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95 This Supplement contains supplementary information in support of the main paper. Supplementary material is provided

principally for Sections 4.6 and 5 where further details that were not possible to fit within the main analysis are given.

1 Commonly used acronyms

Table S1 lists acronyms used frequently in the main paper and their definitions.

100
Acronym Acronym longform / description and key references where necessary
CGWL Current Global Warming Level (specifically Betts et al. 2023 method)
ENSO El Nifio Southern Oscillation
EOF Empirical Orthogonal Function
EOT Empirical Orthogonal Teleconnection
ESM Earth System Model
FalR Finite Amplitude Impulse Response simple climate model (Smith et al., 2017, 2024 method)
GMST Global Mean Surface Temperature
GSAT Global Surface Air Temperature




GWI Global Warming Index (Haustein et al., 2017 & Forster et al. 2024 method)
GWL Global Warming Level

Icv Internal Climate Variability

ICJ International Court of Justice

IMO-WMO International Meteorological Organisation / World Meteorological Organization
(sometimes  just

WMO)

IPCC Intergovernmental Panel on Climate Change

KCC Kriging for Climate Change (Qasmi and Ribes 2022 method)
LSAT Land Surface Air Temperatures

LTTG Long-Term Temperature Goal

MAT Marine Air Temperatures

NMAT Night Marine Air Temperatures

OLS Ordinary Least Squares regression

PA Paris Agreement

PAGES Past Global Changes

PDF Probability Density Function

RFC Reasons for Concern

ROF Regularised Optimal Fingerprinting (Gillett et al., 2021 method)
SED Structured Expert Dialogue

SLCF Short Lived Climate Forcers

SMILE Single Model Initialised Large Ensemble

SST Sea Surface Temperature

UNFCCC United Nations Framework Convention on Climate Change
VEI Volcanic Explosivity Index

Table S1. List of acronyms commonly used in the paper
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2 Supplementary Information for Section 4.6
2.1 Summary of methods considered in Section 4.6

The methods used throughout Section 4.6 are outlined in Table S2 with back references to the sections in Section 4 in which
they are either discussed or the method class is outlined. While very many methods have been considered this set is not entirely
comprehensive. Some published methods we were unable to contact the authors or to get working. A further subset of methods

were also unable to be modified to be applied to the synthetic future cases detailed in Section 4.6.2.

Code to be able to run all methods run in this analysis, except for GWI, are made available at
https://github.com/jnicklal/Thorne 15. GWI approach information can be found at https://github.com/tristramwalsh/global-

warming-index



minimum  monthly  temperature

Bevacqua et al., 2025

cent20y Average of 19- and 21--yr centred $(Fig 14) |4.3/1_Run_Means

cent2ly 21-yr centred 4.3/1_Run_Means
cent30y Average of 29- and 3 1--yr centred $(Fig 14) |4.3/1_Run Means
lagSy 5-yr lagging 4.3/1 Run_Means
laglOy 10-yr lagging AR6 $(Fig 14) |4.3/1_Run Means
OLS_refit OLS refitting AR5 $(Fig 14) |4.3/2_LT _Fits
OLS_ARSall OLS ARS all AR5 4.3/2_LT Fits
OLS_ARSsplit OLS ARS split 4.3/2_LT Fits
TheilSen_h7075 Theil Sen slope after hinge fit 1975 Duan et al., 2021 4.3/2_ LT Fits
OLS hinge75 OLS Hinge fit 1975 (refitting mt+b) |Livezey et. al. 2007 4.3/2_ LT Fits
hinge75meet Hinge fit meet (refitting mt, b fixed) [(to make lines meet) $(Fig 14) |4.3/2_LT _Fits
quartic quartic polynomial Hawkins and Sutton 2009 4.3/2_ LT Fits
Bayes_seq CP Bayesian change-point Yu and Ruggieri, 2019 4.3/2_LT Fits
offsetlly 11-yr offset Trewin (2022) $(Fig 14) |4.3/3_ST Fits
etrend15y 15-yr trend endpoint SR15 Allen et al., 2018 $(Fig 14) |4.3/3_ST Fits
etrend30y 30-year trend endpoint 4.3/3 ST Fits
etrend30y_C3S End of 30-year trend C3S 4.3/3 ST Fits
min_month proj Projection into the future from the|Cannon, 2025 obs

