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This Supplement contains supplementary information in support of the main paper. Supplementary material is provided 95 

principally for Sections 4.6 and 5 where further details that were not possible to fit within the main analysis are given. 

 

1 Commonly used acronyms 

Table S1 lists acronyms used frequently in the main paper and their definitions.  

 100 

Acronym Acronym longform /  description and key references where necessary 

CGWL Current Global Warming Level (specifically Betts et al. 2023 method) 

ENSO El Niño Southern Oscillation 

EOF Empirical Orthogonal Function 

EOT Empirical Orthogonal Teleconnection 

ESM Earth System Model 

FaIR Finite Amplitude Impulse Response simple climate model (Smith et al., 2017, 2024 method) 

GMST Global Mean Surface Temperature 

GSAT Global Surface Air Temperature 
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GWI Global Warming Index (Haustein et al., 2017 & Forster et al. 2024 method) 

GWL Global Warming Level 

ICV Internal Climate Variability 

ICJ International Court of Justice 

IMO-WMO 
(sometimes just 
WMO) 

International Meteorological Organisation / World Meteorological Organization 

IPCC Intergovernmental Panel on Climate Change 

KCC Kriging for Climate Change (Qasmi and Ribes 2022 method) 

LSAT Land Surface Air Temperatures 

LTTG Long-Term Temperature Goal 

MAT Marine Air Temperatures 

NMAT Night Marine Air Temperatures 

OLS Ordinary Least Squares regression 

PA Paris Agreement 

PAGES Past Global Changes 

PDF Probability Density Function 

RFC Reasons for Concern 

ROF Regularised Optimal Fingerprinting (Gillett et al., 2021 method) 

SED Structured Expert Dialogue 

SLCF Short Lived Climate Forcers 

SMILE Single Model Initialised Large Ensemble 

SST Sea Surface Temperature 

UNFCCC United Nations Framework Convention on Climate Change 

VEI Volcanic Explosivity Index 
Table S1. List of acronyms commonly used in the paper 
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2 Supplementary Information for Section 4.6 

2.1 Summary of methods considered in Section 4.6 

The methods used throughout Section 4.6 are outlined in Table S2 with back references to the sections in Section 4 in which 

they are either discussed or the method class is outlined. While very many methods have been considered this set is not entirely 105 

comprehensive. Some published methods we were unable to contact the authors or to get working. A further subset of methods 

were also unable to be modified to be applied to the synthetic future cases detailed in Section 4.6.2. 

 

Code to be able to run all methods run in this analysis, except for GWI, are made available at 

https://github.com/jnickla1/Thorne_15. GWI approach information can be found at https://github.com/tristramwalsh/global-110 

warming-index  
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Method short name used 
in figures in main text 

Description Reference Limited 
applicatio
n to or $ if 
included 
in its own 
figure 

Described in 
main text section 

cent20y Average of 19- and 21--yr centred  $(Fig 14) 4.3/1_Run_Means 

cent21y 21-yr centred   4.3/1_Run_Means 

cent30y Average of 29- and 31--yr centred  $(Fig 14) 4.3/1_Run_Means 

lag5y 5-yr lagging   4.3/1_Run_Means 

lag10y 10-yr lagging AR6 $(Fig 14) 4.3/1_Run_Means 

OLS_refit OLS refitting AR5 $(Fig 14) 4.3/2_LT_Fits 

OLS_AR5all OLS AR5 all AR5  4.3/2_LT_Fits 

OLS_AR5split OLS AR5 split   4.3/2_LT_Fits 

TheilSen_h7075 Theil Sen slope after hinge fit 1975 Duan et al., 2021  4.3/2_LT_Fits 

OLS_hinge75 OLS Hinge fit 1975 (refitting mt+b) Livezey et. al. 2007  4.3/2_LT_Fits 

hinge75meet Hinge fit meet (refitting mt, b fixed) (to make lines meet) $(Fig 14) 4.3/2_LT_Fits 

quartic quartic polynomial Hawkins and Sutton 2009  4.3/2_LT_Fits 

Bayes_seq_CP Bayesian change-point Yu and Ruggieri, 2019  4.3/2_LT_Fits 

offset11y 11-yr offset Trewin (2022) $(Fig 14) 4.3/3_ST_Fits 

etrend15y 15-yr trend endpoint SR15 Allen et al., 2018 $(Fig 14) 4.3/3_ST_Fits 

etrend30y 30-year trend endpoint    4.3/3_ST_Fits 

etrend30y_C3S End of 30-year trend C3S   4.3/3_ST_Fits 

min_month_proj Projection into the future from the 

minimum monthly temperature 

Cannon, 2025  

Bevacqua et al., 2025  

obs 

4.3/3_ST_Fits 
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observed over the past year 

lowess1dt10wnc 
lowess1dt20wnc 
lowess1dt26wnc 
lowess1dt30wnc 
lowess1dt36wnc 

LOWESS linear, tricube kernel (width 

10, 20, or 30), standard error not 

corrected Clarke & Richardson (2021) 

 

4.3/3_ST_Fits 

lowess2dt20wnc LOWESS quadratic, tricube kernel, 

width 20, standard error not corrected  

 

4.3/3_ST_Fits 

lowess1dg20wnc  LOWESS linear, gaussian kernel, 

width 20, standard error not corrected  

 

4.3/3_ST_Fits 

lowess1dt20wAR LOWESS linear, tricube kernel (width 

20), standard error corrected via AR(1) 

coefficient 

Clarke & Richardson (2021) 

recommended (eq 5, 6, 11) 

 

4.3/3_ST_Fits 

lowess1dt20wARMA LOWESS linear, tricube kernel (width 

20), standard error corrected via 

ARMA parameters using MLE 

Clarke & Richardson 2021, referencing 

Hausfather 2017 

 

4.3/3_ST_Fits 

butterworth Butterworth Mann (2008) $(Fig 14) 4.3/2_LT_Fits 

 Empirical Mode Decomposition Wu 2011 none 4.3/3_ST_Fits 

opt_clim_norm Optimal climate normal Livezey et. al. 2007  4.3/3_ST_Fits 

cubic_spline Cubic spline Vissier 2018   4.3/4_GAM_AR1 

GAM_AR1 GAM AR1 residuals AR5, box 2.2 $(Fig 14) 4.3/4_GAM_AR1 

GAM_AR0 GAM AR0 (standard)   4.3/2_LT_Fits 

Kalman_RW 
Kalman_RW_ocn 
Kalman_EM_linRW 

Kalman: Std Random Walk on GMST 

alone, on GMST and GSST, and using 

expectation maximization (EM) on the 

parameters of GMST & GSST Shumway and Stoffer (2016) 

 

4.3/5_Kalman 

Kal_flexLin 
Kal_flexLin_ocn 

Kalman: Integrated Rand Walk (on 

GMST alone, GMST & GSST) Visser 2018 

$(Fig 14) 

4.3/5_Kalman 

removeMEI_cons Remove MEI Foster and Rahmstorf 2011 $(Fig 14) 4.3/6_Remove_IV 

removeMEI_volc_cons 
removeMEI_volc_refit 

Remove MEI, volcanic AOD, solar. 

Cons (constant) or refit refers to Foster and Rahmstorf 2011 

 

4.3/6_Remove_IV 
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whether the coefficients of each of 

these linearized components are 

recalculated at each timestep or held 

constant to the values provided in the 

paper. 

