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Response Letter

Dear Editors,

Please find enclosed the revised version of our previous submission entitled “Dynamics of

China’s Forest Carbon Storage: The First 30 m Annual Aboveground Biomass Mapping from

1985 to 2023” with manuscript number essd-2025-96. We would like to thank you and the

reviewers for the valuable comments which help improving the quality of our manuscript.

In this revision, we have carefully addressed the reviewers’ comments. A summary of main

modifications and a detailed point-by-point response to the comments from Reviewers 1 to 2

(following the reviewers’ order in the decision letter) are given below.

Sincerely,

Yaotong Cai, Peng Zhu, Xing Li, Xiaoping Liu, Yuhe Chen, Qianhui Shen, Xiaocong Xu,

Honghui Zhang, Sheng Nie, Cheng Wang, Jia Wang, Bingjie Li, Changjiang Wu, and Haoming

Zhuang

Note: To enhance the legibility of this response letter, all the editor’s and reviewers’ comments

are typeset in boxes. Rephrased or added sentences are typeset in color. The respective parts in

the manuscript are highlighted to indicate changes.
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Authors’ Response to the Editor

General Comments. There are several products that provide high-resolution biomass

and/or carbon stock information. One unique aspect of this dataset is its long-term

coverage of forest carbon storage. However, based on a preliminary review, the temporal

changes in carbon stock—particularly at fine spatial scales—appear to be relatively unre-

liable. This suggests that while the product may effectively capture spatial distribution,

it is less capable of representing temporal dynamics. Please pay close attention to this

issue.

Response: Thank you for this important comment. We fully agree that pixel-level year-to-

year changes carry higher uncertainty, and we have added a four-tier validation framework to

strengthen the assessment of temporal trends and communicate this limitation more clearly in

the revised manuscript.

1. We aggregated our maps to province level and compared them against independent

National Forest Inventory (NFI) statistics across multiple inventory cycles by converting

timber volume to AGB using published BEF and wood density ranges (see Section 3.2.2

and Fig. 4). We assessed sign agreement, Theil–Sen slope differences and relative annual

growth rates (see Section 3.4).

2. We compared decadal AGBD changes with independent remote-sensing proxies, includ-

ing Gross primary production (GPP) and Vegetation Optical Depth (VOD), as well as

global biomass maps (see Section 3.3, and Section 4.2.3). We used direction-of-change

and regionalized magnitude tests rather than absolute calibration. [NEWLY ADDED]

3. Event-based validation (Before–After–Control–Impact, BACI): We conducted BACI tests

for well-documented disturbances and policies (e.g., large-scale afforestation programs,

and the typical forest degradation example). Our AGBD shows gradual declines in

impacted areas, and enhanced post-policy growth in targeted regions relative to controls

(see Section 3.3). [MODIFIED]

4. Stability/negative tests: Over pseudo-invariant old-growth reserves without recorded

disturbances, interannual variability is low and trends are not significant, suggesting
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minimal spurious drift. Finally, we quantified trend significance using Mann–Kendall

with Theil–Sen slopes, and propagated model uncertainties through quantile regression

to derive per-pixel and provincial confidence intervals (see Section 3.4). [MODIFIED]

5. We updated the Discussion to explicitly caution readers about pixel-scale interpretation

and to declare limitations (see Section 4.2). [MODIFIED]

Across provinces, our product reproduces the direction and relative magnitude of long-term

changes reported by NFI; event-year anomalies are captured at expected timings; and stable

areas remain trend-free within uncertainty bounds. These results support the temporal credibility

of our dataset, while we clearly state limitations on annual absolute accuracy at fine spatial

scales.

We believe these additions can provide both (a) a comprehensive temporal trend assessment

and (b) a clear statement of the limitations.

Where modified in manuscript:

Methods: Page 4, Lines 130–140; Page 7, Lines 195–205. Results: Added a Section for evaluation of estimated AGBD

trend (Pages 15–16, Lines 360-375). Discussion: Pages 29-30, Lines 585–625.
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Authors’ Response to Reviewer 1

General Comments. This study combines multi-source remote sensing data with resid-

ual neural networks (ResNets) to develop the first 30 m resolution annual China Forest

AGB dataset (1985–2023) with uncertainty quantification. It’s a long-term series of AGB

data, which is of great significance for estimating forest carbon sink in China.

Response: We sincerely thank the reviewer for the constructive comments and recognition of

this work. All comments have been thoroughly considered and incorporated into the revised

manuscript through targeted modifications. The corresponding revisions have been clearly

marked for ease of reference.

Comment 1

The first three paragraghs need to be condensed.

Response: We thank the reviewer for this helpful suggestion. We have condensed the first three

paragraphs of the Introduction to improve focus and readability, while retaining the key context.

The redundant background material has been shortened and moved to the Supplementary

Materials where appropriate.

