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Abstract. Increasingly unsustainable water use in food systems and rising regional water scarcity jointly pose a critical10
challenge to food security. Advancing sustainable agricultural water management requires accurate quantification of crop

water use, including the contributions of blue and green water and their spatiotemporal dynamics throughout growing

seasons, the absence of which impedes reliable estimation of agricultural water requirements and the improvement of water

management practices. Here, we integrated multi-source remote sensing datasets with high-resolution crop distribution and

phenology data within a detailed water footprint accounting framework. This approach generated in ChinaCropWF (Hua and15
Wang, 2025; https://doi.org/10.5281/zenodo.18057808), a 1-km, nationwide, daily-resolution dataset spanning 2001-2020,

which quantifies blue and green water footprints for China's five major crops. Our dataset shows the total crop water

footprints ranked as rice (139.65-193.65 Gm³) > maize (130.22-140.98 Gm³) > wheat (61.15-64.59 Gm³) > soybean (32.05-

35.39 Gm³) > potato (0.15-11.31 Gm³). The blue and green water composition was primarily determined by crop-specific

traits and regional precipitation regimes. In contrast to the global increase in blue water footprints, China's blue water20
footprints for major food crops have declined, despite pronounced spatial heterogeneity. By contrast, green water footprints

have increased widely across all major cropping regions. By capturing spatial heterogeneity in water volume and use

efficiency, ChinaCropWF provides data support for adaptive irrigation, regional water management, and food-water nexus

assessments.

Short Summary. Accurately quantifying the blue and green water footprints of crops is essential for addressing25
unsustainable agricultural water use. However, long-term, high spatiotemporal resolution data have been lacking. Hence,

multi-source remote sensing was integrated with high-resolution crop distribution and phenology within a detailed water

footprint framework. ChinaCropWF provides daily, 1-km resolution blue and green water footprints for China's five major

food crops from 2001 to 2020.
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1 Introduction30

Global food production systems face emerging water scarcity challenges, representing a major constraint to sustainable

agricultural development (Dalin et al., 2015; Perez et al., 2024; Rosa et al., 2020). Climate change further undermines

agricultural water security by altering precipitation patterns and intensifying hydrological extremes, thereby intensifying the

imbalance between irrigation water supply and demand (Giordano et al., 2023; Piao et al., 2010; Wang et al., 2021; Zheng et

al., 2023). Combined pressures from water scarcity and climate change exacerbate challenges to water security and pose35
significant risks to the stability of food supply (Vörösmarty et al., 2010). This issue is of particular concern for China,

which is among the world's largest producers of rice, maize, wheat, soybean, and potato. With approximately half of its

cropland under irrigation, China's agricultural system is therefore highly vulnerable to water shortage risks.

Water footprint refers to the amount of water resources required for the production of all goods and services consumed by a

country, region, or individual person within a given period. Figuratively speaking, it represents the "footprints" left by water40
throughout the processes of production and consumption. It is a core indicator for quantifying water consumption in crop

production and is widely used in water resource management, agricultural sustainability research (Hoekstra et al., 2011), and

a key variable considered in food-water nexus research and management frameworks that address key constraints on

agricultural sustainability (Wu, 2024). By definition, it comprises blue water (consumed surface and groundwater) and green

water (consumed precipitation-derived soil moisture).45
Earlier global water footprint assessments (Mekonnen and Hoekstra, 2011) have highlighted marked spatial heterogeneity in

agricultural water use and emphasized the interactions among agricultural systems, climate, and land management. Recent

methodological advances enable multiscale evaluations, from field to global scales, and expand analytical capabilities to

include water consumption assessment, efficiency analysis, pollution accounting, and the development of sustainable water

management strategies (Graham et al., 2020; Mialyk et al., 2024; Sun et al., 2016; Wang et al., 2024; Zhuo and Hoekstra,50
2017). Currently, the assessment of crop water footprints still relies primarily on model simulations, with most models

constructed based on simplified assumptions on evaporative demands and seasonal water shortage, limiting the reliability of

the results. For example, current crop water footprint assessments may overestimate crop evapotranspiration because they

rely on crop coefficients derived under idealized environmental conditions. Moreover, aggregating precipitation and

evaporation over monthly or growing-season periods can bias estimates of seasonal water deficits, influencing both the55
quantification of crop water footprints and the separation of blue and green water (He and Rosa, 2023). Hence, due to

limitations in existing data and models, achieving high spatiotemporal resolution and accurate daily-scale monitoring of crop

water use, particularly the dynamic characterization of key periods of water stress, remains a major challenge (Xu et al.,

2019).

Compared with global datasets, regional crop water footprint assessments in China can provide higher spatiotemporal60
resolution and extended temporal coverage because they incorporate locally-specific data on crop phenology and

management practices. At the spatial scale, research has expanded from representative farmlands to provincial and national
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scales, supported by high-resolution accounting frameworks that integrate multi-source satellite remote sensing data with

ground-based meteorological observations. For example, Wang et al. (2023a) developed a remote sensing-based quantitative

method to assess the dynamic changes in crop water footprints at a 250-meter resolution within the Baojixia Irrigation65
District. Li et al. (2021) quantified the rice water footprint in Jilin Province at a spatial resolution of 1-km. At the temporal

scale, Wang et al. (2023b) estimated national water footprints for 21 crops from 2000 to 2018 using the AquaCrop model,

generating 5-arcmin gridded outputs. Furthermore, Wang and Shi (2024) mapped annual blue and green water footprints for

15 major crops from 1991 to 2019 at 1-km resolution by coupling a dynamic water balance model with a random forest

algorithm and incorporating meteorological and phenological dynamics. However, these studies generally have strong70
assumptions crop phenology and planting areas. In terms of temporal resolution, they also predominantly rely on monthly-

scale growing period divisions, whereas in terms of spatial resolution, they often assume that planting areas remain

unchanged over multiple years. These limitations have restricted the application of water footprint evolution assessments.

