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Abstract. Increasingly unsustainable water use in food systems and rising regional water scarcity jointly pose a critical
challenge to food security. Advancing sustainable agricultural water management requires accurate quantification of crop
water use, including the contributions of blue and green water and their spatiotemporal dynamics throughout growing
seasons, the absence of which impedes reliable estimation of agricultural water requirements and the improvement of water
management practices. Here, we integrated multi-source remote sensing datasets with high-resolution crop distribution and
phenology data within a detailed water footprint accounting framework. This approach generated in ChinaCropWF (Hua and
Wang, 2025; https://doi.org/10.5281/zenodo.18057808), a 1-km, nationwide, daily-resolution dataset spanning 2001-2020,
which quantifies blue and green water footprints for China's five major crops. Our dataset shows the total crop water
footprints ranked as rice (139.65-193.65 Gm?) > maize (130.22-140.98 Gm?®) > wheat (61.15-64.59 Gm?) > soybean (32.05-
35.39 Gm?) > potato (0.15-11.31 Gm?). The blue and green water composition was primarily determined by crop-specific
traits and regional precipitation regimes. In contrast to the global increase in blue water footprints, China's blue water
footprints for major food crops have declined, despite pronounced spatial heterogeneity. By contrast, green water footprints
have increased widely across all major cropping regions. By capturing spatial heterogeneity in water volume and use
efficiency, ChinaCropWF provides data support for adaptive irrigation, regional water management, and food-water nexus
assessments.

Short Summary. Accurately quantifying the blue and green water footprints of crops is essential for addressing
unsustainable agricultural water use. However, long-term, high spatiotemporal resolution data have been lacking. Hence,
multi-source remote sensing was integrated with high-resolution crop distribution and phenology within a detailed water
footprint framework. ChinaCropWF provides daily, 1-km resolution blue and green water footprints for China's five major

food crops from 2001 to 2020.
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1 Introduction

Global food production systems face emerging water scarcity challenges, representing a major constraint to sustainable
agricultural development (Dalin et al., 2015; Perez et al., 2024; Rosa et al., 2020). Climate change further undermines
agricultural water security by altering precipitation patterns and intensifying hydrological extremes, thereby intensifying the
imbalance between irrigation water supply and demand (Giordano et al., 2023; Piao et al., 2010; Wang et al., 2021; Zheng et
al., 2023). Combined pressures from water scarcity and climate change exacerbate challenges to water security and pose
significant risks to the stability of food supply (Vorosmarty et al., 2010). This issue is of particular concern for China,
which is among the world's largest producers of rice, maize, wheat, soybean, and potato. With approximately half of its
cropland under irrigation, China's agricultural system is therefore highly vulnerable to water shortage risks.

Water footprint refers to the amount of water resources required for the production of all goods and services consumed by a
country, region, or individual person within a given period. Figuratively speaking, it represents the "footprints" left by water
throughout the processes of production and consumption. It is a core indicator for quantifying water consumption in crop
production and is widely used in water resource management, agricultural sustainability research (Hoekstra et al., 2011), and
a key variable considered in food-water nexus research and management frameworks that address key constraints on
agricultural sustainability (Wu, 2024). By definition, it comprises blue water (consumed surface and groundwater) and green
water (consumed precipitation-derived soil moisture).

Earlier global water footprint assessments (Mekonnen and Hoekstra, 2011) have highlighted marked spatial heterogeneity in
agricultural water use and emphasized the interactions among agricultural systems, climate, and land management. Recent
methodological advances enable multiscale evaluations, from field to global scales, and expand analytical capabilities to
include water consumption assessment, efficiency analysis, pollution accounting, and the development of sustainable water
management strategies (Graham et al., 2020; Mialyk et al., 2024; Sun et al., 2016; Wang et al., 2024; Zhuo and Hoekstra,
2017). Currently, the assessment of crop water footprints still relies primarily on model simulations, with most models
constructed based on simplified assumptions on evaporative demands and seasonal water shortage, limiting the reliability of
the results. For example, current crop water footprint assessments may overestimate crop evapotranspiration because they
rely on crop coefficients derived under idealized environmental conditions. Moreover, aggregating precipitation and
evaporation over monthly or growing-season periods can bias estimates of seasonal water deficits, influencing both the
quantification of crop water footprints and the separation of blue and green water (He and Rosa, 2023). Hence, due to
limitations in existing data and models, achieving high spatiotemporal resolution and accurate daily-scale monitoring of crop
water use, particularly the dynamic characterization of key periods of water stress, remains a major challenge (Xu et al.,
2019).

