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Abstract. Solar-induced chlorophyll fluorescence (SIF) is a crucial proxy of photosynthetic processes in vegetation. In recent 

decades, advancements in remote sensing technology have facilitated long-term global SIF monitoring, significantly enhancing 

our understanding of vegetation dynamics on a global scale. Despite this progress, current SIF datasets face major challenges, 10 

including temporal inconsistencies among various satellite-derived products and a lack of long-term, high-resolution 

observations. In this study, we developed a “Long-term Harmonized SIF” (LHSIF) dataset spanning 1995 to 2023 with a fine 

spatial resolution of 0.05° by coordinating SIF satellite observations from GOME, SCIAMACHY, GOME-2, and OCO-2. 

Light use efficiency (LUE)-based spatial downscaling models were employed for each SIF product to generate fine-resolution 

global SIF maps. The long-term dataset was constructed using temporally corrected GOME-2A SIF (TCSIF) as a benchmark 15 

and was combined with a moment-matching normalization method for far-red SIF harmonization across satellite sensors from 

GOME, SCIAMACHY, and OCO-2. The resulting harmonization dataset exhibits a 45% reduction in overall error and a stable 

interannual increase (0.42 ± 0.13% yr⁻¹) compared with a fluctuating decline (−0.57 ± 0.27% yr⁻¹) of the original observations. 

This result strongly aligns with the growth rate of gross primary production (GPP, 0.47 ± 0.03% yr-1) and is consistent with 

ground-based SIF observations (R > 0.60). Therefore, the long-term harmonized SIF dataset with a fine 0.05° resolution is a 20 

valuable tool for estimating global photosynthesis over extended periods. The LHSIF dataset is available at 

https://doi.org/10.5281/zenodo.14854185(Zou et al., 2025). 

Keywords: Solar-induced chlorophyll fluorescence; Multi-satellite harmonization; Spatial downscaling 

1 Introduction 

Solar-induced chlorophyll fluorescence (SIF) is an optical signal naturally released by plants, closely linked to their 25 

photosynthetic dynamics(Damm et al., 2015; Mohammed et al., 2019; Porcar-Castell et al., 2014; Rascher et al., 2015; Zhang 

et al., 2016; Zhang and Peñuelas, 2023; Zhu et al., 2024). SIF has garnered significant attention due to its potential as a novel 

proxy for gross primary productivity (GPP) (Ryu et al., 2019), bridging the gap in our understanding of global photosynthetic 

processes (Beer et al., 2010; Anav et al., 2015; Chen et al., 2024). 
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 30 

Field-based studies have demonstrated strong correlations between SIF and GPP, highlighting its viability for large-scale 

ecosystem monitoring (Cui et al., 2017; Rossini et al., 2010). Following the publication of the initial global SIF map from the 

Greenhouse Gases Observing Satellite (GOSAT), interest in the SIF-GPP association greatly increased (Frankenberg et al., 

2011; Guanter et al., 2012; Joiner et al., 2011). Subsequent satellite-based analyses have consistently revealed strong spatial 

and temporal correlations between SIF and GPP, showcasing remarkable alignment between SIF and GPP in terms of spatial 35 

distribution and seasonal variability (Anav et al., 2015; Li et al., 2018; Verma et al., 2017; Yang et al., 2015; Guanter et al., 

2014; Zheng et al., 2024). 

 

Studies conducted in diverse ecosystems, including needleleaf-dominated woodlands across the western United States 

(Zuromski et al., 2018) and arid landscapes of southwestern North America (Smith et al., 2018) have shown that SIF provides 40 

a superior approach compared to conventional vegetation indices, such as Enhanced Vegetation Index (EVI) and 

Photochemical Reflectance Index (PRI), in detecting interannual variations in GPP. Further, SIF has managed to capture subtle 

forest disturbances undetectable by traditional satellite products. However, these results are based on coarse-resolution SIF 

datasets from the Global Ozone Monitoring Experiment (GOME)-2, leading to inaccuracies related to spatial scale mismatch. 

Additionally, the SIF-GPP link is dependent on vegetation type, emphasizing the critical need for SIF datasets with higher 45 

spatial resolution to comprehensively evaluate the SIF-GPP interaction.  

 

Long-term global SIF observations are important for analyzing the vegetation functions and changes under different climatic 

conditions. Multiple high-spectral-resolution satellite missions have provided publicly available global SIF products since 

1995. The earliest records originated from the GOME sensor on European Remote sensing Satellite (ERS) in 1995, followed 50 

by the the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) onboard 

Environmental Satellite (EnviSat) in 2003. However, these sensors had relatively short operational lifespans, ceasing 

operations in 2003 and 2012, respectively. The GOME-2 sensor onboard the MetOp-A satellite, launched in January 2007, 

operated until November 2021; this sensor provided the longest SIF time series to date (Joiner et al., 2013). The Orbiting 

Carbon Observatory(OCO)-2 satellite, launched in 2014, features exceptionally high spatial resolution and has been validated 55 

through synchronized airborne campaigns (Sun et al., 2017) to ensure the reliability of resulting SIF products. Recent studies 

highlight the potential of the TROPOMI sensor onboard Sentinel-5P (Koren et al., 2018; Wen et al., 2020), but its SIF products 

are currently constrained to a relatively short time series (May 2018 to April 2021). 

