mg/ha), it is more prone to the effects of spectral saturation, particularly in high-

biomass areas (Text Table 3). In regions where biomass exceeds 150 Mg/ha, traditional machine 

learning models tend to underestimate AGBD, with the degree of underestimation increasing as 

forest biomass rises. 

In contrast, deep learning models, such as ResNet, do not exhibit significant underestimation; 

AGBD predictions remain distributed around the 1:1 line in scatter plots (Text Fig. S1a). Notably, 

in areas where forest AGBD exceeds 200 Mg/ha, the systematic bias from ResNet underestimation 

(-24.63 Mg/ha) is considerably lower than that of the other three models (Random Forest: -54.19 
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Mg/ha; XGBoost: -67.02 Mg/ha; LightGBM: -90.84 Mg/ha) (Text Table 3). This suggests that deep 

learning methods can better capture the complex relationship between biomass and spectral features, 

effectively reducing the impact of spectral saturation on AGBD estimation compared to traditional 

machine learning models. 

 

Text Fig. S1 | Comparison of AGBD estimation accuracy using different algorithms. (a) 

Scatter plot of GEDI AGBD vs. ResNet estimated AGBD. (b) Scatter plot of GEDI AGBD vs. 

Random Forest estimated AGBD. (c) Scatter plot of GEDI AGBD vs. XGBoost estimated AGBD. 

(d) Scatter plot of GEDI AGBD vs. LightGBM estimated AGBD. 

 

Text Table 3. Estimation accuracy of different models along AGBD intervals. 

Intervals of AGBD 

(Mg/ha) 
Models RMSE (Mg/ha) Bias (Mg/ha) 

[0, 50) 
ResNet 7.79 1.26 

RF 7.96 2.40 
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XGBoost 11.64 3.44 

LightGBM 12.72 4.18 

[50, 100) 

ResNet 17.41 -0.34 

RF 19.23 2.76 

XGBoost 27.75 0.34 

LightGBM 31.03 2.58 

[100, 150) 

ResNet 20.35 -2.94 

RF 20.98 -3.97 

XGBoost 31.66 -10.96 

LightGBM 34.69 -11.71 

[150, 200) 

ResNet 28.56 -6.91 

RF 30.70 -18.25 

XGBoost 48.10 -32.50 

LightGBM 56.34 -38.33 

≥200 

ResNet 78.17 -24.63 

RF 89.83 -54.19 

XGBoost 101.08 -67.02 

LightGBM 137.84 -90.84 
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Text S4 | Forest carbon sink over China 

Our findings are consistent with previous studies, confirming that China’s forests have served 

as a significant carbon sink over the past few decades. We estimate that China’s forests absorbed an 

average of 0.21 ± 0.04 PgC per year from 1985 to 2023. This falls within the range reported by 

earlier studies based on forest inventories, satellite observations, atmospheric inversions, and 

process-based models, which estimate forest carbon sinks ranging from 0.18 to 0.45 PgC per year 

(Yu et al., 2022). Our result is slightly higher than Piao et al., (2009), who estimated an average of 

0.17 PgC per year for the period 1980–2002, and Fang et al., (2024), who reported 0.16 PgC per 

year for forest AGC changes between 2015 and 2021. Similarly, He et al., (2019) used three process-

based models to estimate a carbon sink of 0.12 PgC per year for China’s terrestrial ecosystems from 

1982 to 2010. Comparatively, Zhao et al., (2021) estimated a forest carbon sink of 0.102 PgC per 

year for 1997–2018 using MODIS satellite and forest inventory data, while Harris et al., (2021) 

reported an average of 0.14 PgC per year for 2000–2019. Pan et al., (2011) similarly found a lower 

carbon sink of 0.115 PgC per year for the period 2000–2007. However, our results are significantly 

higher—approximately 3.5 times larger—than those of Yin et al., (2015), who used machine 

learning methods to estimate forest aboveground carbon stock changes at 0.062 PgC per year for 

2001–2013, and more than double the estimate by Chen et al., (2023), who reported 0.062 PgC per 

year for 2000–2021. 