4.3/3_ST Fits




observed over the past year

lowessldtlOwne LOWESS linear, tricube kernel (width
lowess1dt20wnc
lowess1dt26wnc 10, 20, or 30), standard error not
lowessIdi30wne corrected Clarke & Richardson (2021) 4.3/3_ST _Fits
lowess1dt36wnc - =
lowess2dt20wnc LOWESS quadratic, tricube kernel,
width 20, standard error not corrected 4.3/3_ST _Fits
lowess1dg20wnc LOWESS linear, gaussian kernel,
width 20, standard error not corrected 4.3/3_ST _Fits
lowess1dt20wAR LOWESS linear, tricube kernel (width
20), standard error corrected via AR(1)| Clarke & Richardson (2021)
coefficient recommended (eq 5, 6, 11) 4.3/3_ST _Fits
lowess1dt20wARMA LOWESS linear, tricube kernel (width
20), standard error corrected via|Clarke & Richardson 2021, referencing
ARMA parameters using MLE Hausfather 2017 4.3/3_ST _Fits
butterworth Butterworth Mann (2008) S(Fig 14) |4.3/2_LT Fits
Empirical Mode Decomposition Wu 2011 none 4.3/3_ST _Fits
opt_clim_norm Optimal climate normal Livezey et. al. 2007 4.3/3_ST _Fits
cubic_spline Cubic spline [Vissier 2018 4.3/4_GAM_ARI1
GAM_ARI1 GAM AR residuals IARS, box 2.2 $(Fig 14) [4.3/4_GAM_ARI
GAM_ARO GAM ARO (standard) 4.3/2_LT Fits
Kalman RW Kalman: Std Random Walk on GMST
Kalman RW_ocn .
Kalman EM_linRW alone, on GMST and GSST, and using
expectation maximization (EM) on the
parameters of GMST & GSST Shumway and Stoffer (2016) 4.3/5_Kalman
Kal flexLin Kalman: Integrated Rand Walk (on $(Fig 14)
Kal_flexLin_ocn GMST alone, GMST & GSST) Visser 2018 4.3/5 Kalman
removeMEI cons Remove MEI [Foster and Rahmstorf 2011 $(Fig 14) |4.3/6_Remove IV

removeMEI volc_cons
removeMEI volc_refit

Remove MEI, volcanic AOD, solar.

Cons (constant) or refit refers to

Foster and Rahmstorf 2011

4.3/6_Remove_ IV




whether the coefficients of each of]

these linearized components are
recalculated at each timestep or held

constant to the values provided in the

paper.

Atlantic and Pacific modes of] none

variability Wu et al. 2019 4.3/6_Remove_ IV
Ifca_SST Low-frequency component analysis
Ifca_haderut (LFCA) is a method that transforms the

leading empirical orthogonal functions

(EOFs). Analyze either SST or|Willsetal. 2018;

HadCRUT. Wills et al. 2020 4.3/6_Remove_ IV

Spatial EOFs of TS Chen and Tung, 2018 none 4.3/6_Remove_ IV

Reg. Linear Models of Sea level none

pressure Sippel et al. 2019 4.3/6_Remove_ IV
removeGreensfx Samset et al. 2023. Thanks to Bjern

Greens Functions on TS Samset for running these computations. 4.3/6_Remove_ IV
CGWL10y_pUKCP UKCIP18 RCP4.5 CGWL. "p" refers $(Fig 17)
CGWL10y_sUKCP . -
CGWL10y_sfUKCP to the entire ensemble probabilistic

prediction, "s" refers to subsampling

this ensemble to match those closest to

last year's temperature, and "sf" refers

to subsampling to match both last

year's temperature and the past decadal 4.5_EarthModel C

average. Betts et. al. (2023) GWL

none 4.5_EarthModel C

HadGEM3 CGWL Betts et. al. (2023) GWL

CGWL10y_forec WMO Lead Centre for $(Fig 17)

CGWLI10y_for halfU

Annual-to-Decadal Climate Prediction
(forecast coupled models)

5 CGWL. We
(halfU)

also halved the
uncertainty because the
ensemble was more dispersed than the

error from the 20-year running mean.