 Atlantic and Pacific modes of 

variability Wu et al. 2019 

none 

4.3/6_Remove_IV 

lfca_SST 
lfca_hadcrut 

Low-frequency component analysis 

(LFCA) is a method that transforms the 

leading empirical orthogonal functions 

(EOFs). Analyze either SST or 

HadCRUT. 

Wills et al. 2018; 

Wills et al. 2020 

 

4.3/6_Remove_IV 

 Spatial EOFs of TS Chen and Tung, 2018 none 4.3/6_Remove_IV 

 Reg. Linear Models of Sea level 

pressure Sippel et al. 2019 

none 

4.3/6_Remove_IV 

removeGreensfx 

Greens Functions on TS 

Samset et al. 2023. Thanks to Bjørn 

Samset for running these computations. 

 

4.3/6_Remove_IV 

CGWL10y_pUKCP 
CGWL10y_sUKCP 
CGWL10y_sfUKCP 

UKCIP18 RCP4.5 CGWL. "p" refers 

to the entire ensemble probabilistic 

prediction, "s" refers to subsampling 

this ensemble to match those closest to 

last year's temperature, and "sf" refers 

to subsampling to match both last 

year's temperature and the past decadal 

average. Betts et. al. (2023) 

$(Fig 17) 

4.5_EarthModel_C

GWL 

 

HadGEM3 CGWL Betts et. al. (2023) 

none 4.5_EarthModel_C

GWL 

CGWL10y_forec 
CGWL10y_for_halfU 

WMO Lead Centre for 

Annual-to-Decadal Climate Prediction 

(forecast coupled models) 

5 CGWL. We also halved the 

uncertainty (halfU) because the 

ensemble was more dispersed than the 

error from the 20-year running mean. 

Betts et. al. (2023), also thanks to Leon 

Hermanson 

$(Fig 17) 

4.5_EarthModel_C

GWL 
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CGWL_10y_IPCC IPCC Assessed warming trend. CGWL  

 4.5_EarthModel_C

GWL 

cons_hArrh_CO2forc 

OLS_refit_CO2forc 

linear CO2-temperature anomaly 

analysis: constant coefficients 

(uncertainty from half Arrhenius's 

5.5°C/doubling estimate) or OLS re-fit 

every year Jarvis & Forster 2024  

 

4.4/1_Linear 

FaIR_all 
FaIR_all_unB 
FaIR_antho 
FaIR_antho_unB 
FaIR_nonat 
FaIR_nonat_unB 
FaIR_comb_unB 

Effective Radiative Forcings via 

Finite-amplitude Impulse Response 

Model: FaIR with pre-calibration. 

Underlying MCMC on sensitivities 

and key climate parameters. Output is 

then produced from forcings (all, 

nonat) or these are combined together: 

(anthro = all - nonat, or comb = 2/3 * 

nonat + 1/3 * all). unB refers to post-

hoc removal of both the overall and 

linear-trending bias due to a 

probability underflow issue in future 

tests. 

Milllar et al., 2017  

Smith et al., 2017  

Smith et al., 2024  

AR6 Chapter 7 

$(Fig 15) 

4.3/2_ERF_FaIR 

EBMKF_ta Nonlinear EBM within Kalman Filter 

(volcanos time-averaged, just 

literature parameters) Nicklas et al. (2025) 

 

4.3/3_Kalman 

EBMKF_ta2 Nonlinear EBM (cloud sensitivity 

increased) within Kalman Filter  

 

4.3/3_Kalman 

EBMKF_ta4 Nonlinear EBM within Kalman Filter, 

additional top of atmosphere net 

radiation and unknown energy flux to 

compensate for ESM discrepancies  

$(Fig 15) 

4.3/3_Kalman 

 

3-layer linear heat Kalman Filter Cummins (2020) 

none, but 
does form 
a core part 
of FaIR 4.3/3_Kalman 

GWI_tot 
GWI_tot_orig 
GWI_anthro 
GWI_anthro_orig 

GWI: Attributed global warming using 

Global Warming Index 

multifingerprinting method: extracted 

either the total forced warming signal 

or the anthropogenic component as a 

Otto et al. 2015, Haustein et al., 2017, 

Forster et al. 2024 

$(Fig 15) 

4.3/4_Human_Ind

uced 
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simple timeseries of annual mean 

values. Tot_orig and anthro_orig are 

the original computations performed 

for the Indicators of Global Climate 

Change (IGCC) 2023. 

GWI_tot_AR6 
GWI_tot_CGWL 
GWI_tot_SR15 
GWI_anthro_AR6 
GWI_antrho_CGWL 
GWI_anthro_SR15 
 

GWI: Attributed global warming: 

annual mean timeseries (see above) 

combined with additional multi-

decadal averaging methods, namely: 

(i) “AR6”: the formal  IPCC AR6 WGI 

definition for attributed global 

warming (and its annual updates in the 

IGCC), which used the GWI as one of 

three methods. Definition: 10-year 

lagged average  

(ii) “SR15”: the formal IPCC SR1.5 

definition of the level of global 

warming (and its annual updates in the 

IGCC), which specifically used the 

GWI. Definition: 30-year average of 

human-induced warming centred by 

extrapolating the most recent 15 year 

trend into the future; technically only 

the “anthro” component is the strict 

definition used by SR1.5, but the other 

warming components (e.g. “tot”) are 

also calculated here in the same way 

for comparison. 

(iii) “CGWL”: the 20-year mean 

centred using the constrained future 

projections of the GWI timeseries, 

providing an analogous approach to 

the Betts et al., CGWL, except for for 

attributable warming instead of 

realised warming (as in the Betts et al. 

2024 method). 

Tristram Walsh, work performed 

specifically for this paper 

 

4.3/4_Human_Ind

uced 

KCC_all 
KCC_human 

Kriging for Climate Change (all and 

human-attributable components, as 

above) Qasmi and Ribes 2022 

obs 
$(Fig 15) 4.3/4_Human_Ind

uced 
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eROF_anthro 

Regularized Optimal Fingerprinting Gillett et al. 2021 

obs, 
note**, 
$(Fig 15)  

4.3/4_Human_Ind

uced 

 Neural Network (CMIP trained) Bone et al., 2023a none Section 7 

 

UNet (preprint) 

Bone et al., 2023b 

https://essopenarchive.org/users/653004/

articles/660203-separation-of-internal-

and-forced-variability-of-climate-using-

a-u-net 

none 

Section 7 

 

Artificial neural networks (ANNs) 

Diffenbaugh & Barnes, 2023 

 

none 

Section 7 

Table S2. Summary of the methods considered for inclusion throughout Section 4.6. "None" methods in the 4th column were not 115 
evaluated in any tests. Note **  eROF was technically not a current method since future years contribute to fitted parameters, but 
could be adapted to a strictly current test. eROF, KCC, and GWI can't be evaluated in future volcano tests since that would require 
thousands of CMIP simulations. 

Min_month_proj modifications: 

The approach based on Cannon (2025) extrapolates from the minimum monthly temperature observed within recent 12-month 120 

periods to estimate when long-term warming thresholds will be crossed. 

The method operates by fitting 15-year linear trends to monthly temperature data, then projecting forward from the coolest 

month in each trailing year. The projection incorporates three key parameters from Cannon (2025): a 33-month offset 

representing the typical lag between short-term temperature extremes and long-term threshold crossing, plus uncertainty terms 

accounting for the 90% confidence range in this timing (-28 to +76 months) and observational uncertainty in the temperature 125 

record itself. 