The differences in these estimates likely arise from variations in forest area estimates, as forest 

expansion has been a primary driver of changes in China’s landscape and terrestrial carbon sink 

since 1980 (Cai et al., 2024; Xia et al., 2023; Yu et al., 2022). Our study, which leverages the China 

Annual Terrestrial Carbon Dynamics Dataset (CATCD)—the first high spatiotemporal resolution 

remote sensing product to fully reconstruct China’s forest area expansion over the past 40 years—

produces results closely matching those of Yu et al., (2022). Their study, using the Dynamic Land 

Ecosystem Model (DLEM), reported a forest carbon sink of 0.21 ± 0.006 PgC per year from 1980 

to 2019. This is likely because Yu et al., (2022) also corrected biases in historical forest area data 

caused by inconsistent reporting methodologies. 

Additionally, Wang et al., (2020) demonstrated that bottom-up approaches might substantially 

underestimate China’s terrestrial carbon sink, with atmospheric CO₂ data indicating an average 
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carbon uptake of −1.11 ± 0.38 PgC per year for 2010–2016. This highlights the importance of 

developing a comprehensive understanding of carbon dynamics in China’s forests. Future research 

is needed to reconcile discrepancies across methods and datasets to achieve a more accurate 

understanding of China’s forest carbon dynamics. 
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Text S5| Integrating Sentinel-1 for AGB estimation 

Estimating forest AGB using optical imagery often encounters challenges due to spectral 

saturation, wherein the spectral signals captured by optical sensors exhibit limited variability as 

forest biomass reaches certain levels. This saturation effect compromises the optical imagery's 

ability to distinguish between different biomass levels, particularly in regions with high biomass 

density. To evaluate the feasibility of estimating forest AGBD using multispectral imagery and 

assess the benefits of integrating Sentinel-1 SAR data in reducing saturation issues, we employed 

two modeling strategies: (1) the Multispectral-Only Model, which used Landsat-derived spectral 

bands and vegetation indices as explanatory variables, and (2) the Multispectral + SAR Model, 

which incorporated Sentinel-1 VV and VH backscatter coefficients in addition to the same variables 

used in the first model. Both models also included auxiliary features, such as climatic variables 

(mean annual temperature and precipitation), topographic factors (elevation, slope, and aspect), 

geolocation information (latitude and longitude), and tree cover (see Fig. 2). These features were 

derived from external datasets and resampled to match the spatial resolution and extent of the 

Landsat composites. To assess model performance under varying biomass conditions, we divided 

the AGBD estimates into five intervals based on 50 Mg/ha increments: 0–50, 50–100, 100–150, 

150–200, and ≥200 Mg/ha. For each interval, we calculated the root mean squared error (RMSE) 

and bias for both modeling strategies, focusing on the spectral saturation issue typically observed in 

higher AGBD ranges when using only multispectral data. 

Sentinel-1 data and preprocessing 

Sentinel-1, part of the European Space Agency's (ESA) Copernicus Earth Observation 

Programme, is a synthetic aperture radar (SAR) mission designed for all-weather, day-and-night 

Earth observation at C-band. The mission employs two satellites, Sentinel-1A and Sentinel-1B, with 

a revisit time of 6–12 days and a native spatial resolution of 10 meters. Sentinel-1 operates in 

multiple acquisition modes, and this study utilizes data from the Interferometric Wide Swath (IW) 

mode, which is optimized for land monitoring. We accessed Sentinel-1 Ground Range Detected 

(GRD) scenes via the Google Earth Engine (GEE) platform. Preprocessing included radiometric 

calibration, terrain correction, and resampling to 30-meter resolution to match the spatial scale of 

Landsat composites. To align with the growing season used in Landsat processing (day of year 150–
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270), we selected Sentinel-1 GRD scenes within this period and generated annual median 

composites based on VV (vertical transmit and vertical receive) and VH (vertical transmit and 

horizontal receive) polarization backscatter coefficients. 