Betts et. al. (2023), also thanks to Leon

Hermanson

4.5_EarthModel C
GWL




CGWL_10y IPCC

cons_hArrh CO2forc

IPCC Assessed warming trend. CGWL

4.5_EarthModel C
GWL

linear ~CO2-temperature  anomaly

analysis: constant coefficients
(uncertainty from half Arrhenius's

5.5°C/doubling estimate) or OLS re-fit

OLS_refit CO2forc every year Jarvis & Forster 2024 4.4/1_Linear
FalR_all Effective Radiative Forcings via $(Fig 15)
FaIR_all unB .. .
FalR_antho Finite-amplitude Impulse Response
FalR_antho unB Model: FalR with pre-calibration.
FalR_nonat . e
FaIR nonat_unB Underlying MCMC on sensitivities
FalR_comb unB and key climate parameters. Output is
then produced from forcings (all,
nonat) or these are combined together:
(anthro = all - nonat, or comb = 2/3 *
nonat + 1/3 * all). unB refers to post-
hoc removal of both the overall and|wmillar et al., 2017
linear-trending  bias due to  a|Smithetal, 2017
probability underflow issue in future|Smith et al., 2024
tests. ARG Chapter 7 4.3/2_ERF_FalR
EBMKEF ta Nonlinear EBM within Kalman Filter
(volcanos time-averaged, just
literature parameters) Nicklas et al. (2025) 4.3/3_Kalman
EBMKEF _ta2 Nonlinear EBM (cloud sensitivity
increased) within Kalman Filter 4.3/3_Kalman
EBMKEF _ta4 Nonlinear EBM within Kalman Filter, $(Fig 15)
additional top of atmosphere net
radiation and unknown energy flux to
compensate for ESM discrepancies 4.3/3_Kalman
none, but
does form
3-layer linear heat Kalman Filter Cummins (2020) a core part 4.3/3_Kalman
of FalR
GWI_tot GWI: Attributed global warming using $(Fig 15)
GWI_tot_orig .
GWI anthro Global Warming Index

GWI_anthro_orig

multifingerprinting method: extracted
either the total forced warming signal

or the anthropogenic component as a

Otto et al. 2015, Haustein et al., 2017,
Forster et al. 2024

4.3/4_Human_Ind

uced

10




simple timeseries of annual mean
values. Tot orig and anthro orig are
the original computations performed
for the Indicators of Global Climate
Change (IGCC) 2023.

GWI_tot_ AR6
GWI_tot CGWL
GWI_tot_SR15
GWI_anthro AR6
GWI_antrho CGWL
GWI_anthro_SR15

GWI: Attributed global warming:
annual mean timeseries (see above)
combined with additional multi-
decadal averaging methods, namely:
(1) “AR6”: the formal IPCC AR6 WGI
definition for attributed global
warming (and its annual updates in the
IGCC), which used the GWI as one of]
three methods. Definition: 10-year
lagged average

(ii) “SR15”: the formal IPCC SR1.5
definition of the level of global
warming (and its annual updates in the
IGCC), which specifically used the
GWI. Definition: 30-year average of]
human-induced warming centred by
extrapolating the most recent 15 year
trend into the future; technically only
the “anthro” component is the strict
definition used by SR1.5, but the other
warming components (e.g. “tot”) are
also calculated here in the same way
for comparison.

(iii) “CGWL”: the 20-year mean
centred using the constrained future
projections of the GWI timeseries,
providing an analogous approach to
the Betts et al., CGWL, except for for

attributable warming instead  of]

realised warming (as in the Betts et al. [Tristram  Walsh, work performed 4.3/4_Human_Ind
2024 method). specifically for this paper uced

KCC_all Kriging for Climate Change (all and obs

KCC_human $(Fig 15)

human-attributable components, as

above)

Qasmi and Ribes 2022

4.3/4_Human_Ind

uced

11




115

120

125

130

eROF_anthro obs, 4.3/4_Human_Ind
. . . L . note**,
Regularized Optimal Fingerprinting | Gillett et al. 2021 $(Fig 15) uced
. none .

Neural Network (CMIP trained) Bone et al., 2023a Section 7
Bone et al., 2023b none
https://essopenarchive.org/users/653004/
articles/660203-separation-of-internal-
and-forced-variability-of-climate-using-

UNet (preprint) Section 7
Diffenbaugh & Barnes, 2023 none

Artificial neural networks (ANNSs) Section 7

Table S2. Summary of the methods considered for inclusion throughout Section 4.6. '"None'" methods in the 4th column were not
evaluated in any tests. Note ** eROF was technically not a current method since future years contribute to fitted parameters, but
could be adapted to a strictly current test. eROF, KCC, and GWI can't be evaluated in future volcano tests since that would require
thousands of CMIP simulations.

Min month proj modifications:

The approach based on Cannon (2025) extrapolates from the minimum monthly temperature observed within recent 12-month

periods to estimate when long-term warming thresholds will be crossed.

The method operates by fitting 15-year linear trends to monthly temperature data, then projecting forward from the coolest
month in each trailing year. The projection incorporates three key parameters from Cannon (2025): a 33-month offset
representing the typical lag between short-term temperature extremes and long-term threshold crossing, plus uncertainty terms
accounting for the 90% confidence range in this timing (-28 to +76 months) and observational uncertainty in the temperature

record itself.

For future climate scenarios using ESM1-2-LR or NorESM models, the code constructs continuous temperature records by
concatenating historical simulations with future projections, carefully matching baselines between observed and simulated
periods. A critical preprocessing step removes the seasonal cycle from these merged datasets to isolate the underlying warming
trend. The method then tracks a 4-year rolling maximum of annual minimum temperatures, propagating both the central
projection and combined uncertainties from trend estimation, timing variability, and measurement error through the

calculation.