For future climate scenarios using ESM1-2-LR or NorESM models, the code constructs continuous temperature records by 

concatenating historical simulations with future projections, carefully matching baselines between observed and simulated 

periods. A critical preprocessing step removes the seasonal cycle from these merged datasets to isolate the underlying warming 

trend. The method then tracks a 4-year rolling maximum of annual minimum temperatures, propagating both the central 130 

projection and combined uncertainties from trend estimation, timing variability, and measurement error through the 

calculation. 

 

https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
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2.2 Further analysis of historical exceedances (Section 4.6.1) 

The main paper in Figure 20 illustrated the degree of agreement of candidate methods with a retrospectively calculated 20-135 

year average for the exceedance of 1℃ warming. Here we repeat the analysis for the exceedance of 0.5℃ warming. This 

exceedance occurred around 1985 in HadCRUT5 (Figure S1) and similarly in the mid-1980s to early 1990s across all products 

(not shown). Owing to the presence of the Pinatubo and el Chichon eruptions relatively close to this date in several datasets 

the annual mean temperature exceeds 0.5℃ then dips below before exceeding on a more permanent basis. Here we benchmark 

against the only time it is exceeded in the 20-year centered mean1, which has a sufficiently wide averaging window that it has 140 

increased monotonically since 1965 (~0.25°C of warming). Several of the methods assessed here that include volcanic 

influences (from Section 4.4) similarly crossed 0.5℃ up to three times (not shown), and the 20-year centered mean may fall 

below future thresholds (eg. 1.5°C) if a sufficiently large volcanic eruption occurs (see section 4.6.2).  

 

The violin plots in Figure S1 and Figure 20 were created by fitting a cubic spline to the inverse-gaussian of the probability of 145 

exceedance data. This method is equivalent to adding a pre-function to correct the q-q plot. Once this smooth cubic spline fit 

is found, manipulation such as remapping, plotting, or conversion between the pdf and cumulative distribution function is 

straightforward. 

 

Overall results for 0.5℃ exceedance are similar to those for 1℃ exceedance (Figure S1). Methods that performed particularly 150 

poorly at 1℃ also tend to perform poorly for exceedance of 0.5℃. Notably OLS linear fit, while still constituting a statistical 

‘miss’, is somewhat closer. This aligns with IPCC AR5 (Hartmann et al., 2013) where the 10-year lagging mean relative to 

1850-1900 and an OLS trend fit from 1880 almost exactly matched for the period ending in 2012.  

 

Given this detailed examination of 0.5 and 1℃ exceedances, a metric for continued consideration of each method based on 155 

the RMS error (Table S3) was utilized for simplicity.  Examination of this table reveals that essentially the same set of estimates 

would be used if log-likelihood were the deciding metric. 

 

method_name method_class RMS log-likel #q<.5 bias cross_yr0.5 cross_yr1.0 #yrs 

FaIR_nonat_unB 44/2_ERF_FaIR 0.02475 2.313 0 0.00001 1984.9 2010.3 95 

FaIR_nonat 44/2_ERF_FaIR 0.02475 2.305 0 0.00001 1984.8 2010.2 95 

 
1 As the midpoint of a true 20-year centered mean would fall on a half-year time point, we define within this paper a 20-year 
centered mean to be the average of a 19-year and 21-year centered mean to compare to the variety of other methods which 
report warming at whole integer years. 



14 
 

GWI_tot_CGWL 44/4_Human_Induced 0.02632 2.222 0 -0.00001 1985.6 2009.5 75 

FaIR_comb_unB 44/2_ERF_FaIR 0.02706 2.189 2 -0.00165 1985.4 2009.3 91 

FaIR_anthro_unB 44/2_ERF_FaIR 0.02728 2.178 9 0.00019 1983.6 2010.5 95 

EBMKF_ta2 44/3_Kalman 0.02769 2.146 0 0.00005 1984.7 2010.3 174 

FaIR_anthro 44/2_ERF_FaIR 0.02770 2.166 0 -0.00481 1983.8 2010.7 95 

EBMKF_ta 44/3_Kalman 0.02942 2.075 0 0.00694 1983.7 2009.1 174 

EBMKF_ta4 44/3_Kalman 0.03024 2.056 0 -0.00793 1985.7 2010.7 174 

CGWL10y_for_halfU 45_EarthModel_CGWL 0.03330 1.988 4 -0.01946 1987.4 2009.8 64 

CGWL10y_forec 45_EarthModel_CGWL 0.03330 1.957 0 -0.01946 1987.5 2010.0 64 

GWI_anthro_AR6 44/4_Human_Induced 0.03417 1.956 0 -0.00003 1986.2 2012.7 75 

TheilSen_h7075 43/2_LT_Fits 0.03657 2.048 0 0.00404 1980.7 2012.4 90 

hinge75meet 43/2_LT_Fits 0.03722 1.893 1 0.00492 1980.2 2010.4 90 

CGWL10y_pUKCP 45_EarthModel_CGWL 0.03957 -4.105 64 0.00785 1987.0 2009.9 165 

GWI_anthro_CGWL 44/4_Human_Induced 0.04011 1.825 8 0.00004 1983.5 2010.9 75 

GWI_anthro 44/4_Human_Induced 0.04107 1.814 8 -0.00001 1984.1 2011.5 75 

CGWL10y_sfUKCP 45_EarthModel_CGWL 0.04113 1.742 7 0.00143 1985.7 2009.6 155 

CGWL10y_sUKCP 45_EarthModel_CGWL 0.04271 1.746 4 0.00016 1985.5 2010.1 155 

OLS_hinge75 43/2_LT_Fits 0.04302 1.982 2 0.00743 1979.5 2011.0 90 

GWI_anthro_SR15 44/4_Human_Induced 0.04318 1.745 5 0.00001 1985.5 2011.4 75 

CGWL_10y_IPCC 45_EarthModel_CGWL 0.04380 1.677 0 -0.00021 1983.2 2009.7 166 

Kal_flexLin_ocn 43/5_Kalman 0.04424 1.687 0 -0.00408 1986.9 2011.8 175 
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Kal_flexLin 43/5_Kalman 0.04813 1.610 0 -0.00939 1986.5 2012.8 175 