Introduction — Page 1, Lines 33–65 (revised):

Aboveground biomass (AGB) is a critical metric for quantifying carbon stocks in forest ecosystems, representing

approximately 70%–90% of total forest biomass (Cairns et al., 1997). Variations in AGB over time directly shape the

dynamics of the global carbon cycle. Empirical studies estimate that forest AGB accounts for approximately 15% to

30% of the terrestrial carbon pool (Davidson and Janssens, 2006) and has sequestered an estimated 106.9 PgC over the

past three decades, corresponding to roughly 17% of global fossil fuel emissions (Pan et al., 2024). Given its critical

role in the global carbon cycle, AGB has been incorporated into the compliance framework of the Paris Agreement and

recognized as a key monitoring indicator under the United Nations Sustainable Development Goals (SDGs) (Baccini et

al., 2012; Xu et al., 2021).

China ranks fifth globally in total forest area and possesses the largest expanse of planted forests worldwide (FAO, 2020)

(see Text S1 for details on the study area). Since the 1970s, the Chinese government has launched a series of large-scale

forestry initiatives aimed at improving ecological quality and mitigating environmental degradation (Liu et al., 2008;

Lu et al., 2018). These programs have driven extensive afforestation and reforestation, expanding forest cover from
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12.98% in the 1980s to 24.02% in 2021 (Fig. S1) (National Forestry and Grassland Administration, 2019; Cai et al.,

2024). Between 1990 and 2019, the carbon sink capacity of global temperate forests increased by 30.2%, with China’s

reforestation programs contributing substantially to this rise (Pan et al., 2024). Nevertheless, the degree to which these

afforestation initiatives have augmented AGB, especially regarding the spatiotemporal dynamics of carbon accumulation

across China’s forested landscapes, remains inadequately quantified.

Comment 2

Line 90-100, It is best to compare the advantages and disadvantages of the existing

data. eg: Have you compared international time series data, such as the AGB data of the

European Space Agency, etc.

Response: Thank you for this suggestion. We have expanded the introduction to summarize

the main strengths and weaknesses of representative products (ESA CCI, and GEOCAR-

BON/GlobBiomass, GEDI, etc.), focusing on their spatial/temporal coverage, typical input data

(optical, radar, LiDAR-based upscaling), known biases (e.g., optical saturation in high-biomass

regions, coarse-resolution smoothing), and suitability for temporal analysis. A short summary

sentence has been added to the Introduction (Page 4, Line 100–115).

Introduction — Page 4, Lines 100–115 (expanded).

Representative global and China time series AGB products (see Supplement Text S2) exhibit complementary strengths but

also systematic weaknesses that limit their direct applicability for high-fidelity, temporally explicit mapping in China.

For example, coarse global products and compilations (e.g., European Space Agency’s Climate Change Initiative (ESA

CCI) biomass dataset, and GEOCARBON/GlobBiomass) provide extensive spatial coverage and useful baselines but tend

to smooth local detail because of coarse native resolutions and multi-year compositing; some pan-tropical maps also

exhibit systematic positive or negative biases outside the wet tropics (Liu et al., 2015; Santoro et al., 2021). Meanwhile,

emerging spaceborne lidar (e.g., GEDI/other lidar missions) provides higher-quality vertical structure information that

can reduce saturation and structural ambiguity, but footprint sparsity requires careful upscaling to wall-to-wall maps

(Duncanson et al., 2022). In short, available global products trade off spatial detail, temporal continuity, and structural

sensitivity — none simultaneously deliver the high spatial resolution, dense temporal coverage, and unbiased response

across the full biomass gradient that are needed for national-scale, temporally consistent AGB time series in China.
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Comment 3

Why did you choose the ResNet-based deep learning algorithm? You should make it

clear, because this is your core technical approach.

Response: We thank the reviewer for raising this important point. We have added a focused

justification for the choice of ResNet in the Introduction and Section 2.3. Briefly: (1) its residual

connections facilitate stable training and alleviate vanishing gradients when learning complex,

non-linear relationships between multitemporal spectral features and biomass; (2) replacing 2D

layers with 1D counterparts better matches the input structure (per-pixel multitemporal feature

vectors) and reduces parameter count; (3) in our baseline comparisons, ResNet demonstrated

more stable cross-validation performance and superior generalization than Random Forest and

XGBoost (summary of baseline comparisons added to Supplementary Text Table 3); and (4)

by effectively capturing subtle spectral–structural variations in high-biomass regions, ResNet

offers the potential to mitigate spectral saturation effects inherent to single-source optical data.

Introduction — Page 3, Lines 85–95 (brief added sentence).