12


https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net
https://essopenarchive.org/users/653004/articles/660203-separation-of-internal-and-forced-variability-of-climate-using-a-u-net

135

140

145

150

155

2.2 Further analysis of historical exceedances (Section 4.6.1)

The main paper in Figure 20 illustrated the degree of agreement of candidate methods with a retrospectively calculated 20-
year average for the exceedance of 1°C warming. Here we repeat the analysis for the exceedance of 0.5°C warming. This
exceedance occurred around 1985 in HadCRUTS (Figure S1) and similarly in the mid-1980s to early 1990s across all products
(not shown). Owing to the presence of the Pinatubo and el Chichon eruptions relatively close to this date in several datasets
the annual mean temperature exceeds 0.5°C then dips below before exceeding on a more permanent basis. Here we benchmark
against the only time it is exceeded in the 20-year centered mean', which has a sufficiently wide averaging window that it has
increased monotonically since 1965 (~0.25°C of warming). Several of the methods assessed here that include volcanic
influences (from Section 4.4) similarly crossed 0.5°C up to three times (not shown), and the 20-year centered mean may fall

below future thresholds (eg. 1.5°C) if a sufficiently large volcanic eruption occurs (see section 4.6.2).

The violin plots in Figure S1 and Figure 20 were created by fitting a cubic spline to the inverse-gaussian of the probability of
exceedance data. This method is equivalent to adding a pre-function to correct the g-q plot. Once this smooth cubic spline fit
is found, manipulation such as remapping, plotting, or conversion between the pdf and cumulative distribution function is

straightforward.

Overall results for 0.5°C exceedance are similar to those for 1°C exceedance (Figure S1). Methods that performed particularly
poorly at 1°C also tend to perform poorly for exceedance of 0.5°C. Notably OLS linear fit, while still constituting a statistical
‘miss’, is somewhat closer. This aligns with IPCC ARS (Hartmann et al., 2013) where the 10-year lagging mean relative to
1850-1900 and an OLS trend fit from 1880 almost exactly matched for the period ending in 2012.

Given this detailed examination of 0.5 and 1°C exceedances, a metric for continued consideration of each method based on
the RMS error (Table S3) was utilized for simplicity. Examination of this table reveals that essentially the same set of estimates

would be used if log-likelihood were the deciding metric.

method name method_class RMS  log-likel #g<.5 bias cross_yr0.5 cross yrl.0  #yrs
FalR nonat unB 44/2 ERF FalR 0.02475 2.313 0 0.00001 1984.9 2010.3 95
FalR _nonat 44/2 ERF FalR 0.02475 2.305 0 0.00001 1984.8 2010.2 95

! As the midpoint of a true 20-year centered mean would fall on a half-year time point, we define within this paper a 20-year
centered mean to be the average of a 19-year and 21-year centered mean to compare to the variety of other methods which
report warming at whole integer years.
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GWI tot CGWL