removeGreensfx 43/6_Remove_IV 0.04933 1.590 0 -0.00170 1980.6 2009.9 174 

Kalman_RW_ocn 43/5_Kalman 0.04969 1.577 0 -0.02171 1987.4 2014.2 175 

lowess1dt30wnc 43/3_ST_Fits 0.05053 1.463 2 -0.01072 1985.5 2012.0 172 

lowess1dt36wnc 43/3_ST_Fits 0.05104 1.429 0 -0.01319 1986.6 2011.7 172 

lowess1dt26wnc 43/3_ST_Fits 0.05238 1.431 1 -0.00924 1982.8 2012.6 172 

Kalman_RW 43/5_Kalman 0.05277 1.518 0 -0.02264 1987.3 2014.5 175 

removeMEI_volc_cons 43/6_Remove_IV 0.05399 1.488 0 -0.01261 1980.5 2008.7 53 

butterworth 43/2_LT_Fits 0.05587 1.237 3 -0.03451 1982.8 2013.8 76 

etrend30y 43/3_ST_Fits 0.05589 1.438 0 -0.01114 1987.5 2011.1 146 

lag5y 43/1_Run_Means 0.05629 1.344 0 -0.01802 1982.5 2014.9 171 

lowess1dt20wAR 43/3_ST_Fits 0.05745 1.273 2 -0.00751 1982.1 2013.9 172 

lowess1dt20wnc 43/3_ST_Fits 0.05745 1.304 2 -0.00751 1982.1 2013.9 172 

GAM_AR1 43/4_GAM_AR1 0.05810 1.241 17 -0.01201 1986.4 2012.6 146 

lowess1dt20wARMA 43/3_ST_Fits 0.05839 1.318 2 -0.00408 1982.1 2013.9 150 

etrend15y 43/3_ST_Fits 0.05884 1.373 2 -0.00613 1982.3 2013.0 161 

GWI_tot_SR15 44/4_Human_Induced 0.05945 1.378 0 0.00005 1986.6 2006.1 75 

lag10y 43/1_Run_Means 0.06087 1.223 0 -0.03263 1987.6 2015.8 166 

GWI_tot 44/4_Human_Induced 0.06155 1.394 6 0.00002 1986.5 2009.9 75 

GWI_tot_AR6 44/4_Human_Induced 0.06183 1.345 2 0.00005 1987.0 2011.9 75 

FaIR_all_unB 44/2_ERF_FaIR 0.06447 1.322 2 0.00006 1987.0 2006.8 95 
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opt_clim_norm 43/3_ST_Fits 0.06468 0.984 12 -0.02112 1980.8 2013.9 175 

etrend30y_3CS 43/3_ST_Fits 0.06474 1.264 0 -0.02047 1987.5 2015.5 146 

lowess1dg20wnc 43/3_ST_Fits 0.06490 1.169 0 -0.02386 1989.2 2012.8 172 

GAM_AR0 43/4_GAM_AR1 0.06521 1.323 12 -0.00611 1982.9 2012.9 146 

FaIR_all 44/2_ERF_FaIR 0.06814 1.271 2 0.02206 1985.7 2005.6 95 

lfca_TAS 43/6_Remove_IV 0.06831 1.266 0 -0.04648 1986.6 2013.8 48 

GWI_tot_orig 44/4_Human_Induced 0.06831 1.245 7 0.00001 1984.8 2008.4 74 

lowess2dt30wnc 43/3_ST_Fits 0.06876 1.172 0 -0.00479 1980.5 2014.2 172 

KCC_human 44/4_Human_Induced 0.07200 1.021 20 -0.00002 1983.9 2009.7 124 

eROF_tot 44/4_Human_Induced 0.07383 1.031 39 -0.00004 1987.2 2008.0 175 

lowess1dt10wnc 43/3_ST_Fits 0.07421 0.988 0 -0.00580 1980.0 2014.0 172 

lowess2dt20wnc 43/3_ST_Fits 0.07627 1.003 1 -0.00555 1980.0 2014.1 171 

Bayes_seq_CP 43/2_LT_Fits 0.07638 1.100 0 -0.03116 1989.3 2012.7 126 

eROF_anthro 44/4_Human_Induced 0.07794 0.915 25 -0.00004 1987.1 2008.0 175 

cubic_spline 43/4_GAM_AR1 0.07935 1.114 0 -0.00466 1980.0 2015.1 145 

GWI_anthro_orig 44/4_Human_Induced 0.08049 1.119 0 0.00002 1982.4 2008.7 74 

removeMEI_cons 43/6_Remove_IV 0.08188 0.630 4 0.00524 1979.9 2008.7 152 

OLS_refit_CO2forc 44/1_Linear 0.08642 -3.842 59 -0.01811 1985.5 2012.2 175 

offset11y 43/1_Run_Means 0.09200 0.999 62 0.07450 1982.6 2009.9 165 

min_month_proj 43/3_ST_Fits 0.09458 1.026 1 0.02113 1979.7 2009.5 156 

KCC_all 44/4_Human_Induced 0.09746 0.968 4 0.00003 1988.0 2011.0 124 
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raw1y 43/1_Run_Means 0.09798 0.898 1 -0.00538 1979.5 2009.5 175 

lfca_SST 43/6_Remove_IV 0.09800 0.926 0 -0.05228 1989.2 2014.7 77 

quartic 43/2_LT_Fits 0.09906 0.992 0 -0.06507 1989.5 2009.5 75 

cons_hArrh_CO2forc 44/1_Linear 0.10426 -85.493 89 0.07524 1978.4 2009.1 175 

removeMEI_volc_refit 43/6_Remove_IV 0.11195 0.804 0 0.00909 1985.5 2006.6 45 

OLS_refit 43/2_LT_Fits 0.13422 0.561 0 -0.03125 1989.7 2022.5 75 

Table S3: Detailed results for every method historical comparison to the 20-yr centred running mean within HadCRUT5. Note that 
the uncertainty has been pre-scaled to optimize the log-likelihood from 1925-2024. This means that the average log-likelihood listed 160 
in the 4th column above could be further optimized for the entire window for methods that extend prior to 1925. Given the present 
pre-scaling, the average log-likelihood is substantially better over the 1925-2024 window (>0.3 change) than over this entire window 
as listed above for only a few methods: CGWL10y_pUKCP, OLS_refit_CO2forc, cons_hArrh_CO2forc. The red shading indicates 
the methods that do not pass the RMSE threshold condition. 

 165 

 

 



18 
 

 



19 
 

Figure S1. As in Figure 20 in the main paper, but for exceedance of 0.5℃. See figure caption in main text for further explanations.  

 170 
Given that no single approach is likely to be optimal in all circumstances, it is instructive to consider how the entire family of 

assessed approaches fared in determining the time of exceedance of both 0.5℃ and 1℃ (Figure S2). In both cases the methods 

as a whole bracket the actual time of exceedance with a majority of approaches within +/-3 years for 0.5℃ and +/-2 years for 

1℃. For exceedance of 1℃ most methods determine the crossing to have occurred later than the actual retrospective 20-year 

average occurrence. Ignoring the extreme outlier arising from OLS fit in the mid-2020s for 1℃ all methods for both 175 

exceedances are within +/-6 years.  

 

 
Figure S2. Overall distribution of the timing of estimates of crossing times relative to the 20-year lagged mean crossing times (shown by a dashed 
vertical line) in HadCRUT5. Different colours denote retention at different stages of the testing steps outlined in Section 4.6 in the main text. 180 

2.3 Further analysis of possible future behaviour (Section 4.6.2) 

2.3.1 Selection of methods able to be run against the synthetic test cases 

It was not possible (or in some cases, not worthwhile) to modify all techniques to run on the future test cases that rely solely 

on model simulations and associated forcings. Those methods which were unable to be employed (see Table S2) and the 

reasons are as follows: 185 
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● lfca_TAS and lfca_SST (4.3.6: Filtering Internal Variability) required significant computational resources to 
analyze each ensemble member in the 270-member future scenarios suite. We didn't make this investment as this 
method was very poorly-performing in the historical evaluation (worse than the raw 1-year signal).  

● GWI_tot_orig and GWI_tot_anthro (4.4.6: Human Induced): These were the original outputs from old code as 
applied to the historical HadCRUT5 (as published in the 2023 IGCC). The code was since updated by Tristram 190 
Walsh to perform substantially better, and we did not see the point of running old code on all the future ensemble 
members. 