...... However, a key challenge in predicting AGB from Landsat spectra is spectral saturation, wherein reflectance values

become insensitive to biomass variations beyond certain thresholds, particularly in dense forest conditions (Zhang et

al., 2019). This phenomenon restricts the capacity of traditional regression-based models to accurately capture biomass

dynamics in high-biomass regions. Previous studies indicate that deep learning approaches outperform traditional

machine learning algorithms in terms of cross-validation stability and generalization (Dixon et al., 2025; He et al., 2016;

Huy et al., 2022). In particular, the ResNet architecture—through its residual connections—facilitates the training of

deeper networks and the extraction of complex, non-linear relationships between spectral–structural features and AGB

(He et al., 2016). This capability offers a promising pathway to mitigating the saturation effects inherent to single-source

data.

Methods, Section 2.3.1 — Page 7, Lines 205–225 (expanded).

Figure 1 illustrates the architecture of the ResNet employed for AGBD estimation. Building on the original ResNet

framework (He et al., 2016), all 2D convolutional layers were replaced with 1D counterparts to match the per-pixel

multitemporal spectral feature vectors used as input and to substantially reduce the number of trainable parameters. The

network comprises two residual blocks, each containing a 1D convolutional layer, batch normalization, and a Rectified

Linear Unit (ReLU) activation. Each block incorporates a skip connection that adds the block’s input directly to its output

feature map. This residual connection stabilizes training, alleviates the vanishing gradient problem, and enables the model

to learn complex, non-linear relationships between multitemporal spectral–structural features and biomass. By fusing

shallow and deep feature representations, the residual mechanism also enhances the model’s ability to capture subtle

spectral variations in high-biomass regions, thereby helping to mitigate the saturation effects inherent to single-source
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optical data. Following each residual block, max-pooling layers reduce the dimensionality of intermediate feature maps

by half, decreasing memory consumption, accelerating inference, and gradually enlarging the receptive field so that

deeper layers encode broader contextual information. To further improve generalization, a dropout layer with a rate

of 0.5 is applied before the final fully connected component, which consists of two linear layers separated by a ReLU

activation.

Comment 4

The GEDI AGBD samples are between 2019 to 2021, and field survey data across China

is from the 1990s to the 2010s. How did you deal with the gap in time.

Response: We appreciate this concern. We clarify that GEDI samples (2019–2021) were used

exclusively for model training, while historical ground surveys (1990s–2010s) and provincial

NFIs were used only for independent validation. Therefore, no direct temporal alignment was

required between GEDI footprints and field surveys. We suspect that the reviewer’s question

closely relates to the broader issue of temporal transferability (i.e., applying a model trained

with recent GEDI data to earlier Landsat imagery), which we address in detail in response

to Comment 5. Briefly, we addressed this as follows: (1) spectral harmonization across

Landsat sensors was applied to ensure long-term consistency; (2) each GEDI footprint was

aligned to Landsat observations by matching the GEDI acquisition date to the corresponding

Landsat annual composite (i.e., the Landsat mosaic nearest in time), so the ResNet learns the

spectral–AGB relationship at specific acquisition times; (3) we assume that the spectral–AGB

relationship generalizes backward in time when applied to earlier Landsat imagery; (4) to test

this, we performed independent validation against historical ground plots (1978–2008) and

provincial NFI-derived AGC.
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Comment 5

Given that GEDI data has only been available since 2019, how to ensure the model’s

predictive ability for the early years (1985-2018) requires a more detailed explanation.

Response: Thank you for this suggestion. We expanded the Methods and Results to explain why

the ResNet model trained on 2019–2021 GEDI samples can be applied to earlier years and how

we validated this application. First, this approach follows a space-for-time substitution rationale:

GEDI footprints sample a wide range of forest types, ages, and biomass conditions across

China, allowing the model to learn spectral–biomass relationships that generalize temporally.

Second, all Landsat inputs were cross-sensor harmonized to ensure spectral consistency over

time, reducing spurious temporal trends due to sensor differences ([Revision] see Methods 2.1.1,

Page 5, Lines 140–142). Third, the model leverages not only contemporaneous spectral inputs

but also ancillary predictors (climate variables, DEM-derived topography, latitude/longitude,

and annual tree cover from CATCD), which stabilize predictions over time. Finally, we

evaluated temporal transfer explicitly through independent validation against historical ground

plots (1978–2008) and provincial NFI trends. These results (R², RMSE, and bias by ecoregion)

confirm that the model reproduces plausible historical dynamics (see Results and Page 14,

Lines 330–335). As a precaution, we also expanded the Discussion to note limitations and

best-use recommendations (see Page 29, Lines 585–625).

Comment 6

Spatial pattern of forest AGB: Figure 6 shows the spatial pattern of AGB in 2023, but

it lacks corresponding diagrams for earlier years (such as 1985), making it difficult to

visually compare the changes. It is suggested to supplement the AGB distribution map

of key years.

Response: Thank you for this helpful suggestion. We have updated Figure 6 (see Page 20,

Figure 9) to include additional panels for earlier benchmark years (1985, 2000 and 2015) to
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allow direct visual comparison of spatial AGB patterns across time. Due to space constraints

the full annual series is provided in the Supplement (Supplementary Fig. S5). The Figure 6

(Figure 9 in revised manuscript) caption and corresponding paragraph in Section 3.3 (Section

3.4 in revised manuscript) have been updated to reference these additions.