Consequently, two major limitations remain: limited differentiation between blue and green water use throughout crop

growth stages, and insufficient temporal resolution to capture daily, high-resolution water footprint dynamics.75
In this study, we developed ChinaCropWF, a high-resolution (1-km) gridded dataset that quantifies the water footprints of

China's five major crops—wheat, maize, rice, soybean, and potato—from 2001 to 2020. The dataset encompasses three core

components: the total water footprint (blue and green water), the production water footprint, and evapotranspiration

partitioning (i.e., the evaporation-to-transpiration ratio). By integrating multi-source remote sensing products, ChinaCropWF

enables daily, 1-km gridded quantification and detailed spatiotemporal characterization of crop water use. Furthermore, we80
identify the key drivers underlying interannual variations in these crop water footprints. This analysis provides critical data

information to guide targeted interventions in water-saving irrigation, cropping structure optimization, and agricultural water

management.

2 Data and methods

This study focuses on five major crops in China: wheat, maize, rice, soybean, and potato. As of 2024, these crops were85
cultivated on a total of 119.3 Mha in China, with maize, rice, wheat, soybean, and potato accounting for 44.7, 29.0, 23.6,

10.3, and 3.2 Mha, respectively, collectively representing 92.9% of the total sown area. Given their dominant coverage and

importance for national food production, accurately quantifying their water footprints is crucial for sustainable water

management and food security assessments. ChinaCropWF, a high-resolution (1-km) gridded dataset, was developed

through three main steps to quantify the water footprints of these crops from 2001 to 2020 (Fig. 1):90
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Figure 1: Research steps.

Step 1: Data collection. This step focused on acquiring high-resolution (1-km) remote sensing datasets essential for

quantifying the water footprints of China's major food crops. The key datasets included precipitation, evapotranspiration,

crop planting area, and crop phenology.95
Step 2: Water footprint accounting. In this step, the blue and green water components consumed by major food crops were

quantified through integration of evapotranspiration and precipitation datasets. By incorporating crop planting area and

phenology data, daily blue and green water footprints were further quantified across different growth stages.
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Step 3: Water footprint products. During the dataset development process, the high-resolution ChinaCropWF dataset (2001-

2020) was developed, including blue and green water footprints, production water footprints, and crop-specific evaporation-100
to-transpiration ratios. The dataset was validated using observed water footprint data to ensure its accuracy and reliability.

Additionally, an alternative crop water footprint dataset was generated using a synthesized evapotranspiration dataset for

comparative assessment.

2.1 Data sources

2.1.1 Precipitation105

In this study, the China Daily Precipitation dataset (CHM_PRE) was used as the primary data source. This 0.1°-resolution

gridded dataset was generated by integrating data from 2,839 meteorological stations in China and adjacent regions (Han et

al., 2023). Cross-validation against widely used precipitation datasets, including CGDPA, CN05.1, and CMA V2.0, showed

strong agreement in interannual variability and spatial patterns of extreme precipitation, confirming its suitability for

regional climate and hydrological analyses.110

2.1.2 Evapotranspiration

Actual evapotranspiration data were obtained from the PML-V2 dataset (He et al., 2022), which provides 500-m spatial

resolution and spans 2000-2020. PML-V2 derives �� by separately estimating its three components, including plant

transpiration (��), evaporation from the soil (��), and canopy evaporation from precipitation interception (��), as follows:

�� = �� + �� + ��, (1)115
To validate ChinaCropWF, we recomputed crop water footprint datasets based on a synthesized evapotranspiration dataset.

This dataset was generated by evaluating twelve global evapotranspiration products over various periods, land surface types,

and environmental conditions; the best-performing products were selected through site-to-pixel comparisons (Elnashar et al.,

2021). The resulting synthesized evapotranspiration dataset offers a comprehensive depiction of the spatiotemporal patterns

and variability of actual evapotranspiration (see Supplementary Materials).120

2.1.3 Crop planting area

Crop planting areas for wheat, maize, and rice were obtained from the ChinaCropArea1kmV2 dataset, which was derived

from GLASS leaf area index (LAI) time-series data. Key phenological features of the LAI curves were extracted using

inflection point detection and thresholding to facilitate remote sensing–based estimation of crop planting areas (Mei et al.,

2022). Soybean planting areas at 10-m spatial resolution for 2017–2020 were derived from the ChinaSoyArea10m dataset,125
produced using a regionally adapted spectra–phenology integration approach based on Sentinel-2 imagery and Google Earth

Engine (Mei et al., 2024). Potato planting areas were sourced from the SPAM dataset (available at https://mapspam.info/).
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2.1.4 Crop planting area

Crop phenology data for maize, wheat, and rice were sourced from the ChinaCropPhen1km dataset (Luo et al., 2020), which

provides high-resolution spatiotemporal information on key phenological stages across China, spanning 2000-2019. This130
dataset was generated through integration of GLASS-derived LAI and long-term climatic observations from

agrometeorological stations. Phenology data for soybean and potato were obtained from station-based observations.

2.2 Methods

2.2.1 Crop water footprint

The crop water footprint accounting framework consists of four modules. (1) The spatiotemporal integration of multi-source135
datasets involved precipitation (CHM_PRE), actual evapotranspiration (PML-V2), crop planting areas

(ChinaCropArea1kmV2 and ChinaSoyArea10m), and crop phenology (ChinaCropPhen1km) datasets, which were uniformly

resampled to a 1-km spatial resolution, resulting in a spatiotemporally aligned raster database. (2) Blue and green water were

quantified using the field crop water requirement method: blue water (irrigation) was computed as the difference between

actual evapotranspiration and precipitation, while green water was defined as precipitation; when precipitation exceeded140
actual evapotranspiration, green water was set equal to actual evapotranspiration. (3) The delineation of crop planting areas

was performed by identifying the presence of each crop within every 1-km grid cell using crop planting area datasets,

thereby defining the spatial extent of each crop's water footprint. (4) Based on phenology data, daily crop growth stages were

determined, and blue and green water were allocated to each stage. This enabled the calculation of the crop water footprint

for each 1-km grid cell spanning the period 2001-2020.145
To account for soil water deficits resulting from seasonal precipitation, the soil water balance method was employed to

calculate soil water variations (∆�), thereby enabling a more accurate quantification of crop water footprints (Fig. 1). The

total crop water footprint (��) consists of the blue water footprint (���) and the green water footprint (���), which are

calculated as follows:

�� = ��� + ���, (2)150

��� = ������ × � + ∆�����, (3)

��� = �� × � + ∆������, (4)

where ������ is the blue water portion of evapotranspiration, mm; � is the crop planting area, hm2; �� is the precipitation,

mm; ∆����� and ∆������ are the blue and green water footprints of soil water, respectively. Regarding the initial soil water

content, it was accounted for based on the soil data of Shi et al. (2025) and Wei et al. (2013).155

������ = �� − ��, �� > ��
0, �� ≤ ��

, (5)
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2.2.2 Crop production water footprint

Within a multi-scale coupled water-food nexus framework, municipal-level crop yield statistics were spatially aligned with

1-km resolution water footprint datasets. Using the production water footprint indicator (m³ kg⁻¹), the relationship between

water use and crop yield was quantified for five major crops: wheat, maize, rice, soybean, and potato. The total water160
footprint was further partitioned into blue water (irrigation) and green water (precipitation) components to assess the relative

contributions of different water sources.

