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Abstract  85 

Parties to the 2015 Paris Agreement agreed to limit the long-term increase in global average temperature to well below 2°C 

and pursue efforts to keep temperatures below 1.5°C relative to pre-industrial levels. As the world is fast approaching the 

1.5°C warming level on a sustained basis, and with 2024 likely the first year that was over 1.5°C warmer than 1850-1900, 

there is ever increasing interest in how we will know whether and when 1.5°C warming since pre-industrial has been reached 

or exceeded with respect to a long-term average. This paper represents a comprehensive community methodological overview, 90 

building on the IPCC 6th assessment. It explains why there is no straightforward answer and proposes clear and reasoned ways 

forward. Existing challenges are as follows. Firstly, the Paris Agreement text contains definitional ambiguities around 'pre-

industrial', 'global average temperature', whether the assessment should be on realised or long-term human-induced warming, 

and over what time frame the long-term temperature goal applies. Then, there are intrinsic limitations of observational records 

which get more uncertain further back in time due to data sparsity and measurement heterogeneity. Finally, in a non-stationary 95 

climate, multidecadal mean indicators of global temperature change will either lag behind the change or must rely on expected 

future temperature changes (based on extrapolation, initialized predictions, or scenario-based and constrained projections). 

Our analysis shows that knowing ‘whether we are there yet’ is a multifaceted and inherently probabilistic problem that includes 

information on the definition of a specific level of global warming, temperature changes over multiple timescales, and also 

potentially includes unpacking the attribution of human-caused changes from observed variations. Given the policy relevance 100 

of understanding where the world stands relative to 1.5°C, or any other level of global warming since pre-industrial, there are 

a number of practical steps which could be taken to increase specificity in answering this critical question in a timely manner, 

and inform future monitoring and assessment activities. This paper reviews a broad range of approaches, identifies the most 

pragmatic, robust and transparent, and clarifies requirements for use in real time including how to handle and represent 

remaining uncertainties. We show that it is possible by combining lines of evidence and several methodologies to estimate the 105 

present long-term warming level without delay in a manner that is robust both in retrospective validation of crossing past 

warming levels and, critically, to divergent warming futures including potential wildcard impacts of large volcanoes which 

can mask underlying warming for several years. Results are benchmarked against historical exceedances of 0.5°C and 1°C 

warming. Long-term warming as assessed using the approaches developed herein and data up to and including 2024 stands at 

1.40 [1.23-1.58]°C, and underlying human-caused warming stands at 1.34 [1.18-1.50]°C. In IPCC quantified likelihood 110 

language this means that it was unlikely that long-term realised warming had exceeded 1.5°C by the end of 2024 and very 

unlikely that human-induced warming had exceeded 1.5°C.   

 

Short Summary 

We reassess the basis for determining the present level of long-term global warming. Unbiased estimates of both realised 115 

warming and anthropogenic warming are possible that approximate a 20-year retrospective mean. Our resulting estimates of 

1.40 [1.23-1.58]°C (realised) and 1.34 [1.18-1.50]°C (anthropogenic) as at end of 2024 highlight the urgency of immediate, 

far-reaching and sustained climate mitigation actions if we are to meet the long term temperature goal of the Paris Agreement. 
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1 Introduction 120 

The Paris Agreement codified, for the first time in an international treaty, a quantified long-term temperature goal (LTTG 

hereafter) (UNFCCC, 2016)1 as follows:  

Article 2 

1. This Agreement, in enhancing the implementation of the Convention, including its objective, aims to strengthen the 

global response to the threat of climate change, in the context of sustainable development and efforts to eradicate 125 

poverty, including by: 

(a) Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and 

pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would 

significantly reduce the risks and impacts of climate change; [...] 

 130 

This LTTG text is scientifically ambiguous in at least three key respects: i) what constitutes pre-industrial levels; ii) what 

constitutes the global average temperature; and iii) what metric should be used to determine the warming level that has been 

reached at any given time. This paper is motivated by the first annual exceedance of 1.5°C in the annual global average 

temperature in 2024 in many but not all datasets and the imminent proximity of the likely longer-term exceedance of 1.5°C  

warming, but the issue we address is more general: how best to quantify present sustained global warming relative to the pre-135 

industrial era? 

 

Warming over land regions was recognised in the 1930s (Kincer 1933), including an attribution of global land warming to 

increases in carbon dioxide concentrations (Callendar 1938), but the first representative global temperature estimates including 

land and marine temperatures were published in the 1980s and 1990s (Jones et al. 1986; Hansen et al., 1996, Smith and 140 

Reynolds, 20052). These global estimates mostly combine land surface air temperatures (LSAT) with sea surface temperatures 

(SSTs) of the ocean (Jones et al. 1999), and are termed global mean surface temperature (GMST). Only very recently has an 

instrumental dataset of global surface air temperature (GSAT) change been produced by combining marine air temperatures 

(MAT) over the ocean with LSAT (Morice et al., 2025).  

 145 

 
1 This followed a considerable body of work that had examined the impacts and risks of different warming levels, including 
the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (IPCC, 2012, 2013, 2014).  
2 Note that this is the first paper fully describing the NOAA product which had been operationally produced for some years 
prior to its description in the peer reviewed literature. 
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With the adoption of the LTTG there has been a proliferation of activities to monitor and communicate long-term temperature 

change. Since the 1990s, the World Meteorological Organization (WMO) has provided annual monitoring through its 

Statement on the Status of the Global Climate (later State of the Climate) issued each March, complemented by annual 

statements from the three established centres3 producing long-term global temperature products on their own data, that are 

typically released in mid January. These agency-based communication statements and reports are expanded in peer-reviewed 150 

publications by the detailed annual State of the Climate report series in the Bulletin of the American Meteorological Society4, 

as well as more recently annual updates to global climate change indicators that replicate the IPCC methodology between the 

major assessment reports (Forster et al., 2024, 2025). Recent years have seen more entities including new dataset producers 

(e.g. Berkeley Earth), climate service providers (e.g. Copernicus Climate Change Service), and specialised climate media 

outlets (e.g. Carbon Brief), starting to provide reports on global temperature and climate change, with a wider variety of 155 

datasets and approaches. Monthly updates have become the norm, often supplemented when interesting events occur. Recently, 

even daily global temperature variations have been prominently discussed in the media (e.g. AP, 2023, Guardian 2023, 2024).  

 

Throughout this paper we use the IPCC 6th Assessment Report of Working Group I (AR6 WGI) definition of global warming 

(IPCC, 2021c):  160 

Global warming refers to the increase in global surface temperature relative to a baseline reference period, averaging 

over a period sufficient to remove interannual variations (e.g., 20 or 30 years). A common choice for the baseline is 

1850–1900 (the earliest period of reliable observations with sufficient geographic coverage). 

At any given level of global warming it is expected that the Arctic, global land areas, specific high elevation regions and urban 

areas will have warmed more, and the global ocean less, than the global mean. Natural climate variability will also cause global 165 

annual fluctuations of a few tenths of a degree around the long-term global mean with much larger anomalies regionally. It is 

critical to recognise that exceeding the long-term temperature goal at one location or in any short-term period such as a calendar 

year does not necessarily mean that the LTTG has been exceeded, as has sometimes been erroneously implied (e.g. McCulloch 

et al., 2024; Esper et al., 2024).  

 170 

Global warming is associated with sustained multi-decadal changes in the distributions of rainfall, drought, snow and ice, 

extreme weather, and multiple climate impact drivers, which are collectively referred to as climate change5. Climate change-

 
3 NOAA NCEI (was NCDC until 2012), NASA GISS, and the UK Met Office / Climatic Research Unit at the University of 
East Anglia.  
4 https://www.ametsoc.org/index.cfm/ams/publications/bulletin-of-the-american-meteorological-society-bams/state-of-the-
climate/ 
5 The IPCC glossary definition is: “A change in the state of the climate that can be identified (e.g., by using statistical tests) by 
changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. 
Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic 
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related impacts are generally estimated relative to a more recent baseline than is used for the LTTG, due to the shorter historical 

records that are available to quantify these climate impacts. This means that changes in estimated global warming during earlier 

periods, such as due to changes in the 1850–1900 baseline (IPCC, 2021a) do not, on their own, mean that current impacts are 175 

greater or that projected climate impacts will necessarily occur either sooner or later than previously anticipated (Figure 1). 

 

 
Figure 1: (left) A common misconception is that an increase in the estimate of historical warming (due to scientific progress) brings 
us closer to a level of warming at which some projected impacts may occur. For example, moving from HadCRUT4 (used in AR5, 180 
which informed the Paris Agreement) to HadCRUT5 (as used in AR6) increases the estimate of warming since 1850-1900 by about 
0.1°C, so it might appear that impacts projected to occur at 1.5°C above pre-industrial levels (orange dashed line) would occur 
earlier (middle). However, in practice, impacts are generally assessed relative to a more modern, better quantified and more 
societally relevant baseline (schematic uses 1981-2010). In this example, an impact is estimated to occur at 0.90°C above 1981-2010 
levels (orange dashed line) which, using HadCRUT4, is 0.60°C warmer than pre-industrial levels (1850-1900), producing an impact 185 
at 1.5°C above 1850-1900. However, HadCRUT5 estimates that 1981-2010 had warmed 0.71°C above the pre-industrial 1850-1900 
period (right). This shift in estimated historical warming means that the same impact would actually occur at 1.61°C above pre-
industrial levels using HadCRUT5, meaning that the impact is not necessarily going to occur earlier than previously understood. By 
contrast, any change in estimated warming that has occurred since the modern reference period (1981-2010 in this example) used to 
assess impacts might mean the impact would occur earlier. This assumes that the assessment of the level of warming at which the 190 
impact occurs does not change; however, AR6 SYR concluded that risks associated with the ‘Reasons For Concern’ (and thus 
dangerous anthropogenic interference) generally increase at lower temperatures than previously assessed in the IPCC AR5, due to 
updated scientific understanding (see Section 6). Note that any anthropogenic warming that occurred before 1850-1900 (likely 0.0-
0.2°C, according to IPCC AR6 WGI CCBox 1.2) does not generally matter in the context of defining when particular impacts might 
occur for the same reason. 195 

 

A rich history of assessment of impacts on societal and natural systems at different levels of global warming has been 

comprehensively addressed by IPCC Working Group II (WGII) over successive assessment cycles. The evolution of the 

science-policy nexus on avoiding dangerous anthropogenic interference with the climate system that informs both the 1.5°C 

 
eruptions and persistent anthropogenic changes in the composition of the atmosphere or in land use. Note that the United 
Nations Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: ‘a change of 
climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and 
which is in addition to natural climate variability observed over comparable time periods’. The UNFCCC thus makes a 
distinction between climate change attributable to human activities altering the atmospheric composition and climate 
variability attributable to natural causes.” 
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and well below 2°C global warming levels in the LTTG stretches over several decades (e.g. O’Neill and Oppenheimer, 2004, 200 

Cointe et al., 2011, Cointe and Guillemot, 2023). The third IPCC WGII assessment report in 2001 was the first to explicitly 

relate aggregated climate change impacts to levels of global average warming, so that policymakers could consider what are 

unacceptable levels of risk of key impacts (‘dangerous climate change’) (IPCC, 2001). By 2015, following the fifth IPCC cycle 

reports, the Structured Expert Dialogue (SED) process (UNFCCC, 2015) concluded that the ‘guardrail concept’ that had been 

associated with limiting warming to a certain level was inadequate, since severe impacts were already occurring at current 205 

levels of warming, thus motivating efforts to strengthen the long-term global goal as agreed later that year in the Paris 

Agreement. This understanding was subsequently confirmed by the IPCC SR1.5 which showed that every increment of 

warming matters (IPCC, 2018). Livingston and Rummukainen (2020) contend that, in turn, the Paris Agreement and resulting 

request to IPCC for the SR1.5 reframed the science in important ways by reorientating scientific priorities for funders and 

investigators. 210 

 

Using IPCC AR6 WGI methods and datasets, Earth’s surface warmed by 1.24 [1.11 to 1.35]°C from 1850–1900 to 2015–

2024, of which 1.22 [1.0 to 1.5]°C was human-induced (Forster et al., 2025). Ongoing human-caused warming is currently 

continuing at 0.27 [0.2 to 0.4]°C per decade from continuing greenhouse gas emissions (Forster et al., 2025). Across a range 

of datasets, 2024 was likely the first calendar year above 1.5°C6 with a central estimate of 1.52 [1.39 to 1.65]°C using IPCC 215 

datasets and approach (Forster et al., 2025) or 1.55°C using WMO datasets and approach. However, this was well above the 

best estimate of human-caused warming (1.36°C), highlighting the role of internal variability in short-term climate (Forster et 

al., 2025).  

 

Until the Paris Agreement, changes in GMST dataset versions between successive IPCC reports introduced changes of the 220 

order of hundredths of a ℃ for their common periods of record and were thus deemed negligible and unremarked. Subsequent 

to the Paris Agreement, however, both new and updated GMST datasets accounted for new knowledge of biases in the raw 

data and the impacts of spatial coverage. The GMST temperature change estimates for the period 1880-2012 using the methods 

in IPCC WGI AR5 were increased in AR6 by approximately a tenth of a ℃ (c.10% of the long-term warming to date at that 

time) (Gulev et al., 2021) due to improved quantification of GMST in the early instrumental period and better accounting for 225 

warming in data sparse regions in recent decades (Fig. 1). A further historical assumption had been that changes in GMST and 

GSAT were broadly equivalent (e.g. Folland et al., 1984) but this is not the case in Earth System Models (Cowtan et al., 2015). 

These insights have highlighted the uncertainties inherent in estimating long-term global surface temperature changes which 

must be accounted for in tracking the current global warming level and adherence to the LTTG. 

 230 

 
6 https://wmo.int/media/news/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level 
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The precise estimate of warming above pre-industrial levels therefore depends upon the choices of baselines, metrics and 

datasets (e.g. Gulev et al., 2021, Betts et al., 2023). Different choices can change the best-estimate by tenths of a degree Celsius 

with substantial implications for determining whether, and if so when, the 1.5°C warming level referred to in the LTTG will 

have been reached or exceeded7. Herein we attempt to provide a clear and practical basis for determining the ‘current’ level of 

global warming with a view to tracking adherence to the LTTG. The approach chosen should both have broad consensus and 235 

endorsement from the scientific community and be easily usable and understandable for scientists, policymakers, climate 

change negotiators, and end users, including the general public. Multiple studies exist looking at specific parts of the problem 

of reliably estimating global surface temperatures and informing adherence to the LTTG (e.g. Betts et al., 2023, Hawkins et 

al., 2017). The risk is that in looking at only specific subsets of the problem a false sense of certainty ensues. Here, instead, 

we deliberately aim to provide a comprehensive solution-oriented review and assessment of the state of knowledge and propose 240 

pathways towards consistent monitoring and messaging to aid public understanding, climate change research and policy 

responses.  

 

This is far from a purely academic exercise. The surface temperature record has been extensively referenced in the UN Climate 

treaties and decisions thereunder8 , and is also increasingly relied on in climate litigation across national, regional and 245 

international courts. The International Court of Justice (ICJ) has considered the rights and responsibilities of states in relation 

to climate change in the context of an Advisory Opinion that was referred to it by the UN General Assembly in 20249, finding 

that states have extensive obligations both in and beyond the Paris Agreement to prevent, mitigate and adapt to climate harm, 

and that a breach of these obligations can lead to legal consequences for the offending states, including a duty to make 

reparations10. And, a growing number of human rights-based cases are being brought against states for inadequately ambitious 250 

climate action, for example a judgment from the European Court of Human Rights in the Klimaseniorennen case, in 2024, 

holding the Swiss Government in breach of its human rights obligations11.  

 

The remainder of the paper is structured as follows: Section 2 discusses the definition of the pre-industrial baseline. Section 3 

explores various global temperature metrics as well as the latest datasets, their uncertainties, and remaining limitations. Section 255 

4 considers possible solutions to the challenge of estimating the underlying long-term global warming in a given year, such as 

2024, when that year’s temperature results from a combination of human forcings, natural forcings (e.g. solar variability and 

 
7 We note that IPCC AR6 WGI in SPM B.1.3 refers to exceeding 1.5℃ or, in the specific context of SSP1-1.9, reaching 1.5℃ 
before returning below, and we use this language of reached or exceeded herein for consistency. The IPCC AR6 SYR also 
uses the same two terms associated with 1.5℃, although sometimes in different contexts to that in WGI. 
8 UNFCCC preambular recital 16, PA, preambular recital 4, Art 4.1, 14.1, Glasgow Climate Pact, para 23, UAE consensus, 
paras 6, 28(d), 39, 55, 61 and 149 
9 https://documents.un.org/doc/undoc/ltd/n23/063/82/pdf/n2306382.pdf 
10 https://www.icj-cij.org/case/187  
11 ECtHR, Verein KlimaSeniorinnen Schweiz and Others v. Switzerland, no. 53600/20, judgment (Grand Chamber) of 9 April 
2024. 
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volcanism) and internal climate variability (e.g. El Niño Southern Oscillation, Atlantic multidecadal variability). Section 5, 

taking insights from the prior three sections, proposes practical solutions which can be implemented now that may avoid 

confusion while respecting the irreducible scientific uncertainties. Section 6 discusses potential implications and interpretation 260 

in the context of the UNFCCC and Paris Agreement. Finally, Section 7 reflects on the broader context and meaningful actions 

that could be taken to better quantify global warming relative to the LTTG. The Supplement contains a table of acronyms used 

to support the non-expert reader alongside further technical details pertaining to Sections 4 and 5. 

2 What constitutes pre-industrial levels? 

The Paris Agreement does not specify a pre-industrial time period for the purposes of the LTTG. There are numerous historical 265 

interpretations of the true start of the industrial era (Ashton, 1997, Hawkins et al., 2017, Chen et al., 2021). The IPCC AR4 

glossary stated: ‘In this report the terms pre-industrial and industrial refer, somewhat arbitrarily, to the periods before and 

after 1750, respectively’ (IPCC, 2007a), and the Cancun Agreements at COP16 in 201012 were based upon this. The definition 

in the AR5 remained the same (IPCC, 2013), preceding the Paris Agreement in 2015. The IPCC AR6 revised the definition of 

the pre-industrial period to ‘The multi-century period prior to the onset of large-scale industrial activity around 1750. The 270 

reference period 1850–1900 is used to approximate pre-industrial global mean surface temperature’13. Across successive 

IPCC reports, radiative forcings have been indexed relative to 1750, while observed global surface temperature changes have, 

since AR4, been reported relative to 1850–1900 (or 1850–1899) as an ‘approximation to pre-industrial’ (IPCC, 2007b, 2013, 

2018, 2021a). The 1850–1900 average has thus been broadly (but not unanimously) adopted as an approximation to pre-

industrial conditions. Throughout the remainder of the paper, this baseline has been assumed, unless otherwise specified.  275 

 

The 1850–1900 definition for the pre-industrial period originated partly because the global temperature datasets used by the 

IPCC across successive reports begin during that time window. Figure 2 illustrates the rapidly changing spatial availability of 

temperature observations through time and highlights difficulties in producing ‘global’ estimates from earlier temperature 

observations. GloSAT extends instrumental estimates of global temperature change back to 1781 (Morice et al., 2025), 280 

exploiting MAT data from ships, which is more common than SST data during the earlier period. The Berkeley Earth global 

land-only temperature product extends back to 1750, with 239 or fewer temperature stations contributing data before 1850, 

compared with thousands since 1950. Large annual uncertainties prior to 1850 are reported by both Berkeley Earth and GloSAT 

(~0.6 °C, 95% confidence interval for the 1800–1850 period, and much higher values prior to 1800), with high interannual and 

interdecadal variability. This increased uncertainty is from a combination of relatively poor data coverage and the effects of 285 

unusually large recurrent volcanic eruptions in the early 19th Century (Morice et al., 2025). Despite greater uncertainties in 

the early parts of these historical temperature datasets, both report some warming prior to and during the 1850–1900 period. 

 
12 https://unfccc.int/tools/cancun/index.html accessed 5/1/25 
13 https://apps.ipcc.ch/apps/glossary/ accessed 5/1/25 
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For example, Berkeley reports 0.11 °C warming of global land temperatures from 1750—1800 to 1850—1900. This early 

warming is also in agreement with regional paleoclimate evidence from the continents and tropical oceans (Abram et al., 2016; 

Henley et al., 2024, McCulloch et al., 2024) and recent model simulations (Ballinger et al. 2025).  290 

 

  

  
Figure 2. Land stations reporting any data (red dots) and number of reports with MAT and / or SST observations arising from the 
ship data underlying ICOADS (colours in colour bars) for decades separated by 50 years from 1800-1809 to 1950-1959. Data arise 
from the latest versions of data release from the Copernicus Climate Change Service contract covering data rescue and access to 
land and marine in-situ holdings. Similar overall implications would arise from other international repositories and data availability 295 
worsens still further prior to 1800. Prior to 1850, land stations were almost exclusively over Europe, while marine data were 
dominated by measurements in the Atlantic and Indian Oceans, and were mainly of MAT rather than SST. Sampling issues are 
particularly acute in the Southern Ocean and the Pacific Ocean, especially prior to the opening of the Panama Canal in 1914. Poor 
Pacific coverage is problematic given the importance of the El Niño-Southern Oscillation (ENSO) in determining global surface 
temperature variability (Trewin 2022, Thompson et al. 2009, Trenberth et al. 2002). Similarly, the Suez Canal opening in 1869 300 
changed shipping routes in the Indian Ocean and South Atlantic.  

 

Various considerations complicate the interpretation of the period that might best represent pre-industrial conditions. In relation 

to climate forcings through the last millennium, evidence indicates a possible small human footprint on atmospheric 
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greenhouse gas levels, principally through population and land use changes14, even before 1750 (Koch et al., 2019, King et al., 305 

2024), while early industrial activity occurred during 1750–1850 (Gulev et al., 2021, Forster et al., 2021, Chen et al., 2021). If 

we consider 850–1750 variability as a reasonable representation of preindustrial, then Figure 3b (red dashed line) shows that 

1850–1900 volcanic and solar irradiance forcings are representative of background pre-industrial natural forcing. In contrast, 

well-mixed greenhouse gas (WMGHG) forcing already clearly exceeds the long-term preindustrial range (Figure 3b) and in 

1850–1900 was +0.33 (0.28 to 0.37) Wm-2 relative to 1750 (Chen et al., 2021). Other anthropogenic forcings (mainly aerosols 310 

and albedo change due to land use change) were also already evolving during the 1850–1900 climate baseline period, and are 

estimated to have a -0.15 (-0.33 to -0.03) Wm-2 radiative forcing effect relative to 1750 (Chen et al., 2021). A 51-year period 

centred around 1750 is the most recent interval where the 51-year mean total radiative forcing was representative of typical 

pre-industrial climate forcing (Figure 3b grey dashed line). However, it was followed by unusually strong and frequent volcanic 

forcing (Fang et al., 2023), which may have a lasting effect on global temperature variations (Ballinger et al., in press), meaning 315 

that the late 18th and early 19th centuries do not represent typical pre-industrial conditions in climate forcing (Hawkins et al., 

2017).  

 

 
14 These land use changes in addition have had a direct radiative impact through changes in albedo and surface heating 
characteristics. 
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Figure 3: a) Reconstructed temperatures over the past millennium from PAGES2K reconstructions15 (PAGES 2k consortium, 2019), 320 
showing the median for each of the 7 different reconstruction methods (thin grey curves), as well as the overall ensemble median 
(thick black curve) and 5-95% range across all ensemble members. Also shown are observational GMST anomalies (red curve) since 
1850 (Foster et al., 2025). All data shown as decadal moving averages relative to 1850–1900 mean (horizontal dashed line) for the 
commonly used pre-industrial reference period (light red shading). b) Natural and anthropogenic radiative forcing for 51-year 
moving windows (denoted by start year) since 850 CE (thick curves). Typical pre industrial last millennium distributions are shown 325 
for the median (thin horizontal lines), 25-75% range (dark shading) and 5-95% range (light shading), assessed across the 850-1700 
interval. Solid circles represent the mean radiative forcing for the 1850-1900 interval (dashed vertical red line) that is typically used 
as the preindustrial reference interval to define global mean temperature change (a). Grey dashed line indicates mean radiative 
forcing for the 51-year interval centred around 1750 which approximates the most recent period where radiative forcing was 
representative of typical preindustrial conditions. Datasets are based on radiative forcing for well-mixed greenhouse gases (blue), 330 
solar (orange) and volcanic (purple) forcing as used for PMIP4/CMIP6 last millennium climate simulations (e.g. AR6 chapters 2 and 
7) and for other anthropogenic forcings (green) are derived from the 2023 Indicators of Climate Change (Foster et al 2025). Note 
that the dataset for other anthropogenic forcings (mostly aerosols and land use albedo change) are only available from 1750, and so 
are shown as deviations from the 1750 value.  