 

Despite the availability of multiple satellite SIF products, most have a temporal coverage shorter than 10 years. While the 60 
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GOME-2 dataset provides the longest observational record to date, it is impacted by sensor degradation, leading to significant 

uncertainties in photosynthesis analyses based on GOME-2A SIF products (Parazoo et al., 2019). Yang et al. (2018) reported 

a rising trend in EVI alongside a declining trend in SIF, which they attributed to a reduction in ecosystem photosynthesis. 

However, Zhang et al. (2018a) argued that this conclusion was impacted by the deterioration of the GOME-2A instrument 

itself. Further research by Koren et al. (2018) confirmed that the decline in SIF persisted even after correcting for sensor 65 

degradation (Koren et al., 2018). The SIFTERv2 product (Van Schaik et al., 2020) employed in Koren’s study was simply 

corrected using linear models; the reliability of SIFTERv2 decreased significantly after 2016, limiting its application for long-

term trend analysis. 

 

Wang et al. (2022) attempted to create a temporally corrected long-term SIF product (LT_SIFc*) by correcting the degradation 70 

trends in gridded GOME, SCIAMACHY, and GOME-2 SIF products. However, the nonlinear characteristics inherent in the 

retrieval methodology and subsequent processing procedures (e.g., zero-bias correction and quality filtering) presented a 

challenge. The bias in sensor observations was not linearly transferred to the SIF product. This approach risks introducing 

inaccuracies, because the trend corrected in the SIF product may not correspond to the true sensor degradation. Recently, the 

temporally corrected GOME-2A SIF dataset (TCSIF) included a calibration of the radiance measurements of GOME-2A using 75 

a pseudo-invariant method (Zou et al., 2024). This correction effectively eliminates the influence of sensor degradation over 

time, providing a robust benchmark for generating long-term harmonized SIF products. 

 

In addition, large discrepancies have been observed between different SIF products (Parazoo et al., 2019). These temporal 

inconsistencies may arise from differences in retrieval algorithms, absolute radiometric calibration errors, instrumental artifacts, 80 

directional effects, and differences in satellite overpass times and footprint sizes (Zhang et al., 2018c; Bacour et al., 2019). To 

address these challenges, researchers have used normalization methods based on observations during the overlapping period, 

such as cumulative distribution function (CDF), to align data between sensors. Wen et al. (2020) harmonized SCIAMACHY 

and GOME-2 data, creating a harmonized SIF dataset spanning 2002–2018. Wang et al. (2022) extended the time series to 

1995 by incorporating the GOME SIF dataset.  85 

 

A precise, reliable, harmonized, and global high-resolution SIF dataset is not yet available for long-term vegetation monitoring. 

Here, we employed a straightforward approach using a moment-matching method to normalize the SIF datasets from various 

satellites. The observational discrepancies were normalized using correction coefficients based on the mean and standard 

deviation of the common time series of the datasets. SIF datasets obtained from GOME, SCIAMACHY, GOME-2, and OCO-90 

2 instruments were synthesized to generate a comprehensive SIF dataset that spans 1995 to the present. Compared to previous 
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studies, we used a GOME-2 dataset with rigorous sensor degradation correction as the benchmark. The result is the longest 

multi-satellite harmonized SIF dataset to date (1995–2023). Additionally, we performed light use efficiency (LUE)-based 

spatial downscaling on the coarse spatial resolution dataset derived from the satellite SIF products. This downscaling reduced 

the spatial difference between satellite-derived SIF and ground-based measurements of SIF and GPP, thereby facilitating our 95 

understanding of vegetation photosynthesis at the global scale. 

2 Method and materials 

2.1 Satellite-based SIF datasets 

2.1.1 GOME SIF 

GOME, which was launched in 1995 on the ERS-2 satellite of the European Space Agency (ESA), was initially developed to 100 

measure the column densities of ozone and nitrogen dioxide (Hahne et al., 1993). GOME’s channel 4 operates within a spectral 

range of 590–790 nm, achieving a spectral resolution of about 0.5 nm for far-red SIF retrieval. Although GOME is 

characterized by a relatively low spatial resolution of 320 km × 40 km, it provides the earliest available record of SIF data. 

The GOME SIF product utilized in this research is the daily averaged SIF signal at 740 nm, which is retrieved by data-driven 

algorithms (Joiner et al., 2019). The dataset spans the period from July 1995 to June 2003. 105 

2.1.2 SCIAMACHY SIF 

The SCIAMACHY instrument was in operation from 2002 to 2012 onboard ESA’s Envisat satellite, overlapping with the 

timeframe of GOME. The instrument enhanced GOME’s capabilities by offering a finer spatial resolution of 30 km × 60 km. 

The comparable spectral ranges and spectral resolutions of SCIAMACHY and GOME allowed for the use of analogous 

techniques for SIF retrievals. The SCIAMACHY SIF products we used were retrieved using the same data-driven algorithms 110 

and fitting window (734–758 nm) as those used for GOME. Daily SCIAMACHY SIF datasets at 740 nm from January 2003 

to April 2012 were employed (Joiner et al., 2021). 