Compared with global datasets, regional crop water footprint assessments in China can provide higher spatiotemporal
resolution and extended temporal coverage because they incorporate locally-specific data on crop phenology and

management practices. At the spatial scale, research has expanded from representative farmlands to provincial and national
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scales, supported by high-resolution accounting frameworks that integrate multi-source satellite remote sensing data with
ground-based meteorological observations. For example, Wang et al. (2023a) developed a remote sensing-based quantitative
method to assess the dynamic changes in crop water footprints at a 250-meter resolution within the Baojixia Irrigation
District. Li et al. (2021) quantified the rice water footprint in Jilin Province at a spatial resolution of 1-km. At the temporal
scale, Wang et al. (2023b) estimated national water footprints for 21 crops from 2000 to 2018 using the AquaCrop model,
generating S-arcmin gridded outputs. Furthermore, Wang and Shi (2024) mapped annual blue and green water footprints for
15 major crops from 1991 to 2019 at 1-km resolution by coupling a dynamic water balance model with a random forest
algorithm and incorporating meteorological and phenological dynamics. However, these studies generally have strong
assumptions crop phenology and planting areas. In terms of temporal resolution, they also predominantly rely on monthly-
scale growing period divisions, whereas in terms of spatial resolution, they often assume that planting areas remain
unchanged over multiple years. These limitations have restricted the application of water footprint evolution assessments.
Consequently, two major limitations remain: limited differentiation between blue and green water use throughout crop
growth stages, and insufficient temporal resolution to capture daily, high-resolution water footprint dynamics.

In this study, we developed ChinaCropWF, a high-resolution (1-km) gridded dataset that quantifies the water footprints of
China's five major crops—wheat, maize, rice, soybean, and potato—from 2001 to 2020. The dataset encompasses three core
components: the total water footprint (blue and green water), the production water footprint, and evapotranspiration
partitioning (i.e., the evaporation-to-transpiration ratio). By integrating multi-source remote sensing products, ChinaCropWF
enables daily, 1-km gridded quantification and detailed spatiotemporal characterization of crop water use. Furthermore, we
identify the key drivers underlying interannual variations in these crop water footprints. This analysis provides critical data
information to guide targeted interventions in water-saving irrigation, cropping structure optimization, and agricultural water

management.

2 Data and methods

This study focuses on five major crops in China: wheat, maize, rice, soybean, and potato. As of 2024, these crops were
cultivated on a total of 119.3 Mha in China, with maize, rice, wheat, soybean, and potato accounting for 44.7, 29.0, 23.6,
10.3, and 3.2 Mha, respectively, collectively representing 92.9% of the total sown area. Given their dominant coverage and
importance for national food production, accurately quantifying their water footprints is crucial for sustainable water
management and food security assessments. ChinaCropWF, a high-resolution (1-km) gridded dataset, was developed

through three main steps to quantify the water footprints of these crops from 2001 to 2020 (Fig. 1):
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Figure 1: Research steps.

Step 1: Data collection. This step focused on acquiring high-resolution (1-km) remote sensing datasets essential for
quantifying the water footprints of China's major food crops. The key datasets included precipitation, evapotranspiration,
crop planting area, and crop phenology.

Step 2: Water footprint accounting. In this step, the blue and green water components consumed by major food crops were
quantified through integration of evapotranspiration and precipitation datasets. By incorporating crop planting area and

phenology data, daily blue and green water footprints were further quantified across different growth stages.

4
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Step 3: Water footprint products. During the dataset development process, the high-resolution ChinaCropWF dataset (2001-
2020) was developed, including blue and green water footprints, production water footprints, and crop-specific evaporation-
to-transpiration ratios. The dataset was validated using observed water footprint data to ensure its accuracy and reliability.
Additionally, an alternative crop water footprint dataset was generated using a synthesized evapotranspiration dataset for

comparative assessment.

2.1 Data sources
2.1.1 Precipitation

In this study, the China Daily Precipitation dataset (CHM_PRE) was used as the primary data source. This 0.1°-resolution
gridded dataset was generated by integrating data from 2,839 meteorological stations in China and adjacent regions (Han et
al., 2023). Cross-validation against widely used precipitation datasets, including CGDPA, CN05.1, and CMA V2.0, showed
strong agreement in interannual variability and spatial patterns of extreme precipitation, confirming its suitability for

regional climate and hydrological analyses.