��� = �� �, (6)

���� = ��� �, (7)

���� = ��� �, (8)165

where ��� , ���� , and ���� represent the crop production water footprint, crop production blue water footprint, and

crop production green water footprint, m³ kg⁻¹, respectively; � is the municipal crop yield, kg.

3 Results

3.1 Spatiotemporal evolution patterns of crop water footprint

Over the period 2001-2020, the total water footprint of China's major food crops increased by 76.4%, from 280.85 to170
495.34 Gm³ (Fig. 2). This increase was mainly driven by the green water footprint, which expanded by 154.0%, whereas the

blue water footprint grew by only 46.9%. All crops exhibited upward trends, with the blue water footprint maintaining a

relatively high contribution for most crops. The total water footprint peaked in 2017 before declining slightly. Among all

crops, potato, rice-LR, and maize exhibited the most pronounced increases (175.1%, 130.7%, and 116.0%, respectively),

whereas wheat and soybean showed comparatively moderate growth (36.1% and 40.7%, respectively). Green water175
footprints increased by more than 100% across all crops, with rice-LR showing an especially large rise of 230.0%. In

contrast, changes in blue water footprints were comparatively moderate, with wheat and soybean increasing by only 24.6%

and 11.1%, respectively.
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Figure 2: Evolution trend of crop water footprint from 2001 to 2020.180

In 2020, the water footprints of China's major food crops exhibited pronounced spatial clustering patterns and substantial

regional heterogeneity. High values (>20 Gm³) were concentrated in major grain-producing provinces, whereas markedly

low values were observed in the Qinghai-Tibet Plateau ecological barrier—such as Qinghai (0.68 Gm³)—as well as in

megacities such as Shanghai (0.58 Gm³). This spatial pattern was largely governed by the distribution of cultivated land

resources and the intensity of agricultural production. The blue water footprint closely mirrored the total water footprint,185
underscoring the dominant role of irrigated agriculture in core grain-producing regions. In Heilongjiang, Henan, and

Shandong, blue water contributed 58.6%, 69.8%, and 68.8% of the total, respectively. In contrast, green water footprints

were strongly influenced by precipitation gradients, forming a distinct spatial corridor along the 400-mm isoline, with green

water contributions in Heilongjiang, Guangxi, and Hunan accounting for 41.4%, 45.6%, and 50.3% of their respective totals.
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190
Figure 3: Spatial distribution pattern of crop water footprint in 2020.

For individual crops (Fig. 3), high wheat water footprints were concentrated in the Huang-Huai-Hai Plain. In Henan,

Shandong, and Anhui, blue water accounted for 83.5%, 83.5%, and 79.9% of the total, respectively. Henan exhibited the

largest blue water footprint (17.12 Gm³), which is closely related to the phenological characteristics of winter wheat. In

Northeast China, maize water footprints were concentrated in Heilongjiang, Jilin, and Inner Mongolia, contributing 36.0% of195
the national total. High rice-SR&ER water footprints were concentrated in Heilongjiang (14.06 Gm³), Guangxi (8.48 Gm³),

and Anhui (6.51 Gm³), where green water contributed 43.0-52.8% of the total. For rice-LR, high water footprints were

observed in Guangxi (7.84 Gm³), Jiangxi (7.14 Gm³), and Hunan (6.20 Gm³), with an approximately balanced blue-green

ratio. Soybean water footprints were mainly concentrated in Heilongjiang, Inner Mongolia, and Jilin, which together

accounted for 65.8% of the national total. For potato, high water footprints occurred in Sichuan, Gansu, and Shaanxi, with200
relatively high blue water contributions even in humid southern regions.
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3.2 Regionalized assessment of crop production water footprint

From 2001 to 2020, the ��� of China's major food crops exhibited distinct crop-specific patterns and substantial spatial

heterogeneity (Fig. 4). The ��� of dryland crops (wheat and maize) remained relatively stable, whereas those of rice,

soybean, and potato increased over time. Wheat ��� showed a first increasing and then decreasing trend, with high values205
concentrated in Northeast China and Inner Mongolia. For example, Yichun in Heilongjiang (7.05 m³ kg⁻¹) and Xilin Gol in

Inner Mongolia (8.35 m³ kg⁻¹) showed notably elevated levels, which are likely associated with climatic constraints that

increase irrigation demand. Maize ��� remained largely stable, with high values observed in Jingmen, Hubei (10.41 m³

kg⁻¹) and Yichun, Heilongjiang (7.88 m³ kg⁻¹), while exceptionally low values occurred in Shihezi and Hami, Xinjiang

(<0.25 m³ kg⁻¹). Rice-SR&ER ��� increased markedly from 0.90 to 1.52 m³ kg⁻¹, accompanied by a northward shift in210
high-value areas. Non-traditional rice-growing regions, such as Jinzhong in Shanxi and Ganzi in Sichuan, exhibited

comparatively high ��� , indicating lower water-use efficiency. Rice-LR ��� increased by 93.8%, with high values

occurring in Yangjiang and Yunfu, Guangdong (>4.00 m³ kg⁻¹). Soybean ��� rose from 0.36 to 0.75 m³ kg⁻¹, with higher

values in the Central Plains and a notable increasing trend in humid regions such as Yunnan. Potato ��� decreased by

14.6%, with high-value areas concentrated in Shaanxi, Gansu, and Ningxia.215

Temporal trends in blue and green water footprints were broadly consistent with those of ���, with pronounced differences

among crop types. For ���� , dryland crops exhibited a continuous declining trend. Wheat uBWF fluctuated slightly,

increasing by 1.4% from 0.73 to 0.74 m³ kg⁻¹. In contrast, maize ���� declined steadily from 0.65 to 0.55 m³ kg⁻¹. Rice-

SR&ER showed relatively high and stable ����, whereas Rice-LR exhibited greater interannual variability. Soybean was

the only crop exhibiting a consistent ���� increase, from 0.24 to 0.40 m³ kg⁻¹, highlighting the relative underutilization of220

water-saving practices for leguminous crops. The evolution of ���� exhibited clear climate-driven patterns, with most

crops showing increasing trends, particularly rice. Rice-SR&ER ���� increased by 127.2%, while rice-LR surged by

179.4%. In contrast, dryland crops experienced more moderate increases: wheat and maize rose by 52.0% and 35.7%,

respectively, likely reflecting improved precipitation utilization supported by the adoption of drought-resistant varieties.