2.1.3 GOME-2A SIF 

As a successor to GOME, GOME-2 is part of EUMETSAT’s MetOp satellite series, with three satellites (MetOp-A, B, and C) 

launched between 2007 and 2018. GOME-2 improved upon its predecessor by providing enhanced spatial resolution (40 km 115 

× 40 km or 80 km × 40 km, contingent upon the specific platform utilized). The GOME-2A SIF datasets were obtained from 

the MetOp-A satellite, launched in 2007 and operating until 2021.  

 

Research has shown apparent differences between GOME-2A SIF products using different retrieval methods (Parazoo et al., 
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2019). For instance, SIF retrieval using a fitting window of 720–758 nm and a backward elimination algorithm (Köhler et al., 120 

2015) yields values up to twice as large as the retrievals using a 734–758 nm window (Joiner et al., 2013). The GOME-2A SIF 

dataset used in this study was retrieved using the same data-driven algorithm and fitting window as Joiner et al. (2013), 

ensuring consistency with GOME and SCIAMACHY SIF. Furthermore, the GOME-2 SIF we use has undergone correction 

for sensor degradation and was found to avoid spurious trends caused by instrument deterioration (Zou et al., 2024). Therefore, 

this temporal-corrected GOME-2A SIF dataset with degradation correction is used as a benchmark to harmonize the data from 125 

the other three sensors.  

2.1.4 OCO-2 SIF 

OCO-2 was a satellite mission launched by the National Aeronautics and Space Administration in 2014. Unlike earlier missions, 

OCO-2 focuses on small target areas, attaining a considerably greater spatial resolution of approximately 1.3 km × 2.3 km. 

The spectral range of OCO-2 extends from 757 to 775 nm, facilitating the initial SIF retrievals at 757 nm and 771 nm. Drawing 130 

upon the empirical correlation of SIF across various wavelengths, the product offers daily global SIF at 740 nm (Oco-2/Oco-

3 Science Team, 2020). The SIF datasets from OCO-2 and GOME-2 have eight overlapping years (2014 to 2021). As a result, 

a thorough comparison and validation of the consistency can be conducted between the two datasets. 

 

The product specifications and sensor information are listed in Table 1. This study resampled the orbital SIF data from different 135 

satellites into global gridded datasets of varying sizes according to the footprint and the global coverage of the satellites. 

Satellite-derived SIF measurements from GOME, SCIAMACHY, GOME-2, and OCO-2 were aggregated into monthly maps 

with grid sizes of 1°×1°, 1°×1°, 0.5°×0.5° and 1°×1°, respectively.  

 

Table 1 Information on multiple satellite SIF datasets used to construct long-term SIF products. 140 

Satellite/Sensor Temporal range 
Footprint Size 

(km2) 

Overpass 

time 

Swath width 

(km) 

Wavelength 

(nm) 
Grid size Reference 

ERS-2/ 

GOME 
1995.07–2003.06 40×320 10: 30 960 740 1°×1° (Joiner et al., 2019) 

Envisat/ 

SCIAMACHY 
2003.01–2012.04 

30×240 

/30×60 
10: 00 

960 

/240 
740 1°×1° (Joiner et al., 2021) 

MetOp-A/ 

GOME-2 
2007.01–2021.11 

40×80 

/40×40 
9: 30 

1920 

/960 
740 0.5°×0.5° (Zou et al., 2024) 

OCO-2 2014.09–2023.12 1.3×2.2 13: 30 10.3 757/771 1°×1° 
(Oco-2/Oco-3 Science 

Team, 2020) 

 

2.2 Spatial downscaling 
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An LUE-based model was used for downscaling the gridded SIF datasets with coarse spatial resolutions. Assuming that SIF 

can be represented using the LUE model in a manner that is comparable to GPP(Berry et al., 2012; Guanter et al., 2014; Damm 

et al., 2015), then:  145 

SIF =  PAR × fPAR × �������� (1) 

where ��������  is the fluorescence quantum yield, which is influenced by hydric and thermic stresses. fPAR represents the 

fraction of photosynthetically active radiation (PAR) that is absorbed by vegetation, which exhibits a positive correlation with 

vegetation indices. Assuming that PAR is uniformly distributed over small areas and can be considered constant, then equation 

(1) can be further expressed as (Duveiller and Cescatti, 2016; Duveiller et al., 2020) : 150 

SIF ≈  ��  × f(NIRv) × f(VPD) × f(��) (2) 

where NIRv is the near-infrared reflectance of vegetation, VPD represents vapor pressure deficit (accounts for the effect of 

hydric stresses), and �� is the air temperature at 2m (accounts for the impact of thermic stresses). A quadratic function, 

sigmoid function, and Gaussian function with unknown coefficients were used to express f(NIRv) , f(VPD)  and f(��) , 

respectively, as follows:  155 

��� ≈  ��NIRv�� × �
1

�1 + exp���(�� − ���)��
� × �exp �−0.5 �

�� + ��

��

�
�

�� . (3) 

The unknown coefficients �� to �� in Eq. (3) can be determined by a nonlinear iterative approach. Here, we implemented 

this approach using the “L-BFGS-B” algorithm(Byrd et al., 1995).  