 335 
The IPCC AR6 concluded that between 1750 and 1850–1900 the global average temperature warmed by 0.1 [-0.1 to 0.3] °C 

with an assessed likely anthropogenic contribution of 0.1 [0.0 to 0.2]°C, albeit with only medium confidence (Chen et al. 2021). 

Supporting evidence included: very early observations from principally European locations, proxy reconstructions, climate 

models, and the AR6 emulators16 used across the IPCC reports (Hawkins et al., 2017, PAGES 2k consortium, 2019, Schurer 

et al., 2017, Haustein et al., 2017, Forster et al., 2021). Subsequent model simulations add to this evidence. For example, a 340 

control simulation using 1750 radiative forcings was 0.1°C cooler than an 1850 based control simulation in the same model 

(Ballinger et al., in press). There has also been a proposal to re-baseline the early temperature record using the observed 

linearity between the record of atmospheric carbon dioxide concentration and global surface temperatures (Jarvis and Forster, 

2024). This method equates departures of CO2 from its pre 1700 baseline with a given amount of global surface warming and 

may help reduce uncertainty in warming level estimates. Based on current knowledge, adopting a pre-industrial reference 345 

period before 1850–1900 would boost estimated global warming by approximately 0.1°C but would also increase uncertainty 

by even more. On balance, we consider that policymakers for now are better supported by a continued use of 1850–1900 as an 

approximation to the ‘pre-industrial’ level, whilst recognising that it probably does not truly represent pre-industrial conditions. 

Were scientific understanding to improve sufficiently in the future then an earlier period estimate better representing ‘true pre-

industrial’ could plausibly be used. 350 

 
15 
https://figshare.com/articles/dataset/Reconstruction_ensembles/8137706?backTo=/collections/Global_mean_temperature_re
constructions_over_the_Common_Era/4507043 last accessed 24/3/25 
16 IPCC AR6 glossary defines emulators as ‘A broad class of heavily parametrized models (’simple climate models’), statistical 
methods like neural networks, genetic algorithms or other artificial intelligence approaches, designed to reproduce the 
responses of more complex, process-based Earth system models (ESMs). The main application of emulators is to extrapolate 
insights from ESMs and observational constraints to a larger set of emission scenarios.’ 
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3 Defining and estimating global surface temperature 

3.1 Many ways to define surface temperatures 

Surface temperature can refer to skin temperature, near-surface air temperature, or near-surface ice, land or ocean temperature17 

(Merchant et al., 2013). These quantities co-vary and all increase in response to positive radiative forcing, but potentially by 

different amounts (Merchant et al., 2013, Cowtan et al., 2015). Given: i) the ambiguous language in the LTTG; ii) that much 355 

of the nuanced understanding of differences between measurands has arisen after the Paris Agreement; and iii) that ascertaining 

the absolute basis for the LTTG is itself ambiguous (Sections 1 and 6); it is not currently clear which metric(s) should be used. 

 

The only available direct observations with sufficient spatial coverage and longevity combine LSAT over land with SSTs or 

MATs over the ocean. Sea ice regions lack long-term continuous weather monitoring stations and this introduces challenges 360 

in interpretation, especially when sea ice cover changes (see Section 3.2.3). Observational products to date generally are of 

GMST (Section 1) whereas model and reanalysis assessments tend to use GSAT, or occasionally GMST (Figure 4).  

 

Cowtan et al. (2015) first drew attention to non-trivial differences in model-derived warming between GMST and GSAT. 

Earth System Models consistently predict that global-mean MATs should warm by 2-12% more than SSTs (Cowtan et al., 365 

2015; Richardson et al., 2018; Beusch et al., 2020; Gillett et al., 2021). The physical causes appear to be a combination of the 

direct effect of CO2 preferentially heating air over the surface, and strong oceanic evaporation feedback which limits surface 

water warming (Richardson, 2023). However, all model air-sea flux parameterisations are based upon Monin-Obukhov 

similarity theory (e.g., Businger et al., 1971), so a common bias across models cannot be ruled out (Gulev et al., 2021). The 

ERA-Interim, ERA5 and JRA-55 reanalyses show 2-4% more warming in GSAT than in GMST over periods since 1979 370 

(Simmons et al., 2017; Soci et al., 2024), but they share ESMs’ parameterisations of the boundary layer fluxes.  

 

 

 
17 Defining ’near-surface’ is ambiguous with no universal adoption of a given level to define near-surface for measurement 
purposes across all surfaces (although there are standards e.g. over land specified in WMO regulatory materials, levels of 
adherence are unclear and standards do not exist over all domains). Frequently sharp vertical gradients in temperature occur 
near the surface both over and below all surfaces. 
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Figure 4. Illustration of data sources for most observational datasets (left panel), which are based on weather station observations 375 
of air temperature over land combined with sea surface temperatures measured from diverse platforms including buckets, ship 
engine room intakes and buoys. These observations have generally been compared to simulated air temperatures from climate 
models and reanalyses from a fixed height above the surface over both land and ocean (although models do also simulate sea surface 
temperatures). Comparisons are generally made of anomalies rather than absolutes that can ameliorate to an extent any geophysical 
differences between the different measurands. 380 

 

Pacific buoy data show differing short-term regional trends in SST and MAT (Christy et al., 2001; Rubino et al., 2020), but 

regional data are strongly affected by local ocean heat transport, and may not represent the long-term global response. In the 

small sample of global observational estimates on the longest timescales, SSTs appear to have warmed somewhat faster than 

MATs (Gulev et al., 2021). However, uncertainties are plausibly larger than model-observation differences and conclusions 385 

depend upon the sub-period and choice of SST and MAT products (Junod & Christy, 2020; Cornes et al. 2020; Gulev et al., 

2021). Over 1850 to 2010 (Huang et al. 2017) or 1850 to 1941 (Kennedy et al. 2019) there is also some circularity as these 

SST products depend on nighttime-MAT (NMAT) measurements for their long-term homogenisation. Furthermore, MAT 

records are adjusted to account for how ships have overall become taller with time using similar boundary-layer assumptions 

to those made in models and reanalyses (e.g. Cornes et al., 2020). The challenge of resolving apparent model-observation 390 

disagreements is compounded by limitations in our theoretical knowledge of boundary layer processes over the ocean on 

climate timescales (Gulev et al., 2021). 

  

In the absence of a more recent comprehensive assessment on this topic, we use the IPCC AR6 WGI assessment here (Gulev 

et al., 2021; their CCB2.3), in which warming uncertainty was expanded by ±10% of changes to account for lack of knowledge 395 

about long-term SST-MAT trend differences. Further research on all aspects of MAT-SST differences, but particularly 

theoretical and observational aspects, could reduce uncertainty in the differences between global temperature estimates. 
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3.2 Observational uncertainties 

Uncertainties in reconstructions of historical global surface temperature changes are unavoidable. Uncertainties arise from 

three principal sources : i) spatio-temporal incompleteness and the extent to which interpolation to impute estimates for missing 400 

regions is undertaken; ii) inherent measurement uncertainties; and iii) changes in instrumentation, siting, microclimate and 

measurement practices. Research groups adopt diverse approaches to dataset construction and uncertainty quantification, 

leading to a range of warming estimates (Figure 5). 

 

 405 
Figure 5. Illustration of how different research groups, taking different approaches, yield a range of estimates as to how warm 2024 
was relative to 1850-1900 (top panel) or 1981-2010 (lower panel). This highlights the uncertainty in estimating long-term change 
arising from data selection and methodological choices. Error bars correspond to the 95% uncertainty range as reported by each 
dataset, where provided. ERA5, JRA-3Q, and NASA GISTEMP do not extend back to 1850; however, their originating research 
groups have provided an estimate of the implied change since the 1850-1900 average by adding an adjustment factor to account for 410 
the early changes seen in other datasets.  

 

Observational uncertainties arise from effects that can be “systematic” (highly correlated between consecutive measured 

values), “random” (entirely uncorrelated), or in between (BIPM, 2008). Random components reduce upon averaging across 

space and/or time, whereas systematic uncertainties persist. Recent reference observation networks show promise to robustly 415 

quantify both random and systematic uncertainties in modern data (Thorne et al., 2018). However, historical uncertainties must 

be derived from the characteristics of the data themselves (e.g. Kent et al. 1999, Williams et al., 2012, Rhines et al., 2015, 

Carella et al. 2018, Chan and Huybers 2020), or from experiments with parallel measurements (e.g. de Valk and Brandsma, 
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2023, Wallis et al. 2024, Ashford 1948, Carella et al. 2017b) informed by any known changes in measurement technology or 

practices (e.g. Folland and Parker 1995, Venema et al., 2012, Camuffo, 2002, Kent and Kennedy 2021, Wallis et al. 2024).  420 

 

Changes in instrumentation and observing practices can introduce non-climatic changes in reported temperature (often termed 

inhomogeneities, Trewin, 2010; Kent and Kennedy, 2021). Commonly, metadata such as the timing and the type of changes 

in instrumentation, siting, methods or observers, are unknown (Kent and Kennedy, 2021; Trewin, 2010). For SST and MAT, 

uncertainty quantification is further complicated as ships commonly lack vessel identifiers, so uncertainties correlated along a 425 

vessel track are often treated as if they are uncorrelated rather than systematic (Kennedy 2014; Kennedy et al., 2019).  

 

Lastly, the geographical availability of observations diminishes in earlier periods and the sampled regions systematically 

change over time (Figure 2). In-situ observations, which are the basis for all century and longer datasets, are consistently 

sparser in the Southern Hemisphere than the Northern Hemisphere, and sparser at high latitudes and in the tropics than in the 430 

mid-latitudes. This significantly complicates the estimation of a true global value even in the modern era. Sampling effects 

may be quasi-systematic. For example high-altitude stations have on average warmed more than low altitude stations 

(Mountain Research Initiative EDW Working Group, 2015) but many high altitude regions are undersampled. 

 

The application of differing reasonable methods generates a range of plausible estimates of global surface temperature change. 435 

This pertains to all aspects of dataset construction: data selection, quality control, homogenisation, and the creation of (infilled) 

gridded products. It is important that this structural uncertainty in dataset construction is adequately sampled to ensure robust 

inferences (Thorne et al., 2005). The remaining subsections consider in turn the state-of-the-art of these aspects and whether 

the structural uncertainty is adequately sampled currently. 

3.2.1 Land Surface Air Temperature Uncertainties 440 

Datasets of land surface air temperature (LSAT) take somewhat distinct approaches to station selection, quality control, break 

detection, and homogenisation (e.g. Osborn et al., 2021; Menne et al., 2018; Sun et al., 2021; Rohde et al., 2013; Chan et al., 

2024a; Ishii et al., 2025; Chen et al., 2025). There are, however, some overlaps, for example because some datasets draw upon 

the same national-level and regional homogenised products (Osborn et al., 2021, Xu et al., 2018).  

  445 

Homogenisation of LSAT records involves accounting for breaks in temperature records stemming from the factors listed in 

Section 3.2, for example, changes in instrumentation or in the local environment such as through urbanisation. The most 

common approach is pairwise comparison of a station’s monthly aggregated series18 with its neighbours to identify apparent 

 
18 Daily and monthly aggregation can be undertaken in multiple ways and this can impart both systematic and random 
differences (Bonacci and Zeljkovic, 2018). Often monthly aggregation occurs upstream of the dataset teams and depends upon 
national practices. In cases where dataset providers do the aggregation they use a consistent approach to minimise biases.  
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breakpoints, in conjunction with available metadata. For most datasets, an adjustment is calculated for each breakpoint, and 

the process is iterated until no further significant discontinuities are detected (e.g. Menne and Williams, 2009). The resulting 450 

homogenized temperature data are next typically converted to anomalies relative to a common baseline. Anomalies vary much 

less across a given spatial scale than absolute temperatures (which are a function of surface type, orography and other factors) 

and hence are less sensitive to changes in the underlying observing network. An averaging algorithm then converts the 

anomalies into global land surface air temperature changes. Berkeley Earth is distinct in that the breakpoint associated bias 

corrections occur within the averaging process (Rohde et al. 2013). Benchmarking against plausible test data raises confidence 455 

in the effectiveness of homogenisation approaches while highlighting that neighbour-based homogenisation can be limiting if 

i) the network density is low (a particular challenge in the early record); or ii) quasi-contemporaneous changes occur over 

large regions (e.g. Williams et al., 2012; Venema et al., 2012). In many cases, changes occurred at the national level almost 

simultaneously which can lead to challenges for neighbour-based approaches (Williams et al., 2012). Homogenisation 

generally increases the long-term warming by 0.1-0.2℃ over global land with much larger changes in some regions (Chan et 460 

al., 2024a, Menne et al., 2018).  

 

There are also novel techniques which are more experimental in nature and have not yet been operationalised. Gillespie et al 

(2022) used sparse input reanalyses (Section 3.2.4) as an independent background estimate to identify and adjust for 

breakpoints. They found less warming than in existing products, but the approach is critically dependent upon the reanalysis 465 

used as a reference. The EUSTACE project (Rayner et al., 2020) used an ensemble break detection method for station data 

(Brugnara et al., 2019). The station data and breaks as well as estimates of air temperatures across land, ocean and ice areas 

derived from satellite retrievals were then statistically combined. There are also several regional (e.g. Cornes et al., 2018) and 

national temperature products. These additional experimental, regional and national products collectively imply that the 

available global datasets likely undersample the true structural uncertainty in reconstructions of global LSAT (e.g. Way et al., 470 

2017), and that there is a substantial need to develop and operationalise additional LSAT products to better sample structural 

uncertainty.  

 

The early period is a particular challenge. Prior to the early 20th Century and standardisation of instrumentation and methods 

of observation under the International Meteorological Organization (IMO, the precursor to the WMO) there existed substantial 475 

heterogeneity in instrumentation, mounting, sheltering and measurement techniques (Parker, 1994). A recent comprehensive 

review using both contemporaneous and modern parallel measurement series comparing older to modern techniques highlights 

complex biases with substantial seasonality and geographical variability (Wallis et al., 2024). Given the sparsity of station 

records (Figure 2) during this early period, existing neighbour-based homogenisation techniques may be insufficient, with 

some techniques unable to assess early periods of record. Proxy records over 1850-1900 suggest that the available LSAT series 480 

may be systematically warm biased in this period during summer (Schneider et al., 2023). This would be consistent with the 
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overall tendency found in Wallis et al. (2024) between older and more modern instrumentation and point to potential under-

adjustment for bias in the early records. 

3.2.2 Marine Temperature Uncertainties 

IPCC AR6 assessed three principal SST datasets: HadSST4 (Kennedy et al., 2019), ERSSTv5 (Huang et al., 2017), and COBE-485 

SST2 (Hirahara et al., 2014). Each dataset is corrected for changes in instrumentation, principally the use of buckets from 1850 

to present, the introduction of engine room measurements starting in the 1930s and the recent transition from ships to buoys. 

The difference between the SST datasets constitutes one of the largest contributions to the assessed uncertainty in GMST 

changes, and with just HadSST4 and ERSSTv5 used in the AR6 generation of global surface temperature products (although 

COBE-SST2 is used in some reanalyses; Section 3.2.4) it is likely that structural uncertainty is underestimated. 490 

 

While HadSST4 and ERSSTv5 account for broad scale changes in the observing system, some issues are not explicitly dealt 

with by either. These include errors that correlate at the level of data collections, or countries over multiple years (Chan and 

Huybers, 2019), such as a truncation error in Japanese data over 1930-1960 (Chan et al., 2019). There are also errors in recorded 

ship positions (Carella et al., 2017a, Dai et al., 2021) and inconsistencies between coastal land stations and sea-surface 495 

temperatures (Cowtan et al., 2018; Chan et al., 2023). Integration of various lines of evidence, including paleoclimate data, 

indicate that global SST estimates have potential cold biases during the early twentieth century (Hegerl et al., 2018; Chan et 

al. 2024; Sippel et al. 2024) and warm biases during World War II (Pfeiffer et al., 2017, Chan et al. 2021; Ishii et al. 2025) 

owing to changes in methods of measurements and national practices. In addition, HadSST4 and ERSSTv5 diverge somewhat 

starting in the early 1990s (Kennedy et al. 2019) for reasons which are still not well understood. These insights do not 500 

necessarily affect warming estimates since 1850-1900, but do affect our understanding of multi-decadal variability. 

Observational uncertainties for SST for the modern observing system have been estimated (Xu and Ignatov, 2016), but the 

estimates of historical uncertainty for SST (see e.g. Kennedy 2014) and NMAT predate recent improvements in understanding 

and need to be re-evaluated to account for new approaches to detecting biases, bias adjustment and quality control. 

 505 

Since IPCC AR6 there have been three substantive new / revised datasets of SST produced. DCSST (Chan et al., 2024b) 

represents the first entirely new and novel SST dataset produced for several decades. It compares with coastal stations to derive 

adjustments, which is structurally distinct from many existing methods. This product is also substantially cooler over 1850-

1900 than existing SST products. COBE-SST3 (Ishii et al., 2025) is a new 0.25° resolution version of the long-standing JMA 

product, which uses correlations between LSAT, NMAT, and SST anomalies to improve SST bias corrections, incorporates 510 

other improvements to SST estimates, and includes a rigorous uncertainty model represented by 300 ensemble members. In 

addition, Chen et al. (2022; 2025) produced a new dataset (CMA-SST), which is similar to ERSSTv5 but using more data 

sources and improved quality control checks. More recently, ERSST has been updated to version 6 (Huang et al., 2025a,b) by 

using neural networks to improve its infilling technique, improved neighbour checks and innovations to large-scale filtering. 
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This update improves estimated SST variability relative to the EOT method, but does not change estimates of global mean 515 

temperature. 

 

In addition to datasets of SST, there are also datasets of NMAT (CLASSnmat starting 1880, Cornes et al. 2020, and 

UAHNMATv1 starting 1900, Junod and Christy 2020). NMAT datasets start later than SST datasets since earlier measurement 

practices included measurement at local noon, and NMAT datasets exclude observations affected by solar heating. Currently, 520 

these NMAT are not used directly in the creation of operational global temperature data sets, however HadNMAT2 (Kent et 

al., 2013) was used to adjust sea surface temperatures during 1850-1941 (HadSST),1850-2010 (ERSST), 1890-2018 (COBE-

SST3), and 1850-2023 (CMA-SST), so NMAT data directly affect almost all current GMST datasets. More recently, 

adjustments for solar heating have been applied (Cropper et al. 2023), allowing all-hours MAT observations to be used in 

GloSATref (Morice et al., 2025; Section 2).  525 

3.2.3 Interpolation to account for data void regions 

The process of estimating the global average temperature from a finite number of point observations introduces additional 

uncertainty. The approaches fall into 6 methodological families summarised in Figure 6. There is no single correct averaging 

method, and the range of methods introduces a range of warming estimates. Ad hoc methods, such as linear interpolation, 

natural neighbor interpolation, and distance weighted interpolation, played an early role in spatial temperature analysis. More 530 

advanced techniques which use the field’s estimated spatial covariance to optimally weight nearby observations are generally 

described, somewhat interchangeably, as Kriging or Gaussian process regression are generally favoured in modern products. 
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 535 

Ad-hoc Spatial Smoothing 
Smooth temperature observations 
spatially using ad-hoc methods to 
infill datagaps. 
 
 

 

Empirical Spatial Correlation 
Functions 

Infill data gaps using empirically 
estimated distance-based spatial 
correlation or covariance functions 
to calculate weighted averages of 
model residuals of nearby 
observations. 

 

Spatial Patterns 
Use characteristic spatial patterns of 
temperature variation to infill data 
gaps using available observations 
and/or numerical models. 
 

 

Graph-based Methods 
Use mathematical graphs, which are 
sets of nodes and links, to help 
estimate spatial correlations of 
temperatures and infill data gaps 
using available observations and/or 
numerical models. 
 

 

Gaussian Process Regressions 
Gaussian process regressions, also 
known as Kriging, infill data gaps 
using optimal weighted averages of 
a background field and nearby 
observations. Gaussian process 
regressions may incorporate spatial 
correlation functions, spatial 
patterns, and graphs. 

 

Neural Networks 
Use neural networks to fill in data 
gaps based on available observations 
and/or numerical models. 
 

 

Figure 6. Visual summary of the 6 broad families of approaches to interpolating to create (more) globally complete estimates from 
the globally incomplete and time-varying observational fields.  
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Berkeley Earth and Cowtan & Way (2014) were the first to explicitly use Kriging. HadCRUT5 and GloSATref also use 

Kriging, implemented with a single correlation scale for each surface type (land and sea-ice vs ocean, Morice et al. 2021, 540 

2025). HadCRU_MLE (Calvert, 2024a) and DCENT_MLE (Calvert, 2024b) combined a Kriging-like method with a single 

EOF to represent ENSO. Generally, a small set of characteristic temperature correlation length scales are used in Kriging-

based methods, split by surface type (e.g. land versus ocean). GETQUOCS (Ilyas et al., 2021) applied multi-resolution lattice 

Kriging to generate a large HadCRUT4-based ensemble that samples uncertainties associated with both infilling and 

HadCRUT4 bias adjustments. DCENT-I (Chan et al, 2025) used ordinary Kriging with anisotropic and heterogeneous kernels. 545 

CMA-GMST (Chen et al., 2025) combined a Kriging-like method with spline interpolation to infill land regions without using 

distance-based spatial correlation functions. Vaccaro et al. (2021) used a “GraphEM” method that better represents anisotropic 

features like land–ocean contrasts. They found that more-sophisticated methods had a particularly relevant impact when 

reconstructing ENSO patterns.  

 550 

NOAAGlobalTemp v6 (Yin et al., 2024) uses a two step process for both land and sea, first calculating a low-resolution, 

slowly-varying background field. Residual differences over land are estimated using a Neural Network and the residuals over 

ocean are estimated using EOTs19. A similar EOT-based approach is used in China-MST3.0-Imax (Sun et al., 2022; Li et al., 

2025). CMA-GMST (Chen et al., 2025) also uses a similar EOT-based approach for ocean and sea ice regions. GISTEMP uses 

land observations with distance-weighted spatial smoothing to infill temperature anomalies over land and sea ice (Lenssen et 555 

al., 2019). COBE-STEMP3 uses EOFs to simultaneously reconstruct both low and high frequency fields for SSTs (COBE-

SST3) and LSATs (COBE-LSAT3). A neural network approach adapted from a method for repairing damaged photographs 

and trained on reanalysis or model output, was used by Kadow et al. (2020) to fill gaps in the HadCRUT4 grid. An update 

used in IPCC AR6 (Gulev et al., 2021) and subsequent annual updates (Forster et al., 2024) applied the same method to 

HadCRUT5. 560 

 

Methodological similarities and differences discussed above, including choice of land and SST datasets are summarised in 

Table 1. This highlights that despite some diversity there are also similarities between products in both underlying data series 

and the method of global interpolation. This could potentially lead to a mis-specification of structural uncertainty. 

  565 

 
19 EOTs are conceptually similar to the more commonly used EOFs but are spatially truncated so that they only provide regional 
inferences. 
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Global 
Surface 

Temperatur
e Dataset 

Sea Surface 
Temperatur

e Dataset 

Land 
Surface Air 
Temperatur

e Dataset 

Sea Ice 
Concen- 
tration 
Dataset 

Uses Ad-hoc 
Spatial 

Smoothing 

Uses Spatial 
Correlation 
Functions 

Uses Spatial 
Patterns 

Uses 
Graph- 
based 

Methods 

Uses 
Gaussian 
Process 

Regression 

Uses Neural 
Networks 

Accounts 
for 

Climatolo-
gical 

Differences 
between Sea 

Ice and 
Open Sea 

Cowtan and 
Way (2014) HadSST3 CRUTEM4 HadISST1  ✔   ✔   

GETQUOC
S HadSST3 CRUTEM4 None  ✔   ✔   

Vaccaro et 
al. (2021) HadSST3 CRUTEM4 None    ✔ ✔   

HadCRUT5 
Analysis HadSST4 CRUTEM5 HadISST2  ✔   ✔   

Update to 
Kadow et al. 
(2020) 

HadSST4 CRUTEM5 None      ✔ ✔ 

HadCRU_M
LE HadSST4 CRUTEM5 HadISST2  ✔ ENSO Only  ✔  ✔ 

Berkeley 
Earth HadSST4 Berkeley 

Earth HadISST2  ✔   ✔  ✔ 

GloSAT 
Reference 
Analysis 

GloSATMA
T (MAT not 
SST) 

GloSATLA
T HadISST2  ✔   ✔   

DCENT_M
LE DCSST DCLSAT HadISST2  ✔ ENSO Only  ✔  ✔ 

DCENT-I DCSST DCLSAT HadISST2  ✔   ✔   

GISTEMPv4 ERSSTv5 GHCNv4 HadISST2 ✔ Land and Ice 
Only Sea Only     

NOAAGlob
alTempv5.1 ERSSTv5 GHCNv4 HadISST2 ✔  ✔    Poleward of 

65° 

NOAAGlob
alTempv6.0 ERSSTv6 GHCNv4 HadISST2 ✔  Non-Polar 

Sea Only   
Land and 

Poleward of 
65° 

Poleward of 
65° 

China-
MST3.0-
Imax 

ERSSTv6 China-
LSAT2.1 HadISST2 ✔  

Land and 
North of 

65°N 
  Sea South of 

65°N 
North of 

65°N 

CMA-
GMST CMA-SST CMA-GLST HadISST2 ✔  Sea and Ice 

Only  Land Only   

COBE-
STEMP3 COBE-SST3 COBE-

LSAT3 COBE-SST3   ✔  ✔   

           
Table 1. Summary of similarities and distinctions between the various extant infilled dataset versions at the time of paper 
preparation. See main text for citations and further details. 