Overall, the spatiotemporal evolution of crop production blue and green water footprints revealed pronounced regional225

differentiation, characterized by declining ���� and a broadly consistent increase in ����.
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Figure 4: Spatiotemporal evolution pattern of crop production water footprint.
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3.3 Evaporation and transpiration in crop water use

Between 2001 and 2020, crop transpiration and evaporation increased by 37.2% and 33.1%, respectively. A pronounced shift230
was observed in wheat, with evaporation declining from 58.9% in 2003 to 36.6% in 2019 (Fig. 5), while transpiration

increased from 41.1% to 63.4%, changes likely associated with the adoption of drought-resistant cultivars and the

implementation of precision irrigation. In maize, evaporation peaked at 42.3% in 2003 before decreasing to 31.9% in 2017,

whereas transpiration ranged from 57.7% to 68.1%, suggesting an overall tendency toward higher transpiration fractions.

Rice showed marked interannual fluctuations in evaporation and transpiration, with transpiration consistently exceeding 60%.235
Soybean and potato exhibited similar temporal patterns, with transpiration peaking at 75.9% and 75.5% in 2017 and 2019,

respectively—the highest values among the crops analyzed.

Figure 5: Evolutionary trends of crop evaporation (red) and transpiration (blue).

A comparative analysis of crop evaporation and transpiration identified three major patterns in their spatiotemporal240
dynamics. First, transpiration consistently exceeded evaporation, a pattern consistent with physiological differences in water-

use strategies between C₃ and C₄ crops. Second, evaporation peaked during 2002-2005, coinciding with a weakened East

Asian summer monsoon, whereas transpiration reached its maximum in 2017-2019 during a period of intensified warming,

suggesting the dominant role of climatic forcing in shaping these trends. Third, interannual variability remained within 0-

11.2% across crops, indicating a relatively stable response of agroecosystems to climate variability.245
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3.4 Key drivers of crop water footprint

Using the LMDI decomposition method, we evaluated the temporal evolution of blue and green water footprints of wheat,

maize, rice, soybean, and potato during 2002-2020, along with their underlying driving factors (Fig. 6). For wheat, increases

in the blue water footprint were primarily driven by transpiration, planting area, and phenology, whereas evaporation served

as the sole negative contributor. Planting area exerted the strongest positive contribution, particularly in 2005 and 2010,250
contributing +133.62 and +159.17 Gm³, respectively. All drivers contributed positively to the green water footprint, with

planting area again emerging as the dominant factor. For maize and Rice-LR, evaporation, transpiration, planting area, and

phenology all contributed positively to both blue and green water footprints. Except for the blue water footprint of Rice-LR,

where transpiration had the largest contribution (a multi-year mean of +3.90 Gm³), planting area remained the dominant

driver in all other cases. In contrast, for Rice-SR&ER, transpiration and phenology acted as negative contributors, with255
phenology exerting the stronger influence. For soybean, evaporation was the sole negative contributor, with multi-year

means of -2.21 Gm³ for the blue water footprint and -1.27 Gm³ for the green water footprint. For potato, transpiration and

planting area contributed negatively to both water footprints, with transpiration showing the stronger negative contribution.

Figure 6: Evaluation of key driving factors of water footprint based on LMDI.260
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Overall, the relative influence of the driving factors indicates that planting area is the dominant driver for wheat, maize, rice,

and soybean, consistently making a positive contribution. Evaporation and transpiration acted as negative contributors only

for wheat and soybean, suggesting the significant role of meteorological conditions (e.g., temperature and humidity) in

influencing crop water use. Comparison of blue and green water footprints reveals that blue water footprints exhibit

substantially higher interannual variability, indicating the dominant influence of irrigation management on pressure on265
agricultural water resources. Green water footprints contribute more in years with abundant precipitation but decline sharply

during drought years, highlighting the potential risks of climate change for sustainable agricultural water availability.

4 Discussion

4.1 Evaluation of ChinaCropWF

4.1.1 Comparison with field measurements270

To evaluate ChinaCropWF, field-measured water footprint data were used as an independent reference, because they directly

quantify crop water consumption and distinguish between blue and green components. Datasets for multiple crops were

compiled to assess potential discrepancies arising from the integration of multi-source remote sensing data (Fig. 7). Multi-

crop comparisons indicate that ChinaCropWF slightly overestimates water footprints (mean bias = 0.08 m³ kg⁻¹, RMSE =

0.14 m³ kg⁻¹), partly due to the limited representation of localized soil water deficits at large spatial scales and uncertainties275
in irrigation practices, particularly in irrigated systems. Nevertheless, calculated and observed values show strong agreement

(Pearson r = 0.72, p < 0.01), demonstrating that ChinaCropWF reliably captures crop-specific water footprints at the national

scale. Temporal evaluation further indicates that interannual variability is well reproduced. Rice, maize, and soybean exhibit

the closest agreement with field measurements, whereas minor discrepancies for wheat likely reflect region-specific

irrigation management and soil conditions. Remaining differences primarily arise from uncertainties in remote sensing-280
derived crop area, evapotranspiration estimates, and the integration of multi-source datasets.
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Figure 7: Comparison of ChinaCropWF with field-measured data.

