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En Hua! 4, Ling Huang!, Liangliang Zhang', Quanbo Zhao!, Yingxuan Wang!, Bowei Wu!, Sien Li?
Yaokui Cui®, Yubao Wang*, Xuhui Wang!

ICollege of Urban and Environmental Sciences, Peking University, Beijing, 100871, China

2College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China

3School of Earth and Space Sciences, Peking University, Beijing, 100871, China

4College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China

Correspondence to: Xuhui Wang (xuhui.wang@pku.edu.cn)

S1 Methods
S1.1 Irrigation water use

For irrigation water use ( ), the data primarily comes from the dataset by Zhou Feng et al. (2020), which covers
irrigation water use at the municipal level from 2001 to 2013.
Irrigation is modeled as the ratio of to irrigation efficiency (), limited by freshwater availability allocated to
irrigation sector ( ) as well

= x R ()

= | /o } 2

= 1-)-(2+ 23, 3)

/7 = x + 4)
where is derived from an ensemble of six GHMs (i.e., DBH, HO8, LPJmL, PCR-GLOBWB, WaterGAP2, and VIC) of
ISIMIP. is defined as renewable freshwater resources (local, upstream import, and transboundary transfer; ) minus
both of flood water (X ) and industrial and domestic water uses (( » + 3)), because flood water is unavailable for
human use and ( , + 3) have a high supply reliability (e.g., >95%). Data of , » 2,and 3 are obtained from the first
and second National Water Resources Assessment Programs. is more difficult to quantify over time and space. ,
defined as the ratio between the area equipped for and total irrigated area, was taken as a proxy for the variation of |,
as is correlated with at the national level. Even if the relationship is only a correlation, and not a causality, we can
still use the relationship to determine the irrigation efficiency corresponding to a given level of . Data for were
obtained from the China Water Conservancy Yearbook and the China Statistics Yearbook.
Additionally, a multi-source data fusion approach is employed to supplement the municipal irrigation water use database for
2014 to 2020. In the machine learning modeling stage, based on quadratic polynomial feature engineering (degree=2) and Z-

score standardized preprocessing, the performance of linear regression, ridge regression, and lasso regression models is
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evaluated by a five-fold cross-validation system, and the preferred model is selected based on the Mean Squared Error for
irrigation water use prediction, and non-negative constraints are implemented for optimization of the predicted values. For
spatial downscaling, the provincial-level irrigated area of cropland serves as the benchmark. The municipal irrigated area
share in 2013 is combined with the average irrigated area share of crops (maize, rice, and wheat) from 2001 to 2013 to
construct a spatiotemporal weighting matrix for municipal-scale decomposition. The soybean irrigated area is estimated
using a proportionality coefficient method, with parameters derive from the average provincial soybean sown area share for

2014 to 2020, based on statistical yearbook data.

S1.2 Irrigation water use efficiency

The evaluation of crop irrigation water use efficiency can reveal issues such as water resource waste, outdated irrigation
technologies, and uneven water distribution, providing a basis for optimizing irrigation management and improving water

use efficiency. To this end, the study introduces the irrigation water use efficiency indicator, which is solved through the

crop blue water footprint ( ) and irrigation water use ( ).

= /., )
where is the municipal irrigation water use efficiency, dimensionless.
S1.3 LMDI driver analysis
The data used in this study include blue water footprint ( ), green water footprint ( ), and their driving factors
(evaporation, transpiration, planting area, and phenology). All data were normalized using Min-Max scaling to eliminate the
influence of different units. The normalization formula is as follows:

=( —min())/( ()=min()). ©)
where  represents the original data, and represents the normalized data, which ranges from 0 to 1.

This study employs the Logarithmic Mean Divisia Index (LMDI) decomposition method to quantify the contributions of
various driving factors to changes in the water footprint. The LM DI method has advantages such as complete decomposition,

no residuals, and additivity, making it suitable for multi-factor driver analysis. Specifically, the change in the water footprint

at time t, denoted as A, can be decomposed as follows:
A = - 1= (N
where represents the water footprint (BWF or GWF) in year t, and  denotes the contribution of the i-th driving factor.
The contribution  of each driving factor is calculated using the logarithmic mean weighting function (L function).
=C . DxIn( .,/ -) ®)
Here, ( , _1) is the logarithmic mean weighting function, and its calculation formula is as follows:
(. D= {( - -/ - _ —1):1 #* 1 ©)
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where  represents the normalized value of the i-th driving factor in year t. A positive contribution (> 0) indicates that
the factor causes an increase in the water footprint, while a negative contribution (< 0) indicates that the factor causes a
decrease. The absolute value of the contribution reflects the magnitude of the factor’s influence—the larger the value, the

more significant the impact.

S2 Results
S2.1 Spatial distribution pattern of crop water footprint
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Figure S1: Spatial distribution pattern of crop water footprint in 2020 (pie charts showing the proportions of blue water footprint
and green water footprint).



S2.2 Development trend of irrigation water use efficiency

Figure S2: The spatial distribution pattern of irrigation water use efficiency.



75 S2.3 Data validation of ChinaCropWF
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Figure S3: Comparison of crops water footprint based on two evapotranspiration products.



S2.4 Comparison of different water footprint datasets
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80 Figure S4: Comparison of planting area of different water footprint datasets.
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