FalR _comb unB

FalR anthro unB

EBMKF _ta2

FalR_anthro

EBMKF ta

EBMKF _ta4

CGWLI10y for_halfU

CGWLI10y _forec

GWI anthro AR6

TheilSen_h7075

hinge75meet

CGWL10y pUKCP

GWI_anthro CGWL

GWI_anthro

CGWL10y_sfUKCP

CGWL10y_sUKCP

OLS hinge75

GWI anthro SR15

CGWL 10y IPCC

Kal flexLin_ocn

44/4 Human_Induced

44/2 ERF_FaIR

44/2 ERF_FaIR

44/3 Kalman

44/2 ERF_FaIR

44/3 Kalman

44/3 Kalman

45 EarthModel CGWL

45 EarthModel CGWL

44/4 Human_Induced

43/2 LT Fits

43/2 LT Fits

45 EarthModel CGWL

44/4 Human_Induced

44/4 Human_Induced

45 EarthModel CGWL

45 EarthModel CGWL

43/2 LT Fits

44/4 Human_Induced

45 EarthModel CGWL

43/5_Kalman

0.02632

0.02706

0.02728

0.02769

0.02770

0.02942

0.03024

0.03330

0.03330

0.03417

0.03657

0.03722

0.03957

0.04011

0.04107

0.04113

0.04271

0.04302

0.04318

0.04380

0.04424

2222

2.189

2.178

2.146

2.166

2.075

2.056

1.988

1.957

1.956

2.048

1.893

-4.105

1.825

1.814

1.742

1.746

1.982

1.745

1.677

1.687

14

-0.00001

-0.00165

0.00019

0.00005

-0.00481

0.00694

-0.00793

-0.01946

-0.01946

-0.00003

0.00404

0.00492

0.00785

0.00004

-0.00001

0.00143

0.00016

0.00743

0.00001

-0.00021

-0.00408

1985.6

1985.4

1983.6

1984.7

1983.8

1983.7

1985.7

1987.4

1987.5

1986.2

1980.7

1980.2

1987.0

1983.5

1984.1

1985.7

1985.5

1979.5

1985.5

1983.2

1986.9

2009.5

2009.3

2010.5

2010.3

2010.7

2009.1

2010.7

2009.8

2010.0

2012.7

2012.4

2010.4

2009.9

2010.9

2011.5

2009.6

2010.1

2011.0

2011.4

2009.7

2011.8

75

91

95

174

95

174

174

64

64

75

90

90

165

75

75

155

155

90

75

166

175



Kal flexLin

removeGreensfx

Kalman RW_ocn

lowess1dt30wnc

lowess1dt36wnc

lowess1dt26wnc

Kalman RW

removeMEI volc_cons

butterworth

etrend30y

lagSy

lowess1dt20wAR

lowess1dt20wnc

GAM_ARI

lowess1dt20wARMA

etrend15y

GWI tot_SRI15

43/5 Kalman

43/6_Remove IV

43/5 Kalman

43/3 ST Fits

43/3 ST Fits

43/3 ST Fits

43/5 Kalman

43/6_Remove IV

43/2 LT Fits

43/3 ST Fits

43/1_Run_Means

43/3 ST Fits

43/3 ST Fits

43/4 GAM_ARI

43/3_ ST Fits

43/3 ST Fits

44/4 Human_Induced

0.04813

0.04933

0.04969

0.05053

0.05104

0.05238

0.05277

0.05399

0.05587

0.05589

0.05629

0.05745

0.05745

0.05810

0.05839

0.05884

0.05945

1.610

1.590

1.577

1.463

1.429

1.431

1.518

1.488

1.237

1.438

1.344

1.273

1.304

1.241

1.318

1.373

1.378
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-0.01319
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2013.9
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175
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76

146

171

172

172

146
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161
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Table S3: Detailed results for every method historical comparison to the 20-yr centred running mean within HadCRUTS. Note that
the uncertainty has been pre-scaled to optimize the log-likelihood from 1925-2024. This means that the average log-likelihood listed
in the 4th column above could be further optimized for the entire window for methods that extend prior to 1925. Given the present
pre-scaling, the average log-likelihood is substantially better over the 1925-2024 window (>0.3 change) than over this entire window
as listed above for only a few methods: CGWL10y_pUKCP, OLS_refit CO2forc, cons_hArrh_CO2forc. The red shading indicates
the methods that do not pass the RMSE threshold condition.
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Figure S1. As in Figure 20 in the main paper, but for exceedance of 0.5°C. See figure caption in main text for further explanations.

Given that no single approach is likely to be optimal in all circumstances, it is instructive to consider how the entire family of
assessed approaches fared in determining the time of exceedance of both 0.5°C and 1°C (Figure S2). In both cases the methods
as a whole bracket the actual time of exceedance with a majority of approaches within +/-3 years for 0.5°C and +/-2 years for
1°C. For exceedance of 1°C most methods determine the crossing to have occurred later than the actual retrospective 20-year
average occurrence. Ignoring the extreme outlier arising from OLS fit in the mid-2020s for 1°C all methods for both

exceedances are within +/-6 years.
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Figure S2. Overall distribution of the timing of estimates of crossing times relative to the 20-year lagged mean crossing times (shown by a dashed
vertical line) in HadCRUTS. Different colours denote retention at different stages of the testing steps outlined in Section 4.6 in the main text.

2.3 Further analysis of possible future behaviour (Section 4.6.2)
2.3.1 Selection of methods able to be run against the synthetic test cases

It was not possible (or in some cases, not worthwhile) to modify all techniques to run on the future test cases that rely solely
on model simulations and associated forcings. Those methods which were unable to be employed (see Table S2) and the

reasons are as follows:
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195

200

205

210

e Ifca TAS and Ifca SST (4.3.6: Filtering Internal Variability) required significant computational resources to
analyze each ensemble member in the 270-member future scenarios suite. We didn't make this investment as this
method was very poorly-performing in the historical evaluation (worse than the raw 1-year signal).

e GWI tot origand GWI tot anthro (4.4.6: Human Induced): These were the original outputs from old code as
applied to the historical HadCRUTS (as published in the 2023 IGCC). The code was since updated by Tristram
Walsh to perform substantially better, and we did not see the point of running old code on all the future ensemble
members.

e cROF tot and eROF antrho. Had difficulty separating the ROF method from the EsmValTool package, so
historical runs are technically not current but retrospective. Furthermore, this method (as applied naively) would
require a CMIP ensemble to be run on each of the future volcanic forcings from the NorESM Voc ensemble, much
like the hist-volc ensemble runs.

e KCC all and KCC human: much like ROF, would require a CMIP ensemble to be run on each of the future
volcanic forcings from the NorESM Voc ensemble. Was beyond our available resources / time constraints to
modify KCC to apply to this test.

e CGWL 10y IPCC: we cannot look into the future and read what future editions of the IPCC will assess.