● eROF_tot and eROF_antrho. Had difficulty separating the ROF method from the EsmValTool package, so 
historical runs are technically not current but retrospective. Furthermore, this method (as applied naively) would 
require a CMIP ensemble to be run on each of the future volcanic forcings from the NorESM Voc ensemble, much 195 
like the hist-volc ensemble runs. 

● KCC_all and KCC_human: much like ROF, would require a CMIP ensemble to be run on each of the future 
volcanic forcings from the NorESM Voc ensemble. Was beyond our available resources / time constraints to 
modify KCC to apply to this test. 

● CGWL_10y_IPCC: we cannot look into the future and read what future editions of the IPCC will assess. 200 
CGWL10y_forec and CGWL10y_for_halfU. It was well beyond our available computational ability to run an ensemble of 

decadal forecasts initialized to each of the 65 years * 270 future test ensemble members. 

2.3.2 Further particulars on the MPI-ESM1.2 LR SMILE ensemble 

The MPI_ESM1.2 model version is described in Mauritsen et al. (2019) and references therein. The SMILE ensemble of 

MPI_ESM1.2 LR is run in the low resolution (LR) configuration (1.8° atmosphere, 1.5° ocean) and consists of 50 ensemble 205 

members for both historical period and each future core SSP scenario. Future scenario members are initialised from the end of 

the historical forcing runs at the end of 2014. Each future scenario is the standard SSP scenario configuration as deployed in 

the DECK scenario runs using this model. Further details on the configuration are given in Olonscheck et al. (2023). Figure 

S3 illustrates how the different ensembles in the MPI-ESM1.2 LR simulations are exhibiting divergent behaviour at the timing 

of exceeding 1.5℃ of warming. Note that crossing times for 1.5℃ are systematically somewhat later than in the IPCC AR6 210 

assessment which assessed 1.5℃ crossing to occur by the early 2030s for all scenarios, but for the purposes of method 

performance assessment this is not material per se for the question posed in the present paper. What matters for the present 

paper is the divergent trajectories around the timing of exceedance. 
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 215 
Figure S3. The MPI-ESM1.2-LR 50-member SMILE ensemble results for historical and the standard CMIP6 five future SSP 
scenarios run to 2100. SSP1-1.9 in the ensemble mean never reaches 1.5℃ on a sustained basis. For SSP1-2.6 the ensemble mean 
exceeds and then returns towards 1.5℃ by the end of the 21st Century. All remaining scenarios exceed 1.5℃ by a substantial margin 
and are still warming by the end of the century. The switch to scenarios occurs in 2015 with the cessation of the historical forcings 
from CMIP. 220 

2.3.3 Complete results for the MPI-ESM1.2 LR and NorESM1 Volc Tests 

 

https://github.com/jnickla1/Thorne_15/blob/main/averaged_runsNorESM_copy.xlsx 

https://github.com/jnickla1/Thorne_15/blob/main/averaged_runsMPIESM_copy.xlsx 

 225 

We direct the readers to these two files, which also contain additional metrics as columns beyond Tables 3 and 4. These are 

detailed below. Note that additional columns "D-I" without headers in the average_runs245 tab in 

averaged_runsMPIESM_copy.xlsx were used to create and format Table 3 - they copy the 75RMS columns from other sheets. 

Highlighting within averaged_runsNorESM_copy.xlsx serves this same purpose. All metrics besides RMSEs were combined 

across all ensemble members with a simple average, whereas RMSEs were combined as mean squared errors before reapplying 230 

the square root. 

 

100bias: bias evaluated relative to the 20-year running mean over both 2000-2090 

bias50: bias evaluated over a shorter period 2050-2090. 

bias: bias evaluated over a longer period 1850-2090. 235 
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#q<0.1: average # of q-values from 1850-2090 that are smaller than 0.1 (detectable difference from 20-year running mean) 

#q<0.5: average # of q-values from 1850-2090 that are smaller than 0.5 

100log-l: sum of log-likelihoods relative to 20-year running mean from 2000-2090 

Edyrs15: most extreme difference in 1.5°C crossing time (in years) relative to the 20-year running mean (if there are multiple 

crossing times). 240 

Fdyrs15: difference in the first 1.5°C crossing time relative to the 20-year running mean 

Mdyrs15: median difference in the first 1.5°C crossing time relative to the 20-year running mean (computed from the 

equilibrium point of the PDF curves) 

""dyrs20: same as above but for 2.0°C crossing times, defaults to -1 if the 20-year running mean never crosses. 

EdyrsA: same as above but averaging all crossing times from 1.1°C up to the maximum reached by the 20-year running mean 245 

RMSyrsA: RMSE evaluated over a longer period 1850-2090 relative to the 20-year running mean  

100RMS:  RMSE evaluated over 2000-2090 relative to the 20-year running mean  

75RMS:  RMSE evaluated over 2025-2090 relative to the 20-year running mean (used in main text tables) 

l15: log-likelihood of 1.5°C in the year the 20-year running mean crosses 1.5°C  

l20: log-likelihood of 2.0°C in the year the 20-year running mean crosses 2.0°C  250 

log-likeli: average log-likelihood of the 20-year running mean over entire 1850-2090 period 

ncEdyrs: number of times that a 0.1°C threshold is crossed from 1.1°C  to the end of the record by that metric (up to the max 

temperature achieved by the 20-year running mean). So if the 20-year running mean reaches 1.65°C and the method is linear, 

it will have exactly 6 crossings. 

nceEdyrs: Same as the above, but counting up to the maximum temperature reached by the  ensemble average 20-year running 255 

mean (same evaluation for all ensemble members). 

q_min: the minimum q-value, corresponds to the certainty we can detect one year differs from the 20-year mean 

q_small5: : the 5th smallest q-value, corresponds to the certainty we can detect that a set of 5 years differ from the 20-year 

mean 

smooth_r: the ratio of the unsmoothness of a particular method (entire 1850-20100 window) compared to the 20-year running 260 

mean unsmoothness (1860-2090). We define unsmoothness as the mean absolute 2nd differences (2nd derivative) in the central 

estimate. All straight lines have 0 unsmoothness.  

tlog-l: the sum of the log-likelihoods of the 20-year running mean from 1860-2090. Methods that don't report anything for 

certain years generally are penalized by this metric compared to the average log-likelihood, as most methods have positive 

log-likelihood in most years. 265 

e""": any of the above metrics but evaluated relative to the ensemble average 20-year running mean (rather than a within-

member comparison). 
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2.3.4 Further sensitivity analysis results for the combination of different methods to estimate current long-term 
warming 270 

Table S4 provides a more comprehensive overview of various sensitivity tests for the combination of various candidate 

techniques to estimate the present longterm warming level as described in Section 4.6.3 in the main text. Results are found to 

be relatively insensitive to a range of reasonable choices. 
 