Comment 7

Trends in AGBD/AGC: Critique the reported increase in AGBD (95.74 to 122.69 Mg/ha)

and AGC stock (5.50 to 13.97 PgC). Are these trends plausible given China’s afforestation

efforts?

Response: We appreciate the reviewer’s request for critical evaluation. The observed increase

in mean AGBD and AGC is consistent with China’s large-scale afforestation and forest rehabil-

itation programs since the 1980s and especially since the late 1990s (e.g., Grain-for-Green).

Our analysis partitions the total AGC increase into forest growth (internal stand accretion) and

forest expansion (area increase), and independent comparisons with provincial NFI totals and

several external products show broadly consistent upward trends (see Fig. 4 and Fig. 16). Our

findings are also consistent with previous studies, confirming that China’s forests have served

as a significant carbon sink over the past few decades (see Supplementary Text S4).

At the same time, we acknowledge potential sources of systematic uncertainty that may

affect the magnitude: (1) optical indices tend to saturate in very high-biomass forests which

may bias estimates low in tropical/rainforest regions; (2) forest definition (we used 20%

tree-cover threshold) influences total forested area and thus AGC; (3) the biomass-to-carbon

conversion factor (0.5) is a simplification that ignores species- and region-specific wood carbon

fractions. We have expanded the Discussion to explicitly discuss these caveats and their

potential quantitative effects (see Discussion, Page 29, Lines 585–625).
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Comment 8

Drivers of Change: Evaluate the partitioning of AGC growth (65.1% forest growth vs.

34.9% expansion). Are these proportions supported by ancillary data (e.g., land-use

maps)?

Response: Yes, our partitioning is supported by the China Annual Tree Cover Dataset (CATCD),

which indicates that between 1985 and 2023, 67% of forest increase was due to canopy closure

(growth) and 33% to expansion, closely matching our AGC partitioning. By contrast, the LULC

dataset is binary and cannot separate these two processes.

Comment 9

You compared trends of different datasets, your data has a long time series, is there more

accurate for every year? I think you’d better use field data to verify.

Response: Thank you for this valuable suggestion. To address the your concern and despite the

absence of China-wide permanent biomass plots with annual revisits, we have added a four-tier

validation framework to strengthen the assessment of temporal trends in the revised manuscript.

1. We aggregated our maps to province level and compared them against independent

National Forest Inventory (NFI) statistics across multiple inventory cycles by converting

timber volume to AGB using published BEF and wood density ranges (see Section 3.2.2

and Fig. 4). We assessed sign agreement, Theil–Sen slope differences and relative annual

growth rates (see Section 3.4).

2. We compared decadal AGBD changes with independent remote-sensing proxies, includ-

ing Gross primary production (GPP) and Vegetation Optical Depth (VOD), as well as

global biomass maps (see Section 3.3, and Section 4.2.3). We used direction-of-change

and regionalized magnitude tests rather than absolute calibration. [NEWLY ADDED]

3. Event-based validation (Before–After–Control–Impact, BACI): We conducted BACI tests

for well-documented disturbances and policies (e.g., the 2008 southern China ice storm,
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major typhoon landfalls, and large-scale afforestation programs). Our AGBD shows

immediate declines and gradual recovery in impacted areas, and enhanced post-policy

growth in targeted regions relative to controls (see Section 3.3.2). [MODIFIED]

4. Stability/negative tests: Over pseudo-invariant old-growth reserves without recorded

disturbances, interannual variability is low and trends are not significant, suggesting

minimal spurious drift. Finally, we quantified trend significance using Mann–Kendall

with Theil–Sen slopes, and propagated model uncertainties through quantile regression

to derive per-pixel and provincial confidence intervals (see Section 3.4).

Across provinces, our product reproduces the direction and relative magnitude of long-term

changes reported by NFI; event-year anomalies are captured at expected timings; and stable

areas remain trend-free within uncertainty bounds. These results support the temporal credibility

of our dataset, while we clearly state limitations on annual absolute accuracy at fine spatial

scales.

Where modified in manuscript:

Methods: Page 4, Lines 130–140; Page 7, Lines 195–205. Results: Added a Section for evaluation of estimated AGBD

trend (Pages 15–16, Lines 360-375). Discussion: Pages 29-30, Lines 585–625.

Comment 10

Although the comparison with GEDI data showed a smaller deviation (0.06 Mg/ha), the

comparison with ground survey data showed a larger negative deviation (-19.87 Mg/ha),

especially in the tropical rainforest area (-68.57 Mg/ha). This systematic deviation

requires more in-depth analysis and discussion.