CGWL10y_forec and CGWL10y_for halfU. It was well beyond our available computational ability to run an ensemble of

decadal forecasts initialized to each of the 65 years * 270 future test ensemble members.

2.3.2 Further particulars on the MPI-ESM1.2 LR SMILE ensemble

The MPI_ESM1.2 model version is described in Mauritsen et al. (2019) and references therein. The SMILE ensemble of
MPI _ESM1.2 LR is run in the low resolution (LR) configuration (1.8° atmosphere, 1.5° ocean) and consists of 50 ensemble
members for both historical period and each future core SSP scenario. Future scenario members are initialised from the end of
the historical forcing runs at the end of 2014. Each future scenario is the standard SSP scenario configuration as deployed in
the DECK scenario runs using this model. Further details on the configuration are given in Olonscheck et al. (2023). Figure
S3 illustrates how the different ensembles in the MPI-ESM1.2 LR simulations are exhibiting divergent behaviour at the timing
of exceeding 1.5°C of warming. Note that crossing times for 1.5°C are systematically somewhat later than in the IPCC AR6
assessment which assessed 1.5°C crossing to occur by the early 2030s for all scenarios, but for the purposes of method
performance assessment this is not material per se for the question posed in the present paper. What matters for the present

paper is the divergent trajectories around the timing of exceedance.
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Figure S3. The MPI-ESM1.2-LR 50-member SMILE ensemble results for historical and the standard CMIP6 five future SSP
scenarios run to 2100. SSP1-1.9 in the ensemble mean never reaches 1.5°C on a sustained basis. For SSP1-2.6 the ensemble mean
exceeds and then returns towards 1.5°C by the end of the 21st Century. All remaining scenarios exceed 1.5°C by a substantial margin
and are still warming by the end of the century. The switch to scenarios occurs in 2015 with the cessation of the historical forcings
from CMIP.

2.3.3 Complete results for the MPI-ESM1.2 LR and NorESM1 Volc Tests

https://github.com/jnicklal/Thorne_15/blob/main/averaged runsNorESM_copy.xlsx
https://github.com/jnicklal/Thorne 15/blob/main/averaged runsMPIESM_copy.xIsx

We direct the readers to these two files, which also contain additional metrics as columns beyond Tables 3 and 4. These are
detailed below. Note that additional columns "D-I" without headers in the average runs245 tab in
averaged runsMPIESM copy.xlsx were used to create and format Table 3 - they copy the 7SRMS columns from other sheets.
Highlighting within averaged runsNorESM_copy.xlsx serves this same purpose. All metrics besides RMSEs were combined
across all ensemble members with a simple average, whereas RMSEs were combined as mean squared errors before reapplying

the square root.

100bias: bias evaluated relative to the 20-year running mean over both 2000-2090
bias50: bias evaluated over a shorter period 2050-2090.
bias: bias evaluated over a longer period 1850-2090.
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260

265

#q<0.1: average # of g-values from 1850-2090 that are smaller than 0.1 (detectable difference from 20-year running mean)
#q<0.5: average # of g-values from 1850-2090 that are smaller than 0.5

100log-1: sum of log-likelihoods relative to 20-year running mean from 2000-2090

Edyrs15: most extreme difference in 1.5°C crossing time (in years) relative to the 20-year running mean (if there are multiple
crossing times).

Fdyrs15: difference in the first 1.5°C crossing time relative to the 20-year running mean

Mdyrs15: median difference in the first 1.5°C crossing time relative to the 20-year running mean (computed from the
equilibrium point of the PDF curves)

""dyrs20: same as above but for 2.0°C crossing times, defaults to -1 if the 20-year running mean never crosses.