4.1.2 Comparison with other datasets

ChinaCropWF was compared with two existing China-wide crop water footprint datasets: the WFCP dataset (Wang et al.,285
2023b) and CropGBWater (Chukalla et al., 2025) (Fig. 8). CropGBWater is a global crop water footprint dataset; here, we

focus exclusively on its estimates within China. Results show that CropGBWater reports a higher total water footprint

(506.92 Gm³) than ChinaCropWF, characterized by a larger green water footprint (304.45 Gm³) and a smaller blue water

footprint (202.47 Gm³). Similarly, the WFCP dataset estimates an even higher total water footprint of 546.23 Gm³,

comprising approximately 365.96 Gm³ of green water and 180.27 Gm³ of blue water. The relatively large green water290
footprints in both datasets are primarily attributable to the use of monthly or ten-day scale phenological periods, which

extend the effective growing season and increase accumulated green water consumption. When phenological periods in

ChinaCropWF are expanded accordingly, its green water footprint estimates become more consistent with those from WFCP

and CropGBWater, highlighting the role of phenological assumptions in shaping inter-dataset differences. In addition,

notable discrepancies in crop planting areas are observed between the WFCP dataset and this study, particularly in high-295
precipitation regions of southern China (see Supplementary Materials). Such differences in input planting area datasets can

substantially influence regional crop water footprint estimates, particularly in humid agricultural systems where green water

dominates.
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Figure 8: Comparison of phenological period of different water footprint datasets.300

4.2 Characteristics of ChinaCropWF

4.2.1 Phenology impacts on water footprint

The choice of temporal scale (monthly, ten-day, or daily) in crop water footprint accounting critically influences the

reliability and accuracy of estimates, as it determines how well temporal variations in water availability and crop water

demand are captured. Approaches using monthly or ten-day scales, typically focusing on the growing season (Cao et al.,305
2014; Mekonnen and Hoekstra, 2020), offer higher temporal resolution than seasonal or annual methods and are relatively

straightforward to implement using commonly available meteorological and crop data. However, they remain insufficient for

accurately capturing short-term water stress, extreme weather events, or transient physiological responses, all of which can

substantially affect crop growth, transpiration, and overall water-use efficiency. Daily-scale methods, usually based on soil

water balance models, theoretically provide the highest process-level accuracy by simulating day-to-day fluctuations in310
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water supply, evapotranspiration, and soil moisture dynamics (Hoekstra, 2019). These methods can better account for

irrigation timing, rainfall variability, and crop phenology, which are essential for precise estimation of blue and green water

footprints. Nevertheless, daily-scale approaches require high-resolution input data—including meteorological variables, soil

properties, and crop-specific parameters—and involve considerable computational complexity, which has historically limited

their use in multi-scale, long-term analyses or large-area assessments. Table 1 compares major crop water footprint methods315
and their results with ChinaCropWF. The results are largely consistent with those reported by the WFCP and CropGBWater

datasets, highlighting that monthly or ten-day scale phenological stages may inadequately represent the temporal dynamics

of green water (precipitation) consumption by crops.
Table 1: Comparison of crop water footprint results across different accounting methods.

Related
research

Description Results Results of ChinaCropWF
Phenological
temporal scale

(Fang et
al., 2023)

The field crop water requirement method
assumes no water deficit, such that actual
evapotranspiration equals the crop water
requirement, which is calculated by

multiplying reference evapotranspiration
by crop coefficients.

Crop water footprint in 2020:
694.56 Gm³ (blue water 242.24
Gm³ and green water 452.32

Gm³).

Crop water footprint in 2020:
495.34 Gm³ (blue water 298.88
Gm³ and green water 196.46

Gm³).

Growth period

(Wang et
al., 2023b)

The field soil water balance method
computes actual crop water consumption

by accumulating actual
evapotranspiration across the growth

stages.

Average crop water footprint
(2000–2018): maize 165 Gm³,
rice 143 Gm³, and wheat 125

Gm³.

Average crop water footprint
(2001–2020): maize 135.60
Gm³, rice 166.66 Gm³, wheat

62.87 Gm³.

Ten-day scale

(Cao et al.,
2014)

The regional water balance method
computes regional evapotranspiration by

adjusting field-scale estimates for
irrigation conveyance and distribution
losses. Actual evapotranspiration is

calculated using reference
evapotranspiration and crop coefficients.

Average crop production water
footprint (1998–2010): blue
water 0.85 m³ kg⁻¹ and green

water 0.49 m³ kg⁻¹.

Crop production water footprint
in 2020: wheat 1.10 m³ kg⁻¹;
maize 0.99 m³ kg⁻¹; rice-

SR&ER 1.52 m³ kg⁻¹; rice-LR
1.05 m³ kg⁻¹.

Growth period

(Mekonnen
and

Hoekstra,
2011)

The Hoekstra dataset derives the total
water footprint by multiplying water-use

intensity (i.e., the production water
footprint) with the respective crop yield.

Global average crop production
water footprint (1996–2005):

wheat—blue water 0.34 m³ kg⁻¹,
green water 1.28 m³ kg⁻¹; rice—
blue water 0.34 m³ kg⁻¹, green
water 1.15 m³ kg⁻¹; maize—
blue water 0.08 m³ kg⁻¹, green

water 0.95 m³ kg⁻¹.

Crop production water footprint
in 2020: blue water—wheat
0.74 m³ kg⁻¹, maize 0.55 m³

kg⁻¹, rice-SR&ER 0.92 m³ kg⁻¹,
rice-LR 0.61 m³ kg⁻¹; green
water—wheat 0.36 m³ kg⁻¹,
maize 0.44 m³ kg⁻¹, rice-

SR&ER 0.60 m³ kg⁻¹, rice-LR
0.44 m³ kg⁻¹.

Ten-day scale
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To overcome the aforementioned limitations and improve accounting accuracy, this study integrates high spatiotemporal-320
resolution remote sensing data with the soil water balance method and the field crop water requirement method to develop a

refined framework for daily-scale crop water footprint assessment. By combining remote sensing-derived crop and soil

moisture information with field-based crop water demand estimates, the framework captures both spatial heterogeneity and

temporal variability in crop water use. As a result, ChinaCropWF dataset offers significant advantages over traditional

approaches. It enables detailed characterization of water-use patterns and their temporal dynamics across different crop325
growth stages, quantifies the short-term impacts of extreme weather events on water footprints, and provides a reliable basis

for evaluating the effectiveness of irrigation management and water-saving practices at multiple scales.