 570 

Figure 7 shows differences in global mean estimates arising from interpolation of HadCRUTv5 via a variety of techniques. 

All approaches tend to increase the long-term warming compared to the non-infilled product, partly associated with rapid 

warming in the poorly-sampled Arctic (Cowtan and Way, 2014; note that the recent rapid retreat in Antarctic sea-ice may yield 

similar challenges moving forwards if sustained). However, infilling also affects the area ratio of land and ocean or low and 

high latitudes, which have likely warmed at different rates. The approach to infilling temperatures over regions of sea ice losses 575 
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can impact estimates of GMST change since the late nineteenth century by up to 0.1°C (Richardson et al., 2018; Gulev et al. 

2021; Calvert 2024a). However, datasets that account for climatological differences but use discontinuous temperature models 

may overestimate the impact of sea ice loss on GMST change (Calvert 2024a). In contrast, there is no available analysis of sea 

ice loss effects on GMST trends for datasets where infilling uses EOFs, EOTs, or neural networks trained on reanalysis or 

climate model output. 580 

  

 
Figure 7: Differences in global mean estimated between 3 distinct infilled versions and the non-infilled version of HadCRUT5, 
showing the effect of interpolation on estimated global temperature estimates. A value of zero denotes the value of the non-infilled 
product for a given year and negative deviations are associated with a cooler value in the infilled than the non-infilled version (and 585 
viceversa). 

3.2.4 Role of Reanalyses 

Dynamical reanalyses combine observations with modern data assimilation and numerical weather prediction techniques to 

create a retrospective analysis. In principle, the result should be a physically coherent climate analysis across multiple 

variables. However, model and other biases may persist through data assimilation cycles, particularly in sparsely observed 590 

regions. With increasing quality (Soci et al., 2024 and references therein), reanalysis products are now gaining widespread 
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usage in monitoring of global surface temperature changes including in the latest IPCC assessment (Gulev et al., 2021) and in 

WMO climate monitoring statements20.  

 

Full-input atmospheric reanalyses such as ERA5 (Hersbach et al., 2020) and JRA-3Q (Kosaka et al., 2024) use as many 595 

observations as possible to constrain the 3-D atmosphere. They are primarily designed for the period since the mid-20th century 

due to availability of radiosonde and then satellite observations. They may use SST datasets based on satellite as well as in 

situ observations, or SST data based only on in situ observations discussed in Section 3.2.2. To estimate temperature changes 

since 1850-1900 they must be merged with the longer global temperature datasets. This can be achieved by comparing the two 

types of dataset over a common period (such as 1991-2020) to generate an ‘offset’ (and its uncertainty) for the change since 600 

the pre-industrial period21. Full-input reanalyses generally have a latency of days, allowing near-real time monitoring. Unlike 

traditional datasets which have generally been monthly, these reanalyses enable daily and even sub-daily characterisation of 

global surface temperature variations. 

 

There also exist sparse-input reanalysis products (such as the 20th Century Reanalysis and ERA-20C) which are constrained 605 

only by observed boundary conditions such as SSTs, observed surface pressure, surface wind, and selected time varying 

forcings such as GHG concentrations. These produce a global warming signal since the mid-19th century (e.g. Compo et al., 

2013, Poli et al. 2016; Slivinski et al. 2019; 2021), independent of land-based temperature observations, and are less prone to 

observation-type changes causing spurious trends than full-input reanalyses. However, they generally track existing in-situ 

based estimates substantially less well than full-input reanalyses in the modern period. 610 

 

It should be noted that none of the available reanalyses are produced by data assimilation systems that include a complete 

representation of known radiative forcings. For example, ERA5 does not represent long-term changes in land use, and 20CRv3 

assumes a constant tropospheric aerosol burden. Biases will result, depending on the extent to which the assimilated 

observations can fully represent the impacts on temperature. Most reanalyses also perform their data assimilation in uncoupled 615 

mode such that atmosphere-ocean feedbacks are not explicitly accounted for which can lead to complications (de Rosnay et 

al., 2022). 

3.2.5 Remaining uncertainties and challenges in the estimation of observed global surface temperature changes 

3.2.5.1 Do existing global surface temperature products adequately sample the structural uncertainty? 

 620 

 
20 https://wmo.int/publication-series/state-of-global-climate (last accessed: 22/6/24) 
21 e.g. https://climate.copernicus.eu/climate-bulletin-about-data-and-analysis (last accessed: 27/12/24) 

https://doi.org/10.5194/essd-2025-825
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



26 
 

It is important to recognise that there are fewer methodological degrees of freedom in available global surface temperature 

change estimates than would be implied by simply counting the number of contributing datasets (Table 1). Datasets generally 

rely on the same underlying temperature observations. Some global products go further and either share common SST or LSAT 

products, or the principal differentiation arises solely from post-processing and interpolation method differences. The spread 

of datasets with shared features inevitably understates the uncertainty compared to having truly independent estimates where 625 

all aspects of the processing chain are methodologically distinct. Various possible ways to create ‘family trees’ to highlight 

the methodological overlaps are possible (Figure 8 gives an example).  

 

 
Figure 8: Schematic “family tree” indicating which datasets are more and less closely related at the time of paper preparation (left) 630 
based on grouping primarily by SST dataset and then by LSAT dataset and (right) primarily by LSAT dataset in the first instance. 
In each case reanalyses are grouped separately. Other approaches to such family tree aggregation are possible but would lead to a 
similar conclusion of fewer degrees of freedom than implied by a naive counting of available products. 

 

To exacerbate the issue of underestimation of methodological degrees of freedom in creating merged products, until very 635 

recently those datasets with larger LSAT trends had been merged with SST products exhibiting less warming and vice-versa. 

This created a false impression of broad agreement in GMST estimates. A simple mixing and matching of LSAT and SST 

datasets in several long-standing data products leads to a considerably wider spread in estimates (Figure 9). 
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 640 
Figure 9. Annual (1850-2023) global mean near-surface temperature expressed as an anomaly relative to (top) the 1850-1900 average 
and (bottom) 1991-2020. Four datasets are shown, including two standard datasets - HadCRUT5, and NOAAGlobalTemp v6 (solid 
lines) - and two combinations taking the land and ice contribution from one dataset and combining it with the ocean contribution 
from another as indicated in the legend (dashed lines). The spread from the two operational combinations (HadCRUT5, NOAA 
GlobalTemp v6 - solid lines) is considerably smaller than that from the 2 recombinations (dashed lines). 645 

 

One way to gauge uncertainties in homogenized datasets is to compare LSAT and SST data where they meet along coastlines. 

Cowtan et al. (2018) found that LSAT records imply SSTs were a couple tenths of a degree cooler during 1850-1900 than 

HadSST3 and ERSSTv4 estimates (Huang et al., 2015; Kennedy et al., 2011a and 2011b; Liu et al., 2015). Chan et al. (2023) 

used a more-detailed energy balance model to compare SSTs with their coastal LSAT counterparts and found discrepancies of 650 
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a similar magnitude prior to the 1940s, depending upon how the LSAT records are homogenized. These discrepancies are not 

readily reconciled given stated LSAT and SST uncertainties, implying that uncertainty quantification remains incomplete and 

overly confident. Two recent datasets using coastal LSAT to homogenise SST (Chan et al. 2024; Ishii et al., 2025) support the 

conclusions of Sippel et al. (2024) that the structural uncertainty was significantly underestimated (in addition to the differences 

illustrated in Figure 9) at least in the first half of the twentieth century for datasets used in IPCC AR6. 655 

 

In some cases, dataset developers produce parametric uncertainty estimates given the dataset methodological choices (e.g. 

Morice et al. 2021, Huang et al. 2020; Ilyas et al. 2021; Sun et al. 2022; Calvert 2024a). Parametric uncertainty estimation 

involves accounting for the impact of uncertain choices within the chosen methodological framework upon the resulting 

estimates. There are a very broad range of possible approaches which include: propagation of uncertainty from the individual 660 

measurements, assessment of the parametric uncertainty by varying analysis parameters and choices, comparison of 

subsampled and fully sampled reanalysis fields, maximum likelihood estimation, Bayesian methods, and bootstrapping (e.g. 

Morice et al., 2021, Lenssen et al, 2019; Lenssen et al., 2024). These parametric uncertainty estimates are therefore rarely, if 

ever, directly comparable. They either account for a different combination of sources of uncertainty, or use methodologically 

distinct approaches, or both. Some create ensembles of ‘equi-probable’ estimates whilst others provide probabilistic 665 

distributions (Section 5 discusses our use of these ensembles). It is critical to note that tighter parametric uncertainty estimates 

may simply reflect a more restricted consideration of possible uncertainties (either fewer uncertainties being considered and / 

or conservative estimates of their magnitude) rather than a higher product quality. Equally, very broad parametric uncertainty 

estimates may reflect unduly pessimistic assumptions around the possible magnitude of uncertainties. Despite these caveats, 

there is agreement that these estimates generally increase back in time with a marked spike in many estimates around the time 670 

of World War 2 (Figure 10). None of the estimates are large enough to call into question large-scale centennial warming. 
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Figure 10. Comparison of quantified estimates of parametric uncertainty from those observational datasets that have provided them. 
Each trace shows the 95% uncertainty range through time for annual means. Differences arise from the assessment of distinct 675 
sources of uncertainty using distinct approaches. All estimates increase back in time with increasing data sparsity. DKRZ CNN is 
the Kadow et al. dataset. Two versions of GISTEMP uncertainty estimates are shown. Figure from Lenssen et al., 2024 (their Figure 
4). 

 

Given the above considerations, we conclude that observational structural uncertainty is currently undersampled and therefore 680 

likely misspecified in the available ensemble of in situ based estimates. It is important to stress that this misspecification of 

structural uncertainty only changes our understanding of precisely how much Earth has warmed, it does not call into question 

the unequivocal finding that the world has warmed, a finding that rests on multiple lines of evidence of changes arising from 

diverse observational and proxy sources across the atmosphere, oceans, cryosphere and biosphere (Gulev et al., 2021). The 

updated datasets used in IPCC AR6 increased estimated warming for 1850-1900 to 2013-2012 by 0.12℃ compared with the 685 

datasets used in IPCC AR5. They also shifted and increased somewhat the estimated uncertainty range, particularly in the 

upper bound (Gulev et al., 2021 their CCB 2.3 Figure 1, see also SPM A1.2 and associated footnote 10 in IPCC, 2021). 

Similarly, the estimated warming from 1850-1900 to the 1986-2005 reference period used in AR5, and which formed the basis 

for many of the impact studies in AR5 WGII, shifted to be 0.08℃ warmer. 

 690 

Shifts by a similar or larger magnitude could occur in the future. Indeed, new estimates from Chan et al. (2024b) and Calvert 

(2024a) may result in similar shifts in future assessments. Equally importantly, better sampling of the structural uncertainty 

may expand or contract the apparent uncertainties, impacting our confidence in any assessment. In this context it is important 

to screen datasets to remove estimates that persistently do not adequately account for known sources of bias which would 

unduly widen the spread of estimates (e.g. Gulev et al., 2021; see Section 5 for further discussion on this point). 695 
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Given the importance of monitoring global surface temperatures, a reasonable goal would be to increase the number of broadly 

independent datasets to numbers commensurate with those for Ocean Heat Content and Global Mean Sea Level each of which 

had >10 datasets assessed in IPCC AR6 (Gulev et al., 2021). This will require sustained investments with long-term support 

to create and maintain structurally distinct products. 700 

 

Better sampling of structural uncertainty can be facilitated by innovation in quality control and homogenisation techniques. 

There are more techniques that have been developed than are currently deployed in estimation of global surface temperature 

changes (e.g. Venema et al., 2012, Gillespie et al., 2022, Joelsson et al., 2022). There is also the potential to better benchmark 

the performance of existing and candidate algorithms against realistic test data sets (Section 3.2.1). Currently lacking are global 705 

benchmarks for LSAT and relevant evaluation criteria for the processing of marine observations. 

3.2.5.2 Potential for residual common biases across all products 

There is a general need for improved understanding of historical data issues. Identified issues that are common to most in situ 

marine datasets are described in Section 3.2.2. Modern hourly data can aid in quantifying the effect of observation time changes 

in historical data and of different methods to estimate daily mean temperatures (Gough et al., 2020), though metadata 710 

describing observation times is not always available digitally. Rescuing historical parallel measurements series (Wallis et al., 

2024 and references therein) and recreating known changes in modern field experiments (e.g. Brunet et al., 2011) can help to 

assess the impacts of changes in historical observing techniques and practices. There are many fewer such observations for 

marine observing platforms than for land observing stations despite calls for their recovery (Kent et al., 2017). The issues 

uncovered over the past couple of decades have highlighted potential data artefacts of the order of a tenth of a degree globally, 715 

and a systematic error of such magnitude across all datasets would have a substantial impact upon any assessment of whether 

1.5℃ has been passed or not. Any hitherto unrecognised data artefacts will, by definition, be common to all datasets to some 

extent. It would be unduly optimistic to believe that all remaining data artefacts have been identified and quantified to date. 

3.2.5.3 Challenges around accounting for sea-ice effects 

Uncertainty in sea ice concentrations contributes substantial but poorly quantified uncertainty to instrumental temperature 720 

datasets and reanalyses, particularly prior to the availability of satellite records. Gridded Arctic sea ice concentration datasets 

that go back until 1850, including COBE-SST2, HadISST2 (Titchner and Rayner, 2014), G10010v2 (Walsh et al., 2019), and 

COBE-SST3, are based on climatologies for much of the period and do not reflect true variability. In particular, for the southern 

hemisphere, COBE-SST2 and COBE-SST3 use no data prior to the satellite era, whereas HadISST2 may substantially 

overestimate sea ice concentrations during this period as it relies on a 1929-1939 German climatology and 1947-1962 Soviet 725 

climatology, the first of which represents "where ice is known to come farthest towards the open sea" during the climatological 

period (Orvig, 1955). Calvert (2024a) estimated that the impact of southern hemisphere sea ice on GMST change from 1850-

1900 to 2023 is 0.05 °C less warming when using COBE-SST2 rather than HadISST2. 
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Most sea-ice concentration datasets do not provide uncertainty estimates. ERA5 uses differences between HadISST1 (Rayner 730 

et al., 2003) and HadISST2 to represent uncertainty in sea ice concentrations prior to 1979 (Hirahara et al., 2016). But these 

differences largely reflect adjustments to account for summer melt ponds. Relevant infilled instrumental temperature datasets 

and reanalysis almost exclusively use HadISST2 prior to the satellite era (Table 1) and thus undersample structural uncertainty 

in sea ice concentrations; two exceptions are JRA-3Q and COBE-STEMP3. Overall, sea ice contributes an uncertainty on the 

order of 0.1°C to GMST change since the late 19th century (Section 3.2.3). 735 

 

Historic sea ice concentration estimates could be improved to better account for infilling and measurement uncertainties. 

Satellite-based estimates could be improved to better account for summer melt ponds and thin ice (Ivanova et al., 2015). 

Furthermore, datasets could incorporate additional data from northern hemisphere sea ice observations (Hill, 1999; Vinje, 

1999; ACSYS, 2003; Ruffman et al., 2003; Shapiro et al., 2006), whaling log books (Cotté and Guinet, 2007; de la Mare, 740 

2009; Teleti et al., 2019; Walsh et al., 2019), early satellites (Gallaher et al., 2014), and Antarctic sea ice observations 

(Edinburgh and Day, 2016; Love and Bigg, 2023; Martin et al., 2023). In addition, there have been recent improvements to 

sea ice reconstructions that combine temperature, pressure or paleoclimate records with statistical or data assimilation methods 

(Brennan et al., 2020; Samakinwa et al., 2021; Yang et al., 2021; Brennan and Hakim, 2022; Fogt et al., 2022; Dalaiden et al., 

2023; Goosse et al., 2024; Maierhofer et al., 2024; Semenov et al., 2024; Dalaiden et al., 2025; Cooper et al., 2025). Figure 745 

11 shows sea ice extent anomalies for a subset of available datasets and reconstructions. Panel b of Figure 11 shows that the 

large decline in HadISST2 Antarctic sea ice since 1939 is inconsistent with five reconstructions, suggesting that its use of the 

German climatology prior to the satellite era is unreliable. 

 

 750 
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Figure 11: Sea ice extent anomalies from 1850 to 2023. Anomalies are annual mean anomalies unless specified otherwise. Gallaher 
et al. (2014) anomalies are calculated relative to the NSIDC sea ice extent index (Fetterer et al., 2017) and its uncertainties are 
calculated by assuming uncorrelated uncertainties between months. Edinburgh and Day (2016) anomalies are calculated relative to 
the bootstrap algorithm results of the NSIDC Climate Data Record (Meier et al., 2021). The Dalaiden et al. (2025) oceanic paleo 755 
reconstruction is shown as their preferred reconstruction; their atmospheric reconstructions are not shown, but include a 95% 
uncertainty on the order of ±1 million km2 for the Antarctic. Cooper et al. (2025) mean and uncertainties were calculated from the 
publicly available 14 member subensemble. 

3.2.6 The potential to improve the observational basis for all products 

For reasons relating to historical and ongoing data policies and data management a vast volume of observational data are not 760 

currently openly available (e.g. Noone et al., 2021), particularly for earlier records (Bronnimann et al. 2019b). To address this, 

the WMO has adopted a new unified data policy, which for the first time requires NMHSs to share a minimum subset of 

historical holdings and encourages sharing of all holdings (WMO, 2022). If all NMHSs were to share these holdings then many 

data gaps would be filled. The WMO has also endorsed and is starting to make operational the Global Basic Observing 

Network, in part through the associated Systematic Observations Financing Facility, which will fill additional critical gaps if 765 

fully enacted (WMO, 2021), but presently does not consider many observations important for climate, including MAT. 
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Many data records, particularly prior to 1950, remain in hard copy or image format only (e.g. Allan et al., 2011, Brönnimann 

et al., 2019b). Efforts are required to expedite the rescue of these records, from inventorying and cataloguing through to 

digitisation22. Citizen science projects (e.g. Teleti et al. 2023, Lakkis et al., 2023, Gergis et al., 2023, Hawkins et al., 2023) 770 

(Figure 12), and classroom-based projects (e.g. Ryan et al., 2018, Noone et al., 2024) have delivered progress, but not yet at 

the scale required. AI-techniques for digitisation may prove useful but are as yet unproven at scale (Prasad et al. 2020, Ziomek 

and Middleton, 2021, Li et al. 2023, Vercruysse et al., submitted, Lorrey et al. 2022). Even when AI-based techniques become 

mature, human input will still be required. This can be mitigated by recent advances in semi-supervised training regimes for 

AI models (Singh and Middleton 2024) or deployment into human-machine teaming environments where AI-generated data 775 

is reviewed in efficient “check and correct” type quality assurance cycles, allowing AI data rescue errors to be managed 

effectively prior to integration with other data sources and downstream use. 

 
Figure 12: Example of how data recovery can help fill gaps in existing reconstructions. For June 1942, thousands of newly rescued 
SST observations are now available in the Pacific (red dots), including in regions with no or very few existing observations (Teleti et 780 
al. 2023). Shaded greys are the number of SST observations used in HadSST4 (Kennedy et al. 2019) on a log scale. The digitisation 
of these US ship logs for 1941-1945 has provided millions of new sub-daily SST, MAT and pressure observations but many still non-
digitised logbooks exist for the same time period. 

 
22 https://datarescue.climate.copernicus.eu/en/c3s-data-rescue-service last accessed 3/2/25 
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Improved and sustained management of the fundamental data record is imperative. Today’s state-of-the-art datasets may seem 785 

antiquated in 20 years, whereas curation of the fundamental data record is forever. Without sustained stewardship following 

“FAIR” principles (Wilkinson et al. 2016), data can be permanently lost. Recent efforts to internationalise support for data 

stewardship (Noone et al., 2021) need to be deepened and entrenched to make this stewardship less prone to single points of 

failure, more robust and traceable and to ensure that issues are corrected, newly rescued data and metadata are readily available 

for dataset improvements, and appropriate credit and support is provided to the data originators. 790 

4 Approaches for estimating the current global warming level 

4.1 Global surface temperatures have already exceeded 1.5°C above 1850-1900 levels on at least a temporary basis 

Owing to natural variability, individual days, weeks, months and years will differ from the longer-term climate mean state 

(Gulev et al., 2021, IPCC, 2021b). In a warming climate, any temperature level will typically be temporarily exceeded multiple 

times before that level of global warming is exceeded on a more sustained decadal or multi-decadal basis (e.g. Rogelj et al., 795 

2017, Lee et al., 2021, Nicklas et al. 2025, Trewin, 2022). A global mean temperature anomaly of 1.5°C relative to 1850–1900 

has been exceeded on a daily basis multiple times in the ERA5 reanalyses since late 2015 (Figure 13). This same dataset 

indicates that daily global surface temperature anomalies approached and possibly exceeded 2°C in November 2023 and 

February 2024 (Figure 13). Several months have also exceeded 1.5°C across multiple datasets, most notably from July 2023 

onwards. There is general agreement that 2024 was the warmest calendar year on record, but in the WMO assessment 2 datasets 800 

have reported values for the year that do not exceed 1.5°C, while the remaining 4 do exceed 1.5°C, with a consensus estimate 

of 1.55°C and a range of 1.46 to 1.62°C23 (Figure 5).  

 

The recent sustained period above 1.5°C has been analysed in combination with CMIP6 simulations to infer that the long-term 

mean has probably now exceeded 1.5°C (Cannon, 2025) or that we are now somewhere within the 20-year period during which 805 

1.5°C will be exceeded (Bevacqua et al., 2025). Note the distinct framings here - Cannon argues the 20-year centred mean in 

2024 will likely have exceeded 1.5°C, based on the fact that the first instance of 12 consecutive months above 1.5°C typically 

occurs after the long-term mean exceeds this level in simulations, whereas Bevacqua et al. argue that 2024 will lie within the 

first such 20-year period and show that historically first exceedances have typically preceded long-term exceedance. The latter 

result would be consistent with IPCC (2021) whereas the former would imply much earlier exceedance than assessed by IPCC. 810 

Both results also assume that there have been no significant deviations in the radiative forcings relative to what was used in 

CMIP6.   

 
23 Note the slight distinction with the Forster et al. 2025 numbers given in Section 1 which results from slight differences in 
dataset selection and methods. Adopting a consistent method, as suggested in this paper, would remove this potential for 
confusion. 
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Internal interannual-to-multidecadal variability can cause individual years to be of the order 0.2°C (Trewin, 2022, based on 

observations) / 0.25°C (IPCC, 2021, based on CMIP6) warmer or cooler than the long-term mean state. Accounting for internal 815 

variability is crucial for climate impacts projections in the near-term (Schwarzwald and Lenssen 2022). There are also potential 

complications arising from variations in natural and anthropogenic short-lived climate forcings including, for the current 

period, the Hunga Tonga volcanic eruption, the marine bunker fuel regulations and rapid sulphur emission reductions in 

individual countries (Jenkins et al., 2023, Yuan et al., 2024, Bevacqua et al., 2025, Forster et al, 2025, Samset et al., 2025). 