 275 
 

 

First crossing instant of 

1.5°C  

Kullback-Liebler 

Divergence # crosses RMSE  

Ensemble within 1 yr within 2 yrs within 5yrs 2000-2090 2025-2090 of 1.5°C 2000-2090 2025-2090 

 

Compressed Mixture (CSCM), 7 

methods      

ESM1-2-

LR_SSP370_constVolc 54.6% 85.0% 100.0% 0.352 0.271 1.080 0.0368 0.0335 

ESM1-2-

LR_SSP245_constVolc 55.7% 85.1% 99.2% 0.488 0.481 1.040 0.0322 0.0301 

ESM1-2-

LR_SSP126_constVolc 20.8% 39.3% 75.5% 0.568 0.602 1.460 0.0356 0.0348 

NorESM_RCP45_VolcCon

st 53.3% 87.1% 100.0% 0.591 0.623 1.017 0.0300 0.0300 

NorESM_RCP45_Volc 29.6% 54.3% 87.9% 0.711 0.771 1.100 0.0495 0.0510 

         

 

Compressed Mixture (CSCM), 18 

methods      

ESM1-2-

LR_SSP370_constVolc 55.7% 85.1% 100.0% 0.345 0.269 1.060 0.0365 0.0332 

ESM1-2-

LR_SSP245_constVolc 55.3% 83.5% 99.1% 0.474 0.465 1.080 0.0322 0.0300 

ESM1-2-

LR_SSP126_constVolc 20.6% 39.1% 76.0% 0.555 0.589 1.320 0.0354 0.0345 
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NorESM_RCP45_VolcCon

st 53.5% 86.7% 100.0% 0.568 0.475 1.017 0.0297 0.0295 

NorESM_RCP45_Volc 30.1% 55.2% 88.5% 0.721 0.710 1.100 0.0492 0.0508 

         

 

Compressed Mixture (CSCM), 37 

methods      

ESM1-2-

LR_SSP370_constVolc 54.4% 84.6% 100.0% 0.356 0.272 1.060 0.0370 0.0335 

ESM1-2-

LR_SSP245_constVolc 53.8% 83.0% 99.3% 0.473 0.466 1.060 0.0319 0.0299 

ESM1-2-

LR_SSP126_constVolc 21.8% 41.5% 79.4% 0.554 0.589 1.320 0.0348 0.0341 

NorESM_RCP45_VolcCon

st 54.5% 86.9% 100.0% 0.572 0.598 1.017 0.0294 0.0293 

NorESM_RCP45_Volc 32.6% 59.1% 90.9% 0.736 0.814 1.083 0.0490 0.0507 

         

 Inverse Variance (PIVW), 7 methods      

ESM1-2-

LR_SSP126_constVolc 21.1% 39.9% 74.6% 0.529 0.578 1.420 0.0381 0.0383 

ESM1-2-

LR_SSP245_constVolc 51.3% 80.8% 98.6% 0.404 0.409 1.040 0.0357 0.0350 

ESM1-2-

LR_SSP370_constVolc 56.3% 85.9% 100.0% 0.281 0.215 1.120 0.0351 0.0319 

NorESM_RCP45_Volc 30.8% 56.1% 88.3% 0.688 0.736 1.117 0.0527 0.0545 

NorESM_RCP45_VolcCon

st 54.5% 87.5% 100.0% 0.437 0.468 1.000 0.0306 0.0310 

         

 Inverse Variance (PIVW), 18 methods      
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ESM1-2-

LR_SSP126_constVolc 21.9% 41.4% 77.9% 0.487 0.514 1.320 0.0351 0.0336 

ESM1-2-

LR_SSP245_constVolc 50.2% 80.1% 98.2% 0.378 0.361 1.040 0.0338 0.0311 

ESM1-2-

LR_SSP370_constVolc 53.5% 84.8% 100.0% 0.301 0.206 1.040 0.0365 0.0309 

NorESM_RCP45_Volc 31.1% 56.6% 88.3% 0.673 0.712 1.100 0.0515 0.0528 

NorESM_RCP45_VolcCon

st 54.8% 87.6% 100.0% 0.424 0.446 1.000 0.0298 0.0295 

         

 Inverse Variance (PIVW), 37 methods      

ESM1-2-

LR_SSP126_constVolc 23.3% 43.8% 79.7% 0.491 0.535 1.420 0.0355 0.0354 

ESM1-2-

LR_SSP245_constVolc 53.1% 82.5% 99.0% 0.358 0.353 1.040 0.0322 0.0306 

ESM1-2-

LR_SSP370_constVolc 57.1% 86.9% 100.0% 0.294 0.238 1.060 0.0359 0.0335 

NorESM_RCP45_Volc 30.7% 56.1% 88.5% 0.675 0.709 1.150 0.0515 0.0525 

NorESM_RCP45_VolcCon

st 56.1% 88.2% 100.0% 0.419 0.437 1.017 0.0295 0.0288 

 

Table S4: As in Table 5, but with more options for the number of methods included. 

2.4 Description of generation of additional forcing and ocean temperature data (Sections 4.6 and 5) 

For external forcing estimates (relevant for the FaIR and EBM-KF methods), we used a random 100 member subset (using 280 

simple rather than balanced k-means sampling) of the 841 ensemble members of net top-of-atmosphere forcing estimates from 

Smith et al. (2024). FaIR internally does a thorough job of assimilating the uncertainty in this external forcing ensemble 

(especially anthropogenic forcings), so we leave the ensemble as it is calibrated. While future expansion / modification of this 

code is possible, the EBM-KF-ta4 method currently designates anthropogenic and natural forcings as known inputs to an 

uncertain model, whereas the net top-of atmosphere forcing is an uncertain observation. 285 

 



26 
 

For ocean heat content estimates (relevant only for the EBM-KF-ta4 method), we generated 100 ensemble member time series 

(Figure S4) to represent its structural uncertainty using 5 instrumental ocean heat content datasets (IAPv4, Cheng et al., 2024; 

CSIRO, Domingues et al., 2008; EN4, Good et al., 2013; JMA, Ishii et al., 2017; NCEI, Levitus et al., 2012), 1 community 

consensus estimate constructed from these 5 instrumental datasets (GCOS, von Shuckmann et al., 2024), and 7 reanalysis 290 

datasets (CORA, Szekely et al., 2019; MoHEACAN, Marti et al., 2023; Minière et al., 2023; the four GREP reanalyses, 

Cocetta et al., 2024). Because these datasets do not have perfect coverage, we infilled data gaps by considering three different 

depth layers (0-700m, 700-2000m, 2000m-6000m) and different regions (e.g., latitudinal bands). For each year, ensemble 

member, depth range, and region, a selection is made among the available datasets, ensuring that each available dataset is 

sampled a proportionate number of times (details are provided in the zenodo dataset description); although, we considered the 295 

four variants of EN4 as a single dataset and the four GREP reanalyses as a single dataset for this sampling. We used Zanna et 

al. 2024 estimates when no other ocean heat content estimates were available, but otherwise avoided using these estimates 

since these estimates were inferred from sea surface temperature observations, so these estimates have modeled unconstrained 

transport biases and their inclusion could result in double counting of SST information. To extend Zanna et al. estimates prior 

to 1870, we assumed deterministic conditions were the same as in 1870, but with added AR1 noise. For each ensemble member, 300 

an associated non-structural uncertainty time series was estimated and treated as temporally uncorrelated between years. 