2.1.2 Evapotranspiration

Actual evapotranspiration data were obtained from the PML-V2 dataset (He et al., 2022), which provides 500-m spatial
resolution and spans 2000-2020. PML-V2 derives by separately estimating its three components, including plant
transpiration (), evaporation from the soil (), and canopy evaporation from precipitation interception (), as follows:

- v 1)
To validate ChinaCropWF, we recomputed crop water footprint datasets based on a synthesized evapotranspiration dataset.
This dataset was generated by evaluating twelve global evapotranspiration products over various periods, land surface types,
and environmental conditions; the best-performing products were selected through site-to-pixel comparisons (Elnashar et al.,

2021). The resulting synthesized evapotranspiration dataset offers a comprehensive depiction of the spatiotemporal patterns

and variability of actual evapotranspiration (see Supplementary Materials).

2.1.3 Crop planting area

Crop planting areas for wheat, maize, and rice were obtained from the ChinaCropArealkmV2 dataset, which was derived
from GLASS leaf area index (LAI) time-series data. Key phenological features of the LAI curves were extracted using
inflection point detection and thresholding to facilitate remote sensing—based estimation of crop planting areas (Mei et al.,
2022). Soybean planting areas at 10-m spatial resolution for 2017-2020 were derived from the ChinaSoyArealOm dataset,
produced using a regionally adapted spectra—phenology integration approach based on Sentinel-2 imagery and Google Earth

Engine (Mei et al., 2024). Potato planting areas were sourced from the SPAM dataset (available at https://mapspam.info/).
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2.1.4 Crop planting area

Crop phenology data for maize, wheat, and rice were sourced from the ChinaCropPhenlkm dataset (Luo et al., 2020), which
provides high-resolution spatiotemporal information on key phenological stages across China, spanning 2000-2019. This
dataset was generated through integration of GLASS-derived LAI and long-term climatic observations from

agrometeorological stations. Phenology data for soybean and potato were obtained from station-based observations.

2.2 Methods
2.2.1 Crop water footprint

The crop water footprint accounting framework consists of four modules. (1) The spatiotemporal integration of multi-source
datasets involved precipitation (CHM PRE), actual evapotranspiration (PML-V2), crop planting areas
(ChinaCropArealkmV2 and ChinaSoyArealOm), and crop phenology (ChinaCropPhenlkm) datasets, which were uniformly
resampled to a 1-km spatial resolution, resulting in a spatiotemporally aligned raster database. (2) Blue and green water were
quantified using the field crop water requirement method: blue water (irrigation) was computed as the difference between
actual evapotranspiration and precipitation, while green water was defined as precipitation; when precipitation exceeded
actual evapotranspiration, green water was set equal to actual evapotranspiration. (3) The delineation of crop planting areas
was performed by identifying the presence of each crop within every 1-km grid cell using crop planting area datasets,
thereby defining the spatial extent of each crop's water footprint. (4) Based on phenology data, daily crop growth stages were
determined, and blue and green water were allocated to each stage. This enabled the calculation of the crop water footprint
for each 1-km grid cell spanning the period 2001-2020.

To account for soil water deficits resulting from seasonal precipitation, the soil water balance method was employed to
calculate soil water variations (A ), thereby enabling a more accurate quantification of crop water footprints (Fig. 1). The
total crop water footprint () consists of the blue water footprint ( ) and the green water footprint ( ), which are

calculated as follows:

= + s 2)

= x +A s 3)

= x +A s 4)
where is the blue water portion of evapotranspiration, mm; is the crop planting area, hm?; is the precipitation,
mm; A and A are the blue and green water footprints of soil water, respectively. Regarding the initial soil water

content, it was accounted for based on the soil data of Shi et al. (2025) and Wei et al. (2013).

={o = = 3)
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2.2.2 Crop production water footprint

Within a multi-scale coupled water-food nexus framework, municipal-level crop yield statistics were spatially aligned with
1-km resolution water footprint datasets. Using the production water footprint indicator (m®kg™), the relationship between
water use and crop yield was quantified for five major crops: wheat, maize, rice, soybean, and potato. The total water
footprint was further partitioned into blue water (irrigation) and green water (precipitation) components to assess the relative

contributions of different water sources.