While reporting of annual global surface temperatures serves an important role, such short-term fluctuations can significantly 820 

complicate interpretation and need to be accounted for in a systematic way. Annual temperatures alone are therefore imperfect 

for tracking progress towards a specific longer term temperature goal. While methodological approaches and definitions for 

assessing the current long-term temperature in the context of the 1.5°C target exist (e.g. IPCC SR1.5) and are operationally 

updated (e.g. Forster et al., 2025), the current proximity and rate of approach towards the LTTG motivate a thorough and broad 

assessment of which approaches or family of approaches are most robust under a variety of warming scenarios. Section 4 825 

reviews published approaches for separating the long-term warming “signal” from the “noise” arising from observed 

temperature fluctuations and assesses them against a range of test cases to attempt to answer this need. 
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 830 
Figure 13. Top-panel: Daily global average temperatures for 2015, 2016, 2023 and 2024 showing occurrences of exceedance of 1.5°C 
warming according to the ERA5 reanalysis (rebased to 1850-1900 using a range of existing long-term surface temperature estimates). 
The first such occurrence was in late 2015. The grey-shaded band shows an indicative uncertainty range from 1.35°C to 1.65°C. 
Lower panel: Percentage of days each year when the ERA5 global-mean temperature exceeds 1.35°C, 1.45°C, 1.5°C, 1.55°C and 
1.65°C above 1850-1900. The figure can also be interpreted as indicating the uncertainty in the percentage of days exceeding 1.5°C, 835 
for a total uncertainty range of ±0.15°C (light grey bars) and for an uncertainty range of ±0.05°C (dark grey bars), the latter being 
indicative of uncertainty relative to a modern baseline rather than 1850-1900. Source: ERA5. Credit: C3S/ECMWF    

4.2 Ambiguity in the Paris Agreement’s specification of the long-term temperature goal (LTTG) 

Section 1 articulated several reasonable interpretations of Article 2 (see also Section 6), but the general interpretation is that 

the LTTG refers to multidecadal levels of globally averaged warming. The Paris Agreement does not provide an operational 840 

definition, but one is needed to assess whether a given LTTG is exceeded. The following are three key considerations for 

defining a specific warming level, above and beyond what constitutes pre-industrial (see Section 2). 
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Consideration 1: Over what timescale and using what metric can progress towards the LTTG be assessed? 

There is no formal definition of ‘longterm’ in the Paris Agreement or the UNFCC process. COP 27 (UNFCCC, 2022) comes 845 

closest in noting that global average temperature in the context of the LTTG “is assessed over a period of decades”. A 30-year 

mean surface temperature was first reported in 1935 by the IMO as a "standard climate normal" and was used as one part of 

the IPCC SR1.5 warming definition in 2018. In 2021, the IPCC AR6 used a 20-year centred average to define when projections 

under various scenarios reach and then remain above a particular Global Warming Level (GWL; Lee et al., 2021, IPCC, 2021). 

Both definitions are, at least broadly, consistent with the COP 27 clarification. 850 

 

Multi-decadal averaging filters out a large portion of high-frequency natural variability and is simple to compute (Trewin, 

2022). However, such averages do not produce smooth trend estimates and can be systematically biased by longer-term 

variability (e.g. Medhaug et al., 2017 and references therein for a discussion of the ‘hiatus’), and nonlinear or natural forcing 

(see Consideration 2). They are also inherently lagging. Sections 4.2–4.4 describe approaches for estimating warming over a 855 

“period of decades” which may avoid some or all of these limitations.  

 

Consideration 2: Are we assessing the underlying anthropogenic warming or the actual warming irrespective of cause? 

Article 1 of the Paris Agreement states that the Agreement inherits the definitions of Article 1 of the Convention (UNFCCC, 

1992) which defines climate change as: 860 

 

“a change of climate which is attributed directly or indirectly to human activity that alters the composition of the 

global atmosphere and which is in addition to natural climate variability observed over comparable time periods”. 

 

As a result, the Paris Agreement’s LTTG is often interpreted as referring to human-induced warming. The IPCC’s Special 865 

Report on Global Warming of 1.5°C (IPCC, 2018) used human-induced warming as a key feature of its definition of “warming” 

to determine when 1.5°C would be reached, although the IPCC has long defined climate change and global warming as 

encompassing both natural and human-induced drivers. Nonetheless, both SR1.5 and AR6 WGI reported human-induced 

warming levels in their SPMs alongside the estimates of observed warming to date. 

 870 

Assessing human-induced warming could help to avoid critical misperceptions about the level of sustained warming, which 

can be temporarily masked by natural volcanic activity, solar forcing24, or extreme manifestations of internal variability (see 

for example, Allen et al 2018, Eyring et al., 2021, Otto et al. 2015, Haustein et al., 2017). It does, however, inevitably, require 

an additional modelling step (even if just a simple linear operator on forcings) which can increase complexity. While human-

 
24 Note that in most future climate scenario runs some repeating solar cycle is present, albeit which may vary from the future 
observed solar behaviour in important ways 
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induced warming very closely matched total warming averaged over 2014–2023, this has not been the case for much of the 875 

last century, as naturally-forced components have often exceeded 0.1°C for multi-decadal periods (Forster et al. 2024, their 

Figure S5). 

 

The counter-argument to use of a human-induced warming metric is that climate impacts and adaptation requirements depend 

on the actual sustained warming irrespective of its underlying cause(s). If the LTTG was motivated primarily to avoid specific 880 

impacts, then the realised temperature change is the relevant metric. In summary, both realised warming and underlying 

anthropogenic warming have intrinsic value from a policy perspective in the context of the LTTG. 
 

Consideration 3: How timely does the assessment need to be? 

If the policy aim is to hold the temperature increase to below some level, it is important to know when that level is reached in 885 

near real-time rather than years later. However, the estimated warming must also be robust to avoid criticism that it is either 

alarmist or conservative and to ensure it serves as a reliable basis for informing policy changes. If a delayed estimate improves 

robustness, this could be an advantage. Since effective mitigation policies take several years to a decade to materially shift the 

emissions trajectory, timely detection of a 1.5°C warming level could help minimize further delays in policy adjustments — 

though the link between providing warming estimates and policy responses remains uncertain. Additionally, public support 890 

for mitigation efforts may benefit from access to reliable, up-to-date information about climate change, reinforcing the need 

for timely and accurate warming assessments. 

 

It will be shown in the remainder of Section 4 that multiple methods are in principle able to provide accurate estimates of both 

global warming and when global warming crosses any particular level in a timely manner. The IPCC AR6 WGI approach of 895 

using a centred 20-year running mean of realised global temperature will be used as a baseline comparator, but this does not 

imply a normative statement that this is the best possible approach that all methods should approximate; indeed it is the purpose 

of this analysis to review appropriate methods. 

4.3 Approaches for estimating the present warming level using observed temperature records 

Observed global temperature change at time t can be separated in either a physical or a statistical way (Glaser et al., 2024). An 900 

assumed form for a physical separation into components representing forced change (F) and internal climate variability (ICV) 

with some observational error is: 

ΔTobs(t) = ΔTF(t) + ΔTICV(t) + 𝜖(t)          (1) 

The forced and ICV components could also be further decomposed based on the forcing agent or mode of ICV. Reasonable 

interpretations of the LTTG generally imply that it refers to 𝛥𝑇!	, or some component thereof (e.g. anthropogenic 𝛥𝑇!,$%&'()). 905 
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Meanwhile, statistical decompositions will typically return some fit estimate and a residual term, regardless of which 𝛥𝑇(𝑡) 

term in (1) is being fitted. 

𝛥𝑇(𝑡) = 𝛥𝑇*+&(𝑡) + 𝛥𝑇(,-(𝑡)          (2) 

Once again, the fit component may be further decomposed, for example into a time-dependent part and components that are a 

function of ICV indexes. To understand statistical results in the context of a LTTG, the terms in Eqs. (1) and (2) must be 910 

related to each other (Glaser et al., 2024). For example, 𝛥𝑇*+&(𝑡) is sometimes estimated by smoothing or a trend and it is 

implicitly assumed that 𝛥𝑇./0(𝑡) + 𝜖(𝑡) ≈ 𝛥𝑇(,-(𝑡), and that 𝛥𝑇*+&(𝑡) ≈ 𝛥𝑇!(𝑡). 

The following subsections introduce a large, but non-exhaustive, set of approaches to using observed records. Many of these 

are then assessed in Section 4.6. 

4.3.1 Moving averages 915 

Moving averages have been broadly used including in assessments by IPCC (IPCC, 2021) and WMO. Such measures are, 

however, by definition lagging indicators. Averaging over only the preceding 5 or 10 years provides a more recent estimate at 

the cost of higher uncertainty, although a 10-year average has only slightly higher uncertainty than a 30-year average (Trewin, 

2022); while 20- or 30- year centered means have been used as retrospective assessments (see supplement for details). A simple 

average is constant within its averaging window so any non-constant 𝛥𝑇!(𝑡) is added to 𝛥𝑇(,-(𝑡), which will inappropriately 920 

inflate standard error estimates. An alternative approach, as used by the IPCC, is to define the uncertainty in the (multi-)decadal 

average using the spread of observationally based estimates (Section 3). This is equivalent to assuming that the error in the 

mean is only generated by 𝜖(𝑡) in Eq. (1), and that the contribution of 𝛥𝑇./0(𝑡) is negligible over the averaging timescale. 

Trewin (2022) proposed applying an offset to an 11-year trailing mean so that it provides a less biased estimate of the 20-year 

mean centred on the current year. The proposed offset, however, is based on post-1970 observed differences between 11-year 925 

trailing and 20-year centred means, so it is valid only if there are no changes in the underlying warming rate (Trewin, 2022).   

4.3.2 Long-Term Fits 

One approach is to fit a 𝑇*+&(𝑡) to the complete 𝑇(𝑡) time series using a statistical optimisation procedure. The method used 

should appropriately account for the fact that 𝑇./0(𝑡) + 𝜖(𝑡) is strongly autocorrelated. While a single linear fit may be used, 

TF(t) is nonlinear since the preindustrial period so polynomials (e.g. Hawkins and Sutton 2009; Lehner et al. 2020) or multiple 930 

continuous piecewise linear fits (e.g. Livezey et. al. 2007, Cahill et al., 2015, Ruggieri and Antonellis 2016, Yu and Ruggieri, 

2019) have been applied. With long-term fits the less reliable and older observations can unduly influence estimates of the 

recent trend. Some long-term fits greatly down-weight data from years far from the one for which the current warming level 

is being estimated. As such the boundary between long- and short-term fits (next subsection) is not distinct. 
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4.3.3 Short-term (Local) Fits 935 

"Local" fits heavily weight recent observations to address the issue of influence arising from distant past observations. For 

instance, IPCC SR1.5 (Allen et al., 2018, their Section 1.2.1) uses the 30-year mean of human-induced warming centred on 

the present day by extrapolating the recent 15-year secular trend; recently, human-induced warming has been approximately 

linear, so linear fits of the most recent 15-years of human-induced warming have been used in annual global warming 

assessments (Forster et al., 2023, 2024, 2025). Another proposal is continuous local regression (LOWESS or a Savitzky–Golay 940 

filter) that allows both differential weighting of temperature measurements and higher-order polynomial splines. 

Implementations for GMST records include those by Clarke and Richardson (2021) and Mann (2004, 2008). We also include 

an adaptation of the method implied by Cannon (2025), which extrapolates from the coolest monthly temperature achieved in 

any 12-month window, as detailed in the supplement.  

4.3.4 Smoothing spline trend estimates with serially correlated residuals 945 

The regression methods above assume a given functional form for 𝛥𝑇*+&(𝑡). A more flexible approach is to model 𝛥𝑇*+&(𝑡) 

non-parametrically using smoothing splines. Such an approach can be easily implemented for annual temperature data by 

fitting Generalised Additive Models (see Box 2.2 (pages 179-180) of Chapter 2 of the IPCC 5th assessment report (Hartmann 

et al., 2013)). Visser et. al. (2018) also used cubic splines (with 7 degrees of freedom and Monte Carlo simulations) to analyze 

GMST. 950 

4.3.5 Simple state space models 

Trends can also be represented using non-stationary stochastic processes such as random walks or integrated random walks 

rather than by deterministic functions of time (Chapter 5, Chandler and Scott, 2011). If the observations can be considered to 

be noisy measurements of the underlying state, then time series can be modelled using what are known as state space models 

(Durbin and Koopman, 2021). A simple example of such an approach, and how to estimate its components using a Kalman 955 

filter and smoother, is presented in Example 6.2 in Chapter 6 of Shumway and Stoffer (2016). More realistic dynamic linear 

models based on energy balance models of the climate system are now being shown to be reliable for estimating the climate 

trend and climate sensitivity from historical data, e.g. Bennedsen et al. (2023) and Section 4.4.3. below. 

4.3.6: Methods for filtering out influences from internal variability 

Other methods attempt to filter out known influences from modes of internal variability, volcanic eruptions or similar. The 960 

filtering may be purely observations based, or taken from emergent relations in Earth System Models. A simple example is to 

use multiple linear regression to remove observed temperature contributions that correlate with the Multivariate El Niño Index 

index (MEI) (Foster and Rahmstorf 2011). Approaches include joint influences of Atlantic and Pacific modes of variability 

(Wu et al. 2011, 2019), pattern recognition (Wills et al. 2020), spatial EOFs (Chen and Tung, 2018), and statistical learning 
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(regularized linear models) based on historical model output (Sippel et al. 2019). A recent attempt used model-derived Green’s 965 

functions to estimate and remove short-term 𝛥𝑇./0(𝑡) contributions (Samset et al., 2022, 2023). 

4.3.7 Summary of statistically-based methods considered 

Figure 14 presents one or more exemplar techniques from each class outlined in Sections 4.3.1 through 4.3.6. Relatively simple 

techniques outlined in Sections 4.3.1 and 4.3.2 are illustrated by the first three panels (30yr/20yr centred, 10yr lagging and 

OLS fit). The 10yr lagging and OLS fit methods are outliers compared to the remaining techniques which better approximate 970 

the underlying data series. While the centred means closely resemble the other techniques where these estimates are available, 

they do not extend within the current decade. The approaches are assessed further in Section 4.6.  

 

 
Figure 14. Illustrative example methods (one or more per class) introduced and discussed in Section 4.3. All panels use the 975 
HadCRUT5 dataset over 1850-2024 (selected solely for illustrative purposes) with annual values shown in grey. The method results 
are shown in colour in each panel. For description of methods see sections 4.3.1-4.3.6 text. Within most panels, there are smaller 
coloured dots showing all results for each method, as well as an enlarged dot and associated lines demonstrating how that method 
works for selected years. The OLS Fit panel only shows one fitted line through 2024. As of March 2025, HadCRUT5 has released an 
annual assessment for 2025, but due to the uncertainty in this assessment the latest selected year for all methods covers through 980 
2024.  

4.4 Approaches that use both forcing and observed temperature records 

Most of the recent long-term temperature trend is attributable to anthropogenic forcings (IPCC, 2021, Forster et al. 2024). 

However, as discussed in Section 4.2, natural forcings and internal variability also contribute to ΔTobs(t). The second major 
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class of approaches examined here additionally incorporate information on radiative forcings, and can be used to attempt to 985 

attribute a quantifiable fraction of the long-term ΔTobs(t) to anthropogenic activity. The physical disaggregation assumed is: 

𝛥𝑇𝑜𝑏𝑠(𝑡) = ∑+ 𝛥𝑇!,+(𝑡) + ∑1 𝛥𝑇./0,1(𝑡) + 𝜖(𝑡)  (3) 

which follows eq. (1) but with the forced component split into terms 𝛥𝑇!,+(𝑡) and the ICV component into terms 𝛥𝑇./0,1(𝑡). 

Methods described in this section attempt to estimate individual terms, such as the warming due to natural forcings, well-

mixed greenhouse gases and/or other human forcings (such as aerosols), and/or their combinations, such as warming due to 990 

all anthropogenic activity, or warming due to all forcing regardless of the cause. 

 

Methods for attributing warming contributions are non-exhaustively introduced below. The methods differ substantially in 

complexity and with regard to the level of granularity with which they are capable of disaggregating ΔTobs(t). In contrast to 

temperature-only methods, these approaches use multiple streams of data which may increase or decrease the overall 995 

uncertainty depending on their quality, and may involve latency tradeoffs25. 

4.4.1 The quasi-linear relationship between carbon dioxide concentrations and global temperatures 

An extensive history of studies have established that, despite the complex dynamics at play in the Earth system, there is a near 

linear relationship between transient global mean temperature and cumulative CO2 emissions (e.g. Matthews et al., 2009, 

MacDougall, 2015, MacDougall & Friedlingstein, 2015), which is (mostly) path independent (Seshadri 2015); this relationship 1000 

is encapsulated by the transient climate response to cumulative emissions of carbon dioxide (TCRE) and is the basis for 

calculation of (remaining) carbon budgets. In addition, the airborne fraction, which relates cumulative CO2 emissions and 

atmospheric CO2 concentration increases, has also been approximately stationary to date , although this may not continue at 

higher levels of warming and CO2 concentration (Canadell et al. 2021). These two observations indicate a quasi-linear 

relationship between GMST and CO2 concentration changes, which is useful owing to these being well-established and directly 1005 

observable quantities that are operationally updated with little lag. Jarvis and Forster (2024) exploited this apparent linearity, 

assuming atmospheric CO2 concentrations as a proxy for all anthropogenic activity; a simple linear regression can then be used 

to estimate the level of anthropogenic warming. This approach results in an estimate of anthropogenic warming for 2023 

relative to 1850–1900 that is statistically similar to existing well-established attribution assessments. While this linear 

relationship appears to hold well over the observational record, it may break down in the future (for example due to reductions 1010 

in SLCFs or changes in airborne fraction). Indeed, in Section 4.6.2 this relationship is shown to misestimate warming by 2050 

in multiple scenarios of the MPI-ESM1-2-LR ensemble: it overshoots in SSP1-2.6 and undershoots in SSP3-7.0. 

 
25 For example, many attribution methods produce theoretically non-lagging annual timeseries for the current level of global 
warming (a benefit over purely statistical approaches), though the methods practically lag according to the timelines for forcing 
datasets to become available (a potential risk compared to purely statistical approaches); in reality, the latter lag tends to be on 
the order of months for the most critical forcings (but longer for several more minor forcings). 
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4.4.2 Energy Balance Models within a Kalman Filter 

An intermediate complexity approach is n-layer (or n-box) energy balance models (Geoffroy et al. 2013; Gregory 2000; Held 

et al. 2010). Each layer has a single temperature, then energy balance is enforced with inter-layer exchange and parameterized 1015 

forcings and climate feedbacks. Examples include Cummins et al. (2020) who developed a Kalman filter model of the climate 

with coefficients tuned on CMIP5 simulations. Bennedsen et al. (2023) used a 2-layer energy balance model to estimate and 

predict future global warming based on historical observations of global mean temperature and ocean temperatures with results 

comparable to ESMs. Nicklas et. al. (2025) also employed such a model, but modified to yield a posterior “climate state” that 

continuously assimilates both forcing data and GMST and ocean heat content anomaly (OHCA) estimates together with 1020 

uncertainties. In the historical tests of Section 4.6.1 the Zanna et al. 2024 OHCA dataset is used, while in Section 4.6.2 the 

OHCA data is extracted from the model projections used. In Section 5, an ensemble of OHCA data is constructed to be used 

together with an ensemble of multiple surface temperature records (Supplement Section 2.4). This approach incorporates 

autocorrelated error into the climate state, filtered to have a smoothness that matches the 30-year running mean (or 20-year 

running mean in the implementation tested here), which enables timely estimates of the present climate state. 1025 

 

Such approaches offer a probabilistic estimate of whether a particular temperature level has been crossed as current 

observations are assimilated and can connect metrics such as OHCA, GMST, SST and LSAT. These systems can also account 

for potential future effects such as large volcanic eruptions were they to occur (Nicklas et al., 2025), reproducing similar results 

to ESMs with intermittent volcanism (Bethke et al., 2017, Chim et al., 2023; Section 4.6.2). Because these systems ingest both 1030 

temperature and forcing observations, they can also be used to measure attributable warming (Section 4.4.4). The action of the 

Kalman filter step is included in Figure 16: it shows that as each observation is collected, the forward model and the 

observations are compared and the model state is set to a weighted mean of the two distributions. 

4.4.3 Estimating temperature contributions from constrained emulators 

Climate model emulators can be used to derive estimates of temperature responses to individual forcers (Forster et al., 2021, 1035 

their Figure 7.8). As emulators are highly parameterisable and quick to run, large perturbed parameter ensembles that are 

trained on ESMs can be produced, and the outputs constrained to observed climate phenomena and climate system knowledge 

(Nicholls et al., 2021; Smith et al., 2021; Smith et al., 2024). Emulators and EBMs are not direct replacements for ESMs as 

they do not simulate physical grid-level processes, and introduce additional structural uncertainty in how emissions translate 

to radiative forcing and climate outcomes (Nicholls et al., 2021). 1040 

 

Warming attributed to anthropogenic and natural influences can be estimated by running an emulator with emissions of 

greenhouse gases and short-lived climate forcers (SLCFs) and natural forcing time series of solar and volcanic influences. The 

emulator, for example FaIR v2.2, produces effective forcing time series of all anthropogenic influences on the climate from 
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source emissions (Smith et al., 2018; Leach et al., 2021), in effect attempting to link the IPCC’s radiative forcing assessment 1045 

(Forster et al., 2021; Fig. 7.6) back to emissions. Emissions of long lived GHGs and SLCFs are typically available to the recent 

past (up to 1 or 2 years lag) from sources including CO2 (Friedlingstein et al. 2023), other GHGs (Gütschow et al. 2016), 

SLCFs from anthropogenic sources (Hoesly et al. 2018) and SLCFs from biomass burning (van der Werf et al., 2017). A small 

extrapolation can be performed beyond the end of the historical data by extension to a current-policies emission scenario (e.g. 

Rogelj et al., 2023). Such an extension is most problematic for SLCFs which can vary rapidly, and many of which are poorly 1050 

observed (Szopa et al., 2021). Natural forcing estimates are obtained from the CMIP time series for solar forcing (Funke et al., 

2024) and combined estimates from ice core records, and satellite aerosol optical depth and water vapour retrievals for volcanic 

forcing (Toohey & Sigl 2017, Kovilakam et al. 2020; Jenkins et al. 2023). Updates to all forcings except solar are described 

in Forster et al. (2025).  

 1055 

An ensemble of FaIR runs is produced by sampling values for a large set of prior coefficients and deriving a posterior that 

matches the best estimate time series of historical warming within uncertainty and distributions of eight observed or assessed 

climate metrics26 incorporating assessed uncertainty bounds. Anthropogenic and natural forcings calculated by FaIR are also 

scaled to match assessed uncertainty ranges from the IPCC (Forster et al., 2021). From the constrained ensemble, the 

anthropogenic and natural forcings can be separated and run in isolation in FaIR, providing attributed warming to each factor. 1060 

4.4.4 Attributable Global Warming / Human-Induced Warming 

The three attribution methods underlying the assessment of human-induced warming in the IPCC AR6 WGI assessment of 

global warming (Eyring et al., 2021) were the Global Warming Index (GWI, Haustein et al., 2017), Regularised Optimal 

Fingerprinting (ROF, Gillett et al., 2021), and Kriging for Climate Change (KCC, Ribes et al., 2021). In addition, attribution 

using FaIR (Section 4.4.3) was also used as a line of evidence in AR6 (Forster et al., 2021), and EBM-KF (Section 4.4.2) is 1065 

also used for attribution herein. Attribution methods estimate both total-forced warming 𝛥𝑇!(𝑡), human-induced warming 

𝛥𝑇!,$%&'()(𝑡) , and naturally-forced warming  𝛥𝑇!,%$&2($3(𝑡). Methods can quantify uncertainty from observed warming 

estimates (Section 3), radiative forcing, internal variability, and climate system properties, though most studies do not sample 

across all uncertainties. The resultant uncertainty ranges (Forster et al. 2024) are similar in magnitude to uncertainty in the 

observed warming for any given year27. 1070 

 
26 Equilibrium climate sensitivity (ECS); transient climate response (TCR); present-day global mean surface temperature (last 
20-year mean) relative to 1850-1900; aerosol effective radiative forcing 2005-2014 relative to 1750 for direct, indirect, and 
total; present-day CO2 concentration; ocean heat content change change between 1971 and the present day.  
27 For context, the uncertainty range of the level of observed warming in 2023 is 1.06-1.30°C, and the uncertainty range of the 
level of human-induced warming for 2023 is 1.0-1.4°C (Forster et al. 2024); the latter is a 0.1°C precision envelope over the 
uncertainty ranges for the three constituent attribution methods. 
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At the time the AR6 WGI report was published, decadal-mean attributed warming based on the ROF and KCC methods, and 

annual-mean attributed warming based on the GWI, had been published. For consistency with the assessed observed warming, 

the AR6 assessment of anthropogenic warming was given as a decade average. However, single-year estimates for all three 

methods are now available (Forster et al. 2023, 2024, 2025) and increasingly robust as an indicator (Ribes et al., 2025). To 

estimate warming from forcing, the KCC and ROF methods depend on climate model projections after historical CMIP6 1075 

simulations end in 2014. It would be scientifically desirable for modelling groups to annually update their historical runs in 

near-real-time to obviate the need to use projections (Naik et al., 2025; Hewitt et al., 2025). This would require significant 

effort to update observed forcing series more operationally and in closer to near-real-time (see discussion in Section 4.4.3) as 

well as agreed modelling protocols from CMIP-contributing centres (Schmidt et al., 2023). This could in turn be used to update 

constrained projections and emulators (Ribes et al., 2025). 1080 

Human-induced warming estimates may optionally be additionally “time filtered” as described in Section 4.3. For example, 

AR6 WGI used a trailing 10-year average (Section 4.3.1) of human-induced warming, and SR1.5 used a 30-year mean centered 

using extrapolations of current warming (similar to the approach in Section 4.5). However, an especially hot/cold year of 

observations only advances/retards the single-year annual mean level of human-induced warming by around 1 year at current 

warming rates (depending on the attribution method) (Forster et al., 2024). Both framings used in the AR6 cycle lie well within 1085 

the overall uncertainty range for the single-year annual mean attributed level of human-induced warming, and this has led to 

increased confidence in the robustness of this indicator (e.g. Forster et al. 2024, Haustein et al. 2017, Otto et al, 2015, Ribes et 

al., 2025). 