4.2.2 Seasonal water shortage effects

Conventional crop water footprint assessments typically quantify blue and green water based solely on evapotranspiration,

implicitly assuming sufficient soil moisture and negligible changes in soil water storage, deep percolation, and runoff (Cao et330
al., 2021; Chukalla et al., 2025). Field observations, however, show that evapotranspiration is regulated by soil infiltration,

storage, redistribution, and release processes (Sun et al., 2025). Temporal mismatches between precipitation and crop water

demand, limited infiltration during high-intensity rainfall, and rapid soil moisture depletion under dry conditions can

substantially reduce effective water availability(Fu et al., 2024; Zhou et al., 2026; Zhu et al., 2022). To maintain soil

moisture near field capacity, additional blue and/or green water inputs via irrigation and management practices are required.335
Incorporating these supplementary inputs alongside evapotranspiration-based footprints provides a more complete

representation of agricultural water appropriation. This integrated approach corrects the systematic underestimation inherent

in conventional methods, enhances sensitivity to regional water scarcity and hydro-climatic variability, and aligns more

closely with soil-plant-atmosphere continuum processes and fundamental hydrological principles.

4.3 Limitations and future work340

This study has several limitations and opportunities for improvement. First, in estimating soil water footprints, a fixed

relative soil moisture of 75% was assumed for non-rice crops, which may not fully capture variability under different water

stress conditions. Further research should examine how varying stress levels influence crop water footprints. Second, the

grey water footprint refers to the water volume required to dilute pollutants to regulatory standards. Nonpoint source

pollution from intensive agriculture has already exceeded environmental carrying capacity, accelerating the degradation of345
both water quantity and quality (Deng et al., 2025; Ma et al., 2020). Future research should focus on investigating the

spatiotemporal dynamics of the grey water footprint to improve the quantification and management of pollution-related

components of water resource assessments. Finally, despite more realistic crop evapotranspiration provided by remote

sensing data, there are known limitations in these satellite datasets due to coarse spatial and temporal resolution, cloud

contamination, and uncertainties in flux estimation (Anderson et al., 2024; Huete et al., 2002). Such constraints may hinder a350
comprehensive representation of complex agricultural processes, indicating substantial room for improvement in the refined
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characterization and dynamic monitoring of crop water use patterns. Future updates of ChinaCropWF should address these

issues to enhance accuracy and applicability for sustainable water resource assessment.

5 Data availability

ChinaCropWF is available for download via https://doi.org/10.5281/zenodo.18057808 (Hua and Wang, 2025).355

6 Conclusions

ChinaCropWF provides a crop water footprint dataset with a spatial resolution of 1-km and a daily temporal resolution,

covering major crops including wheat, maize, rice, soybean, and potato over the period 2001-2020. This dataset enables

high-resolution dynamic assessment of blue and green water use. Comparative analyses with multiple datasets and

observational data indicate that the daily-scale approach offers irreplaceable advantages in improving water footprint360
accounting accuracy, distinguishing between blue and green water footprints, and accurately capturing the seasonal

variability of precipitation. Results show that, although overall crop water footprints have increased, production water

footprints have decreased, reflecting sustained pressure on water resources from food production, while highlighting the

critical role of efficient water use in maintaining the sustainability of the water-food nexus. As an open-access dataset,

ChinaCropWF provides a robust foundation for analyzing the spatial variability of agricultural water use, evaluating365
transboundary virtual water flows, and informing water-saving and irrigation optimization policies.

Author contributions

XW and EH the research; LH, LZ, QZ, and YW contributed to data processing; EH performed the analysis and plot the

figures with supervision by XW. EH and XW wrote the original draft; All authors contribute to interpretation of the results

and writing of the manuscript.370

Competing interests

The contact author has declared that none of the authors has any competing interests.

Disclaimer

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published

maps, institutional affiliations, or any other geographical representation in this paper.375

https://doi.org/10.5194/essd-2025-840
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



20

Financial support

This research was financially supported by National Natural Science Foundation of China (42361144876) and Scientific

Research Innovation Capability Support Project for Young Faculty by Ministry of Education

(ZYGXQNJSKYCXNLZCXM-S2) and National Key R&D Program of China (2024YFF0809103).

References380

Anderson, M. C., Kustas, W. P., Norman, J. M., Diak, G. T., Hain, C. R., Gao, F., Yang, Y., Knipper, K. R., Xue, J., Yang,

Y., Crow, W. T., Holmes, T. R. H., Nieto, H., Guzinski, R., Otkin, J. A., Mecikalski, J. R., Cammalleri, C., Torres-Rua, A.

T., Zhan, X., Fang, L., Colaizzi, P. D., and Agam, N.: A brief history of the thermal IR-based two-source energy balance

(TSEB) model – diagnosing evapotranspiration from plant to global scales, Agric. For. Meteorol., 350, 109951,

https://doi.org/10.1016/j.agrformet.2024.109951, 2024.385
Cao, X., Wu, P., Wang, Y., and Zhao, X.: Water footprint of grain product in irrigated farmland of China, Water Resour.

Manage., 28, 2213–2227, https://doi.org/10.1007/s11269-014-0607-1, 2014.

Cao, X., Zeng, W., Wu, M., Li, T., Chen, S., and Wang, W.: Water resources efficiency assessment in crop production from

the perspective of water footprint, Journal of Cleaner Production, 309, 127371, https://doi.org/10.1016/j.jclepro.2021.127371,

2021.390
Chukalla, A. D., Mekonnen, M. M., Gunathilake, D., Wolkeba, F. T., Gunasekara, B., and Vanham, D.: Global spatially

explicit crop water consumption shows an overall increase of 9% for 46 agricultural crops from 2010 to 2020, Nat. Food, 6,

983–994, https://doi.org/10.1038/s43016-025-01231-x, 2025.

Dalin, C., Qiu, H., Hanasaki, N., Mauzerall, D. L., and Rodriguez-Iturbe, I.: Balancing water resource conservation and food

security in China, Proc. Natl. Acad. Sci., 112, 4588–4593, https://doi.org/10.1073/pnas.1504345112, 2015.395
Deng, Q., Sharretts, T., Ali, T., Ao, Y. Z., Chiarelli, D. D., Demeke, B., Marston, L., Mehta, P., Mekonnen, M., Rulli, M. C.,

Tuninetti, M., Xie, W., and Davis, K. F.: Deepening water scarcity in breadbasket nations, Nat. Commun., 16, 1110,

https://doi.org/10.1038/s41467-025-56022-6, 2025.