= 7/, (6)
= /. (M
= /. ®)
where , , and represent the crop production water footprint, crop production blue water footprint, and

crop production green water footprint, m* kg™', respectively; is the municipal crop yield, kg.

3 Results
3.1 Spatiotemporal evolution patterns of crop water footprint

Over the period 2001-2020, the total water footprint of China's major food crops increased by 76.4%, from 280.85 to
495.34 Gm? (Fig. 2). This increase was mainly driven by the green water footprint, which expanded by 154.0%, whereas the
blue water footprint grew by only 46.9%. All crops exhibited upward trends, with the blue water footprint maintaining a
relatively high contribution for most crops. The total water footprint peaked in 2017 before declining slightly. Among all
crops, potato, rice-LR, and maize exhibited the most pronounced increases (175.1%, 130.7%, and 116.0%, respectively),
whereas wheat and soybean showed comparatively moderate growth (36.1% and 40.7%, respectively). Green water
footprints increased by more than 100% across all crops, with rice-LR showing an especially large rise of 230.0%. In
contrast, changes in blue water footprints were comparatively moderate, with wheat and soybean increasing by only 24.6%

and 11.1%, respectively.
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180  Figure 2: Evolution trend of crop water footprint from 2001 to 2020.

In 2020, the water footprints of China's major food crops exhibited pronounced spatial clustering patterns and substantial
regional heterogeneity. High values (>20 Gm?) were concentrated in major grain-producing provinces, whereas markedly
low values were observed in the Qinghai-Tibet Plateau ecological barrier—such as Qinghai (0.68 Gm?®)—as well as in
megacities such as Shanghai (0.58 Gm?®). This spatial pattern was largely governed by the distribution of cultivated land
185 resources and the intensity of agricultural production. The blue water footprint closely mirrored the total water footprint,
underscoring the dominant role of irrigated agriculture in core grain-producing regions. In Heilongjiang, Henan, and
Shandong, blue water contributed 58.6%, 69.8%, and 68.8% of the total, respectively. In contrast, green water footprints
were strongly influenced by precipitation gradients, forming a distinct spatial corridor along the 400-mm isoline, with green

water contributions in Heilongjiang, Guangxi, and Hunan accounting for 41.4%, 45.6%, and 50.3% of their respective totals.
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Figure 3: Spatial distribution pattern of crop water footprint in 2020.

For individual crops (Fig. 3), high wheat water footprints were concentrated in the Huang-Huai-Hai Plain. In Henan,
Shandong, and Anhui, blue water accounted for 83.5%, 83.5%, and 79.9% of the total, respectively. Henan exhibited the
largest blue water footprint (17.12 Gm?®), which is closely related to the phenological characteristics of winter wheat. In
195 Northeast China, maize water footprints were concentrated in Heilongjiang, Jilin, and Inner Mongolia, contributing 36.0% of
the national total. High rice-SR&ER water footprints were concentrated in Heilongjiang (14.06 Gm?), Guangxi (8.48 Gm?®),
and Anhui (6.51 Gm?), where green water contributed 43.0-52.8% of the total. For rice-LR, high water footprints were
observed in Guangxi (7.84 Gm?), Jiangxi (7.14 Gm?), and Hunan (6.20 Gm?), with an approximately balanced blue-green
ratio. Soybean water footprints were mainly concentrated in Heilongjiang, Inner Mongolia, and Jilin, which together
200 accounted for 65.8% of the national total. For potato, high water footprints occurred in Sichuan, Gansu, and Shaanxi, with

relatively high blue water contributions even in humid southern regions.
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3.2 Regionalized assessment of crop production water footprint
From 2001 to 2020, the of China's major food crops exhibited distinct crop-specific patterns and substantial spatial
heterogeneity (Fig. 4). The of dryland crops (wheat and maize) remained relatively stable, whereas those of rice,
soybean, and potato increased over time. Wheat showed a first increasing and then decreasing trend, with high values