4.4.4.1 Global Warming Index 

The GWI was introduced by Otto et al. (2015) by building on the well-established “multi-fingerprinting” approach from 1090 

Hasselman (1997). It was updated with uncertainty estimates by Haustein et al. (2017) and expanded by Forster et al. (2023, 

2024, 2025) by further disaggregating the attributed warming components, using an updated climate emulator and 

parameterisations, and incorporating the newest available datasets for forcings, observed warming, and internal variability 

samplings. The GWI was designed to be as simple, transparent, and explainable as possible while still accurately and robustly 

representing the evolution of the climate, with a full sampling across sources of uncertainty for GMST observations, radiative 1095 

forcing, internal variability, and climate system properties. In brief, time series for anthropogenic and natural radiative forcing 

components are converted to initial estimates of their corresponding 𝛥𝑇!,+(𝑡) using a simple climate emulator. The initial time 

series are then adjusted by fitting them against the observed GMST timeseries and internal variability samplings, with the 

result representing the attributed anthropogenic and natural 𝛥𝑇!,+(𝑡) (Otto et al. 2015, Haustein et al. 2017, Forster et al. 2023). 

Uncertainty from all sources mentioned above is incorporated through a very large Monte Carlo ensemble. The climate 1100 

emulators employed are well established, transparent, and simple (GWI calculations first used the IPCC AR5 impulse response 

model (Myhre et al. 2013) and most recently FaIR v2.0 (Leach et al. 2021)). Crucially, few prior assumptions about the climate 

https://doi.org/10.5194/essd-2025-825
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



46 
 

response to each forcing are required, since the emulators are tuned to represent a wide range of possible climate behaviours. 

The GWI value is directly constrained to observations by the regression, resulting in a reduced dependence on the size of each 

uncertainty component incorporated into the method. The GWI assumes that the long-term temperature responses to the 1105 

various forcings sum approximately linearly. While comprehensive re-assessments of the GWI are now provided on an annual 

basis (Forster et al., 2023, 2024, 2025), the indicator is also available as a real-time index28 (Haustein et al., 2017).  

4.4.4.2 Kriging for Climate Change 

KCC is a sophisticated approach for utilizing ESM simulations rather than emulators to inform the contribution of forcings 

(Ribes et al. 2021, Qasmi and Ribes 2022). In this Bayesian approach, the filtered ESM response to combined anthropogenic 1110 

and natural forcings is used as a prior on the real forced response. The response to natural forcings is estimated from an energy 

balance model. The observed GMST timeseries is then used in a Bayesian framework to estimate a posterior distribution for 

anthropogenic and natural attributable temperature changes and to update constrained projections (Ribes et al., 2025). 

4.4.4.3 Regularised Optimal Fingerprinting 

ROF uses global surface temperature series from observations and ESM simulations of the response to combined 1115 

anthropogenic and natural forcings, and natural forcings alone (Gillett et al., 2016). It uses frequentist total least squares 

optimal regression (Stott & Tett 1998, Allen and Stott, 2003), but with a regularized approach to representing the covariance 

matrix first introduced by Ribes et al. (2013). The implementation used here follows that in Gillett et al. (2021) and Forster et 

al. (2024).   

4.4.5 Summary of attribution methods considered 1120 

Figure 15 compares key examples of each approach, when applied to the HadCRUT5 global temperature record. Warming 

attributed separately to greenhouse gases and to other human forcing (dominated by direct and indirect cooling effects of 

aerosols) has an uncertainty range of about 0.5°C. However, because they combine to equal the total warming, these individual 

uncertainties are anti-correlated, such that the warming attributed to the sum of all human causes can be more tightly 

constrained. Similarly, methods that are low within the set for warming attributed to greenhouse gases will tend to be high 1125 

within the set for warming attributed to natural and other human forcings. Throughout the historic period, the lowest estimate 

is often obtained by the FAIR constrained emulator, while the approach that provides the highest estimate varies over time (for 

the final 20 years it is the regularised optimal fingerprinting method). 

 

 
28 www.globalwarmingindex.org; last accessed 01/12/25 
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 1130 
Figure 15.  A breakdown of attribution results to different combinations of forcings. To show all of the methods from Sections 4.4.2-
4.4.4, EBM-KF-ta4 and FaIR are added to the KCC, ROF, and (Haustein/Forster) GWI results that are each adapted from the 
Supplement to Forster et al. (2025). There is broadscale consistency in the attributed anthropogenic warming and natural forcing 
responses among the methods which vary substantively in their underlying methodological assumptions (see main text), but they 
differ substantially in their uncertainty ranges (shown for selected periods in the panels). Note that the EBM-KF-ta4 method shown 1135 
here assimilates a handful of ESM simulations (CESM2, ESM1-2-LR, BCC-CSM2-MR) as "observations" on a world with only 
well-mixed greenhouse gases, other human forcings, or natural forcings (BCC-CSM2-MR excluded due to drift from 1850 baseline). 

 

Figure 16 illustrates schematically the similarities and differences between all of the techniques outlined in Sections 4.4.1 

through 4.4.5. The linear correlation between cumulative carbon emissions and warming has a simple dynamical premise, and 1140 

is based on linear regression (Jarvis & Forster, 2024, 2025). EBM-KF uses a dynamical energy balance model to predict a 

prior projection and then a Kalman Filter update to arrive at a posterior distribution for the climate state at each annual update 

(Nicklas et al. 2025). For attributing warming, EBM-KF can be used to expand a single-forcing ESM run into a set of simulated 

single-forcing ESM ensembles. FaIR uses a dynamical model including a complex set of forcing agents with mostly assumed 
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linear responses, a three-layer ocean, and then a sampling across a Monte Carlo ensemble spanning different prior coefficients 1145 

followed by a posterior selected to best match the observed temperature record (Smith et al. 2024). The posterior coefficients 

in FaIR can then be used to attribute natural and anthropogenic warming. The GWI generates a large Monte Carlo ensemble 

of prior warming component estimates using FaIR, and constrains them against observations using multiple linear fits to 

attribute warming. The ROF and KCC methods use ensembles of ESMs over multiple scenarios to attribute warming, with a 

linear fitting method or a Bayesian estimate, respectively.  1150 

 

 
Figure 16 Schematic of the different attributable warming methods from section 4.4. The dynamics of these models are illustrated 
in the left column, and the mathematical and statistical underpinnings are illustrated in the right column. The symbols on the left 
indicate forcing timeseries (cog/gear), feedbacks (circular arrows), and energy fluxes (straight arrows, blue for shortwave and orange 1155 
for longwave; radiator symbol for inter-layer exchanges). Colours indicate types of evidence including observed or measured 
behaviours (black), fits (red), CMIP abstractions (purple). Ranges on the left indicate heat capacity of different layers. Overbraces 
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indicate simulation scenarios. Thin connected lines in FaIR indicate assumed relationships among mechanisms. Green lines connect 
dynamics to statistics for a particular method. 

4.5 Combining historical observations with ESM projections or initialised decadal predictions 1160 

An indicator consistent with the IPCC AR6 approach for projections (Section 4.2), dubbed the “Current Global Warming Level 

(CGWL)”, can be calculated as a 20-year mean centred on the current year, using observations from the last 10 years and 

projections or forecasts for the next 10 years, and taking the mean across the combined 20-year period (Betts et al., 2023). 

Projections of future global mean temperature are subject to uncertainty from three sources: i) future forcing; ii) long-term 

climate responses (climate sensitivity and model error); and iii) internal climate variability. Out to a decade iii) and ii) dominate 1165 

the uncertainty, while i) becomes more important over longer timescales (Hawkins and Sutton, 2009), although rapid changes 

in short-lived climate forcings or large volcanoes can impact trends earlier.  

Projected or predicted future temperature change can be obtained from several sources: 

1. Initialised forecasts using ESMs, such as the WMO decadal forecast multi-model ensemble (Hermanson et al., 
2022). These take initial conditions from recent observations, so the internal variability is more consistent with 1170 
expectations. Newly initialised forecasts from the WMO ensemble are currently issued on an annual basis29. The 
sampling of climate sensitivity uncertainty is dependent on the models used in the WMO forecast system, and some 
of these have high climate sensitivities so may lead to rates of warming that are overestimated. 

2. Uninitialized scenario-based projections, e.g. the CMIP6 multi-model ensemble. The CMIP models cover a wide 
range of climate sensitivity in an unstructured way; for several models in the CMIP6 ensemble, the climate 1175 
sensitivity is outside the ranges assessed as “likely” or “very likely” by IPCC AR6 (Lee et al., 2021). The simulated 
phasing and magnitude of internal variability will likely diverge more strongly from reality than initialised 
projections. However, since a 10-year average has been shown to closely represent the 30-year average centreed on 
that decade since the 1970s (Trewin, 2022), much of the internal variability may already be averaged out over 10 
years. 1180 

3. Constrained or assessed future warming rates, drawing on multiple lines of evidence, which can provide a more 
structured approach to the sampling of uncertainty in climate sensitivity, while also providing an assessment of 
likelihood. One example of this is to downweight models that are less consistent with observations. IPCC AR6 
assessed warming rates using the CMIP6 multi-model ensemble constrained by climate sensitivity based on 
multiple lines of evidence, alongside emulators that systematically explore climate sensitivity guided by a 1185 
probabilistic assessment (Lee et al., 2021). This provides projections of the forced climate response, without 
internal variability. Another example is the UKCP18 global probabilistic projections (Murphy et al, 2019) which 
used a perturbed parameter ensemble (PPE) of a version of the HadGEM3 climate model to simulate a wide range 
of different climate outcomes, with the ensemble then being expanded to 106 members using a statistical emulator, 
and the distribution of outcomes adjusted with reference to structurally different climate models in CMIP5 and 1190 
weighted by comparison with observations. 

 
29 While the publicly accessible predictions via WMO extend to only 5 years the actual model analyses extend to a decade. 
The choice of 5 years is a presentational one by WMO. 
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Regarding the sensitivity to future emissions trajectories, IPCC AR6 assessed the global mean temperature change in 2021-

2040 to be within one decimal place, i.e.: 1.5°C for all scenarios except the very high emissions scenario SSP5-8.530. Betts et 

al (2023) noted that the CGWL calculated using the UKCP18 global probabilistic projections with three emissions scenarios 

(RCP2.6, RCP4.5 and RCP6.0) differed by 0.02°C (Figure 17). If realised warming is the metric of interest then this should 1195 

include volcanic influences when a (series of) large eruption(s) of likely climatic importance occurred (Bilbao et al., 2024, 

Sospedra-Alfonso et al., 2024).   

 
Figure 17. Illustration of Current Global Warming Level estimation. Three distinct probabilistic ensemble projections from 
UKCP18 are chosen to resemble ESM decadal initialised forecasts over 2025-2034. An average of these projections serves as an 1200 
estimate of the current global warming level centred on 2024 following Betts et al. (2023). Of the 3000 published UKCP ensemble 
members, 100 were chosen in 2024 that are both a) close to the HadCRUT5 observations' previous 10-year mean (2015-2024) and b) 

 
30 While there is substantial divergence between scenarios from mid-century onwards (Lee et al., 2021), as noted in IPCC 
(2021) "Under these contrasting scenarios, discernible differences in trends of global surface temperature would begin to 
emerge from natural variability within around 20 years". Therefore assuming that a CGWL technique iteratively updates to 
use new CMIP generation (or similar) historical runs and future scenarios (and those scenarios are plausible in accounting for 
enacted policies in the short to medium-term) it will always be the case that scenario dependency is a minor source of 
uncertainty (Hawkins and Sutton, 2009). 
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close to the last-year observation (2024). Of these 100 analogues to the ESM decadal initialised forecasts, they were then ranked by 
their average temperature over the 2025-2034 period. The 50th percentile is shown in teal and the 20th and 80th percentiles in shades 
of blue. The HadCRUT5 10-year trailing mean (2015-2024) is combined with the ensemble statistics to yield the horizontal lines 1205 
illustrating a 2024 current global warming level (in red for the median and black for the 20th and 80th percentiles). This procedure 
is also  illustrated using 2004 as a current year.  Repeating the procedure for each year yields the envelope of small teal and blue 
vertical lines.  

4.6 Characterisation of different approaches 

The lack of a formal definition of ‘longterm’ in the context of the LTTG (Section 4.2) means that determining the 'true' crossing 1210 

time has a strong normative component. Here we use the centre of the retrospective 20-year moving average for consistency 

with the IPCC AR6 WGI approach for projections (Lee et al., 2021) as our working benchmark. This is consistent with the 

choices made in Cannon (2025) and Bevacqua et al. (2025) as to the target metric (and, in the same vein, Scherrer et al. (2024) 

used a 30-year average). Such a multidecadal average has over a century of heritage in the WMO in terms of defining long-

term climate normals (Scherrer et al., 2024). By definition any choice of benchmark will favour those methods which best 1215 

approximate it. This metric best represents the realised warming from all causes (𝛥𝑇*+&(𝑡)	𝑖𝑛	𝑒𝑞. 2), and not the underlying 

anthropogenic component (see Consideration 2 in Section 4.2). 

 

The 20-year centred mean is effectively an estimate of the realised warming at the end of year 10, so this metric can only be 

formally evaluated retrospectively, and essential differences among the methods from the preceding three sections stem from 1220 

how they would estimate the realised warming at year 10, without waiting for years 11-20. It is desirable that any operational 

metric provides a timely estimate (Consideration 3 in Section 4.2; also Scherrer et al., 2024 and references therein). We 

therefore assess how well the approaches outlined in Sections 4.3 through 4.5 can approximate the eventual 20-year mean at 

year 10, and how accurately they estimate the time of exceedance (Betts et al., 2023). Our 3 test cases are as follows: 

1.    In HadCRUT5, how well do different techniques estimate the historical crossings of 0.5°C and 1°C? (Section 4.6.1) 1225 

2.    In a single ESM Single Model Initialised Large Ensemble (SMILE), where the simulations only differ in terms of ICV, 

how well do the techniques determine future 1.5°C crossing times? (Section 4.6.2) 

3.    In an ESM ensemble with major future potential volcanic eruptions, how sensitive are the techniques for crossing 1.5°C to 

possible multiannual to multidecadal volcanic impacts? (Section 4.6.2) 

4.6.1 Assessment of historical exceedances of warming thresholds 1230 

The 20-year moving average exceeded 0.5°C in the late 20th Century and 1°C in the 2010s relative to 1850-1900 in most 

datasets. Here we focus upon the exceedance of 1°C, with a discussion of exceedance of 0.5°C, along with further details, 

given in the Supplement. We arbitrarily selected HadCRUT5 as an example, since a single time series is needed to assess each 

method and some methods require spatial information which requires use of a single dataset. Overall, the techniques bracket 

the 20-year retrospective moving average throughout the series (Figure 18, top panel). Hence in principle there is a potential 1235 
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for almost31  real-time assessment to be able to determine exceedance. However, there are times when some candidate 

techniques clearly struggle (see labels) and the trailing averages and full-series linear fit are particularly likely to be outliers. 

We eliminated any method with an RMSE of 0.06 °C or greater from subsequent consideration, including all labelled outlier 

methods in Figure 18 (top panel). For the four most skillful methods the reported uncertainty range mostly includes the 

HadCRUT5 20-yr centred mean temperature (Figure 18, lower panel).  1240 

 

 
31 In principle this assessment could be done in real-time, but there may be up to a several months' delay in validating 
observations of relevant forcings or running decadal forecast models. 
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Figure 18. Top panel: Illustration of how the range of methods able to be operationalised for testing from Sections 4.3 through 4.5 (see Supplement for 
further method details) perform throughout the timeseries against the retrospective centred 20-year average (solid black line) used herein as a working 
benchmark. Noteworthy departures are denoted by annotated arrows for ease of interpretation with labels abbreviating specific methods (see Figure 20 
and Supplement Section 2 for details of methods and further analysis). Note that different methods have different start dates arising from differences in 1245 
the necessary constraints available for their calculation. Lower panel: For the 4 methods with best overall performance (here assessed using maximum 
likelihood), the nature of their departures from the retrospective 20-year centred mean (estimate minus actual retrospectively calculated value). In both 
panels methods are always calculated using observed data only up to year 10 in the 20-year mean being assessed against. The shaded ranges indicate 95% 
uncertainty ranges as reported by each of these best-performing methods.  

 1250 
The HadCRUT5 central estimate crosses the 1°C level when the centre of its 20-year moving average moves past 2010, but 

this central crossing time hides a more complex picture of when individual days and years exceeded 1°C. The impact of 

interannual and sub-annual variability in global temperature is illustrated in Figure 19 using ERA5 rebased to 1850-1900 using 

HadCRUT5, NOAAGlobalTempv6 and Berkeley Earth, taking into account uncertainty in their warming since this baseline. 

More than a decade before the crossing time, daily exceedances of 1°C in ERA5 were rare, with the exception of the large El 1255 

Nino year of 1998. Daily exceedances became more common but stayed below 50% for all years before 2015 for the best 

estimate. By contrast, every year since 2015 has >50% of days exceeding this level of global warming by a considerable 

margin.  
 

 1260 
Figure 19. Plot as in the lower panel of Figure 13 but for 1995-2024 illustrating the days exceeding 0.85℃, 0.95℃, 1℃, 1.05℃ and 
1.15℃ relative to 1850-1900. 1995 is the first year with at least one day more than 1.2℃ warmer than 1850-1900. 1990 is the only 
earlier year with at least 5% of days more than 1.0℃ warmer than 1850-1900. A further eight years prior to 1995 had at least one 
day more than 1.0℃ warmer. Coincidentally 2010 had almost 50% of days exceed the 1.0℃ value. The dashed vertical line denotes 
December 2010, when the 20-year centred mean equals 1.0℃. The 20-year median does not reach 1.0℃ until March 2012. For 1265 
further methodological details see Figure 13 caption. Source: ERA5. Credit: C3S/ECMWF 

 

Most methods tend to report exceedance of 1.0°C later than the retrospective 20-year centred mean (Figure 20), but the methods 

are more balanced around the 20-year centred mean when it exceeds 0.5°C (see Supplement Figure S1). This is perhaps 

unsurprising given the nature of the timeseries around 1.0°C shown in Figure 19 that clearly highlights the back-loaded nature 1270 
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of this value’s exceedance. Nearly all of the short-term fit methods report 1.0°C central estimate threshold crossing in 2011-

2012, whereas most of the instantaneous attributable warming methods report 200932. At 0.5 °C this behaviour is largely 

reversed (see Supplement). Similarly, while the performance of the CGWL methods (Section 4.5) appears outstanding as an 

entire class, this is only true at the 1.0 °C threshold, and several of these methods are 3 years too late or 2 years too early at the 

0.5 °C threshold (see Supplement).  1275 

 

It is desirable that techniques have properly specified uncertainties. In our analysis some methods have extremely large 

uncertainties, while others with tight uncertainties lie very far from the target value, as the original uncertainty specified by 

each method may not be intended for this particular purpose. We address this issue of uncertainties by first pre-scaling each 

of the uncertainty time series to optimize the log-likelihood across the time window 1925-2024. From within each model, if a 1280 

series of temperatures are drawn from the pre-scaled model distributions for each year, the HadCRUT4 20-year running means 

are as likely to appear from these distributions as they could be without altering the model timeseries of central estimates. 

 

The running means and OLS_refit methods perform very poorly, with large biases that substantially exceed their reported 

uncertainties, representing a statistical “miss”. The conclusions about which methods perform least well are similar for the 1285 

0.5°C crossing (see the Supplement), which occurs during the 20-year period centred on 1985 and is notably affected by 

volcanism from both El Chichon (1982) and Pinatubo (1991). At the 0.5°C threshold crossing time, the evaluated methods are 

distributed more symmetrically about the crossing time of the retrospective 20-year centred mean, but there is still a slight 

overall late bias.  

 1290 

 
32 Note however the distinction between attributed total forced warming (see attribution rows with “tot”) and attributed 
anthropogenic forced warming (see attribution rows with “anthro”); across every attribution method, total forced warming 
reaches 1.0°C a few years earlier than anthropogenic forced warming due to a contribution from naturally forced warming of 
roughly 0.05°C around 2010. Also the lagged decade-average filter applied to attribution methods (to mimic the AR6 WGI 
approach) is by definition lagging. 

https://doi.org/10.5194/essd-2025-825
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



55 
 

 

https://doi.org/10.5194/essd-2025-825
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



56 
 

Figure 20. Summary of threshold-crossing time performance of all methods able to be operationalised (see Supplement for details 
on each method) in the specific determination of when the centre of 20-year retrospective mean crosses 1°C in HadCRUT5, which 
occurred in 2010 (vertical black dashed line). For each method a statistical average occurrence of exceedance is shown (black dot), 
see Supplement. Uncertainty pre-scaling has been applied to all  methods (see Table 2). The first time that the probability of 1295 
exceedance is greater than 16% to the last time that the probability of exceedance is less than 84% is also shown (bar). Shown in 
background are violin plots of exceedance probabilities. Cases where the estimated exceedance timing does not overlap with the 
actual exceedance represent a statistical miss. Some methods (for instance removeMEI) never have a unique, monotonic crossing 
due to noise. Other "stable" methods always cross 50% for any thresholds throughout the series monotonically and uniquely, and 
yet other "semi-stable" methods have had a limited number of reversal years (<=10) since 1975 when the method estimate 1300 
temporarily cools. These unique crossings are shown for 1°C with white diamonds to highlight that in these stable and semi-stable 
methods the threshold crossing could be reported immediately rather than retrospectively (as is the case for the black circles) for a 
noisy method with a high probability of a reversal year. To aid interpretation, the methods are categorized by method family class 
(denoted on the right hand side). Violin plots are a fit with a smooth function to the probability of exceedance, as described in 
Supplement Section 2.2. 1305 

 

Generally each method's behaviour is unique to its particular implementation and cannot be predicted from other examples of 

the same class. However, Figure 20’s white diamonds show that many method classes can give instantaneous crossing-time 

estimates because their results change quasi-monotonically so once they pass a given global warming level, they tend to stay 

above it. For example, all of the constrained emulator, energy-balance Kalman filter, and CGWL methods would have provided 1310 

instantaneous 1 °C crossing times. 

 

We note that as of the end of 2024, only 4 of the 56 evaluated methods exceed 1.5°C based on the HadCRUT5 temperature 

record (Figure 18). Those 4 methods are 2 implementations of MEI removal (Foster and Rahmstorf 2011), the piecewise linear 

"opt_clim_norm" fit of Livezey et. al. (2007), and our "min_month_proj" implementation of the Cannon (2025) 12-month 1315 

continuous exceedance window. These 4 are noisy methods (see Figure 20, the Cannon "min_month_proj" increases 

monotonically but is still noisy by construction), sometimes briefly exceeding a threshold and then dropping back below it, 

which results in wide threshold crossing windows and low confidence that any initial exceedance might constitute permanent 

exceedance. 

 1320 

Overall, the benchmarking against the historical record highlights a broad range of methodologically distinct techniques that 

can approximate the trailing 20-year average working benchmark. More simple methods such as a trailing decade average 

(used in IPCC AR6) and OLS linear fit calculated for the full period (used in IPCC AR5) are systematically biased. In particular 

the OLS approach is problematic (RMSE 0.134°C) because the full time series is increasingly non-linear. Following the 

application of a threshold RMSE <0.06°C over the historical period (1850-2024) a total of 40 methods were considered further. 1325 

At least one method from each class (excepting the Linear CO2 projections 4.4.1 from Jarvis) introduced in Sections 4.3 

through 4.5 remains (Table 2). Remaining methods have a first crossing instant lead/lag distribution that is 56% within 1 year 

of crossing 0.5°C in 1985, and 78% within 2 years. Similarly, of the remaining methods, 46% are within 1 year of crossing 

1.0°C in 2010, and 70% within 2 years (see Supplement Figure S2). 