 

NIRv, VPD, and AT were the three driving variables of the spatial downscaling model. NIRv datasets characterized by a 160 

spatial resolution of 0.05° were partially derived from the Advanced Very High Resolution Radiometer (AVHRR) (Jeong et 

al., 2024) for 1995–2021, while the NIRv for 2022–2023 were calculated using MODIS MCD43C4 nadir reflectance (Schaaf 

and Wang., 2021). AT and VPD data for 1995–2023 were obtained from the TerraClimate product with an original spatial 

resolution of 1/24° (Abatzoglou et al., 2018). The driving variables were aggregated to coarse spatial resolutions (0.5°×0.5° 

for GOME-2 and 1°×1° for other satellites) for training the LUE model described in Eq. (3) and to estimate the coefficients 165 

(�� to ��). The 50 closest neighbors of the center pixel were utilized to train the LUE model in an 11×11 sliding window. 

Subsequently, SIF datasets, characterized by a spatial resolution of 0.05°,  were produced by inputting the 0.05° driving 

variables into the trained model. Since the coefficients (�� to ��) were computed for each coarse-resolution pixel, gridded 

artifacts may appear in the final product. To further ensure smooth spatial transitions, for each high-resolution pixel within a 

coarse-resolution pixel, a 3×3 block of coarse-resolution pixels was selected, and nine sets of six coefficients (�� to ��) were 170 

computed. Meanwhile, a fine-resolution (0.05°) weighting grid was established within the 3×3 low-resolution pixels using a 

two-dimensional Gaussian function with a standard deviation of 15 km. The final downscaled result for each high-resolution 

pixel was obtained as the weighted average of the nine sets of model-predicted values, following the approach of Duveiller 
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and Cescatti (2016). 

2.3 Moment-matching method 175 

A moment-matching method was used in this study for the normalization of the SIF data from different satellites. Moment-

matching is a statistical technique used to align the distributional characteristics of different datasets by adjusting their 

statistical moments. We used the average and standard deviation of the original datasets (��) and target datasets (��) for the 

normalization of the original time series： 

�� =  
��� − ���

���

· ��� + ��� (4) 180 

where ��� and ��� are the mean and standard deviation of the target dataset, respectively. ��� and ��� are the mean and 

standard deviation, respectively, of the original dataset. ��  is the corrected value for the i-th temporal point of the corrected 

dataset. Considering the parameters’ spatial representativeness and measurement noise influence, the matching process was 

not applied globally or on a pixel-by-pixel basis but rather within a sliding window at the same scale used for the downscaling 

process. 185 

 

Further, the discrepancy between the two SIF time series can be quantified by the mean squared difference (MSD): 

MSD =
1

�
�����

− ���
�

�
�

���

(5) 

where �� and �� are the SIF time series of the two SIF datasets to be compared. i represents the i-th month of the chosen 

period. Furthermore, Eq. (1) can be broken down into three terms (Bacour et al., 2019)： 190 

MSD = ��� − ���
�

+ ����
− ���

�
�

+ 2 ���
 ���

(1 −  �) (6) 

where �� and �� are the expected values of the time series, while ���
 and ���

 signify the respective standard deviations. 

Additionally, r is the Pearson correlation coefficient that quantifies the relationship between the datasets. The first and second 

terms in the formula represent the square of the mean deviation (denoted as ����� ) and difference in standard deviation 

(denoted as ���������) between the corrected datasets and the target datasets. The final term quantifies the inconsistency of 195 

the linear correlation between the two datasets (denoted as phase). 

 

The GOME-2A SIF dataset with sensor degradation correction is used as a reference for the normalization of all other satellite 

SIF datasets based on observations during the overlap period. The normalization of GOME data relied on the SCIAMACHY 

dataset, which had been previously normalized with GOME-2 data. Fig. 1 shows the processing flow of this study.  200 
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Figure 1. The workflow for spatial downscaling and temporal alignment for generating the LHSIF products from 1995 to 2023. 

2.4 Datasets for validation and comparison analysis 

2.4.1 Boreal Ecosystem Productivity Simulator GPP 

The Boreal Ecosystem Productivity Simulator (BEPS) is an ecological process model that integrates vegetation parameters 205 

with meteorological data to simulate ecosystem productivity. We used the GPP dataset generated by the BEPS model for 

1995–2019 (Weimin Ju and Zhou., 2021). The original spatial resolution of the dataset is 0.072727° × 0.072727°, providing 

fine-scale insights into productivity dynamics. This high-resolution dataset allows for detailed spatiotemporal analysis and 

facilitates comparisons with downscaled SIF datasets in this study to help our understanding of ecosystem carbon dynamics. 

2.4.2 Long-term satellite SIF products 210 

The LT_SIFc* dataset provides long-term SIF retrievals corrected for temporal inconsistencies between GOME, 

SCIAMACHY, and GOME-2 SIF datasets (Wang et al., 2022). A CDF method was employed for the harmonization of 

different SIF datasets, and the LUE-based model was used for spatial downscaling. The LT_SIFc* dataset spans 1995 to 2018 

at a spatial resolution of 0.05° × 0.05°.  