 

 
Figure S4. Annual OHCA (all-latitudes, all-depths) as a 100-member ensemble, constructed by a similar family tree method to the 
preceding figure for global mean temperature anomalies. In this case, the family tree draws available data region-by-region from 305 
the available reconstruction, reanalysis, and observational datasets (Supplemental Table S5). Additionally, AR1 process noise is 
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added to provide consistency of each ensemble member as a draw from the internal dataset uncertainty when the ensemble spread 
would underestimate the uncertainty. The Zanna et al. 2024 reconstruction is not used during the ARGO era, but from 1870-1900 
it is the only product available. Before 1870, no net change in OHCA is assumed, but AR1 noise is used to broaden the ensemble 
spread consistent with the first uncertainty value from Zanna et al. 310 

 

Next, for each of the 7 realized and 2 attributable methods of Section 4, we estimate realized and anthropogenic warming 100 

times, once with each of the ensemble member time series of temperature anomalies, and for EMB-KF-ta4 also 100 sampled 

members of radiative forcing, ocean heat content, and ocean heat content non-structural uncertainty. When applying these 

Section 4 methods, we assume no time-varying, measurement-related uncertainty for each ensemble member time series of 315 

temperature anomalies and radiative forcing, which avoids a double counting of observational uncertainty. However, the bulk 

of the total uncertainty reported by each of these methods is intrinsic to each method and unrelated to the observational 

uncertainty. These intrinsic uncertainties generally arise from: the mechanics of nearest-neighbor sampling within a finite 

ensemble (FaIR, CGWL_10y_sfUKCP), solving for coefficients within an over-specified linear system (lowess, GWI), or core 

dynamical parameters of a Bayesian system (EBMKF). 320 
 

 

Name Citation 
0-700m 

START 

0-

700m 

END 

0-2000m 

START 

0-

2000m 

END 

0-6000m 

START 

0-

6000m 

END 

Regional 

Coverage 

IAP Cheng et al., 2024   1940 2024 1992 2024 global 

NCEI/Levitus Levitus et al., 2012 1955 2024 2005 2024   global 

CORA Szekely et al., 2019     1960 2024 
global 

(gridded) 

EN4.2.2.c14, 

c13, g10, l09 

Levitus et al., 2009; 

Gouretski & Reseghetti, 

2010;Cowley et al., 2013; 

Cheng et al., 2014 bias 

correction for c14 

    1900 2025 
global 

(gridded) 

Minière Minière et al., 2023     1960 2023 global 

GCOS 
von Schuckmann et al., 

2023 
    1960 2020 60N to 60S 
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GREP 

reanalyses 
Cocetta et al., 2024   2005 2019   60N to 60S 

JMA Ishii et al., 2017   1955 2024   global 

CSIRO/Domi

ngues 
Domingues et al., 2008 1950 2023     60N to 60S 

MOHeaCAN Marti et al., 2022  1993 2021 global 

Table S5: Details of the different ocean heat content products used to form the ensemble estimates.  Note that none of the datasets 
space the whole historical period. Von Schuckman et al. (2024) and Minière et al. (2023) were valuable resources in identifying these 
data.  325 

 

These data products were combined so as each depth range and region was selected from one available dataset to provide 

complete data coverage. Then additional stochastic AR1 noise was added to the records where the spread from different 

combinations of products did not exceed the reported uncertainty. In this way the ensemble has at least as much aleatoric 

uncertainty as each reported record. The sampling from different datasets provides the estimate of the epistemic uncertainty to 330 

do with different modeling, reconstruction, and statistical methods–as well as inclusion of different observations–which is 

usually greater than the aleatoric uncertainty. 

 

Systemic error for the EN4 dataset was established by fitting a function from the average pointwise uncertainty and the mean 

observation weight to the IAP dataset's uncertainty, which was also adjusted on per region. CORA provided measures of 335 

uncertainty that we did not find as useful, so the systemic uncertainty for each region and year was simply copied from EN4, 

the other gridded dataset. Some regions were set to a systemic uncertainty of 0, for instance the 600-2000m layer if the 

shallower 0-600m layer had more reported uncertainty than the whole 0-2000m chunk. 

Once these records were downloaded and pre-processed, we constructed a 100-member ensemble of global ocean heat content 

anomaly (OHCA) timeseries spanning 1850-2024 by systematically combining observational products and their 340 

spatial/temporal subsets. 

Starting from 2010 (the period of maximum observational alignment), we processed each year through three sequential steps: 

(1) latitude infilling, where records covering only 60°S-60°N were extended to global coverage by adding polar regions from 

complementary datasets (alternating between CORA and EN4 bias-correction variants); (2) depth infilling, where records 

covering 0-700m or 0-2000m were extended to full depth (0-6000m) using available deeper observations or the Zanna 345 

reconstruction; and (3) temporal infilling, where missing years were populated by cycling through all complete records 

available for that year. This process swept forward to 2024, then backward to 1850, with the Zanna reconstruction added to 
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the available pool during the backward sweep. Each ensemble member's provenance was tracked via notation strings recording 

all component datasets and their spatial domains. 

We augmented the ensemble by sampling within-record uncertainties using an autoregressive AR(1) process. For each cell, 350 

we calculated AR(1) coefficients from detrended 41-year windows, then generated temporally-correlated standard normal 

deviates that evolved according to these coefficients while maintaining unit variance. These were scaled by reported standard 

errors (using skewed-normal transformations for asymmetric uncertainties) and added to cumulative OHCA timeseries, 

yielding 100 physically plausible ocean heat content realizations spanning observational and structural uncertainties. 

3 Supplementary information for Section 5 355 

Bayesian Interpretation 

Our methodology has a Bayesian interpretation, whereby the assignment of probabilities to datasets, ocean heat content 

datasets, and section 4 methods corresponds to the assignment of hyperpriors to each dataset or section 4 method. Under this 

interpretation, the probability that exactly one of the GMST/GSAT datasets, exactly one of the ocean heat content datasets, 

and exactly one of the section 4 methods have the correct statistical models is one, which, while implausible, provides a 360 

reasonable framework to account for structural uncertainty. We consider the uncertainty distribution of each dataset as the 

posterior distribution given observations and conditional on that dataset having the correct statistical model. Some datasets 

have explicitly Bayesian frameworks (e.g., GETQUOCS), while others have explicitly frequentist frameworks (e.g., 

HadCRU_MLE). For frequentist datasets, their frequentist likelihood distributions can be interpreted as approximate Bayesian 

posterior distributions as their likelihood distributions are approximately multivariate normal and by invoking objective 365 

Jeffrey's priors. The application of the section 4 methods can be interpreted as a Bayesian update to account for the information 

of the section 4 methods and other data sources such as radiative forcing data. Therefore, the results of our study can be 

interpreted as posterior distributions, and our uncertainty intervals can be considered credible intervals. 

Limitations of the dataset merging method 

Annual global time series (for each ensemble member or for a best estimate if no ensemble was available) were used for each 370 

dataset, either as provided by the dataset provider or calculated by us from a simple mean of their monthly series or an annual 

mean of area-weighted averages of available grid cells if only monthly grids were available. 

Ideally, each dataset would have a native ensemble that included uncertainties associated with all known sources of error as 

they pertained to that dataset. Unfortunately, this is not the case. By using perturbations calculated from 

NOAAGlobalTempv5.0, ERA5, and HadCRUT5 we may have mis-estimated the uncertainty. It’s not clear whether it would 375 
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be an underestimate or an overestimate. However, using only the best estimates from non-ensemble datasets would have led 

to a clear underestimate of the uncertainty which is obviously undesirable (see sensitivity tests).  

By splicing the tail and head time series together using the midpoint of the reference period, our approach effectively treats 

uncertainties prior to 1996 as uncorrelated with uncertainties after 1995. As a result, our approach might underestimate 

uncertainty in the long-term change in global temperature since 1850-1900. The linear correlation coefficient in temperature 380 

change from 1850-1900 to 2023 is negative (between -0.10 and -0.20) according to the ensemble members of HadCRUT5 

Analysis (and related datasets), DCENT_MLE, and GloSAT. 