Response: We thank the reviewer for highlighting this important point. We conducted an

in-depth residual analysis and found several factors contributing to the larger negative bias

against historical ground surveys, particularly in tropical rainforests: (1) scale mismatch,

as field plots often exceed the 30 m pixel footprint and thus differ in representativeness; (2)

spectral saturation in dense canopies, which reduces sensitivity of optical predictors at very high
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AGBD and high tree cover; (3) potential transferability limitations of the GEDI AGBD product

in certain tropical regions; and (4) differences in allometric models or biomass estimation

protocols used in historical surveys. To illustrate these issues, we examined residual patterns

against observed AGB, tree cover, and slope (Fig. 5), and we expanded the Discussion (Page

28, Lines 585–625) to further analyze the causes and outline recommendations for future

improvement.

Results: detailed residual diagnostics — Page 14, Lines 340–355.

The comparison between our AGBD estimates and historical ground surveys (Fig. 3) indicates a systematic underestima-

tion in some regions, as reflected by regression slopes lower than one and a negative mean bias. Additional diagnostics

(Supplementary Table S3) show that this bias increases with observed biomass density, implying greater underestimation

in high-biomass plots. This pattern is consistent with the well-known spectral saturation effect, whereby optical indices

lose sensitivity in dense canopies, as well as with potential scale and methodological mismatches between satellite-based

estimates and historical field plots.

The residual analysis stratified by geographic location, tree cover, and terrain further underscores these tendencies (Fig.

5). Residuals are wider in low latitude (<25°N) and high latitude (>40°N) regions compared to mid-latitudes. As slope

and tree cover increase, residual spread also broadens, indicating that predictions tend to be less accurate in steep

or densely forested areas. By contrast, no significant biases were observed across longitudes, aspects, or elevations,

suggesting that errors are more strongly associated with biomass density and slope rather than with all terrain factors.

These findings highlight slope- and biomass-related challenges that should be addressed in future AGBD mapping efforts.

Discussion: extended analysis and recommendations — Page 28, Lines 585–625.

Current AGBD maps often overestimate low values and underestimate high values—a persistent pattern well documented

in previous studies (Réjou-Méchain et al., 2019; Rodríguez-Veiga et al., 2019). These discrepancies are largely driven

by sensor limitations, such as the saturation of optical and radar signals in high-biomass forests, leading to systematic

underestimation in dense tropical or subtropical stands. The overestimation of low AGBD is more complex, often arising

from regression models fitted to limited or non-representative plot data. Additional systematic biases can result from

measurement errors, incorrect allometric models, and environmental factors (e.g., precipitation, snow cover) that influence

remote sensing signals (Santoro et al., 2021). Furthermore, mismatches between the spatial resolution of remote sensing

data and the size or geolocation accuracy of field plots can distort pixel-level estimates, underscoring the need for

improved plot–pixel matching and more representative field measurements.

Against this backdrop, our estimates indicate a substantial increase in mean forest AGBD from 95.74 to 122.69 Mg ha-1

and in total AGC stock from 5.50 to 13.97 PgC over the study period. These upward trends are broadly consistent with the

scale and trajectory of China’s large-scale afforestation and forest rehabilitation programmes since the 1980s—especially

post-1999 initiatives such as the Grain-for-Green Program—which have simultaneously expanded forest area and

increased stand biomass through natural growth and management. Independent comparisons with provincial NFI

statistics and several external products show similar upward trajectories (see Figs. 4 and 15), lending confidence to the

observed direction of change. Nevertheless, we acknowledge several sources of systematic uncertainty that could affect

the magnitude of these increases. First, optical indices tend to saturate in very high-biomass forests, potentially biasing
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estimates downward in tropical and old-growth stands. Second, our definition of forest (≥ 20 % tree-cover threshold)

directly influences the mapped forest extent and thus the total AGC stock; a higher threshold would yield lower total area

and carbon estimates (see supplementary Text S5). Third, the use of a fixed biomass-to-carbon conversion factor (0.5)

ignores species- and region-specific variation in carbon content, which may introduce bias in regional and national totals.

Finally, the GEDI footprint AGBD dataset, which informs part of our modelling framework, lacks direct training data

from China and neighbouring countries such as Russia (Duncanson et al., 2022). Although the Level 4A algorithm is

designed for geographic transferability (Kellner et al., 2023), the absence of local calibration data may still introduce

uncertainty in parts of China.

While deep learning approaches have been employed here to reduce spectral saturation effects and improve estimation

accuracy, further advances are possible. Integrating multi-source remote sensing data (optical, radar, LiDAR) can

better capture forest structural complexity and mitigate the limitations of individual sensors (see supplementary Text S6).

Developing region- and forest-type-specific allometric models will further refine biomass estimation in heterogeneous

landscapes. Expanding calibration and validation with more extensive and diverse ground data, particularly from

underrepresented regions, will improve both accuracy and transferability. Incorporating time-series data into modelling

frameworks can also help distinguish between short-term fluctuations and long-term growth trends (Araza et al., 2022;

Duncanson et al., 2019).