EdyrsA: same as above but averaging all crossing times from 1.1°C up to the maximum reached by the 20-year running mean
RMSyrsA: RMSE evaluated over a longer period 1850-2090 relative to the 20-year running mean

100RMS: RMSE evaluated over 2000-2090 relative to the 20-year running mean

75RMS: RMSE evaluated over 2025-2090 relative to the 20-year running mean (used in main text tables)

115: log-likelihood of 1.5°C in the year the 20-year running mean crosses 1.5°C

120: log-likelihood  of  2.0°C in the year the 20-year running mean  crosses  2.0°C
log-likeli: average log-likelihood of the 20-year running mean over entire 1850-2090 period

ncEdyrs: number of times that a 0.1°C threshold is crossed from 1.1°C to the end of the record by that metric (up to the max
temperature achieved by the 20-year running mean). So if the 20-year running mean reaches 1.65°C and the method is linear,
it will have exactly 6 crossings.

nceEdyrs: Same as the above, but counting up to the maximum temperature reached by the ensemble average 20-year running
mean (same evaluation for all ensemble members).

q_min: the minimum g-value, corresponds to the certainty we can detect one year differs from the 20-year mean

q_small5: : the 5th smallest g-value, corresponds to the certainty we can detect that a set of 5 years differ from the 20-year
mean

smooth_r: the ratio of the unsmoothness of a particular method (entire 1850-20100 window) compared to the 20-year running
mean unsmoothness (1860-2090). We define unsmoothness as the mean absolute 2nd differences (2nd derivative) in the central
estimate. All straight lines have 0 unsmoothness.

tlog-1: the sum of the log-likelihoods of the 20-year running mean from 1860-2090. Methods that don't report anything for
certain years generally are penalized by this metric compared to the average log-likelihood, as most methods have positive
log-likelihood in most years.

e""": any of the above metrics but evaluated relative to the ensemble average 20-year running mean (rather than a within-

member comparison).
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2.3.4 Further sensitivity analysis results for the combination of different methods to estimate current long-term
270 warming

Table S4 provides a more comprehensive overview of various sensitivity tests for the combination of various candidate

techniques to estimate the present longterm warming level as described in Section 4.6.3 in the main text. Results are found to

be relatively insensitive to a range of reasonable choices.

275
First crossing instant of Kullback-Liebler
1.5°C Divergence # crosses RMSE
Ensemble within 1 yr ~ within 2 yrs  within Syrs 2000-2090 2025-2090 of 1.5°C  2000-2090 2025-2090

Compressed Mixture (CSCM), 7

methods

ESM1-2-

LR _SSP370 constVolc 54.6% 85.0% 100.0%  0.352 0.271 1.080 0.0368 0.0335
ESM1-2-

LR _SSP245 constVolc 55.7% 85.1% 99.2% 0.488 0.481 1.040 0.0322 0.0301
ESM1-2-

LR _SSP126 constVolc 20.8% 39.3% 75.5% 0.568 0.602 1.460 0.0356 0.0348
NorESM_RCP45_VolcCon

st 53.3% 87.1% 100.0%  0.591 0.623 1.017 0.0300 0.0300
NorESM_RCP45 Volc 29.6% 54.3% 87.9% 0.711 0.771 1.100 0.0495 0.0510

Compressed Mixture (CSCM), 18

methods
ESM1-2-
LR _SSP370 constVolc 55.7% 85.1% 100.0% 0.345 0.269 1.060 0.0365 0.0332
ESM1-2-
LR _SSP245 constVolc 55.3% 83.5% 99.1% 0.474 0.465 1.080 0.0322 0.0300
ESM1-2-
LR _SSP126 constVolc 20.6% 39.1% 76.0% 0.555 0.589 1.320 0.0354 0.0345
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NorESM_RCP45_VolcCon

st

NorESM_RCP45_Volc

ESM1-2-
LR _SSP370 constVolc

ESM1-2-
LR _SSP245 constVolc

ESM1-2-
LR _SSP126 constVolc

NorESM_RCP45_VolcCon

st

NorESM_RCP45_Volc

ESM1-2-
LR _SSP126 constVolc

ESM1-2-
LR _SSP245 constVolc

ESM1-2-
LR _SSP370 constVolc

NorESM_RCP45_Volc

NorESM_RCP45_VolcCon

st

53.5% 86.7%

30.1% 55.2%

Compressed Mixture
methods

54.4% 84.6%
53.8% 83.0%
21.8% 41.5%
54.5% 86.9%
32.6% 59.1%

Inverse Variance (PIVW), 7 methods

21.1% 39.9%
51.3% 80.8%
56.3% 85.9%
30.8% 56.1%
54.5% 87.5%

Inverse Variance (PIVW), 18 methods

100.0%  0.568
88.5%  0.721

(CSCM), 37
100.0%  0.356
99.3% 0473
79.4%  0.554
100.0%  0.572
90.9%  0.736
74.6%  0.529
98.6%  0.404
100.0%  0.281
88.3%  0.688
100.0%  0.437
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0.475