 215 

The SIF_005 dataset is a SIF product spanning 2003 to 2017, with a spatial resolution of 0.05° × 0.05° (Wen et al., 2020). This 

product integrates data from SCIAMACHY and GOME-2 SIF datasets, and it is downscaled using a machine learning-based 

method. The v2.2 (trend_corrected) version was utilized in this study; the original SIF dataset used for this version has been 

preliminarily corrected for temporal degradation. 

2.4.3 AVHRR vegetation indices 220 
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Global NDVI and NIRv datasets derived from the AVHRR sensors were utilized in this study. These datasets have been 

rigorously corrected for inconsistencies among different AVHRR sensors to ensure a temporally consistent and reliable data 

product from 1995 to 2021 (Jeong et al., 2024). The correction process involved addressing sensor-specific calibration 

differences, orbital drift, and atmospheric effects, thereby enabling robust comparisons across time and space.  

2.4.4 Ground-based observations 225 

Ground-based SIF and GPP observations were integrated into this study to validate and enhance the interpretation of satellite-

derived datasets. Specifically, FLUXNET GPP observations were employed, which are based on in-situ measurements from a 

global network of flux towers distributed across diverse ecosystems (Pastorello et al., 2020). FLUXNET sites with more than 

five years of data were grouped into climate zones and vegetation functional types (see Fig. S1 for site distribution and types). 

The field “GPP_DT_VUT_REF” was used. 230 

 

In addition, tower-based SIF observations from the ChinaSpec network, including sites such as DM, GC, HL, XTS, and AR 

(Zhang et al., 2021), were used to validate the accuracy and spatiotemporal consistency of the long-term SIF dataset generated 

in this study. The locations and cover types of the  ChinaSpec sites used are listed in Table S1. These datasets provided robust 

benchmarks for assessing the consistency and reliability of the long-term SIF dataset.  235 

3 Results 

3.1 Downscaled SIF dataset 

Figure 2 provides a comparative analysis of downscaled SIF datasets at fine spatial resolution (0.05°) and their coarse-

resolution (1°) counterparts (derived from GOME). The top two rows (panels a–f) illustrate the enhanced spatial variability 

achieved through the downscaling process, revealing finer vegetation patterns and distinct intensity gradients. The downscaled 240 

SIF datasets render subtle patterns in SIF more apparent compared to the original coarse-resolution data (panels g–k). 

Additionally, the downscaling method, which incorporates neighborhood-based pixel searching, effectively fills in data gaps 

in the original data while preserving spatial continuity. These enhanced spatial details align well with land cover types (panels 

l–p), highlighting the capability to capture sub-grid heterogeneity. 

 245 

Figure 3 further demonstrates the distribution of monthly SIF before and after spatial downscaling (using GOME as an 

example). Results for other satellites are provided in Figs. S2–S4. The spatially downscaled SIF (0.05°×0.05°) was 

reaggregated to 1°×1° for a lower resolution comparison with the original SIF. The results show that most of the SIF values of 

the reaggregated pixels align well with the original SIF values, i.e., they are concentrated near the 1:1 line. The range of SIF 
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values remains mostly unchanged, proving that the training of the LUE downscaling model successfully established the 250 

relationship between the driving variables and SIF. 

 

Figure 2. Spatially downscaled SIF maps (a-f) compared to the original SIF maps at a coarser resolution (g–k). SIF data from GOME 

observations in July 1996 are shown as an example. The bottom row (l–p) shows the corresponding International Geosphere-

Biosphere Programme land cover classifications obtained from the MCD12C1 product. Panels b, g, and l depict North America; c, 255 

h, and m focus on Europe; d, i, and n depict East Asia (centered on China); e, j, and o represent the Amazon Basin; and f, k, and p 

show Sub-Saharan Africa. 
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Figure 3. The relationship between the reaggregated GOME SIF (SIF_reagg) and the original GOME SIF (SIF_original) for 1998 

(by month).  260 

 
Figure 4. The (a) time series and (b) temporal average of the latitudinally distributed residual generated by the LUE-based 

downscaling model. The residuals are calculated as the difference between the reaggregated SIF (SIF_reagg) and the original SIF 

(SIF_original). For consistency, the coarse spatial resolution SIF datasets were uniformly resampled to 0.5° × 0.5°. Only data for 

latitudes below 70° N are shown in (b). 265 

The temporal and spatial distributions of the spatial downscaling residuals were analyzed (Fig. 4). The residual was calculated 

as the difference between  As shown by the temporally averaged residuals (Fig. 4 (b)), the absolute mean residuals for most 

locations are less than 0.05 mW m-2 sr-1 nm-1 for regions below 70° N. This result highlights the global applicability of the 

LUE-based downscaling method. 
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3.2 Temporal harmonization 270 

 
Figure 5. Global-averaged SIF time series derived from GOME (blue), SCIAMACHY (orange), GOME-2 (green), and OCO-2 (red), 

along with the long-term harmonized SIF time series (LHSIF, gray dotted line), which aligns the satellite datasets based on 

overlapping periods.  