To guide proper use of these maps, we note several best-use recommendations: the products are most reliable at regional

to national scales rather than for individual plots; caution is warranted when interpreting high-biomass tropical or

subtropical forests due to potential saturation; and users should consider forest definition thresholds and local conversion

factors when estimating carbon stocks. Where possible, independent validation with local field data is recommended

before applying these maps for management or policy decisions. Finally, continued development of deep learning models

and integration of multi-source data are likely to further enhance both the accuracy and applicability of future AGBD

products.

Comment 11

Although the paper discusses the influence of different canopy coverage thresholds

on AGB estimation in lines 547-555, it does not quantitatively explain the degree of

influence of using different thresholds (such as 10% vs. 20%) on the main conclusions

of this study. It is suggested to add sensitivity analysis.

Response: We appreciate this suggestion. We performed a sensitivity analysis using tree-cover

thresholds of 10%, 20% (main text), and 30%. The results are summarized in Supplementary

Text S5 and briefly discussed in the Discussion section (Page 28, Line 585-625). As expected,

absolute AGC totals vary with the chosen threshold, but the relative temporal trends (overall
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increase in mean AGBD and a net national AGC sink) remain consistent across thresholds.

At lower thresholds (10% and 20%), forest growth accounts for the majority of AGC gains

(80.81% and 65.06%, respectively), whereas at a higher threshold (30%), forest expansion

slightly exceeds growth (52.79% vs. 47.21%). Quantitative differences in national AGC

and the contributions of each change mode are reported in Supplementary Text Table 5 for

transparency.

Where modified in manuscript:

Supplementary materials: Text S5 [NEWLY ADDED]; Discussion: Pages 29-30, Lines 585–625 [MODIFIED].
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Authors’ Response to Reviewer 2

General Comments. This manuscript generated a long-term 30 m Annual Aboveground

Biomass data from 1985 to 2023 in China. They mainly used a residual neural networks

(ResNets) together with the GEDI footprint AGBD and Landsat images to generate the

AGBD map. The manuscript is generally well-written. I have several suggestions listed

below, which I think may be helpful for revising the manuscript.

Response: We sincerely thank the reviewer for the positive evaluation of our work and for

recognizing the contribution of our study. We also greatly appreciate the constructive sug-

gestions provided, which help us further improve the clarity, rigor, and completeness of the

manuscript. Detailed, point-by-point responses to each suggestion are provided below, along

with the corresponding revisions made in the manuscript.

Comment 1

Does the observations from Landsat suffers from the sensor degradation effect? Since

they are merged by different sensors, it may have some impacts on the long-term trend

of Landsat data, which can finally propagate to the AGBD map.

Response: We fully agree with the reviewer’s observation. To address this, we used Landsat

Collection 2 Level-2 Tier-1 surface reflectance products, which include sensor-specific radio-

metric calibration and atmospheric correction. These data are continuously recalibrated by the

USGS to compensate for performance degradation due to mechanical, electronic, or ultraviolet

effects, thereby maintaining the geometric, radiometric, spatial, and spectral standards of the

archive. Annual mediod composites were generated with rigorous QA filtering to minimize

sensor noise, cloud contamination, and other artefacts. To harmonize reflectance from different

Landsat sensors, we followed the spectral harmonization procedure described by Roy et al.

(2016), reducing potential long-term trend biases attributable to sensor transitions. Collectively,
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these pre-processingg steps minimize the likelihood of consistent long-term bias in our AGBD

time series, as detailed in the revised Methods section (Page 5, Line 130–140).

Methods — Page 5, Lines 130–140 (Landsat processing and harmonization described).

This study utilized Landsat satellite imagery from the Google Earth Engine (GEE) platform, covering the period from

1985 to 2023. The dataset includes images from Landsat 4/5 Thematic Mapper (TM), Landsat 8/9 Operational Land

Imager (OLI), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) prior to 2003. Due to the Scan Line Corrector

(SLC)-off failure in mid-2003, post-2003 Landsat 7 data were excluded from the analysis, except for 2012 when no

other Landsat sensors provided coverage. All imagery was obtained from the Landsat Collection 2, Level-2, Tier-1

surface reflectance products at 30 m spatial resolution, which have undergone sensor-specific radiometric calibration,

atmospheric correction, and orthorectification (Wulder et al., 2022).

To ensure temporal consistency, we first selected images acquired during the main growing season (Day of Year 150–300)

and applied the cross-sensor spectral harmonization procedure described by Roy et al. (2016) to align the spectral

responses of TM, ETM+, and OLI bands. Subsequently, annual medoid composites were generated for each year

using QA band filtering (Zhu et al., 2015) to remove cloud, shadow, and snow contamination. Remaining gaps in the

annual composites were filled using linear interpolation or extrapolation along the temporal dimension. Each composite

contained three visible bands (red, green, blue), one near-infrared (NIR) band, and two shortwave infrared (SWIR) bands

(Table 1), which served as input features for subsequent modelling. A more detailed description of the processing workflow

can be found in Cai et al. (2025).