Elnashar, A., Wang, L., Wu, B., Zhu, W., and Zeng, H.: Synthesis of global actual evapotranspiration from 1982 to 2019,

Earth Syst. Sci. Data, 13, 447–480, https://doi.org/10.5194/essd-13-447-2021, 2021.400
Fang, H., Wu, N., Adamowski, J., Wu, M., and Cao, X.: Crop water footprints and their driving mechanisms show regional

differences, Sci. Total Environ., 904, 167549, https://doi.org/10.1016/j.scitotenv.2023.167549, 2023.

Fu, Z., Ciais, P., Wigneron, J.-P., Gentine, P., Feldman, A. F., Makowski, D., Viovy, N., Kemanian, A. R., Goll, D. S., Stoy,

P. C., Prentice, I. C., Yakir, D., Liu, L., Ma, H., Li, X., Huang, Y., Yu, K., Zhu, P., Li, X., Zhu, Z., Lian, J., and Smith, W.

K.: Global critical soil moisture thresholds of plant water stress, Nat Commun, 15, 4826, https://doi.org/10.1038/s41467-405
024-49244-7, 2024.

https://doi.org/10.5194/essd-2025-840
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



21

Giordano, V., Tuninetti, M., and Laio, F.: Efficient agricultural practices in africa reduce crop water footprint despite climate

change, but rely on blue water resources, Commun. Earth Environ., 4, 1–12, https://doi.org/10.1038/s43247-023-01125-5,

2023.

Graham, N. T., Hejazi, M. I., Kim, S. H., Davies, E. G. R., Edmonds, J. A., and Miralles-Wilhelm, F.: Future changes in the410
trading of virtual water, Nat. Commun., 11, 3632, https://doi.org/10.1038/s41467-020-17400-4, 2020.

Han, J., Miao, C., Gou, J., Zheng, H., Zhang, Q., and Guo, X.: A new daily gridded precipitation dataset for the Chinese

mainland based on gauge observations, Earth Syst. Sci. Data, 15, 3147–3161, https://doi.org/10.5194/essd-15-3147-2023,

2023.

He, L. and Rosa, L.: Solutions to agricultural green water scarcity under climate change, PNAS Nexus, 2, pgad117,415
https://doi.org/10.1093/pnasnexus/pgad117, 2023.

He, S., Zhang, Y., Ma, N., Tian, J., Kong, D., and Liu, C.: A daily and 500 m coupled evapotranspiration and gross primary

production product across China during 2000–2020, Earth Syst. Sci. Data, 14, 5463–5488, https://doi.org/10.5194/essd-14-

5463-2022, 2022.

Hoekstra, A. Y.: Green-blue water accounting in a soil water balance, Adv. Water Resour., 129, 112–117,420
https://doi.org/10.1016/j.advwatres.2019.05.012, 2019.

Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., and Mekonnen, M. M. (Eds.): The water footprint assessment manual:

Setting the global standard, 2011.

Hua, E. and Wang, X.: A high-resolution gridded dataset of water footprints for China's major food crops from 2001 to 2020,

Zenodo [data set], https://doi.org/10.5281/zenodo.18057808, 2025.425
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical

performance of the MODIS vegetation indices, Remote Sensing of Environment, 83, 195–213,

https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.

Li, B., Qin, L., Wang, J., Dang, Y., and He, H.: Multi-source data-based spatial variations of blue and green water footprints

for rice production in jilin province, China, Environ Sci Pollut Res, 28, 38106–38116, https://doi.org/10.1007/s11356-021-430
13365-z, 2021.

Luo, Y., Zhang, Z., Chen, Y., Li, Z., and Tao, F.: ChinaCropPhen1km: A high-resolution crop phenological dataset for three

staple crops in China during 2000–2015 based on leaf area index (LAI) products, Earth Syst. Sci. Data, 12, 197–214,

https://doi.org/10.5194/essd-12-197-2020, 2020.

Ma, T., Sun, S., Fu, G., Hall, J. W., Ni, Y., He, L., Yi, J., Zhao, N., Du, Y., Pei, T., Cheng, W., Song, C., Fang, C., and Zhou,435
C.: Pollution exacerbates China’s water scarcity and its regional inequality, Nat. Commun., 11, 650,

https://doi.org/10.1038/s41467-020-14532-5, 2020.

Mei, Q., Zhang, Z., Luo, Y., Wu, H., and Tao, F.: A 1km resolution dataset of planting area of three staple crops in China

during 2009-2015 V2（ChinaCropArea1kmV2）, Science Data Bank, 2022.

https://doi.org/10.5194/essd-2025-840
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



22

Mei, Q., Zhang, Z., Han, J., Song, J., Dong, J., Wu, H., Xu, J., and Tao, F.: ChinaSoyArea10m: A dataset of soybean-440
planting areas with a spatial resolution of 10 m across China from 2017 to 2021, Earth Syst. Sci. Data, 16, 3213–3231,

https://doi.org/10.5194/essd-16-3213-2024, 2024.

Mekonnen, M. M. and Hoekstra, A. Y.: The green, blue and grey water footprint of crops and derived crop products, Hydrol.

Earth Syst. Sci., 15, 1577–1600, https://doi.org/10.5194/hess-15-1577-2011, 2011.

Mekonnen, M. M. and Hoekstra, A. Y.: Blue water footprint linked to national consumption and international trade is445
unsustainable, Nat. Food, 1, 792–800, https://doi.org/10.1038/s43016-020-00198-1, 2020.

Mialyk O., Schyns J. F., Booij M. J., Su H., Hogeboom R. J., and Berger M.: Water footprints and crop water use of 175

individual crops for 1990–2019 simulated with a global crop model, Scientific Data, https://doi.org/10.1038/s41597-024-

03051-3, 2024.

Perez, N., Singh, V., Ringler, C., Xie, H., Zhu, T., Sutanudjaja, E. H., and Villholth, K. G.: Ending groundwater overdraft450
without affecting food security, Nat. Sustainability, 7, 1007–1017, https://doi.org/10.1038/s41893-024-01376-w, 2024.