 1330 
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Method Class Fraction 
with 
Historical 
RMSE 
<0.06°C 

Best in Class by RMSE 
Performing Historical 
Method or Selected 
Realised/Attributable 
Method 

This 
Method's 
RMSE 

This 
Method's log 
-likelihood 

This 
Method's # 
of q-values 
<0.5 

4.3.1: Running Means ¼ lag5y 0.0563 1.344 0 (54) 

4.3.2: Long Term Fits 4/7 TheilSen_h7075 0.0366 2.048 0 

4.3.3: Short Term Fits 8/15 lowess1dt30wnc 0.0505 1.463 2 (110) 

  lowess1dt36wnc 0.0510 1.429 0 

4.3.4: Smoothing Splines 1/3 GAM_AR1 0.0581 1.241 17 (42) 

4.3.5: Simple State Space 4/4 Kal_flexLin_ocn 0.0442 1.687 0 

  Kal_flexLin 0.0481 1.610  0 

4.3.6: Filter Internal 
Variability 

2/6 
removeGreensfx 0.0493 1.590 0 

4.4.1: Linear CO2 0/2 OLS_refit_CO2forc 0.0864 -3.842 59 (123) 

4.4.2: Constrained 
Emulators 

5/7 
FaIR_nonat_unB 0.0247 2.308 2 

  FaIR_comb_unB 0.0271 2.165 4 

4.4.3: Energy Balance 
Kalman Filter 

3/3 
EBMKF_ta2 0.0277 2.146 0 

  EBMKF_ta4 0.0302 2.056 0 

4.4.4: Attributable 
Warming 

6/14 
GWI_tot_CGWL 0.0263 2.222 0 

  GWI_anthro_CGWL 0.0401 1.815 0 

4.5: Combining ESM 
Projections 

6/6 
CGWL10y_for_halfU 0.0333 1.988 4 

  CGWL10y_sfUKCP 0.0411 1.759 3 
Table 2. Method classes and number and statistics of 40 methods remaining after an RMSE<0.06°C selection versus the 20-year 
running mean based on the historical record (1850-2024 from HadCRUT5) was applied. The “Linear CO2” class of methods is 
highlighted in red because all methods within it failed to pass this selection criteria, and the GWI_tot_CGWL method is highlighted 
in green because it has the lowest RMSE in this evaluation. Methods are not penalized for not reporting any estimate in years prior 1335 
to 1960, and the RMSE is averaged with respect to reported years. For each class of methods, the specific method with the lowest 

https://doi.org/10.5194/essd-2025-825
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



58 
 

RMSE is named. In the rightmost columns additional attributes of this best-in-class method are listed: as the average log-likelihood 
(of the HadCRUT5 observation) across all reported years, and then number of years for which there is a statistically suggested 
difference between the HadCRUT5 observations and a random drawing from each model distribution (note that q-values are used 
because we would expect 5% of all years under such a random drawing to have p<0.05). For these two right-most columns, the 1340 
uncertainties provided by each method have been pre-scaled to optimize the log-likelihood across the time window 1925-2024, which 
often widens the uncertainty reported naively, for instance the standard error of a lagged 5y mean and the default LOWESS 
uncertainty. This wider uncertainty reduces the number of years with low q-values (tally without uncertainty pre-scaling is listed in 
parentheses). Note that the LinearCO2 row is worse than all other rows in these statistical aspects, and a substantial number (59)  
of the 20-year running mean observations fall outside of the LOWESS uncertainty distribution even with this uncertainty pre-1345 
scaling.  

4.6.2 Assessment of potential future performance based upon modelled future climate 

Future global surface temperature trajectories could vary between: i) a world in which aggressive mitigation actions cause a 

temperature rise deceleration, stabilisation and even beginning to cool; and ii) a world where mitigation actions are grossly 

insufficient and there is a marked acceleration in the rate of warming. There is also the potential for substantial multi-annual 1350 

to decadal departures from the underlying human-induced climate change, such as from increased volcanic activity (Bethke et 

al., 2017; Chim et al., 2025). An operational monitoring capability will need to be robust to such future plausible climate 

system behaviours. We therefore go on to assess the methods which can be extended to such test cases, noting that it was not 

possible to extend all methods assessed in 4.6.1 (see Supplement for details).  

 1355 

We turn to Single Model Initial-condition Large Ensembles (SMILE) simulations to explore the interplay of modelled forced 

response and internal variability. We use the MPI-ESM1.2-LR ensemble (Mauritsen et al., 2019, Olonscheck et al., 2023) 

under different forcing scenarios; we select SSP1-2.6 and SSP3-7.0 to capture a wide range of potential future warming. The 

MPI-ESM1.2-LR has been tuned to better match the instrumental period warming (Mauritsen and Roeckner, 2020) and has an 

ECS of around 3K (see Supplement). This is similar to the best estimate ECS of the IPCC AR6 (2021a). Some forcing-based 1360 

methods from the preceding analyses that performed well are finely tuned to climate parameter estimates for the real Earth, 

and may perform differently when applied to an ESM with biases. These methods were re-tuned or modified to the model for 

the purpose of this evaluation, as described in the Supplement; this step is not implemented for use on actual observed records. 

 

Results for SSP1-2.6 and SSP3-7.0 (Figure 21) cover the potential for stabilisation or acceleration of warming, respectively, 1365 

at the time of exceedance of 1.5°C. As expected, some methods that were successful in reproducing recent observational 

records (Section 4.6.1) do not perform well in this test. Methods that account for the forcings (Sections 4.4 and 4.5) rather than 

being purely statistical tend to handle such cases better. Methods that assume quasi-linearity in warming (e.g., hinge fit 

methods) break down in the case of SSP1-2.6 where GSAT stabilises and then slowly cools. These methods systematically 

overstate the degree of warming after the mid-century (Figure 21, middle panel). For SSP3-7.0, which experiences accelerating 1370 

warming throughout the century, the same methods are systematically biased cool (and hence biased late in their estimate of 

when a warming level has been exceeded). Several forcing-based methods tuned to the middle of the IPCC-assessed ECS 

range rather than the IPCC best-estimate ECS (particularly EBM-KF-ta and CGWL-10y-pUKCP) exceed the warming 
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predicted by MPI-ESM1.2-LR in both SSP experiments. We additionally consider the method of removing the MEI ENSO 

signal with constant coefficients (a variation on the methods of Foster and Rahmstorf, 2011) to be an outlier because it 1375 

sometimes differs from the 20-yr centred mean by >0.3 °C. However, not all statistically based approaches suffer from such 

issues. In particular, one of the state space Kalman filtering approaches of section 4.3.5, as well as several LOWESS methods 

of section 4.3.3 using a 20-year (or 30-year) kernel, are sufficiently sensitive to capture changes in the long-term climate 

trajectory. Those methods which show unsatisfactory performance against SSP1-2.6 and/or SSP3-7.0 (RMSE>0.06°C for 

either SSP over 2025-2100) in the MPI ensemble are also removed from the set of techniques for inclusion (Table 3) resulting 1380 

in a set of 24 methods to carry forward33. 

 

 
33 Three methods, such as GAM_AR0, performed worse in the historical context (RMSE of 0.0652) than in the future context 
(RMSE of 0.489, 0.418, 0.450 as in Table 3). The others that performed worse in the historical evaluation were etrend30y_3CS 
variants (a Short Term Fits of 4.3.3) and GWI_tot (without any combination approach). This may be due to subtle volcanic 
fluctuations in the 20-year centred mean target, which were not present in these initial future test cases, as this method also 
performed worse than GAM_AR1 in the future volcanic test (realized RMSE of 0.073 and attributable RMSE of 0.1274) 
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Figure 21. Results applying the subset of methods that passed historical observations tests and are able to be deployed for future test 
cases against MPI ESM1.2-LR SMILE ensemble member 11 for SSP1-2.6 (middle panel) and SSP3-7.0 (lower panel) across the 21st 1385 
Century. The top panel illustrates the behaviour of the full SMILE ensemble and the years when the ensemble-mean 20-yr running 
mean passes 1.5°C are noted below the temperature time series. The 11th ensemble member is highlighted (heavy lines) because is 
at the cooler end of the ensemble for most years after 2000 and highlights the potential role of natural variability in delaying 
exceedance. The years noted above indicate that the 20-yr running mean of this ensemble member crosses 1.5 °C considerably later 
than the ensemble mean does. In the lower panels the heavy green and red lines denote the annual mean ensemble member timeseries 1390 
from member 20 which lies close to the ensemble mean, the solid black the 20-year centred mean (the target statistic) and a selected 
group (following removal of methods as outlined in 4.6.1) of the techniques introduced in Sections 4.3 through 4.5 as coloured lines. 
See Supplement for further details.   
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 1395 

 

Method Class Surviving: 
RMSE 
2025-
2100<0.06°
C for both 
SSP1-2.6 
and SSP3-
7.0 

Untested 
methods (that 
passed Historical 
Evaluation) 

Best in Class by 
RMSE for 
SSP1-2.6 and 
SSP3-7.0 
combined 

SSP1-2.6 
RMSE 

SSP2-4.5 
RMSE 

SSP3-7.0 
RMSE 

4.3.1: Running Means 0 0 lag5y 0.0549 0.0613 0.0835 

4.3.2: Long Term Fits 0 0 butterworth 0.0519 0.00597 0.0805 

4.3.3: Short Term Fits 9 0 lowess1dt36wnc 0.0455 0.0397 0.0424 

4.3.4: Smoothing 
Splines 2 0 GAM_AR1 0.0575 0.0422 0.0483 

4.3.5: Simple State 
Space 1 0 Kal_flexLin 0.0465 0.0421 0.0428 

4.3.6: Filter Internal 
Variability 0 2 (0) removeGreensfx 0.0648 0.0701 0.0893 

4.4.2: Constrained 
Emulators 4 0 FaIR_nonat_unB 0.0572 0.0391 0.0456 

   FaIR_comb_unB 0.0572 0.0406 0.0497 

4.4.3: Energy Balance 
Kalman Filter 1 0 EBMKF_ta4 0.0358 0.0325 0.0295 

4.4.4: Attributable 
Warming 5 6 (0) GWI_tot_CGWL 0.0396 0.0400 0.0573 

 
  

GWI_anthro_CG
WL 0.0422 0.0429 0.0595 

4.5: Combining ESM 
Projections 2 3 (3) 

CGWL10y_sfUK
CP 0.0443 0.0563 0.0547 

Table 3. Method classes and number and statistics of 24 methods remaining after an RMSE<0.06°C selection versus the 20-year 
running mean based on the SMILE simulations of the MPI-ESM1.2-LR (2025-2090) was applied. Several methods could not yet be 
applied to the future test case (for instance true decadal forecasts initialized from the climate model), these are tallied in the third 
column and further documented in the Supplement. Again, red highlighting indicates that 3 further classes of methods did not pass 1400 
this selection step. Also again, the specific method with the lowest RMSE within each class is named, and rightmost columns show 

https://doi.org/10.5194/essd-2025-825
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



62 
 

the RMSE performance of this method for each future emissions scenario. The GWI_tot_CGWL and EBMKF_ta4 methods are 
highlighted in green because they have the lowest RMSE in these three future scenario evaluations.  

 

Volcanic activity with high Volcanic Explosivity Index (VEI) values (generally >5) causes substantial short-term multi-annual 1405 

cooling in GMST and could delay the long-term exceedance of any given warming level in an otherwise warming climate 

(Bethke et al., 2017, Nicklas et al., 2025; Chim et al., 2025). Long-term ice core records highlight substantial variability in 

past volcanic activity (Sigl et al., 2015). The potential impacts on decadal predictions (Wu et al., 2023, Sospedra-Alfonso et 

al., 2024, Bilbao et al., 2024) and long-term projections (Chim et al., 2023, Nicklas et al. 2025) and how these could be handled 

is increasingly recognised. Our assessment uses the NorESM1 model ensemble in Bethke et al. (2017), which provides 60 1410 

simulations under the RCP4.5 scenario combined with plausible volcanic futures consistent with the Sigl et al ice core 

reconstructions.  

 

Volcanism affects realised warming, but not anthropogenic warming (which excludes volcanism and other natural 

contributions). The periodic cooling excursions caused by eruptions lead to delayed projections of the year of exceedance of 1415 

any level of global warming by 1-5 years during periods affected by those eruptions (Nicklas et al. 2025). Importantly, 

capturing pdfs precise enough to sample over a wide range of realistic volcanic futures requires many ensemble members (e.g., 

Nicklas et al. (2025) use 6000 emulator ensemble members) making traditional ESM-based approaches prohibitively 

expensive. Emulator-based methods (such as FaIR, GWI and EBM-KF) are practical for assessing randomized, intermittent 

volcanic eruptions, provided that the radiative forcing of the eruption is accurately estimated. Unless ESM ensembles are 1420 

annually reinitialized with updated aerosol measurements, as called for by Sospedra-Alfonso et al. (2024), they cannot 

adequately account for recent eruptions.  

 

The issue is of particular relevance in the context of the LTTG and deriving and tracking mitigation policies for achieving it, 

since if cooling from volcanism is included in the estimate of warming, this may create a misperception about the temperature 1425 

distance to the LTTG and the size of the remaining carbon budget (Chim et al., 2025). This is clearly depicted in Fig. 22(c) in 

the difference between the SR1.5 definition of warming (30-year mean anthropogenic warming, “GWI_anthro_SR15”, purple 

line) and AR6 WGI definition of warming (20-year mean realised warming, black line): both lines are extremely similar except 

during the volcanic period. Volcanism temporarily suppresses or “masks” the underlying and continuing anthropogenic 

warming.  1430 

 

The full ensemble is displayed in Fig. 22(a), which shows the different volcanic realisations and how the 1.5°C central 

exceedance year derived from the retrospective 20-year mean ranges from 2027—2052. The Fig. 22(b) simulation has the least 

volcanic activity with no major eruptions until the 2090s. The Fig. 22(c) simulation has substantial eruptions starting around 
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2040. In the Fig. 22(c) case, even the trailing 20-year average does not constitute a reasonable characterisation of realised 1435 

warming, and almost all methods struggle in the vicinity of a substantial eruption.  

 

 
 
Figure 22. Robustness of climate state detection under volcanic events using a NorESM random-timing volcanic ensemble (Bethke 1440 
et al. 2017) for the subset of methods skillful for both observations (Figure 18), including 0.5˚C and 1˚C thresholds (Figures 20, S1, 
S2), and SSP1-2.6 and SSP3-7.0 (Figure 21). The top panel illustrates the behaviour of the full NorESM ensemble and the ensemble-
mean year of exceeding 1.5 °C (below temperature record) and two exceptional ensemble members (heavy lines) with their 
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exceedance years given above the record (the min/earliest and max/latest within the ensemble). In the lower panels the heavy green 
lines again show the annual time series of those exceptional ensemble members, the solid black the 20-year centred mean for those 1445 
ensemble members time series (the target statistic), and coloured lines indicate the techniques introduced in Sections 4.3 through 4.5 
that have proven skilful thus far.    

 

Table 4 shows all methods that still remain as plausible robust methods for estimating realised and anthropogenic warming 

after removing methods that have RMSE>0.077°C in the volcanic future tests. Methods remain from all three major categories 1450 

(statistical, attribution, and combination with projections). However, statistically-based methods only can be applied to realised 

warming estimation. Five flavours of the GWI approach remain and to avoid over-emphasising of this method class the best 

performing methods GWI_tot_CGWL for realised warming, and GWI_anthro_CGWL for anthropogenic warming are retained 

in subsequent analysis for consistency with the proposed approach for combining observational estimates described in Section 

5.1. 1455 

 

Method Class Final Surviving 
Methods by volc 
RMSE <0.077°C 
(2025-2090) 

Realised: 
RMSE  wrt 
member 20-yr 
cent. mean 

Attributable: 
RMSE wrt 
ensemble 20-yr 
cent. mean 

4.3.3: Short Term Fits lowess1dt36wnc 0.0758 0.1304 

4.3.4: Smoothing 
Splines GAM_AR1 0.0655 0.1197 

4.3.5: Simple State 
Space Kal_flexLin 0.0727 0.1291 

4.4.2: Constrained 
Emulators FaIR_comb_unB 0.0677 0.0935 

 FaIR_nonat_unB 0.0824 0.0681 

 FaIR_anthro_unB 0.0845 0.0688 

4.4.3: Energy Balance 
Kalman Filter EBMKF_ta4 0.0601 0.0972 

4.4.4: Attributable 
Warming GWI_anthro_CGWL 0.0913 0.0412 

 GWI_anthro_SR15 0.0921 0.0430 

 GWI_anthro 0.0916 0.0416 

 GWI_tot_CGWL 0.0557 0.0847 
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GWI_tot_SR15 0.0727 0.1100 

4.5: Combining ESM 
Projections CGWL10y_sfUKCP 0.0765 0.1259 

Table 4. Method classes and number and statistics of 13 methods remaining after an RMSE<0.077°C selection versus the 20-year 
running mean based on the NorESM1 volcanic simulations of Bethke et. al. (2017) (2025-2090)  There are two potential targets: the 
20-year running mean of that particular simulation (middle column) which approximates the realized warming, and the 20-year 
running mean of the entire ensemble (which approximates the human-attributable warming). The methods which are ill-suited for 1460 
each of these respective targets are highlighted in red. Note that there are 8 methods that approximate realized warming, 4 that 
approximate attributable warming, and none that are proficient at both. Cells within the rows describing the GWI_tot_CGWL and 
GWI_anthro_CGWL methods are highlighted in green because they have the lowest RMSE with respect to these two targets. In 
subsequent analyses the 3 other GWI methods and 1 other FaIR method (italicised) are discounted to avoid over-weighting on this 
methodological approach. 1465 

4.6.3 Combining of candidate methods 

The best performing overall methods across all tests in Sections 4.6.1-4.6.2 are shown in Figure 23 for exceedance of 1.5°C in 

each set of simulations. While different methods could be optimized in future for realised warming (left side) or anthropogenic 

warming (right side), the spread of methods' performance is broadly similar regardless of target. There are slight differences: 

e.g. GWI-anthro is slightly better at predicting the ensemble average (approximately the attributable anthropogenic warming) 1470 

in the context of future volcanic eruptions. In contrast, the CGWL10y_sfUKCP (red) and lowess1dg20wnc (yellow) methods 

are better at predicting realised warming (especially apparent in the SSP3-7.0 and NorESM VolcConst rows). In the absence 

of volcanism almost all forced warming is anthropogenic, so the choice between realised or anthropogenic warming is less 

important than the emissions trajectory34.  

 
34 SSP1-2.6 yields more difficulty in predicting the precise time of 1.5°C crossing as the GMST levels out at around 1.5°C in 
the MPI ESM, thus internal climate variability can substantially shift when this threshold is crossed. 
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 1475 
Figure 23. Apparent skill in synthetic cases considered in Section 4.6.2 for crossing of 1.5°C shown as probability density functions 
for the top performing techniques selected. The column on the left considers the target of observed warming: the year that the 20-
yr centered running mean crosses 1.5°C  in each ensemble member i.e. ‘realised warming’. A difference of 0 represents that the 
method "hit" that target as it crossed the 1.5°C  threshold, a positive year difference means too late, negative means too early. This 
figure does not consider the internal uncertainty reported by each method, so we use stacked histograms rather than smoothed pdfs. 1480 
The right column is the same but for when the ensemble average of 20-yr centered running means cross 1.5°C (one target for all 
ensemble members - note these dates match Figures 21 and 22), i.e. approximately the total forced warming. Results are shown for 
three distinct SSP scenarios in the MPI ESM1.2-LR SMILE model (see also Figure 21) and the constant volcanic background and 
synthetic volcano ensembles  in Bethke et al. (2017) for NorESM1 (see also Figure 22). 
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 1485 

With this set of selected methods, the next consideration is whether a combination of such methods can be identified that 

outperforms any of them individually. If errors arising from different methods are largely uncorrelated, which may be the case 

at least between distinct classes of approach, they will tend to cancel out (Krogh and Vedelsby, 1994). Formally, this is known 

as a “M-open” setting, where none of the "current" methods is assumed to be true, and the combination must be optimized for 

predictive performance rather than a single best method identified (e.g. Le and Clarke, 2017, Yao et al., 2018, Hoge et al., 1490 

2020). The current setting differs slightly from more classical posings of this problem in two ways: firstly, the realised warming 

(of the 20-year centered mean) is not known precisely (see section 3.2.5) and thus is a tight distribution rather than a single 

number (see Figure 18), secondly and more importantly, it is not necessary to limit the combination method to be a simple 

mixture of methods. 

 1495 

Our goal is to combine the predictions from multiple methods in a way that accounts for their relative uncertainties. This is 

challenging, since the methods provide error estimates which may use different assumptions, may be non-Gaussian, or may 

be slightly biased (although our selection procedure removed methods with extreme bias). Given this diversity, two 

conceptually distinct combination approaches, primarily differing in their attention to the probability distributions provided by 

each of the tested methods, are tested. 1500 

The pointwise inverse-variance weighting (PIVW) approach (Cochran, 1954, Lee et al., 2016) provides a mean estimate equal 

to the weighted average of the predictive means, where the weights are inversely proportional to each method’s mean-squared 

error with respect to the pointwise 20-year centred mean. Other authors call this general approach quantile averaging (Fakoor 

et al., 2023) or linear pooling (Gneiting and Ranjan, 2013). The combined PIVW predictive distribution is described by this 

mean and a single, fixed standard deviation that maximizes the likelihood of the target distribution. Thus, the assumption is 1505 

that the constituents and the total are all normally distributed. While straightforward and computationally efficient, it discards 

rich information about the methods’ probability distributions. For instance, the EBMKF uncertainty widens at times when 

observations drift from its energy balance model prediction. 

We develop another approach by combining existing techniques, which we term compressed, stacked, calibrated mixture 

(CSCM) approach (further details provided in Supplement and software documentation). This approach exploits knowledge 1510 

of the distributions output by each method, rather than using only the mean as in PIVW.  Each method’s predictive distribution 

first undergoes a pre-scaling step, the same as was applied for evaluations within section 4.6.1 (a single, fixed variance-scaling 

parameter per method; Gneiting et al., 2007). Bayesian stacking (a specific type of probability averaging; Fakoor et al., 2023) 

is then used to form a weighted mixture of the calibrated predictive distributions, retaining their scaled probabilistic structure 

(Le and Clarke, 2017; Yao et al., 2018; Hoge et al., 2020). A similar approach has been used in weather forecasting (Hoeting 1515 

et al., 1999; Raftery et al., 2005). To further sharpen this mixture, a fractional sampling scheme is used: samples are drawn 
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from the Bayesian stacked distribution, generating a distribution of the mean whose likelihood with respect to the target is 

maximized (pulled tighter by drawing more samples). This approach is more computationally intensive than PIVW, but the 

resultant temperature uncertainty increases if either the constituent methods' uncertainties increase or if the methods disperse 

(as they would after a volcano, see Figure 22).  1520 

PIVW prioritizes simplicity, while CSCM attempts fidelity to model uncertainty with tunable sharpness. As expected, both 

improve performance over the best individual method, and unexpectedly yield remarkably similar combined products. Both 

approaches require choices that determine performance, listed as follows in order of decreasing importance. We first 

considered which "calibration sets" of the climate data should be used to set the variance-scaling and weight parameters. Using 

only the historical record leads to more equal method weighting and lower uncertainty ranges both retrospectively and if the 1525 

emissions continue on roughly their present course (approximately SSP2-4.5)35 without major volcanic eruptions. Conversely, 

using all future 270 ensemble members in more standard "leave one out" cross-validation yielded estimates that were more 

robust to different emissions pathways and volcanic future scenarios, which we present in Table 5 below. Second, we found 

that both the PIVW and CSCM approaches were more robust to different future scenarios (especially SSP1-2.6) if the weights 

were trained on 90 years of error (2000-2090) with respect to the centred 20-year running mean, rather than just 65 years of 1530 

error (2025-2090). Both the RSME and average-year Kullback–Leibler divergence are presented for both intervals in Table 5. 

Third, the number of methods that are combined matters very slightly: we started with the 7 best-performing ones (at achieving 

the realized warming target) selected in section 4.6.2, but also included a wider set of the 37 methods which passed the 

historical warming test in 4.6.1 (note a few of the full 40 which passed could not be evaluated in the future), and an intermediate 

set of 18 methods. Including 18 methods (or 37, see Supplement Table S4) in the combination rather than 7 produced almost 1535 

imperceptibly different results: the RMSE improved by 0.0002 on average (maximum change of 0.0026) across the 5 future 

ensemble cases when switching from  PIVW with 7 methods to CSCM with 18 methods (see Table 5).  