Comment 2

How do you consider the risk of overfitting of your model? And the multicollinearity

issue among the predictors you choose?

Response: Thank you for these questions. To mitigate overfitting, we employed recursive

feature elimination (RFE) with 5-fold cross-validation to select a compact predictor set (final

17 variables), applied dropout (rate = 0.5) during ResNet training, and evaluated generalization

on a withheld test set comprising 20% of the GEDI samples (see Section 2.4.1, Page 7, Lines

209–213). Model performance on GEDI AGBD samples in both the training and testing sets

indicated no significant signs of overfitting (see Table 1).

Regarding multicollinearity, the RFE procedure inherently reduces redundancy by removing

highly correlated predictors. Moreover, deep learning models are generally robust to multi-
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collinearity because they learn hierarchical, non-linear representations of the input space rather

than relying solely on mutually independent features [1], [2].

[1] R. D. De Veaux and L. H. Ungar, “Multicollinearity: A tale of two nonparametric regres-

sions,” in Selecting Models from Data, P. Cheeseman and R. W. Oldford, Eds., New York,

NY: Springer New York, 1994, pp. 393–402.

[2] A. Hamedianfar, C. Mohamedou, A. Kangas, and J. Vauhkonen, “Deep learning for forest

inventory and planning: A critical review on the remote sensing approaches so far and

prospects for further applications,” Forestry: An International Journal of Forest Research,

vol. 95, no. 4, pp. 451–465, Feb. 2022. DOI: 10.1093/forestry/cpac002. eprint:

https://academic.oup.com/forestry/article-pdf/95/4/451/

45293980/cpac002.pdf.

Comment 3

How do you validate the long-term trend of AGBD you generated? Since it is the key

novelty aspect of this study.

Response: Thank you for this question. We implemented a four-tier validation framework to

evaluate the credibility of interannual and multi-decadal AGBD changes.

1. We aggregated our maps to province level and compared them against independent

National Forest Inventory (NFI) statistics across multiple inventory cycles by converting

timber volume to AGB using published BEF and wood density ranges (see Section 3.2.2

and Fig. 4). We assessed sign agreement, Theil–Sen slope differences and relative annual

growth rates (see Section 3.4).

2. We compared decadal AGBD changes with independent remote-sensing proxies, includ-

ing Gross primary production (GPP) and Vegetation Optical Depth (VOD), as well as

global biomass maps (see Section 3.3, and Section 4.2.3). We used direction-of-change

and regionalized magnitude tests rather than absolute calibration. [NEWLY ADDED]
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3. Event-based validation (Before–After–Control–Impact, BACI): We conducted BACI tests

for well-documented disturbances and policies (e.g., the 2008 southern China ice storm,

major typhoon landfalls, and large-scale afforestation programs). Our AGBD shows

immediate declines and gradual recovery in impacted areas, and enhanced post-policy

growth in targeted regions relative to controls (see Section 3.3.2). [MODIFIED]

4. Stability/negative tests: Over pseudo-invariant old-growth reserves without recorded

disturbances, interannual variability is low and trends are not significant, suggesting

minimal spurious drift. Finally, we quantified trend significance using Mann–Kendall

with Theil–Sen slopes, and propagated model uncertainties through quantile regression

to derive per-pixel and provincial confidence intervals (see Section 3.4).

Across provinces, our product reproduces the direction and relative magnitude of long-term

changes reported by NFI; event-year anomalies are captured at expected timings; and stable

areas remain trend-free within uncertainty bounds. These results support the temporal credibility

of our dataset, while we clearly state limitations on annual absolute accuracy at fine spatial

scales.

Where modified in manuscript:

Methods: Page 4, Lines 130–140; Page 7, Lines 195–205. Results: Added a Section for evaluation of estimated AGBD

trend (Pages 15–16, Lines 360-375). Discussion: Pages 29-30, Lines 585–625.

Comment 4

Figure 3: from this figure, it suggests that your AGBD map is systematically lower than

the observed value, right? Since the slope is lower than one, and with a negative bias

value. Please explain this point.

Response: Yes, as the reviewer correctly noted, Figure 3 shows a negative bias and slopes

< 1 in some ecoregions. We conducted additional diagnostics (Supplementary Text Table 6),

which confirm that the bias increases with observed biomass, i.e., underestimation is greater

in high-biomass plots. This pattern is attributable to spectral saturation in dense canopies and
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potential scale/method mismatches between satellite estimates and historical plot inventories.

We have expanded the Results (Section 3.2.3, Page 14, Lines 340–350) to explicitly interpret

these patterns and added a discussion of potential corrections (Page 30, Lines 610–615), such

as incorporating SAR or airborne LiDAR to improve accuracy in high-biomass regions.