concentrated in Northeast China and Inner Mongolia. For example, Yichun in Heilongjiang (7.05 m?* kg™") and Xilin Gol in
Inner Mongolia (8.35 m* kg™') showed notably elevated levels, which are likely associated with climatic constraints that
increase irrigation demand. Maize remained largely stable, with high values observed in Jingmen, Hubei (10.41 m?
kg™) and Yichun, Heilongjiang (7.88 m® kg™), while exceptionally low values occurred in Shihezi and Hami, Xinjiang
(<0.25 m* kg™"). Rice-SR&ER increased markedly from 0.90 to 1.52 m® kg™!, accompanied by a northward shift in
high-value areas. Non-traditional rice-growing regions, such as Jinzhong in Shanxi and Ganzi in Sichuan, exhibited
comparatively high , indicating lower water-use efficiency. Rice-LR increased by 93.8%, with high values
occurring in Yangjiang and Yunfu, Guangdong (>4.00 m® kg™!). Soybean rose from 0.36 to 0.75 m* kg™, with higher
values in the Central Plains and a notable increasing trend in humid regions such as Yunnan. Potato decreased by
14.6%, with high-value areas concentrated in Shaanxi, Gansu, and Ningxia.

Temporal trends in blue and green water footprints were broadly consistent with those of , with pronounced differences
among crop types. For , dryland crops exhibited a continuous declining trend. Wheat uBWF fluctuated slightly,
increasing by 1.4% from 0.73 to 0.74 m*kg™". In contrast, maize declined steadily from 0.65 to 0.55 m*kg™. Rice-
SR&ER showed relatively high and stable , whereas Rice-LR exhibited greater interannual variability. Soybean was
the only crop exhibiting a consistent increase, from 0.24 to 0.40 m® kg™, highlighting the relative underutilization of
water-saving practices for leguminous crops. The evolution of exhibited clear climate-driven patterns, with most
crops showing increasing trends, particularly rice. Rice-SR&ER increased by 127.2%, while rice-LR surged by
179.4%. In contrast, dryland crops experienced more moderate increases: wheat and maize rose by 52.0% and 35.7%,
respectively, likely reflecting improved precipitation utilization supported by the adoption of drought-resistant varieties.
Overall, the spatiotemporal evolution of crop production blue and green water footprints revealed pronounced regional

differentiation, characterized by declining and a broadly consistent increase in

10
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Between 2001 and 2020, crop transpiration and evaporation increased by 37.2% and 33.1%, respectively. A pronounced shift

was observed in wheat, with evaporation declining from 58.9% in 2003 to 36.6% in 2019 (Fig. 5), while transpiration

increased from 41.1% to 63.4%, changes likely associated with the adoption of drought-resistant cultivars and the

implementation of precision irrigation. In maize, evaporation peaked at 42.3% in 2003 before decreasing to 31.9% in 2017,

whereas transpiration ranged from 57.7% to 68.1%, suggesting an overall tendency toward higher transpiration fractions.

Rice showed marked interannual fluctuations in evaporation and transpiration, with transpiration consistently exceeding 60%.

Soybean and potato exhibited similar temporal patterns, with transpiration peaking at 75.9% and 75.5% in 2017 and 2019,

respectively—the highest values among the crops analyzed.
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Figure 5: Evolutionary trends of crop evaporation (red) and transpiration (blue).
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A comparative analysis of crop evaporation and transpiration identified three major patterns in their spatiotemporal

dynamics. First, transpiration consistently exceeded evaporation, a pattern consistent with physiological differences in water-

use strategies between Cs and Ca crops. Second, evaporation peaked during 2002-2005, coinciding with a weakened East

Asian summer monsoon, whereas transpiration reached its maximum in 2017-2019 during a period of intensified warming,

suggesting the dominant role of climatic forcing in shaping these trends. Third, interannual variability remained within 0-

11.2% across crops, indicating a relatively stable response of agroecosystems to climate variability.
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260 Figure 6: Evaluation of key driving factors of water footprint based on LMDI.
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Using the LMDI decomposition method, we evaluated the temporal evolution of blue and green water footprints of wheat,
maize, rice, soybean, and potato during 2002-2020, along with their underlying driving factors (Fig. 6). For wheat, increases
in the blue water footprint were primarily driven by transpiration, planting area, and phenology, whereas evaporation served
as the sole negative contributor. Planting area exerted the strongest positive contribution, particularly in 2005 and 2010,
contributing +133.62 and +159.17 Gm?, respectively. All drivers contributed positively to the green water footprint, with
planting area again emerging as the dominant factor. For maize and Rice-LR, evaporation, transpiration, planting area, and
phenology all contributed positively to both blue and green water footprints. Except for the blue water footprint of Rice-LR,
where transpiration had the largest contribution (a multi-year mean of +3.90 Gm?®), planting area remained the dominant
driver in all other cases. In contrast, for Rice-SR&ER, transpiration and phenology acted as negative contributors, with
phenology exerting the stronger influence. For soybean, evaporation was the sole negative contributor, with multi-year
means of -2.21 Gm? for the blue water footprint and -1.27 Gm? for the green water footprint. For potato, transpiration and