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein, P., Liu, C., Tan,

K., Yu, Y., Zhang, T., and Fang, J.: The impacts of climate change on water resources and agriculture in China, Nature, 467,

43–51, https://doi.org/10.1038/nature09364, 2010.

Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J., and D’Odorico, P.: Global agricultural economic water scarcity, Sci.455
Adv., 6, eaaz6031, https://doi.org/10.1126/sciadv.aaz6031, 2020.

Shi, G., Sun, W., Shangguan, W., Wei, Z., Yuan, H., Li, L., Sun, X., Zhang, Y., Liang, H., Li, D., Huang, F., Li, Q., and Dai,

Y.: A China dataset of soil properties for land surface modelling (version 2, CSDLv2), Earth Syst. Sci. Data, 17, 517–543,

https://doi.org/10.5194/essd-17-517-2025, 2025.

Sun, S., Liu, J., Wu, P., Wang, Y., Zhao, X., and Zhang, X.: Comprehensive evaluation of water use in agricultural460
production: a case study in hetao irrigation district, china, J. Cleaner Prod., 112, 4569–4575,

https://doi.org/10.1016/j.jclepro.2015.06.123, 2016.

Sun, W., Zhou, S., Yu, B., Zhang, Y., Keenan, T., and Fu, B.: Soil moisture-atmosphere interactions drive terrestrial carbon-

water trade-offs, Commun Earth Environ, 6, 169, https://doi.org/10.1038/s43247-025-02145-z, 2025.

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan,465
C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water security and river biodiversity, Nature, 467, 555–

561, https://doi.org/10.1038/nature09440, 2010.

Wang, J., Gao, X., Huang, K., Yuan, Y., Wang, A., Dong, L., and Zhao, X.: A remote sensing-based method for high-

resolution crop water footprint quantification in an irrigation district with complex planting structure, J. Hydrol., 617,

129030, https://doi.org/10.1016/j.jhydrol.2022.129030, 2023a.470
Wang, M. and Shi, W.: The annual dynamic dataset of high-resolution crop water use in China from 1991 to 2019, Sci. Data,

11, 1373, https://doi.org/10.1038/s41597-024-04185-0, 2024.

https://doi.org/10.5194/essd-2025-840
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



23

Wang, W., Zhuo, L., Ji, X., Yue, Z., Li, Z., Li, M., Zhang, H., Gao, R., Yan, C., Zhang, P., and Wu, P.: A gridded dataset of

consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China

during 2000–2018, Earth Syst. Sci. Data, 15, 4803–4827, https://doi.org/10.5194/essd-15-4803-2023, 2023b.475
Wang, X., Müller, C., Elliot, J., Mueller, N. D., Ciais, P., Jägermeyr, J., Gerber, J., Dumas, P., Wang, C., Yang, H., Li, L.,

Deryng, D., Folberth, C., Liu, W., Makowski, D., Olin, S., Pugh, T. A. M., Reddy, A., Schmid, E., Jeong, S., Zhou, F., and

Piao, S.: Global irrigation contribution to wheat and maize yield, Nat. Commun., 12, 1235, https://doi.org/10.1038/s41467-

021-21498-5, 2021.

Wang, Z., Li, T., Liang, W., Fu, B., Li, J., and Yan, J.: Uncovering the structure and evolution of global virtual water and480
agricultural land network, Sustainable Production and Consumption, 51, 599–611, https://doi.org/10.1016/j.spc.2024.08.017,

2024.

Wei, S., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H., Zhang, Q., Chen, D., Chen, M., Chu, J., Dou,

Y., Guo, J., Li, H., Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C., and Zhang, Y.: A China data set of soil properties

for land surface modeling, JAMES, 5, 212–224, https://doi.org/10.1002/jame.20026, 2013.485
Wu, P.: Strategic study on water use management in agriculture with "four coordinations" as the core, China Water

Resources, 17, 13-20, https://doi.org/10.3969/j.issn.1000-1123.2024.17.012, 2024.

Xu, Z., Chen, X., Wu, S. R., Gong, M., Du, Y., Wang, J., Li, Y., and Liu, J.: Spatial-temporal assessment of water footprint,

water scarcity and crop water productivity in a major crop production region, J. Cleaner Prod., 224, 375–383,

https://doi.org/10.1016/j.jclepro.2019.03.108, 2019.490
Zheng, J., Zhou, Z., Liu, J., Yan, Z., Xu, C.-Y., Jiang, Y., Jia, Y., and Wang, H.: A novel framework for investigating the

mechanisms of climate change and anthropogenic activities on the evolution of hydrological drought, Sci. Total Environ.,

900, 165685, https://doi.org/10.1016/j.scitotenv.2023.165685, 2023.

Zhou, F., Bo, Y., Ciais, P., Dumas, P., Tang, Q., Wang, X., Liu, J., Zheng, C., Polcher, J., Yin, Z., Guimberteau, M., Peng, S.,

Ottle, C., Zhao, X., Zhao, J., Tan, Q., Chen, L., Shen, H., Yang, H., Piao, S., Wang, H., and Wada, Y.: Deceleration of495
China’s human water use and its key drivers, Proc. Natl. Acad. Sci., 117, 7702–7711,

https://doi.org/10.1073/pnas.1909902117, 2020.

Zhou, F., Tang, G., Wang, C., Qin, Y., Fu, B., and Fu, J.: Pre-rainfall vapor pressure deficit stress and sunshine reduction

govern sub-seasonal rainfall effects on China’s rice yield, European Journal of Agronomy, 174, 127954,

https://doi.org/10.1016/j.eja.2025.127954, 2026.500
Zhu, P., Burney, J., Chang, J., Jin, Z., Mueller, N. D., Xin, Q., Xu, J., Yu, L., Makowski, D., and Ciais, P.: Warming reduces

global agricultural production by decreasing cropping frequency and yields, Nat. Clim. Chang., 12, 1016–1023,

https://doi.org/10.1038/s41558-022-01492-5, 2022.

Zhuo, L. and Hoekstra, A. Y.: The effect of different agricultural management practices on irrigation efficiency, water use

efficiency and green and blue water footprint, Front. Agric. Sci. Eng., 4, 185–194, https://doi.org/10.15302/J-FASE-2017149,505
2017.

https://doi.org/10.5194/essd-2025-840
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.