Where modified in manuscript:

Results: Section 3.2.3, Page 14, Lines 340–350 (Expanded). Discussion: Page 30, Lines 610–615 (Expanded).

Comment 5

Figure 8: how do you validate that the temporal trend in AGBD you generated is correct

or not? Could you find some ground observations to validate this?

Response: We appreciate this valuable comment. We kindly refer to our detailed response to

Comment 3, where we have explained the validation strategy and supporting evidence.

Comment 6

Figure 9: how do you separate the AGBD trend into forest expansion and forest growth?

Please added some detailed process of how you did this.

Response: We thank the reviewer for this important question. We would like to clarify that

our attribution analysis was conducted on AGC changes between 1985 and 2023, not directly

on AGBD. We suspect that the reviewer may have intended to refer to AGC attribution rather

than AGBD. The detailed procedure is now explicitly described in Methods 2.8 (Page 10,

Lines 270-290). In brief: (1) land-cover transitions were classified using CATCD with a

20% tree-cover threshold; (2) per-pixel AGC change (△AGC) was computed between 1985

and 2023; (3) △AGC in persistent-forest pixels was attributed to forest growth (positive) or

tree cover loss (negative); (4) △AGC in pixels transitioning from non-forest to forest was
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attributed to forest expansion; and (5) △AGC in pixels transitioning from forest to non-forest

was attributed to forest loss.

Where modified in manuscript:

Methods: Page 10, Lines 270–290 (EXPANDED).

Comment 7

Figure 15: we can find a large difference (even two-three times larger) between your

map with Hengeveld, CCI and Chen’s maps. Could you explain the underlying reason?

Response: Thank you for pointing this out. We have expanded the Discussion around Fig. 16

to explain the underlying reasons for the discrepancies. Specifically, we now clarify that the

differences mainly stem from: (1) spatial resolution (global products at ≥1 km smooth local

dynamics, whereas our 30 m dataset captures finer variations); (2) varying forest definitions

and masks, which alter the mapped forest extent; (3) differences in input datasets and modeling

methods (e.g., radar/LiDAR upscaling vs. optical-statistical approaches) that respond differently

to canopy structure; and (4) temporal mismatches in training and reference samples. Importantly,

many existing global AGB datasets rely on coarse LULC or forest maps that cannot capture

China’s large-scale afforestation programs, leading to systematic underestimation of forest

gains. We also added subregional examples (Fig. 15) to illustrate how each factor contributes

to divergence. These clarifications have been incorporated into the revised Discussion (Page

28, Lines 560–585 and Supplementary Text S4).

Section 4.1.2 — Page 28, Lines 560–585 (expanded discussion).

Our AGBD dataset reveals a consistent upward trend from 1985 to 2023, highlighting the steady recovery and effective

management of China’s forests (Fig. 15). This trajectory is broadly in line with national afforestation and conservation

programs, and provides a robust depiction of long-term carbon stock dynamics (Zeng et al., 2023). To benchmark our

results, we compared them with four independent AGB time-series datasets (see Text S2).

The comparison highlights substantial differences in both magnitude and temporal pattern. For instance, the Hengeveld

dataset (Hengeveld et al., 2015) exhibits pronounced fluctuations, including a decline during the late 1990s and early

2000s, while the ESA CCI product shows a general decrease in the 2010s. Chen et al. (2023) also report consistently
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lower AGBD values than our estimates. These discrepancies arise from several key factors: (1) spatial resolution—most

global products are provided at ≥1 km resolution, which smooths local heterogeneity and suppresses extremes captured

by our 30 m dataset; (2) forest definition and masking—different tree-cover thresholds (e.g., Chen et al., (2023) use >15%

canopy cover) alter the mapped forest extent and introduce mixed pixels, leading to lower mean AGBD. Notably, when

Chen’s product is aggregated with the 1 km forest cover map used by Hu et al. (2016), its average AGBD increases

substantially, ranging from 68.94 Mg ha−1 in 2002 to 75.58 Mg ha−1 in 2021, underscoring the strong dependence of

biomass estimates on forest masks. (3) input data and modeling approaches—radar- or lidar-upscaled products differ

in their sensitivity to canopy structure compared with optical or inventory-driven models; (4) many existing datasets

rely on coarse LULC or forest masks that cannot effectively capture China’s large-scale afforestation efforts, thereby

underestimating biomass gains; and (5) temporal coverage and reference data—the calibration periods and reference

samples vary among products, creating temporal mismatches in trend estimation (Quegan et al., 2019; Santoro et al.,

2021).

Despite these differences, our dataset shows stronger agreement with independent evidence from national forest inventory

statistics and regional studies (Fang et al., 2001; Liu et al., 2015; Piao et al., 2005; Zeng et al., 2023), all of which

support a long-term upward trajectory of China’s forest biomass. This comparison further underscores the value of

high-resolution, long-term mapping for capturing heterogeneous forest dynamics in China.
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