Sentinel-1 Enhances AGBD Estimates 

Our findings indicate that the model incorporating SAR features outperforms the base model 

(Text Table 4). Particularly in cases where AGBD exceeds 150 Mg/ha, the inclusion of SAR features 

effectively mitigates the challenges posed by spectral saturation. Despite the performance 

enhancement, the two models produce highly correlated AGBD predictions, as indicated by a 

correlation coefficient of r=0.96 (p<0.0001) (Text Fig. S2). This implies that while leveraging SAR 

data provides benefits, estimating AGBD solely based on spectral features remains a feasible 

approach, especially in historical years lacking SAR data availability. Integrating SAR features into 

AGBD estimation models offers a promising avenue for improving accuracy, particularly in regions 

where optical imagery alone may face limitations. Nonetheless, the continued viability of spectral-

based AGBD estimation underscores the importance of considering practical constraints and data 

availability when selecting modelling approaches. 

 

Text Fig. S2 | Comparison of AGBD estimation accuracy with and without SAR integration. 

(a) Scatter plot of GEDI AGBD vs. predicted AGBD without SAR. (b) Scatter plot of GEDI 

AGBD vs. predicted AGBD with SAR. (c) Scatter plot comparing predicted AGBD with SAR 

integration to predicted AGBD without SAR. 

 

Text Table 4. Estimation accuracy using different feature combinations along AGBD 

intervals. 

Intervals of AGBD 

(Mg/ha) 

Feature 

combinations 
RMSE (Mg/ha) Bias (Mg/ha) 
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[0, 50) 
With SAR 6.40 0.62 

Without SAR 7.79 1.26 

[50, 100) 
With SAR 18.25 -0.24 

Without SAR 17.41 -0.34 

[100, 150) 
With SAR 19.51 -2.24 

Without SAR 20.35 -2.94 

[150, 200) 
With SAR 24.41 -4.82 

Without SAR 28.56 -6.91 

≥200 
With SAR 75.50 -24.37 

Without SAR 78.17 -24.63 
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Supplementary Table (1–2) 

 

Table S1. The average forest AGBD and total carbon stock in China from difference AGB 

datasets. 

Temporal coverage 

Average forest AGBD 

(Mg/ha) 

Total forest carbon stock 

(PgC) 

Sources 

2004 160.74 ± 45.16 8.20 Hu et al., (2016) 

2004 121.93 9.06 Su et al., (2016) 

2006 69.88 5.44 

Huang et al., 

(2019) 

2010 57.05 5.04 

Santoro et al., 

(2021) 

2009–2013 89.04 7.27 

Zhao et al., 

(2019) 

2011–2015 

(Optimal weighting 

technique) 92.29±21.14 7.73 Chang et al., 

(2021) 2011–2015 

(Random forest 

regression) 96.64±28.43 8.13 

2018 89.2 8.32 Tang et al., (2018) 

2018 95.4 9.35 Xu et al., (2018) 

2019 97.57±23.85 11.06 

Yang et al., 

(2023) 
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Table S2. Sample Distribution Across Ecoregions for RseNet Model training and testing.  

Ecoregions 
Training 

sample size 

Testing 

samples size 
Sample size 

Area 

(104 km2) 

Sample density 

(Samples per 104 km²) 

Temperate desert 25524 6385 31909 334.5 95.4 

Tibetan plateau alpine vegetation 11239 2882 14121 160.6 87.9 

Subtropical evergreen broadleaf forest 10647 2610 13257 267.0 49.6 

Tropical monsoon rainforest and rainforest 1154 294 1448 29.0 49.9 

Warm temperate deciduous broadleaf forest 6114 1521 7635 97.1 78.6 

Temperate coniferous and deciduous broadleaf mixed forest 2118 497 2615 40.8 64.1 

Cold temperate coniferous forest 934 241 1175 20.9 56.2 

Total 57720 14430 72160 949.9 76.0 
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Supplementary Figure (1–4) 

 

 

Fig. S1. Tree cover change in China between 1985 and 2023. (a) and (b) are the spatial distribution 

of tree cover in China for the years 1985 and 2023, respectively. Tree cover data sources from 

CATCD (Cai et al., 2024). 
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Fig. S2. Spatial distribution of GEDI AGBD samples between 2019 to 2021 within China. 
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Fig. S3. Overview of field survey data across China from the 1990s to the 2010s. (a) Spatial 

distribution of field survey sites. (b) Frequency distribution of field survey data by AGBD interval. 
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Fig. S4. Scatter plot of GEDI AGBD (training set) vs. ResNet estimated AGBD. 
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