planting area contributed negatively to both water footprints, with transpiration showing the stronger negative contribution.
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Overall, the relative influence of the driving factors indicates that planting area is the dominant driver for wheat, maize, rice,
and soybean, consistently making a positive contribution. Evaporation and transpiration acted as negative contributors only
for wheat and soybean, suggesting the significant role of meteorological conditions (e.g., temperature and humidity) in
influencing crop water use. Comparison of blue and green water footprints reveals that blue water footprints exhibit
substantially higher interannual variability, indicating the dominant influence of irrigation management on pressure on
agricultural water resources. Green water footprints contribute more in years with abundant precipitation but decline sharply

during drought years, highlighting the potential risks of climate change for sustainable agricultural water availability.

4 Discussion
4.1 Evaluation of ChinaCropWF
4.1.1 Comparison with field measurements

To evaluate ChinaCropWF, field-measured water footprint data were used as an independent reference, because they directly
quantify crop water consumption and distinguish between blue and green components. Datasets for multiple crops were
compiled to assess potential discrepancies arising from the integration of multi-source remote sensing data (Fig. 7). Multi-
crop comparisons indicate that ChinaCropWF slightly overestimates water footprints (mean bias = 0.08 m* kg™!, RMSE =
0.14 m?® kg™), partly due to the limited representation of localized soil water deficits at large spatial scales and uncertainties
in irrigation practices, particularly in irrigated systems. Nevertheless, calculated and observed values show strong agreement
(Pearson r = 0.72, p < 0.01), demonstrating that ChinaCropWF reliably captures crop-specific water footprints at the national
scale. Temporal evaluation further indicates that interannual variability is well reproduced. Rice, maize, and soybean exhibit
the closest agreement with field measurements, whereas minor discrepancies for wheat likely reflect region-specific
irrigation management and soil conditions. Remaining differences primarily arise from uncertainties in remote sensing-

derived crop area, evapotranspiration estimates, and the integration of multi-source datasets.

14



285

290

295

https://doi.org/10.5194/essd-2025-840
Preprint. Discussion started: 14 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Earth System
Science

Data

Open Access
suoIssnasIqg

Pearson r =0.72
1.0
RMSE =0.14 City Label
1. Huai'an Rice-2011
2. Huai'an Rice-2012
0.8 g ’
3. Huai'an Rice-2013
4. Huai'an Rice-2014
o
j:u 5. Siping
g’ - 6. Sipin,
P . Siping
3 :
i 7. Daqing
)
5
2 8. Daging
S 0.4
= 9. Daging
10. Jixi Soybean-(2001-2020)
0.2 11. Cangzhou Wheat-(2016-2017)
® Rice 12. Cangzhou
B Maize
A Soybean 13. Chengde ~ Wheat-(2001-2015)
L @ Wheat
0.0+ ; : : : : 14. Chengde ~ Wheat-(2001-2015)
0.0 0.2 0.4 0.6 0.8 1.0

ChinaCropWF (m* kg™)

Figure 7: Comparison of ChinaCropWF with field-measured data.

4.1.2 Comparison with other datasets

ChinaCropWF was compared with two existing China-wide crop water footprint datasets: the WFCP dataset (Wang et al.,
2023b) and CropGBWater (Chukalla et al., 2025) (Fig. 8). CropGBWater is a global crop water footprint dataset; here, we
focus exclusively on its estimates within China. Results show that CropGBWater reports a higher total water footprint
(506.92 Gm?) than ChinaCropWF, characterized by a larger green water footprint (304.45 Gm?®) and a smaller blue water
footprint (202.47 Gm?). Similarly, the WFCP dataset estimates an even higher total water footprint of 546.23 Gm?,
comprising approximately 365.96 Gm? of green water and 180.27 Gm?® of blue water. The relatively large green water
footprints in both datasets are primarily attributable to the use of monthly or ten-day scale phenological periods, which
extend the effective growing season and increase accumulated green water consumption. When phenological periods in
ChinaCropWF are expanded accordingly, its green water footprint estimates become more consistent with those from WFCP
and CropGBWater, highlighting the role of phenological assumptions in shaping inter-dataset differences. In addition,
notable discrepancies in crop planting areas are observed between the WFCP dataset and this study, particularly in high-
precipitation regions of southern China (see Supplementary Materials). Such differences in input planting area datasets can