Figure 5 illustrates the original SIF datasets from individual satellites and the long-term harmonized SIF dataset spanning 275 

1995–2023 after normalization. Moment matching was conducted in the overlapping periods to normalize the differences 

among the SIF datasets. Discrepancies in the value range across the original data sources, while after normalization, the 

systematic bias between the SIF measurements from different satellites was effectively eliminated. The abrupt changes in the 

interannual maximum and minimum values across sensors were corrected without altering the SIF trends provided by 

individual sensors. The result is a more accurate and reliable temporal trend in global vegetation.  280 

 

Error analyses were performed for different climatic zones and plant functional types. Fig. 6 displays the comparison between 

GOME-2 and the SCIAMACHY SIF before and after moment matching. The overall error (MSD) decreased by more than 45% 

after moment matching. For most cases, the difference in the average (bias, in red) is the dominant component of MSD between 

GOME-2 SIF and SCIAMACHY SIF before moment matching. Throughout the Southern Hemisphere’s temperate and tropical 285 

zones, the discrepancies were primarily attributed to variations in variance (in green) and weak correlations (in blue). The 

MSD was significantly reduced after temporal correction, with a notable decrease in the proportion of bias2. Only a small 

proportion of phase-related errors remain in the corrected dataset. 

https://doi.org/10.5194/essd-2025-94
Preprint. Discussion started: 28 April 2025
c© Author(s) 2025. CC BY 4.0 License.



13 

 

 

Figure 6. The mean squared difference (MSD) between GOME-2 SIF and SCIAMACHY SIF before (����) and after (����) moment 290 

matching. The results show the average conditions across different climatic zones and vegetation functional categories during 2007.  

 

Figure 7. (a) Trend and (b) box plot of the yearly maximum global-averaged SIF of the combined time series before (����) and after 

(����) normalization during 1995–2023. 
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The annual maximums of the global-averaged SIF were used to investigate the fluctuation of the worldwide vegetation from 295 

1996 to 2023. Significant interannual fluctuations were found for the SIF time series without moment matching, with an overall 

decline (blue line in Fig. 7 a). After normalization, the uncertainty in the interannual trend was reduced by half (from 0.27% 

to 0.13%), revealing a growth rate of 0.42% yr-1. The boxplot in Fig. 7 b further indicates a relatively small range in SIF values 

after temporal matching. 

 300 
Figure 8. (a) Map of trends in LHSIF for 1996–2023. (b) Percentage of areas in global vegetation covered by four different trend 

types (significant decrease: negative correlation and p < 0.05; decrease: negative correlation and p ≥ 0.05; increase: positive 

correlation and p ≥ 0.05; significant increase: positive correlation and p < 0.05). 

The interannual variability map of LHSIF from 1996 to 2023 was obtained by fitting SIF trends pixel-by-pixel (as shown in 

Fig. 8 a). Significant increases in SIF are observed in vegetation-rich regions, such as the Amazon rainforest, the eastern and 305 

southern United States, Southeast Asia, and southeastern China. Tropical grasslands south of the Sahara have expanded, while 

SIF in the Congo Basin remains largely unchanged. Southern Africa exhibited a decline in SIF. Slight declines were also found 

in vegetated zones, such as high-latitude grasslands of the Northern Hemisphere and western United States. In regions with 

sparse vegetation, like Central Australia and Northwest China, SIF slightly declined or remained unchanged. Overall, SIF 

growth occurred in over 69% of the world’s vegetation, with 22% of the global vegetated area exhibiting notable increases 310 

between 1996 and 2023 (Fig. 8 b). 

 

3.3 Validation and comparative analysis 

 

The annual maximum LHSIF exhibited a positive trend (0.42 ± 0.13% yr-1), with data points clustering around the trendline 315 

(Fig. 9 a). The growth rate of LHSIF (0.42% yr-1) closely aligns with that of BEPS GPP (Fig. 9 f, 0.47% yr-1), demonstrating 

LHSIF’s stability in capturing long-term trends of GPP. LT_SIFc* also shows a positive trend but with a lower growth rate 

(Fig. 9 b). The SIF_005 product exhibits a negative trend during 2003–2017 in stark contrast to all other datasets (Fig. 9 c). 
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Although the spurious trends have been largely corrected for the original SIF products used by SIF_005, the long-term trend 

remains suboptimal. 320 

 

From 1995 to 2021, less pronounced trends were shown by AVHRR NDVI (Fig. 9 d, 0.18 ± 0.02% yr-1) and NIRv (Fig. 9 e, 

0.34 ± 0.02% yr-1) compared with SIF and GPP. Compared to SIF-based products, NDVI is more susceptible to interference 

from vegetation canopy structure and non-photosynthetic processes; thus, it is less effective at capturing photosynthetic activity. 

In this regard, LHSIF provides a more direct indication of photosynthesis and can supplement NDVI and NIRv in detecting 325 

changes in GPP.  

 
Figure 9. The yearly maximum (a) LHSIF compared with (b) LT_SIFc*, (c) SIF_005, (d) AVHRR NDVI, (e) AVHRR NIRv, as well 

as the annual total (f) BEPS GPP. 