 First crossing instant of 1.5°C KL Divergence # crosses RMSE (20yr cent) 

Ensemble within 1 yr within 2 yrs within 5yrs 2000-90 2025-90 of 1.5°C 2000-90 2025-90 
         

 Compressed Mixture (CSCM), 18 methods     

MPI ESM1-2-LR_SSP3-7.0 55.7% 85.1% 100.0% 0.345 0.269 1.060 0.0365 0.0332 

MPI ESM1-2-LR_SSP2-4.5 55.3% 83.5% 99.1% 0.474 0.465 1.080 0.0322 0.0300 

MPI ESM1-2-LR_SSP1-2.6 20.6% 39.1% 76.0% 0.555 0.589 1.320 0.0354 0.0345 

NorESM_RCP45_VolcConst 53.5% 86.7% 100.0% 0.568 0.475 1.017 0.0297 0.0295 

NorESM_RCP45_Volc 30.1% 55.2% 88.5% 0.721 0.710 1.100 0.0492 0.0508 

         

 
35 The match is not exact. In particular the current policies have much greater controls on aerosol pollutants than assumed in 
SSP2-4.5 
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Inverse Variance (PIVW), 7 methods     

MPI ESM1-2-LR_SSP3-7.0 54.6% 85.0% 100.0% 0.352 0.271 1.080 0.0368 0.0335 

MPI ESM1-2-LR_SSP2-4.5 55.7% 85.1% 99.2% 0.488 0.481 1.040 0.0322 0.0301 

MPI ESM1-2-LR_SSP1-2.6 20.8% 39.3% 75.5% 0.568 0.602 1.460 0.0356 0.0348 

NorESM_RCP45_VolcConst 53.3% 87.1% 100.0% 0.591 0.623 1.017 0.0300 0.0300 

NorESM_RCP45_Volc 29.6% 54.3% 87.9% 0.711 0.771 1.100 0.0495 0.0510 

         
 EBMKF_ta4 
MPI ESM1-2-LR_SSP3-7.0 64.2% 92.1% 100.0% 0.583 0.365 1.060 0.0391 0.0295 

MPI ESM1-2-LR_SSP2-4.5 51.0% 81.0% 98.7% 0.564 0.391 1.020 0.0396 0.0325 

MPI ESM1-2-LR_SSP1-2.6 21.2% 40.4% 76.9% 0.637 0.525 1.540 0.0415 0.0358 

NorESM_RCP45_VolcConst 49.9% 85.2% 100.0% 0.572 0.425 1.000 0.0291 0.0249 

NorESM_RCP45_Volc 
35.3% 63.0% 92.1% 0.695 0.653 1.117 0.0596 0.0601 

         

 GWI_tot_CGWL 

      

MPI ESM1-2-LR_SSP3-7.0 15.4% 32.1% 67.7% 0.723 0.653 1.000 0.0479 0.0396 

MPI ESM1-2-LR_SSP2-4.5 32.3% 61.0% 92.6% 0.712 0.610 1.000 0.0515 0.0400 

MPI ESM1-2-LR_SSP1-2.6 16.5% 34.2% 82.4% 0.755 0.655 1.000 0.0682 0.0573 

NorESM_RCP45_VolcConst 34.1% 63.5% 98.9% 0.733 0.674 1.000 0.0480 0.0425 

NorESM_RCP45_Volc 24.2% 46.0% 84.2% 0.789 0.730 1.050 0.0601 0.0557 

Table 5: Comparison of the performance of two different approaches to combining the methods, CSCM and PIVW, with the two 
methods that had the best RMSE in one of the 5 future ensembles, GWI_tot_CGWL (NorESM_RCP45_Volc) and EBMKF_ta4  (all 
others). Note that even though GWI_tot_CGWL has better RMSE in the 2025-2090 interval for the NorESM Volc experimental 1540 
case, it usually has a lower chance than EBMKF_ta4 of being within 1, 2, or 5 years of the realized warming 20-year centered 1.5°C 
crossing year (in all ensembles except the NorESM ensemble without volcanoes). Both combination methods yield similar results, 
and are better than the best individual methods in the SSP2-4.5 case (and comparable to the best individual method in other future 
cases). 

4.7 Summary of assessment of approaches to estimating present-day warming 1545 

Given the difficulty in removing stochastic internal variability to produce real time estimates rather than retrospective ones — 

a plurality of methods is warranted. We analyzed 71: a variety of statistical, observational, and physically-informed techniques, 

including short- and long-term fits, Kalman filter-based, energy balance models, constrained emulators, and combined 

projections using ESMs, many of which can reliably approximate the IPCC’s 20-year centred mean used as a working 

benchmark. These methods vary in their responsiveness to internal variability, their robustness to extreme events such as 1550 

volcanic eruptions, and their ability to attribute observed warming to anthropogenic causes. 

While methods such as simple lagging means or full-period OLS linear trends remain in common use, they were found to be 

systematically biased, particularly when changes are non-linear. By contrast, 5 emulator-based / ESM-based methods (versions 
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of FaIR, GWI, CGWL, and EBMKF) demonstrated low error, high likelihood, and responsiveness to emerging climate signals, 

as they are attentive to climate forcings in addition to the temperature record. For the aim of approximating realized warming, 1555 

we chose to include only 1 variation of GWI: GWI-tot-CGWL and not GWI-tot-SR15, to give equal representation across the 

4 method classes in this "top-tier" final set. Out of the approaches that are blind to climate forcings, only 3 of 36 were of 

comparable quality (GAM_AR1, Kal_flexLin, and linear LOWESS smoother with a 20-year Gaussian kernel). These methods 

proved resilient under plausible future scenarios, including diverging emissions pathways and sequences of intense volcanic 

eruptions.   1560 

Of these final selected methods, 4 are primarily and inflexibly estimating total observed warming: all temperature-only 

methods (GAM_AR1,  Kal_flexLin, lowess1dtwnc) and any implementation of CGWL (either with decadal forecasts or UKCP 

ensembles). The remaining selected methods (FaIR, GWI, and EBMKF) are all capable of separating the temperature signal 

into its anthropogenic and natural components (see Figure 15), and thus can all be tailored to estimate either total observed or 

human-induced warming definitions. In our present collection, EBMKF_ta4 and FaIR_comb_unB are better suited to total 1565 

observed warming, whereas FaIR_nonat_unB and especially GWI_anthro_SR15 are (by design) better suited to human-

induced warming. 

Finally, we perform inverse variance weighting (PIVW) and Bayesian Stacking (CSCM) to combine the predictions of several 

of these realized warming methods (both the 7 "top-tier" realised warming methods and larger sets meeting less strict 

requirements). We find that this Bayesian Stack is sufficiently accurate to predict when the 20-year centered mean crosses 1570 

1.5°C within 1 year with probability >53% in most future scenarios, with the exception of SSP1-2.6 (~21%) which in the MPI 

model stabilises around this level of global warming. In the volcanic ensemble, there was a ~30% chance that this combination 

was within 1 year of the realized warming 1.5°C level. We chose to not combine the best attributable warming methods, but 

these 2 (5 including GWI and FaIR variants) "top-tier" definitions of attributable forced warming were highly consistent. 

5 A proposed approach to monitoring present-day warming 1575 

Based on the considerations discussed previously, there are multiple potential ways to construct a scientifically robust synthesis 

that combines lines of evidence for tracking progress in a probabilistic manner, fully accounting for a range of uncertainties. 

A transparent and well-documented approach is needed, one that can provide both a best estimate of warming-to-date together 

with an uncertainty interval that can be used to provide probabilistic answers or an IPCC-like calibrated confidence statement. 

Such an estimate would be helpful for communicating with key audiences that have diverse needs. Here we propose the basis 1580 

for such an approach building upon the preceding analysis, for a unified data estimate. It explicitly does not preclude individual 

dataset providers or others updating and communicating their own estimates as they see fit. 
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5.1 Methodological approach 

If we wish to provide an observation-informed global warming estimate, some choices are de facto based on the current state 

of scientific knowledge. Firstly, given the present preponderance of GMST products, estimates will principally arise from 1585 

SST-based GMST metrics rather than MAT-based GSAT metrics. However, with the prevalence of MAT-based bias 

adjustments in SST datasets, it is not possible to provide a purely GMST-based assessment of global warming either (Section 

3). Secondly, as was explained in Section 2, less complete instrumental data prior to 1850 makes it necessary to use a period 

such as 1850-1900 as a proxy for pre-industrial levels. These choices should be revisited and assessed periodically to ensure 

they remain valid (Section 7). 1590 

 

The proposed approach is outlined in the following 4 steps: 

1. Split the observational record into two sub-periods to maximise the available lines of evidence 
2. Objectively select observational data products 
3. Combine data products to give a consensus ensemble 1595 
4. Apply methods that passed the tests in Section 4 to derive estimates of present-warming that approximate the 20-

year centred mean to this consensus ensemble 
 

Step 1: Split the observational record into two sub-periods to minimise the impact of early period of record 

uncertainties and maximise the available lines of evidence 1600 

Currently, estimates of present warming are based on only a subset of available information. Not all datasets run from 1850 to 

present nor are they all updated in a timely manner. Both limitations would have made them ineligible for inclusion in the 

IPCC AR6 approach for estimating long-term change. Excluding modern reanalysis and satellite-based products results in loss 

of information on recent warming. Similarly, datasets that are not routinely updated can inform our assessment of early period 

warming and, crucially, its structural uncertainty. Splitting the observational record in two would allow a much wider range 1605 

of groups to contribute their analyses, including groups who cannot commit to producing data for the full period or to providing 

continual updates.  

 

The first proposed step is therefore to split the period in two: the first part running from the pre-industrial proxy period (1850-

1900) to a common modern baseline period (1981-2010), and the second from the same baseline period to present. Such a 1610 

baseline matches the WMO definition of 30 years for calculating a climate normal36. The period 1981-2010 encompasses the 

start of the satellite era when reanalyses become better constrained and represents a peak in the number of available surface 

observations. It also closely matches within hundredths of a degree (depending upon dataset choice) the global average for the 

 
36 The WMO climatological standard normal is the most recent 30-year period finishing with a year ending in 0 (1991-2020 at 
the time of writing), but 1961-1990 is retained as a reference period for long-term climate change assessment. 
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1986-2005 subperiod used as a baseline in many impact studies that informed the 2015 SED and therefore the Paris Agreement, 

providing a tie to the LTTG. 1615 

 

Step 2: Objective selection of data products that can be used for each period 

 

Based upon Section 3 some form of dataset selection is required, as was done in IPCC AR6 WGI (Gulev et al., 2021). Criteria 

for inclusion will differ in each sub-period. 1620 

 

We propose the following qualification criteria: 

1. The data product should be freely available without restrictions for this use. 
2. A peer reviewed paper should describe the dataset creation. Subsequent updates or partial replacement of source 

data, and minor changes to accommodate source data changes, are acceptable without requiring a new peer 1625 
reviewed paper. 

3. The data product should account for major sources of bias and quantify uncertainties that were documented in the 
peer-reviewed literature prior to acceptance of the paper describing the dataset.  

4. The data product makes efforts to account for the bias of incomplete global observational coverage, such as by 
statistical infilling. 1630 

5. For the first sub-period, data should exist from 1850 to 2010 inclusive. For the second sub-period, data should exist 
from 1981 to the last full year inclusive. 

6. Exclude datasets that differ only in minor variations used for sensitivity tests, for example different treatments of 
sea ice by Berkeley Earth, HadCRU_MLE, and China-MST2; or GMST time series of reanalyses which are 
reported as GSAT. In addition, include the latest central estimate and the newest uncertainty estimates, even if the 1635 
uncertainty estimates refer to an older version. This can occur for ensemble-based uncertainty estimates, when the 
ensembles are only run periodically. 

7. For inclusion in the modern period updates, the data product update for the prior year should be available by 31 
January. 

 1640 

A data product should in general be removed from the mix when any of the following conditions are met: 

1. A newer version becomes available 
2. It no longer reflects the current state of the art. 
3. Under the advice of the data product producer. 

 1645 

Products that were deemed by the author team to meet these criteria in September 2025 for the period covering 1850-2010 (or 

later)  are: 

● HadCRUT5.1.0.0 analysis,  
● HadCRU_MLE v1.3,  
● Kadow et al. (updated using HadCRUT.5.1.0.0),  1650 
● Berkeley Earth,  
● NOAAGlobalTempv6.0,  
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● NOAAGlobalTempv5.137,  
● China-MST3.0-Imax,  
● DCENT_MLE38,  1655 
● COBE-STEMP3, and  
● GloSATref.  

Products that as of September 2025 match the criteria for modern era monitoring are:  

● HadCRUT5.1.0.0 analysis,  
● Berkeley Earth,  1660 
● NOAAGlobalTempv6.0,  
● GISTEMPv4,  
● China-MST3.0-Imax 
● ERA5, and  
● JRA-3Q. 1665 

 

Note that this does not exclude the use of other datasets that meet the criteria in future and a mechanism is required to enable 

regular reviews and updates (see Section 7). 

 

It is proposed that the estimate of historical warming from 1850-1900 to 1981-2010, and its associated uncertainty, be updated 1670 

only if new information is likely to lead to a material change in the estimate or its uncertainty. To this end, an update would 

be triggered by any one of the following criteria being met: 

1. Two or more contributing datasets issue new versions that change their estimated historical warming to date relative 
to the version used to previously form this composite by more than 0.05°C; Or 

2. A new dataset is produced whose estimated historical warming differs from the current best estimate by more than 1675 
0.05°C; Or 

3. More than half of the contributing series have new versions or more than two new potential series that meet the 
qualification criteria have become available since the last update to this estimate; Or 

4. If it has not been updated for at least 5 years 

It is therefore necessary to keep time-stamped versions of the datasets used for the early period, as some datasets are updated 1680 

through their entire length at various intervals. For example, NOAAGlobalTemp and GISTEMP change every month and 

version updates from any product (e.g. HadCRUT5) can affect the whole record.  

 

Step 3: Combination of the qualifying datasets to yield a consensus-estimate and its uncertainty 

 1685 

 
37 Note that both versions are used because they use the same underlying datasets but employ distinct interpolation schemes 
such that they are equivalent in methodological freedom to HadCRUTv5 vs its various interpolated by third party versions. 
Only v6.0 is updated in NRT 
38 DCENT-I would also satisfy our criteria, but we did not have time to include it in our analysis. 
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The aim is to generate an ensemble that is built from merged series for the two sub-periods. Like Gulev et al. (Subsection 

2.3.1.1.3, 2021) and Craigmile and Guttorp (2021), our approach is intended to account for both structural and non-structural 

uncertainties of the temperature datasets. As discussed in Section 3.2.5 and shown in Figure 8 there are far fewer degrees of 

freedom than implied by a simple count of available products. An appropriate way to handle issues of non-independence is 

therefore required (Step 3.1). In addition, not all datasets have uncertainty information, so a way is required to estimate 1690 

uncertainty for all datasets (Step 3.2). A large ensemble (10,000 members) is generated to ensure the uncertainties are well 

sampled (Step 3.3) and then a representative sample of practical size (100 members) is derived from it (Step 3.4). 

 

Step 3.1: Define hierarchical models using tree structures for each period 

 1695 

For both periods, we construct hierarchical models that effectively assign subjective probabilities to each GMST/GSAT dataset 

using a family tree of temperature data products. We assign 100% probability to the base of the tree and then, for each branching 

of the tree, we assign equal probability to each branch. Because SST/MAT uncertainties are the dominant sources of both 

structural and non-structural uncertainties, we use the family tree structure defined by Figure 24, which assigns equal 

probability to each SST dataset. 1700 

 
Figure 24. Family tree approach adopted in the production of the large ensemble estimate in the current paper. Datasets are merged 
hierarchically based upon similarity in the sea surface air temperature dataset / approach. The dataset names in parentheses are 
those used to provide an ensemble for non-ensemble datasets. Alternative merging hierarchies are shown in the Supplement.  

For example, four datasets used HadSST4: HadCRUT5, HadCRUT_MLE, Kadow et al., and Berkeley Earth. Of these four, 1705 

there is a further natural grouping, with HadCRUT5, HadCRUT_MLE and Kadow et al. all based on a non-infilled version of 
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HadCRUT5. Berkeley Earth differs from these in having its own LSAT analysis, so it is placed on a separate sub-branch. 

Reanalyses were given their own grouping, partly reflecting their very different construction, but also because they represent 

estimates of GSAT rather than GMST. An alternative approach that groups the two reanalysis datasets with the most closely 

related SST dataset was also tried and has little effect on the outcome. 1710 

The aim is to ensure that excessive weight is not given to those datasets which have the most variants. This is particularly a 

concern for HadCRUT-based datasets, which are numerous because it is a popular basis for testing new interpolation methods 

(HadCRUT_MLE, Kadow et al., GETQUOCS, and Vaccaro et al. are all based on various versions of HadCRUT). Alternative 

family tree structures were also tested including trees that grouped datasets based on similarities / distinctions in other choices 

(see sensitivity tests in Supplement). 1715 

Step 3.2: Impute missing uncertainty information 

There are multiple challenges when assessing uncertainty in GMST/GSAT time series. Temperature product uncertainties vary 

over time and are autocorrelated. Some datasets provide no error estimate, or only a confidence interval over a given averaging 

period (e.g. monthly or annually). Confidence intervals account for changing error variance, but not changing autocorrelation. 

Some products provide ensembles of possible realisations, which account for both time-varying variance and autocorrelation. 1720 

We prefer ensemble-based estimates, and we keep the non-ensemble products by using an “ensemble-donor” approach for 

their uncertainty estimates. 

The ensemble mean is subtracted from each donor ensemble to obtain an uncertainty ensemble and three ensemble datasets 

were used as donors. We primarily used the HadCRUT5 Analysis ensemble as it covers the period 1850 to present. We used 

the NOAAGlobalTempv5.0 ensemble for ERSST-based datasets for the 1850 to 1995 period. The Bessel-corrected ERA5 1725 

ensemble was used for the two reanalysis datasets: ERA5 and JRA-3Q. While the ERA5 ensemble substantially underestimates 

uncertainty (ECMWF, 2024), grouping ERA5 with JRA-3Q helps account for structural uncertainty of reanalysis datasets.  

For datasets without uncertainty estimates, the donor uncertainty ensemble was added to the dataset's best estimate time series 

to generate an ensemble. For datasets with uncertainty estimates but no ensemble, the uncertainty ensemble was first scaled 

by the dataset's uncertainty SD time series. The SD was derived from confidence intervals by assuming multivariate normal 1730 

distributions, e.g. Berkeley Earth’s 95 % confidence interval was divided by 1.96 to obtain the SD. If only monthly confidence 

intervals are provided, we assume perfect correlation on sub-annual scales so use the derived monthly SD as the annual SD. 

This rescaling was also performed for datasets with ensembles to account for datasets with ensembles that did not include all 

sources of uncertainty (e.g., HadCRUT5 Analysis, GloSAT). Further details are given in the Supplement. 

Step 3.3: Generate an ensemble of temperature time series using the hierarchical models 1735 
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We generated 10,000 ensemble members that covered the whole period 1850-2024 by combining a tail dataset covering the 

period 1850-1995 and a head dataset covering the period 1996-2024.The 1995-1996 transition was chosen because it is the 

centre of the 1981-2010 modern baseline used for both sub-periods. Tail and head datasets were selected at random with 

probability given using the appropriate dataset family tree (Step 3.1). At each branching of the tree, a branch was selected at 

random with each branch having equal probability. Once a dataset was selected, a random ensemble member (or pseudo 1740 

ensemble member) was chosen for that dataset. The averages of anomalies for the 1981-2010 period were subtracted from 

each of the head and tail datasets so that the average of each one was zero during the overlap. 

Step 3.4 Choosing a representative sample from the large ensemble 

10,000 ensemble members give a stable estimate of the mean and standard deviation of the ensemble. However, some of the 

methods used in Section 4.6 are computationally expensive and using 10,000 ensemble members is impractical. Consequently, 1745 

a 100-member subset of the larger ensemble was chosen for input to the final calculation using balanced k-means clustering. 

Balanced k-means (Malinen and Fränti, 2014) clustering generates equal sized groups of ensemble members which are close 

together (as measured by the sum of squared differences between series). A single member of each cluster is then chosen at 

random. This ensures that the 100-member ensemble is representative of the larger ensemble and its members preserve the 

time-varying variance and autocorrelation structure of the products. Alternative approaches were tested (see sensitivity tests, 1750 

Supplement). 

Figure 25 shows our generated annual time series ensemble members. The median estimate of GMST/GSAT of the 2024 

annual anomaly relative to 1850-1900 is 1.55 °C (with a 95% range of [1.37, 1.77]°C), and the mean estimate is 1.55°C. This 

is identical to the headline estimate in WMO State of the Climate results (WMO, 2025), and the ranges are consistent. 

 1755 
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Figure 25. Annual global mean temperature anomalies from the SST family tree relative to (a) the 1850-1900 baseline and (b) the 
1981-2010 baseline. The 100 ensemble members selected from the much larger ensemble are shown as individual lines. 

 

Step 4: Applying approaches to estimate global warming to date described in Section 4 1760 

 

Two examples were given at the end of Section 4 as to how to combine the multiple methods in Section 4 and their estimated 

probability distributions into a synthesis across all methods given an observed temperature and forcing record. Combining a 

set of low-cost, high-skill methods, such as the 7 selected at the end of Section 4, provides a synthesis probability distribution 

for the method uncertainty of realised warming level and attributed anthropogenic warming level.   1765 

 

The methods described in Section 4.4 require forcing data and also ocean heat content data in the case of the EBM-KF method. 

While there is substantial uncertainty for each of the individual forcings, these are already addressed internally within each 

method. An ensemble of top-of-atmosphere forcing observations is exported from a version of FaIR calibrated on just 

HadCRUT5 observations to the EBM-KF method. The ocean heat content ensemble is created by a similar method to the tree 1770 

method of selecting among temperature records above, selecting from available reanalysis and observational datasets. The 

details are provided in the Supplement Section 2.4. 
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Figure 26 shows our estimates of realised and anthropogenic warming and their uncertainty relative to an 1850-1900 baseline. 

The PIVW estimates combining 7 realised and 2 anthropogenic records of GMST/GSAT change from 1850-1900 to 2024 are 1775 

1.40°C (with a 95% credible interval of [1.23 - 1.58]°C) and 1.34 °C (with a 95% credible interval of [1.18 - 1.50]°C), for 

realised and anthropogenic respectively, when the preindustrial uncertainties are included (Figure 26 upper panel). The PIVW 

weights for the climate state temperature as of the end of 2024 are based on the statistics of each method as evaluated over the 

HadCRUT5 historical record, and are as follows: realized warming: lowess1dt36wnc 7.2%, GAM_AR1 6.7%, Kal_flexLin 

7.8%, FaIR_comb_unB 25.5%, EMBKF_ta4 15.5%, GWI_tot_CGWL 26.9%, CGWL10y_sfUKCP 10.5%; anthropogenic 1780 

warming: FaIR_nonat_unB 72.4%, GWI_anthro_CGWL 27.6%. An alternative weighting (see Section 4.6.3 and Table 5) is 

possible that also includes the methods' skill in analyzing future projections, but those projections are based upon ESMs with 

irreducible biases and uncertainties.  

 

 1785 
Figure 26. Outcome of examining the crossing times with a 1850-1900 baseline period for realised and anthropogenic warming using 
multiple methods and multiple temperature records simultaneously. The upper row shows the crossing times for 0.5°C, 1.0°C, and 
1.5°C thresholds for realized warming. This row shows all 7 gold-colored methods in Table 4 in two ways, using an ensemble of 100 
k-weighted mean samples of plausible temperature time series drawn from the observational syntheses from 1850-2024 described 
above. The stacked histograms indicate the 7 methods being applied to these long records, so the most likely crossing year weighting 1790 
all methods equally is the tallest histogram bar. The smooth curves include a Bayesian estimation of other uncertainties internal to 
each method, in addition to the ensemble estimated uncertainty illustrated by the histograms. Each smooth curve indicates only one 
method, but all 100 ensemble samples. The thick smooth black lines and black histogram combine all 7 methods using the PIVW 
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combination, as described above. The lower row shows the crossing times for the 0.5°C, 1.0°C, and 1.5°C thresholds for 
anthropogenic warming with the 2 blue-colored  methods in Table 4, using the same ensemble of 100 k-weighted mean samples of 1795 
the temperature timeseries. Note that 67/700 individual methods*ensemble samples predict the realized warming crossing of 1.5°C 
by 2024 using the 1850-1900 baseline, and 6/100 PIVW realized warming ensemble samples crossed 1.5°C. Similarly 20/200 
individual methods*ensemble samples predict the anthropogenic warming crossing of 1.5°C by 2024 using the 1850-1900 baseline, 
and 6/100 PIVW anthropogenic warming ensemble samples crossed 1.5°C. 