substantially influence regional crop water footprint estimates, particularly in humid agricultural systems where green water

dominates.
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demand are captured. Approaches using monthly or ten-day scales, typically focusing on the growing season (Cao et al.,
2014; Mekonnen and Hoekstra, 2020), offer higher temporal resolution than seasonal or annual methods and are relatively
straightforward to implement using commonly available meteorological and crop data. However, they remain insufficient for
accurately capturing short-term water stress, extreme weather events, or transient physiological responses, all of which can
substantially affect crop growth, transpiration, and overall water-use efficiency. Daily-scale methods, usually based on soil

water balance models, theoretically provide the highest process-level accuracy by simulating day-to-day fluctuations in

suoIssnasig

The choice of temporal scale (monthly, ten-day, or daily) in crop water footprint accounting critically influences the

reliability and accuracy of estimates, as it determines how well temporal variations in water availability and crop water
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water supply, evapotranspiration, and soil moisture dynamics (Hoekstra, 2019). These methods can better account for

irrigation timing, rainfall variability, and crop phenology, which are essential for precise estimation of blue and green water

footprints. Nevertheless, daily-scale approaches require high-resolution input data—including meteorological variables, soil

properties, and crop-specific parameters—and involve considerable computational complexity, which has historically limited

their use in multi-scale, long-term analyses or large-area assessments. Table 1 compares major crop water footprint methods

and their results with ChinaCropWF. The results are largely consistent with those reported by the WFCP and CropGBWater

datasets, highlighting that monthly or ten-day scale phenological stages may inadequately represent the temporal dynamics

of green water (precipitation) consumption by crops.

Table 1: Comparison of crop water footprint results across different accounting methods.

Related
research

Description Results

Results of ChinaCropWF

Phenological
temporal scale

(Fang et
al., 2023)

(Wang et
al., 2023b)

(Cao et al.,
2014)

(Mekonnen
and
Hoekstra,
2011)

The field crop water requirement method
assumes no water deficit, such that actual ~Crop water footprint in 2020:
evapotranspiration equals the crop water 694.56 Gm? (blue water 242.24

requirement, which is calculated by Gm? and green water 452.32
multiplying reference evapotranspiration Gm?).

by crop coefficients.

The field soil water balance method .
Average crop water footprint
(2000-2018): maize 165 Gm?,
rice 143 Gm?, and wheat 125

Gm?.

computes actual crop water consumption
by accumulating actual
evapotranspiration across the growth
stages.

The regional water balance method

computes regional evapotranspiration by A ducti .
verage crop production water

footprint (1998-2010): blue
water 0.85 m® kg™ and green

adjusting field-scale estimates for
irrigation conveyance and distribution
losses. Actual evapotranspiration is
. water 0.49 m® kg™
calculated using reference

evapotranspiration and crop coefficients.

Global average crop production

water footprint (1996-2005):
The Hoekstra dataset derives the total ~wheat—blue water 0.34 m* kg™,
water footprint by multiplying water-use green water 1.28 m® kg™'; rice—

intensity (i.e., the production water blue water 0.34 m* kg™', green

footprint) with the respective crop yield. ~ water 1.15 m* kg™'; maize—
blue water 0.08 m® kg™!, green
water 0.95 m® kg

Crop water footprint in 2020:
495.34 Gm? (blue water 298.88
Gm? and green water 196.46
Gm?).

Average crop water footprint
(2001-2020): maize 135.60
Gm?, rice 166.66 Gm?, wheat
62.87 Gm?.