Figure 10 illustrates the contrasting relationships between LHSIF and GPP and between AVHRR NDVI and GPP. The LHSIF 330 

product shows a strong ability to track GPP, especially for cropland and mixed forest types (Fig. 10a). In contrast, NDVI 

consistently exhibits lower R2 values (Fig. 10 b) and a more pronounced nonlinear relationship with GPP due to saturation 

effects. Apart from a few groups in the Southern Hemisphere (such as grasslands in tropical and arid areas), where only a small 

number of sites are available (see Fig. S1), SIF outperforms NDVI in most cases. 

 335 
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Figure 10. Comparison of long-term relationships between SIF vs. GPP and NDVI vs. GPP at FLUXNET sites. Only those flux tower 

sites that have accumulated over a decade of data were chosen and subsequently categorized according to their respective climate 

zones and vegetation types. 

Additionally, comparisons were conducted between LHSIF and the tower-based SIF measurements at five ChinaSpec sites: 340 

AR, DM, GC, HL, and XTS (details of the locations and land cover types are provided in Table S1). To ensure consistent 

comparisons, the tower-based SIF at 760.6 nm was converted to 740 nm using an empirical correction factor of 1.48. 

Additionally, the original half-hourly tower-based SIF data were temporally upscaled to daily and monthly values with the aid 

of PAR and NDVI, following the method described by Hu et al. (2018). As a result, LHSIF demonstrated strong agreement 

with tower-based SIF measurements both temporally and spatially (Fig. 11). The consistency of the intra-annual variations 345 

was evident between LHSIF and the in-situ measurements for each site. As shown in the right panel, the monthly composite 

values are highly correlated, with most points clustering near the 1:1 line and correlation coefficients generally exceeding 0.6. 

 

However, some deviations were observed. For example, at the Gucheng (GC) and Xiaotangshan (XTS) sites, which are 

characterized as wheat-maize rotation croplands, discrepancies occurred in June. During this month, tower-based SIF 350 

measurements recorded a trough when wheat was harvested and maize had yet to emerge. Due to spatial heterogeneity, LHSIF 

was unable to capture this phenomenon, resulting in a reduced correlation between LHSIF and in-situ measurements at these 

two sites. To highlight the overall correlation, the June data for these two sites were removed from the scatter plot (Fig. 11 h, 

j). 
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 355 

Figure 11. Comparison between LHSIF with the tower-based SIF measurements (SIF_insitu) at (a, b) AR, (c, d) DM, (e, f) HL, (g, h) 

GC, and (i, j) XTS sites. The temporal pattern of LHSIF compared with daily and monthly averaged SIF_insitu is shown in the left 

and right columns, respectively. The horizontal axis of the chart in the left column represents the first letters of the month names. 

Data points in June were excluded from the scatter plot for GC and XTS (h, j).  

4 Discussion 360 

4.1 Improvements in cross-sensor harmonization 

In this study, we applied a moment-matching normalization method to harmonize cross-sensor SIF measurements. The steadily 

increasing interannual trend in the multi-sensor synthesized SIF time series demonstrates the validity of the temporal matching 

approach. This finding aligns with previous research (Wen et al., 2020; Wang et al., 2022) and further reinforces the reliability 

of the initial SIF products and the feasibility of the moment-matching normalization process for cross-sensor harmonization.  365 

 

Unlike previous research, the temporal-corrected GOME-2A SIF (TCSIF) was used as a benchmark for harmonizing the time 

series (Zou et al., 2024). The TCSIF product systematically addressed the known pseudo-trends in GOME-2A data, and it 
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underwent a rigorous two-step validation process for both radiance and SIF. The interannual variation of TCSIF closely 

resembles GPP, making it a reliable data benchmark. In contrast, the original SIF products used by SIF_005 (Wen et al., 2020) 370 

may still suffer from incomplete trend correction of GOME-2 SIF and lead to a general decrease and significant interannual 

fluctuations in SIF_005 during the 2003–2017 period (Fig. 9 c). 

 

Additionally, adopted a different approach from that of Wang et al. (2022) to coordinate SIF data from multi-sensors. 

Specifically, we used the GOME-2A SIF dataset, which is centrally positioned within the time ranges covered by the various 375 

sensors, as the benchmark for harmonization. The temporal coverage of GOME-2A (2007–2021) includes overlapping periods 

of more than five years with both SCIAMACHY and more than eight years with OCO-2. As a result, a single normalization 

process is sufficient for aligning SIF of both instruments with GOME-2A SIF, effectively reducing propagation errors. In 

contrast, the LT_SIFc* dataset uses GOME, the earliest time series, as the benchmark. This approach relies on a six-month 

overlap between GOME and SCIAMACHY for the normalization of SCIAMACHY SIF, which is then used to calibrate 380 

GOME-2A SIF. Such a multi-step calibration process may lead to cumulative errors. 

 

The method used for temporal matching between different sensors is another critical factor that influenced the results. Improper 

approaches can introduce discrepancies during the matching process. Previous research commonly used the CDF matching 

method for temporal harmonization (Wang et al., 2022; Wen et al., 2020). While this method theoretically ensures precise 385 

cross-sensor alignment in the absence of observational errors and discrepancies between satellites, it is not a suitable solution 

when training data are insufficient, the SIF dataset is noisy, or sensors use different distribution functions. These observations 

are particularly relevant for sensors with short overlap, such as the SIF data from GOME and SCIAMACHY (six-month 

overlap). This short duration results in an insufficient amount of high-quality data to effectively support such transformations. 