  If, instead, we assume a warming to 1981-2010 of exactly 0.7°C, the PIVW estimate combining 7 realized and 2 1800 

anthropogenic records of GMST/GSAT change from the 1850-1900 assumed temperature datum to 2024 are then 1.36 °C 

(with a 95% credible interval of [1.32 –1.41]°C) and 1.33 °C (with a 95% credible interval of [1.28 – 1.38]°C), for realised 

and anthropogenic respectively (Figure 27). It follows that the lack of knowledge of the preindustrial conditions dominates the 

uncertainty in both estimates and also decreases the mismatch between best estimates. The uncertainty ranges on both metrics 

reduce approximately 5-fold. If warming to 1981-2010 is assumed to be precisely 0.7°C then as at the end of 2024 a level of 1805 

1.5 °C above preindustrial levels would be at most exceptionally unlikely (more than 5 standard deviations away from the 

central warming estimate) if not certain not to have been reached for either metric. With the 1981-2010 baseline there was not 

a single observed 1.5°C crossing to date among the 100 ensemble members and 7+2 methods. Although some realised methods 

rise above 1% crossing probability in the lower-right panel of Figure 26 (GAM_AR1 at 2.6% and CGWL10y_sfUKCP at 

6.2%), these methods carry relatively little weight (6.7% and 10.5%) in the PIVW combination, which moreover has greater 1810 

certainty (allowed by its construction) so probability is concentrated around 1.36°C rather than spilling up to above 1.5°C. 
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 1815 
Figure 27. Outcome of examining the crossing times for realised and anthropogenic warming using two methods and multiple 
temperature records simultaneously using a baseline of 1981-2010. As in Figure 26 above, the upper row shows the crossing times 
for 0.5°C, 1.0°C, and 1.5°C thresholds for realized warming  with the 7 gold methods in Table 4. The lower row shows the crossing 
times for the 0.5°C, 1.0°C, and 1.5°C thresholds for anthropogenic warming with the 2 blue methods in Table 4, using the same 
ensemble of 100 k-weighted mean samples of the temperature timeseries. These panels are all  distinguished from their counterparts 1820 
in Figure 26, by assuming that that baseline has exactly the temperature of 0.7°C above an arbitrary preindustrial datum. The 
decrease in uncertainty relative to Figure 26 results only from the changed baseline, that is, the wider range of the upper row 
indicates the challenge in establishing a clear preindustrial temperature. Note that no anthropogenic methods predict the crossing 
of 1.5°C using the 1981-2010 baseline to have occurred by 2024, hence the histogram does not appear in the lower right panel. 

Both realised warming and anthropogenic warming are policy relevant and can differ by amounts of the order 0.1°C over 1825 

decades (Section 4.2), although Figures 26 and 27 show very similar threshold crossing statistics for 0.5°C and 1.0°C. We 

argue that a best estimate and uncertainty for both of these metrics should be consistently provided and communicated. Our 

estimates may be missing some sources of uncertainty, such as highly correlated structural uncertainty common to all 

GMST/GSAT datasets, or uncertainty due to differences between GMSTs and GSATs, but the incorporation of emulators 

(Sections 4.4, 4.5 and Figures 26 and 27) that also draw on OHCA and forcing datasets reduces this risk somewhat. Since we 1830 

use a hybrid GMST/GSAT approach (albeit dominated by GMST-based estimates), we recommend that our results should be 

compared to both GMST and GSAT simulations of climate models. 
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5.2 Communication and visualisation 

Given the inherently probabilistic nature of the estimation of the current warming it is essential to prominently communicate 

uncertainty information. One option is to use the likelihood language used in IPCC assessments (Mastraneda et al., 2010). This 1835 

would have the benefit of being easy to communicate and is well known to policymakers, although care is needed to avoid 

misinterpretation of likelihood terminology by users not familiar with the IPCC definition of likelihood terms (e.g. Budescu 

et al 2014, Ho and Budescu 2019). Stating a likely or very likely range would also help to avoid the potential for undue focus 

upon the exact median value of the range of possible values by users. In Section 5.1 the proposed method yields two ranges: 

one for realised warming and one for anthropogenic warming. The resulting PDFs can be used to infer directly a probability 1840 

of exceedance of any given warming level under either metric. The proportion of the distribution lying above the target 

warming level corresponds directly to the likelihood of exceedance (conditional upon the assumptions underlying the 

construction of the PDF). Nevertheless, some quantitative information most sensibly as an estimate of current warming +/- a 

range will be required for both warming to date metrics, with the range potentially described in qualitative (likelihood) and 

probabilistic terms for more robust communication.  1845 

 

While an operational website is beyond the scope of the current unfunded work Figure 28 provides a potential starting basis 

for communicating on an ongoing and operational basis the results arising from the methods suggested in Section 5.1. WMO 

are currently assessing options for ongoing operationalisation. As well as providing diagnostics of the current warming level 

it would be important to communicate certain principles and potential outcomes clearly. Firstly, showing via a simplified 1850 

example how with continued warming a given warming level progresses from not being possible through exceptionally 

unlikely and on through subsequent stages to being unequivocal would be useful. Next, possible scenarios and how they might 

impact the two metrics would be useful. This might include the potential impacts of one or more large volcanic eruptions 

(Section 4.6.3), or the difference between reaching, exceeding and returning to a specified warming level (Section 4.6.2).  

 1855 
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Figure 28. Mock up of a potential approach to communicating the current trajectory towards the LTTG on an interactive website. 
The pulldown menu at top left allows the user to select between realised and anthropogenic warming, with text and figures 
responding–without altering the basic layout so that understanding on one setting is transferable among multiple settings of these 1860 
menus.  Basic indicators of level and rate are in text and illustrated on figures, and updated with the pulldowns selected.  The 
pulldown menu on right can select among using only subsets of lines of evidence rather than all methods combined, and descriptions 
of individual lines of evidence can be “explored” through the link at the bottom left: this leads the user to references and descriptions 
of each method.  

6 Implications and interpretation in the context of the UNFCCC 1865 

In line with Article 31(1) of the Vienna Convention on the Law of Treaties (United Nations,1969), of which the Paris 

Agreement is one, treaties are to be interpreted ‘[...] in good faith in accordance with the ordinary meaning to be given to the 

terms of the treaty in their context and in the light of its object and purpose.’ As noted earlier, the SED of the 2013-2015 

Review provided the key science-policy context for the Paris Agreement. The preamble of the Paris Agreement talks of 

‘Recognizing the need for an effective and progressive response to the urgent threat of climate change on the basis of the best 1870 

available scientific knowledge’. In this context, all action under the UNFCCC process is based on the best available science - 

the latest research and observations from bodies and organisations as assessed by the Intergovernmental Panel on Climate 

Change (IPCC) and the World Meteorological Organisation (WMO)39.  

 
39Modified for contextual clarity from the original at https://unfccc.int/topics/science/the-big-picture/introduction-science; last 
accessed 9/12/24 
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The basis upon which individual countries believed the agreed text to have been made arguably differed (i.e. some of the 1875 

ambiguity noted in Section 1 and assessed in prior sections may have helped make the LTTG acceptable to all Parties). There 

are two logical extremes for interpreting the text according to its ‘ordinary meaning’ in the absence of any clarifications (see 

later) with, undoubtedly, many other potential interpretations in between these: 

1. Interpreting in the context of evolving best available science: Under this approach any update to the assessed 
temperature change since pre-industrial levels would necessarily lead to a commensurate change in our proximity to 1880 
the LTTG. That is to say, if our estimate of change in global surface temperature from 1850-1900 to date increased 
by 0.1°C then we would be 0.1°C closer and if it decreased by 0.1°C we would be 0.1°C further away from the 
LTTG warming levels, which would be interpreted literally.   

2. Considering the best scientific understanding at the time of the PA: Under this approach the interpretation of 
1.5°C in the LTTG would be fixed at the level that corresponds to 1.5°C given the understanding of the surface 1885 
temperature change when the Paris Agreement was agreed in 2015. In that case the de facto interpretation would be 
that it was to avoid an amount of additional warming beyond that which informed the LTTG negotiations e.g. the 
headline warming in IPCC AR5 up until either the 1986-2005 period used for many impact studies or the warming 
until around the early 2010s using either the OLS linear trend or trailing decadal average method. 

 1890 

The intention of Parties is only relevant if an ordinary meaning cannot be determined from the words and context. The LTTG 

does not stand in isolation and it is important to understand the legal and policy context within which the LTTG was agreed 

(e.g. Rogelj et al., 2017). Equally, an evolutionary method of interpretation is plausible and even desirable in contexts where 

the purpose would be thwarted if a static interpretation is imposed. It has been argued that the LTTG is not '1.5°C' or '2°C' but 

one goal with two distinct elements (Rajamani and Werksman, 2018). In this context the recent advisory opinion from the 1895 

International Court of Justice is worth noting, in particular that it finds that ‘The 1.5°C threshold of Article 2 is the parties’ 

agreed primary temperature goal for limiting the global average temperature increase’40. It is not possible, or appropriate, for 

us to do more than note the issues and challenges here.  

 

The IPCC AR6 WGI assessment in Cross-chapter Box 2.3 of Gulev et al. (2021) de facto took the ‘evolving best available 1900 

science’ approach described above, taking account of changes to global temperature estimates. But only partially so as it 

reflected the updated understanding of the observationally-based estimates since 1850-1900 but excluded the assessment of 

additional warming since 1750 carried out in Box 1.2 of Chen et al. (2021). These choices had knock-on implications for the 

assessments undertaken in WGII and WGIII. The choice to provide updated estimates of change since 1850-1900 was in part 

a practical choice in that all datasets used in AR5 had been superseded and thus an update to warming estimates based upon 1905 

AR5 methods and sources was not possible. The changes in available observationally-based estimates had increased the 

estimated warming since the late 19th century by 0.08°C for the warming to 1986-2005 (Gulev et al., 2021, CCB2.3 therein). 

 
40  https://www.icj-cij.org/case/187 advisory opinion available at https://www.icj-cij.org/sites/default/files/case-
related/187/187-20250723-adv-01-00-en.pdf  
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All else being equal, the new understanding of the warming to 1986-2005 would shift impacts that had been expected at 1.5°C 

in the AR5 assessment to then be expected at 1.58°C. However, the shift in our understanding of warming to date was 

overwhelmed by the advances in understanding of risk between IPCC AR5 and AR6 cycles by IPCC WGII as illustrated 1910 

through the 5 Reasons for Concern (RfCs) (Figure 29). The risks were assessed to occur at lower levels of global warming in 

spite of the revised assessment of warming to date. Therefore if the LTTG was premised upon the global warming level at 

which unacceptable risks may occur then the updates since IPCC AR5 would, overall, point to the need for increased ambition 

and tighter LTTG limits under an approach of ‘evolving best available science’ (Table 6).    

 1915 

 
Figure 29. Comparison of the risks associated with the Reasons for Concern (RFC), illustrated as “burning embers” diagrams 
(Zommers et al. 2020, O’Neill et al., 2022), between IPCC AR5 and IPCC AR6 with an additional step reflecting the impact on the 
AR5 embers of the shift in understanding of global warming from 1850-1900 to the recent reference period used in AR5 (all risk 
changes are shifted by 0.08°C upwards, see text). The change in the assessed understanding of when a given risk could be faced is of 1920 
the opposite sign and dominates over the effect of the change in understanding of long-term warming for most risk levels and across 
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all five RFCs. The AR5 and AR6 burning embers correspond to  IPCC AR6 SYR Figure SPM.4 panel a (IPCC, 2023). Figure 
produced with https://climrisk.org/emberfactory using the excel file provided in Data and Materials. 

 

  Risk level assessed for 1.5°C 

above pre-industrial in AR5 

Mean warming above pre-

industrial that would lead to this 

level of risk in AR6 

RFC1 – Unique and threatened 

systems 

Moderate to high (closer to high 

risk) 

1.0°C 

RFC2 – Extreme weather events Moderate to high (middle of the risk 

transition) 

1.2°C 

RFC3 – Distribution of impacts Moderate 1.5°C 

RFC4 – Global aggregate impacts Undetectable to moderate (middle 

of the transition) 

1.3°C 

RFC5 – Large scale singular 

events 

Undetectable to moderate (almost 

moderate) 

1.0°C 

Table 6: Global mean warming above pre-industrial, as assessed in AR6, that would result in the level of risk that was assessed for 1925 
1.5°C in AR5. For RFC3, there is no significant change. All other risk estimates now correspond to lower warming above pre-
industrial, even with the revised baseline – which was taken into account in WGII risk estimates. Calculations are linear 
interpolations based on data in O’Neill et al., 2022 and Marbaix et al., 2025.  

 

Parties have the ability through consensus-based decisions under the Paris Agreement to resolve or substantively reduce the 1930 

ambiguities noted in sections 2 (pre-industrial), 3 (SST/MAT and datasets to include) and 4 (metrics) and the issues raised in 

the shift from AR5 to AR6 understanding. They could offer further guidance in the form of an explicit clarification on how 

the PA LTTG is to be interpreted through a Conference of Parties decision. Although Conference of Parties decisions are not, 

save in a few exceptional situations, legally binding, they nevertheless offer authoritative guidance on the interpretation and 

application of treaty provisions. Article 31(3) of the Vienna Convention on the Law of Treaties explicitly recognizes the 1935 

salience of ‘subsequent agreement between the parties regarding the interpretation of the treaty or the application of its 

provisions’ for interpreting a treaty provision. Indeed it is as a result of interpreting COP decisions as reflecting such 

subsequent agreement between Parties that the ICJ read Article 2 of the Paris Agreement as containing the ‘agreed primary 

temperature goal’ of 1.5°C.  

 1940 

There is precedent for such clarificatory guidance on Paris Agreement Articles being offered through subsequent Conference 

of Parties decisions. For example, Article 4.1 was subsequently clarified at COP-24 (UNFCCC, 2019 (Decision 18/CMA.1, 

annex, paragraph 37)) to specify how national aggregate greenhouse gas emissions should be reported and thus how Article 
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4.1 was to be interpreted and its adherence or otherwise by Parties to the Paris Agreement should be determined. To clarify 

the assessment of progress to meet the LTTG we would suggest consideration by UNFCCC of the following aspects covered 1945 

in detail in our analysis which would greatly clarify matters from a scientific perspective: 

1. Clarify whether adherence should be tracked using an approach of best evolving scientific understanding or frozen 
understanding. If best evolving understanding then consider how new scientific insights are to be handled if they 
alter our collective understanding of warming to date such as, but not limited to, availability of new or revised 
datasets. This would be minimised if a recent period reference were to be used (point 3). 1950 

2. Clarify whether the adherence should be against realised warming or anthropogenic warming (or both) and whether 
it should be against GMST, GSAT or both. This should have regard to availability of different data sources and 
methods and maturity of their understanding. 

3. Provide a specific definition of pre-industrial for surface temperature change monitoring that balances policy 
relevance and scientific limitations. The obvious candidate based upon scientific precedence would be the global 1955 
surface temperature over 1850-1900 (see Figure 26). A further option which would considerably reduce uncertainty 
would be to agree that for verification purposes the LTTG actually corresponds to a smaller amount of additional 
warming relative to a more recent, better observed, period41 such as 1981-2010 (see Figure 27). This alternative 
approach would reduce the uncertainty for verification purposes approximately 5-fold. 

Preceding sections, and in particular Section 5, have provided the state-of-the-art scientific evidence and a proposed set of 1960 

potential pathways that have attempted to gather broad community consensus. If adopted, alongside a robust governance 

mechanism to periodically reassess the approach based upon new scientific knowledge (Section 7), these would ultimately 

serve to reduce scientific uncertainty in making an assessment of progress in meeting the LTTG. 

7 Discussion and conclusions 

This community paper has comprehensively reviewed all aspects of determining the current level of global warming and hence 1965 

adherence to the Paris Agreement LTTG, with a focus upon the proximate 1.5°C warming level. We have reviewed all known 

sources of uncertainties and shown that it is scientifically possible to robustly estimate the current total warming and 

anthropogenic warming relative to 1850-1900. The approaches identified were found to be robust across a range of possible 

future climate trajectories, some of which included potential future explosive volcanic events. The approaches have been fully 

documented herein and in the associated Supplement and code and data are made available without restriction to enable 1970 

replication and further development. 

 

We propose that two metrics should be consistently calculated and communicated when discussing long-term (for example, 

the 20-year centred-mean) as opposed to annual warming estimates: the realised warming (arising from all sources including 

internal variability) and the anthropogenic warming (arising solely from human perturbations). Realised warming and 1975 

anthropogenic warming are both policy-relevant in terms of understanding impacts and associated adaptation needs, and 

 
41 This would make warming from pre-industrial to the more recent period moot for verification processes but would risk a 
disconnect between the headline value of warming since 1850-1900 and the LTTG verification process so is not without issue. 
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understanding what portion of the underlying long-term warming is due to our historical and ongoing emissions in the context 

of mitigation. At any point in time natural external forcings and / or internal variability can cause the two numbers to diverge 

by amounts that would have practical policy implications. Currently these metrics through 2024 (based on the PIVW 

combination of 1850 to 2024 records) stand at 1.40 [1.23-1.58] and 1.34 [1.18-1.50]°C respectively, above 1850-1900 average 1980 

temperatures where the range given is a 95% confidence range. It is unlikely that long-term realised warming of 1.5°C has 

been reached and very unlikely that long-term anthropogenic warming of 1.5°C has been reached.  

 

The year 2024 was the first year in which long-term warming of 1.5°C was no longer certain not to have been reached and we 

note that 0.5°C and 1°C took under 2 decades to transition from being certain not to have been reached to being certain to have 1985 

been exceeded under rapidly increasing anthropogenic GHG emissions. In both cases the retrospective 20-year mean passed 

the threshold within a decade of first being detected as being extremely unlikely. This underscores the urgency of immediate, 

deep and sustained emissions reductions as noted in IPCC AR6 (IPCC, 2023) if the LTTG is to remain within reach.    

 

Our knowledge of changes in historical warming has evolved substantially over the last decade or so as the LTTG has spurred 1990 

renewed interest in improving our monitoring of surface temperature changes (see Section 3). These insights have led to 

increases in the estimates of warming since 1850-1900 to the recent past that are the result of improved scientific understanding 

of the historical record, and not a result of additional warming that has occurred subsequent to the PA LTTG agreement. It is 

very likely that future work will further modify estimates of warming to date, with both the direction and magnitude of any 

future adjustments unclear. We have therefore also considered aspects of legal and policy interpretation of the LTTG which 1995 

are necessary for a holistic assessment. We have proposed potential pathways which UNFCCC could adopt to clean-up 

definitional ambiguities in the LTTG text which would aid scientific monitoring efforts and minimise uncertainties in tracking 

adherence while allowing for inevitable future revisions to our estimates of long-term warming.  

 

Issues around communication to key stakeholders, including the general public, have also been considered. A first key step is 2000 

to distinguish individual daily, monthly or even annual exceedances from sustained long-term exceedance. We have developed 

an approach that could be used as a basis for consistent communication on where we are today based upon the tools and 

approaches outlined in Section 5. There are also broader aspects around incorrectly treating these warming levels as thresholds, 

around countdown to “doomsday” and other communications concerns that were beyond the remit of this analysis. We would 

stress, as outlined in communications around the IPCC Special Report on 1.5°C (IPCC, 2018), that every bit of warming 2005 

matters. 

 

Robust scientific information is vital to ensure timely tracking of this contentious policy issue. Without a timely consensus-

based approach, by the time we’ve agreed across multiple competing methods and datasets that 1.5°C has been passed, it will 
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be far in the rear view mirror, given the current warming trend of 0.3 [0.29 - 0.35] °C/decade.42 A consensus based approach 2010 

could also help to reduce uncertainty in related key metrics such as the calculation of remaining carbon budgets. As such, it is 

important to stress that tracking the current warming level better has myriad potential scientific and policy benefits beyond 

simply knowing how close we are to the LTTG.  

 

More philosophically, an open question remains of what use policymakers and the general public might make of the 2015 

information that 1.5°C has been crossed. This could encourage efforts in adaptation and mitigation, could also promote 

defeatism or have little effect. The recent ICJ legal opinion further outlines possible legal implications by making clear that 

1.5°C is the reference target, that states have obligations in the Paris Agreement and beyond, including a stringent, objective 

and demanding duty of due diligence, and that breach of these obligations could give rise to legal consequences, including a 

potential duty to make repatriations. In addition, there is a major question whether and under what conditions it might be 2020 

possible to bring global warming back to 1.5°C once this level has been crossed, i.e. whether the crossing of 1.5°C is essentially 

irreversible over the next several human generations, or whether determined policy actions could ensure that any exceedance 

of 1.5°C is limited in both magnitude and duration (also referred to as ‘overshoot’ by IPCC (2023); see also Schleussner et al 

2024, Reisinger et al 2025). These questions are beyond the scope of our analysis and proposal, but they provide important 

context for how information about exceeding or returning to 1.5°C might be interpreted and linked to actions by policymakers 2025 

and civil society. Any eventual decline in temperatures could be monitored and tracked by the same methods and techniques 

used in this paper, with only slight modification of some probability statements (integrating the method-provided probability 

densities below a reference target rather than, as we do, above it). 

 

The paper serves to highlight the criticality of international cooperation and sustained support for research and technical 2030 

developments. The analysis furthermore highlights that there are a number of practical scientific steps that could be taken in 

the short-term to better quantify, and potentially reduce, the uncertainty in estimation of present-day warming since the pre-

industrial period. These include, but are not limited to (subsections with extra detail are given in parentheses): 

● Reducing the uncertainty in estimates of early-industrial period warming via advanced methods that build on 
historical, proxy and early instrumental records to continue to improve our understanding of warming prior to 1850-2035 
1900 (2); 

● Better understanding of the theoretical basis for differences between SST and MAT changes and their expression in 
models and observational records, regionally and globally (3.1); 

● Substantially increasing the number of land and, in particular, marine (SST, MAT and sea-ice) datasets using 
methodologically distinct approaches to better sample the structural uncertainty inherent in global surface 2040 
temperature estimates. In particular increasing the number of GSAT datasets and ensuring the regular reprocessing 
of existing datasets to capture the latest scientific understanding (3.2.5; 5.1); 

● Ensuring the continuing operation of key observing capabilities necessary to monitor long-term climate changes (3); 

 
42 Based on the PIVW realized warming combination of records from 1850 through 2024.   
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● Operationalisation of the WMO unified data policy - specifically countries sharing their historical digital data 
holdings with recognised global repositories without restriction. Alongside full implementation of the WMO Global 2045 
Basic Observing Network on a sustained basis supported by the Systematic Observations Funding Facility to fill 
persistent data gaps moving forwards (3.2.6); 

● Data rescue from numerous national and regional holdings of early meteorological records still in paper or image 
format only and ensuring these rescued data and associated metadata reach global data repositories expeditiously 
(3.2.6); 2050 

● Delivering annual forcing estimates including SLCFs leading to updating of CMIP historical forcing runs on an 
annual basis to support the production of a human-induced warming metric (4.4); 

● The ability to quickly update estimates following the occurrence of a major volcanic eruption which would require 
access to emissions and forcing estimates and reinitialisation of decadal predictions (4.4, 4.6). 

 2055 

Finally, the current study and resulting proposal is a snapshot in time assessment and will, eventually, inevitably be superseded. 

There is hence a need for sustained long-term support and governance which allows for both operational support of the 

approaches developed herein and periodically revisiting and updating all aspects of the current study. For example, in Section 

4 we omitted the rapidly emerging area of machine learning methods. The kind of pattern recognition and signal identification 

tasks being asked of the statistical and dynamical systems in Section 4 are similar to a variety of machine learning methods 2060 

presently in development and prototyped in climate applications (Bône et al., 2023, 2024, Diffenbaugh and Barnes, 2023). 

Their current exclusion should not be interpreted as an assessment that these tools do not have promise in the future. Rather, 

they were deemed currently too experimental in nature. Once more mature we would expect such approaches to be included 

if they were proven to add value. Similarly, key assumptions such as use of GMST observed series (Section 3) or 1850-1900 

as an approximation to pre-industrial (Section 2) might require revisiting in future. WMO is likely best placed to provide such 2065 

continuous governance and support, whilst recognising the important role of both advances in scientific understanding both 

through the peer reviewed literature and the periodic IPCC assessment products in informing any decisions. 

 

 

 2070 
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Code and data availability 2075 

All model data has been downloaded from ESGF (https://esgf.github.io and federated servers, e.g., https://esgf-data1.llnl.gov). 

A slimmed-down version containing just global averages for the specific ensemble members chosen here (which can be used 

in conjunction with the code below) is at: https://github.com/jnickla1/climate_data (Thorne et al., 2025). A repository of the 

observational data as used here, including the ensemble members chosen, etc., can be downloaded from https://github.com/jjk-

code-otter/global_temperature_merge. The code used can be found at: 2080 

https://github.com/jnickla1/Thorne_15 (also includes results) 

https://github.com/tristramwalsh/global-warming-index 

https://github.com/jjk-code-otter/global_temperature_merge 
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