Crop production water footprint
in 2020: wheat 1.10 m* kg™';
maize 0.99 m® kg™'; rice-
SR&ER 1.52 m® kg™'; rice-LR
1.05S m* kg™

Crop production water footprint
in 2020: blue water—wheat
0.74 m® kg, maize 0.55 m*

kg™, rice-SR&ER 0.92 m* kg,
rice-LR 0.61 m® kg'; green
water—wheat 0.36 m* kg™,

maize 0.44 m* kg™', rice-
SR&ER 0.60 m* kg™, rice-LR
0.44 m* kg

Growth period

Ten-day scale

Growth period

Ten-day scale
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To overcome the aforementioned limitations and improve accounting accuracy, this study integrates high spatiotemporal-
resolution remote sensing data with the soil water balance method and the field crop water requirement method to develop a
refined framework for daily-scale crop water footprint assessment. By combining remote sensing-derived crop and soil
moisture information with field-based crop water demand estimates, the framework captures both spatial heterogeneity and
temporal variability in crop water use. As a result, ChinaCropWF dataset offers significant advantages over traditional
approaches. It enables detailed characterization of water-use patterns and their temporal dynamics across different crop
growth stages, quantifies the short-term impacts of extreme weather events on water footprints, and provides a reliable basis

for evaluating the effectiveness of irrigation management and water-saving practices at multiple scales.

4.2.2 Seasonal water shortage effects

Conventional crop water footprint assessments typically quantify blue and green water based solely on evapotranspiration,
implicitly assuming sufficient soil moisture and negligible changes in soil water storage, deep percolation, and runoff (Cao et
al., 2021; Chukalla et al., 2025). Field observations, however, show that evapotranspiration is regulated by soil infiltration,
storage, redistribution, and release processes (Sun et al., 2025). Temporal mismatches between precipitation and crop water
demand, limited infiltration during high-intensity rainfall, and rapid soil moisture depletion under dry conditions can
substantially reduce effective water availability(Fu et al., 2024; Zhou et al., 2026; Zhu et al., 2022). To maintain soil
moisture near field capacity, additional blue and/or green water inputs via irrigation and management practices are required.
Incorporating these supplementary inputs alongside evapotranspiration-based footprints provides a more complete
representation of agricultural water appropriation. This integrated approach corrects the systematic underestimation inherent
in conventional methods, enhances sensitivity to regional water scarcity and hydro-climatic variability, and aligns more

closely with soil-plant-atmosphere continuum processes and fundamental hydrological principles.

4.3 Limitations and future work

This study has several limitations and opportunities for improvement. First, in estimating soil water footprints, a fixed
relative soil moisture of 75% was assumed for non-rice crops, which may not fully capture variability under different water
stress conditions. Further research should examine how varying stress levels influence crop water footprints. Second, the
grey water footprint refers to the water volume required to dilute pollutants to regulatory standards. Nonpoint source
pollution from intensive agriculture has already exceeded environmental carrying capacity, accelerating the degradation of
both water quantity and quality (Deng et al., 2025; Ma et al., 2020). Future research should focus on investigating the
spatiotemporal dynamics of the grey water footprint to improve the quantification and management of pollution-related
components of water resource assessments. Finally, despite more realistic crop evapotranspiration provided by remote
sensing data, there are known limitations in these satellite datasets due to coarse spatial and temporal resolution, cloud
contamination, and uncertainties in flux estimation (Anderson et al., 2024; Huete et al., 2002). Such constraints may hinder a

comprehensive representation of complex agricultural processes, indicating substantial room for improvement in the refined
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characterization and dynamic monitoring of crop water use patterns. Future updates of ChinaCropWF should address these

issues to enhance accuracy and applicability for sustainable water resource assessment.

5 Data availability

ChinaCropWF is available for download via https://doi.org/10.5281/zenodo.18057808 (Hua and Wang, 2025).

6 Conclusions

ChinaCropWF provides a crop water footprint dataset with a spatial resolution of 1-km and a daily temporal resolution,
covering major crops including wheat, maize, rice, soybean, and potato over the period 2001-2020. This dataset enables
high-resolution dynamic assessment of blue and green water use. Comparative analyses with multiple datasets and
observational data indicate that the daily-scale approach offers irreplaceable advantages in improving water footprint
accounting accuracy, distinguishing between blue and green water footprints, and accurately capturing the seasonal
variability of precipitation. Results show that, although overall crop water footprints have increased, production water
footprints have decreased, reflecting sustained pressure on water resources from food production, while highlighting the
critical role of efficient water use in maintaining the sustainability of the water-food nexus. As an open-access dataset,
ChinaCropWF provides a robust foundation for analyzing the spatial variability of agricultural water use, evaluating

transboundary virtual water flows, and informing water-saving and irrigation optimization policies.
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