 390 

The approach proposed adopted in this study is robust compared to CDF matching. By modifying only the mean and standard 

deviation of the SIF data distribution, the method avoids overfitting and enhances stability. This less stringent approach ensures 

harmonization while preserving the inherent variability of the datasets. Therefore, the LHSIF dataset provides an 

unprecedented long-term harmonized SIF dataset that is theoretically reliable and demonstrates a reasonable temporal trend. 

4.2 Limitations and future perspectives 395 

Our investigation shows that the moment-matching normalization approach is an excellent way to reduce the disparities across 

sensors, providing a unified reference framework with the longest time series to date. Despite its high performance, it is crucial 

to remember that this statistical methodology is not a rigorous calibration procedure. The most robust approach for cross-

sensor calibration is based on pseudo-invariant calibration sites (PICs) located in non-vegetated areas (Markham and Helder, 
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2012; Khakurel et al., 2021). This method has been successfully applied to the normalization and long-term monitoring of 400 

reflectance data and vegetation index products (Angal et al., 2013; Mishra et al., 2014; Jeong et al., 2024; Tavora et al., 2023). 

However, in commonly used PICs, such as deserts and water surfaces, SIF signals are inherently weak and highly susceptible 

to noise that can cause significant uncertainty in PIC-based calibration for SIF applications. 

 

Additionally, our downscaling approach follows the methodology proposed by Duveiller et al. (2016, 2020), where NIRv is 405 

used in the LUE model instead of NDVI to enhance the model’s interpretability for SIF (Badgley et al., 2017). Nevertheless, 

some explanatory variables remain unaccounted for. For instance, incorporating PAR could improve model interpretability 

under cloudy conditions (Ryu et al., 2018). However, discrepancies in overpass time and scale effects can cause inconsistencies 

between PAR and SIF products, which may increase uncertainties in the downscaling model. Furthermore, incorporating 

fluorescence escape efficiency (Ryu et al., 2019) and topographic factors (Chen et al., 2022; Tao et al., 2024) into the 410 

downscaling model could further enhance its performance.  

 

Model selection is ultimately more critical than the choice of input variables (Duveiller et al., 2020). Previous research on 

spatial downscaling was predominantly using purely empirical machine-learning approaches (Gentine and Alemohammad, 

2018; Wen et al., 2020; Hong et al., 2022; Lu et al., 2024). An alternative strategy redistributes the initial global downscaling 415 

results based on the original coarse-resolution SIF values and retains the characteristics of the original observational signal to 

the greatest extent possible (Ma et al., 2022; Chen et al., 2025). Our experimental results confirm that our downscaled SIF 

products also remain consistent with the original signals (Fig. 4). In addition, the LUE-based approach incorporates 

physiological constraints, ensuring that the downscaled SIF values remain within a reasonable range compared to traditional 

machine-learning models. 420 

 

Another type of long-term SIF datasets have been generated by temporally extrapolating SIF observations based on machine-

learning methods. These datasets provide more than two decades of high-temporal-resolution data beyond the monthly scale 

(Zhang et al., 2018b; Li and Xiao, 2019). However, such datasets predominantly depend on model-driven predictions 

constrained by satellite observation periods, rather than being based on actual observational data, which is fundamentally 425 

different from the approach we employed. Currently, the temporal resolution of purely observation-based enhanced SIF 

products that span longer than 20 years remains constrained at the monthly scale, largely due to noise in the satellite SIF 

products. Overcoming this limitation will require further refinement of existing downscaling models, paving the way for future 

products to achieve a resolution of 16 days or higher. 

5 Conclusion 430 
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In this study, we developed a long-term harmonized SIF dataset (LHSIF) spanning 1995 to 2023. SIF datasets from various 

satellites were harmonized using multi-sensor SIF observations through a moment-matching normalization approach, using 

the temporally corrected GOME-2A SIF dataset as a benchmark. An LUE-based model was used for spatial downscaling, 

yielding a fine resolution of 0.05° with an absolute mean residual less than 0.05 mW m-2 sr-1 nm-1. 

 435 

Our analysis demonstrated that the harmonized dataset significantly reduced overall errors by more than 45% and exhibited a 

stable interannual increase (0.42 ± 0.13% yr-1); in contrast, the original dataset displayed a variable decline (−0.57 ± 0.27% yr-

1). The interannual trend of LHSIF closely aligns with the growth of GPP (0.47 ± 0.03% yr-1) and demonstrates superior 

temporal and spatial consistency compared to NDVI. Validation against ground-based SIF observations (R > 0.6) further 

underscores the reliability of the harmonization approach and the dataset’s utility in global vegetation studies. 440 

 

By focusing on the harmonization of satellite-derived SIF products, the LHSIF dataset offers a unified framework for 

integrating multi-sensor SIF data to enable long-term monitoring of global photosynthesis. This contribution provides an 

essential tool for understanding vegetation responses to environmental changes and advancing the field of Earth system science. 
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