By using a single hierarchical tree, we perhaps give a greater weight to certain commonalities than others. In practice, a more 

optimal weighting could be found based on the expected covariances between datasets. The covariances would reflect the 

different weights given to the input datasets and any commonalities between them. This would still require subjective choices 385 

to be made and the choices would be more numerous and more difficult. Furthermore, the covariances would likely vary in 

time which means that no single choice of dataset weighting would be correct for all time steps. Therefore, to keep things 

practical, the simpler family-tree method was retained. 

Dataset merging sensitivity tests 

A number of sensitivity tests were performed to see to what degree a range of reasonable methodological choices might affect 390 

the resulting long-term warming estimates, including their uncertainties. In most respects they did not matter greatly with 

minor differences between reasonable choices. The mean of the ensemble generally changed very little unless obviously poor 

choices were made (such as deliberately choosing an unbalanced ensemble). The spread of the ensemble varied more. 

The choice of family tree was tested by using a range of different trees using different subsets of data as follows (Figure S5): 

1. Grouping by SST dataset (a) 395 
2. Grouping by LSAT dataset (b) 
3. Grouping by interpolation method (c) 
4. Equal weighting for all datasets (d) 
5. Tree-of-trees method combining the trees 1-3 (not shown) 
6. Random tree, with each ensemble member using a randomly generated tree. (not shown) 400 
7. Deliberately unbalanced tree (e) 
8. As for 1 but with reanalyses grouped with the most similar SST datasets (f) 
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Figure S5. Alternative family tree approaches used to create the large multidataset ensemble. These distinct approaches yield 
different implicit weightings in ensemble construction to individual underlying products. 405 

The LSAT grouping (2) generally had the largest ensemble spread (Figure S6), followed by the tree of trees (5) and SST(1) 

groupings. Equal weighting (4) and interpolation (3) trees gave similar spreads followed by random weighting (6), and finally 

the unbalanced tree (7) which was dead last (by design). 
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Figure S6: Comparison of the effect of different dataset family trees on (a) the global temperature ensemble mean; (b) the ensemble 410 
spread at annual timescales; and (c) the ensemble spread at multi-decadal timescales. The ensemble spread is represented by its 
standard deviation from its 1850-1900 average. 

  

In addition, some of these were run in three modes: 

1. Using datasets without modification (mix of ensemble and non-ensemble datasets). 415 
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2. Using native ensemble datasets only (hence a reduced set of datasets) 
3. Using native ensemble datasets and pseudo ensembles generated for every dataset that  

did not have one. 

Overall, methods which used ensembles (2, 3) typically had larger ensemble spreads (Figure S7) than those that did not (1). 

Methods using pseudo ensembles (3) had the largest spread after around 1930 and only native ensemble datasets (2) before. 420 

Ensemble-only datasets having a wider spread pre-1930 is likely due to large differences between GloSAT and DCENT_MLE 

in the early 20th Century though all choices have a larger ensemble spread at that time. Method (2) excludes all ERSST-based 

datasets so it warms more than the other combinations. All versions of NOAAGlobalTemp warm less than the balance of other 

datasets. 
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 425 

Figure S7: As Fig. S6, but comparison of non-ensemble, only native ensemble, and pseudo-ensemble datasets. 

The choice to change datasets in the subperiod 1981-2010 was also explored (all overlaps were spliced at the midpoint). 

1. 30-year fixed overlap, 1981-2010 (Basic) 
2. 30-year overlap, any 30-year period common to the two datasets being spliced, and different each time (Variable 

overlap) 430 
3. 10-year overlap, any 10-year period common to the two datasets being spliced, and different each time (Short 

overlap) 
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4. 2-year overlap, any 2-year period common to the two datasets being spliced, and different each time. (Shortest 
overlap) 

The shortest overlap (4) generally had the largest ensemble spread (Figure S8) with longer moving overlaps (2, 3) having 435 

progressively smaller ensemble spreads. This is as one might expect as matching on a shorter period will be more affected by 

noise in single years and this will be averaged out on moving to longer periods. A fixed overlap (1) tends to have a comparable 

ensemble spread to that with the shortest overlap (4) except between roughly 1925 and 1980 where it is lower than the other 

methods (2-4). 

 440 
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Figure S8: As Fig. S6, but comparison of different overlap splicing schemes. 

We also compared 5 different methods of generating 100 ensemble members and evaluated their representativeness based on 

their Fréchet distances to a simple 10,000 member ensemble. In these calculations, we approximated distributions as 

multivariate normal using their sample means and covariance matrices. This metric considers differences in means, variances, 445 

and covariances when evaluating representativeness. We used Fréchet distances (Dowson & Landau, 1982) since many other 

common metrics used to compare multivariate normal distributions, such as Kullback-Leibler divergence (Kullback & Leibler, 

1951), the Bhattacharyya distance (Schweppe, 1967), or the Hellinger distance (Eslinger & Woodward, 1990) would not be 
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applicable as relevant sample covariance matrices could have zero rank either due to a small number of ensemble members or 

due to our splicing of head and tail datasets. 450 

The different methods of generating 100 ensemble members were: 

1. simple random sample of 100 ensemble members 
2. balanced k-means, in which balanced k-means was used to cluster the 10,000 member ensemble into 100 clusters 

each with 100 members and then one member from each cluster was selected at random 
3. warming rate clustering, in which the ensemble members were ranked according to their long-term warming 455 

(difference between 1850-1900 and 2015-2024), split into 100 equal groups and then a random member of each 
group was chosen 

4. balanced sampling, where 100 ensemble members were generated in such a way that the number of ensemble 
members generated from each dataset was representative of the underlying distribution (e.g., for the SST-based tree, 
an approximately equal number of ensemble members would be generated from each of the 3 HadCRUT5-based 460 
datasets) 

5. rescaled ensemble, where we rescaled a simple random sample of 100 ensemble members to have the same sample 
mean and variances as the 10,000 member ensemble 

Our results suggest that balanced k-means generated the most representative 100 member ensemble, although the reduction in 

the Fréchet distance was minor, perhaps due to the strong dependence on the HadCRUT5 ensemble limiting the effective 465 

dimensionality of the generated ensemble. Tests that used greater variation in donor ensemble datasets (not shown) found that 

balanced k-means, warming rate clustering, and balanced sampling greatly improved representativeness of the generated 

ensemble and even outperformed the simple random sampling of 1000 ensemble members. Techniques similar to our balanced 

k-means sampling have been used in diverse fields including chemical spectral data (Daszykowski et al., 2002), cellular RNA 

data (Li et al., 2022), and soil data (Robertson & Price, 2024). 470 

The three methods all give similar results to the full ensemble (Figure S9) with the k-means method (2) perhaps coming closest 

of the three to the full ensemble though all means of reducing the ensemble are, as one might expect, noisier in the annual 

averages. 
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Figure S9: As Fig. S6, but comparison of different schemes for reducing the ensemble size. 475 

Based on these sensitivity studies, it is suggested to generate: 

● a large 10,000 member ensemble: which gives a stable estimate of the ensemble spread 
● using a fixed overlap (1981-2010): preferred for operational reasons 
● with each dataset converted to an ensemble if it was not already an ensemble: which makes use of the widest range 

of datasets and associated information 480 
● The 10,000-member ensemble can be reduced to a 100-member ensemble using balanced k-means 
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