0.710

0.272

0.466

0.589

0.598

0.814

0.578

0.409

0.215

0.736

0.468

1.017

1.100

1.060

1.060

1.320

1.017

1.083

1.420

1.040

1.120

1.117

1.000

0.0297

0.0492

0.0370

0.0319

0.0348

0.0294

0.0490

0.0381

0.0357

0.0351

0.0527

0.0306

0.0295

0.0508

0.0335

0.0299

0.0341

0.0293

0.0507

0.0383

0.0350

0.0319

0.0545

0.0310
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285

ESM1-2-

LR_SSP126_constVolc 21.9% 41.4% 77.9% 0.487 0.514 1.320 0.0351 0.0336
ESM1-2-
LR_SSP245_constVolc 50.2% 80.1% 98.2% 0.378 0.361 1.040 0.0338 0.0311
ESM1-2-
LR_SSP370_constVolc 53.5% 84.8% 100.0% 0.301 0.206 1.040 0.0365 0.0309
NorESM_RCP45_Volc 31.1% 56.6% 88.3% 0.673 0.712 1.100 0.0515 0.0528

NorESM_RCP45_VolcCon
st 54.8% 87.6% 100.0%  0.424 0.446 1.000 0.0298 0.0295

Inverse Variance (PIVW), 37 methods

ESM1-2-
LR_SSP126_constVolc 23.3% 43.8% 79.7% 0.491 0.535 1.420 0.0355 0.0354
ESM1-2-
LR_SSP245_constVolc 53.1% 82.5% 99.0% 0.358 0.353 1.040 0.0322 0.0306
ESM1-2-
LR_SSP370_constVolc 57.1% 86.9% 100.0% 0.294 0.238 1.060 0.0359 0.0335
NorESM_RCP45_Volc 30.7% 56.1% 88.5% 0.675 0.709 1.150 0.0515 0.0525

NorESM_RCP45_VolcCon
st 56.1% 88.2% 100.0%  0.419 0.437 1.017 0.0295 0.0288

Table S4: As in Table 5, but with more options for the number of methods included.
2.4 Description of generation of additional forcing and ocean temperature data (Sections 4.6 and 5)

For external forcing estimates (relevant for the FalR and EBM-KF methods), we used a random 100 member subset (using
simple rather than balanced k-means sampling) of the 841 ensemble members of net top-of-atmosphere forcing estimates from
Smith et al. (2024). FalR internally does a thorough job of assimilating the uncertainty in this external forcing ensemble
(especially anthropogenic forcings), so we leave the ensemble as it is calibrated. While future expansion / modification of this
code is possible, the EBM-KF-ta4 method currently designates anthropogenic and natural forcings as known inputs to an

uncertain model, whereas the net top-of atmosphere forcing is an uncertain observation.
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For ocean heat content estimates (relevant only for the EBM-KF-ta4 method), we generated 100 ensemble member time series
(Figure S4) to represent its structural uncertainty using 5 instrumental ocean heat content datasets (IAPv4, Cheng ef al., 2024;
CSIRO, Domingues et al., 2008; EN4, Good ef al., 2013; JMA, Ishii et al., 2017; NCEI, Levitus et al., 2012), 1 community
consensus estimate constructed from these 5 instrumental datasets (GCOS, von Shuckmann et al., 2024), and 7 reanalysis
datasets (CORA, Szekely et al., 2019; MoHEACAN, Marti et al., 2023; Minicre et al., 2023; the four GREP reanalyses,
Cocetta et al., 2024). Because these datasets do not have perfect coverage, we infilled data gaps by considering three different
depth layers (0-700m, 700-2000m, 2000m-6000m) and different regions (e.g., latitudinal bands). For each year, ensemble
member, depth range, and region, a selection is made among the available datasets, ensuring that each available dataset is
sampled a proportionate number of times (details are provided in the zenodo dataset description); although, we considered the
four variants of EN4 as a single dataset and the four GREP reanalyses as a single dataset for this sampling. We used Zanna et
al. 2024 estimates when no other ocean heat content estimates were available, but otherwise avoided using these estimates
since these estimates were inferred from sea surface temperature observations, so these estimates have modeled unconstrained
transport biases and their inclusion could result in double counting of SST information. To extend Zanna ef al. estimates prior
to 1870, we assumed deterministic conditions were the same as in 1870, but with added AR1 noise. For each ensemble member,

an associated non-structural uncertainty time series was estimated and treated as temporally uncorrelated between years.

Sampled OHCA Ensemble with Internal Uncertainty

IAP
NCElLevitus
JMA

200 CORA
Miniere
GCOos
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100 CISRODomingues
MOHeaCAN
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Figure S4. Annual OHCA (all-latitudes, all-depths) as a 100-member ensemble, constructed by a similar family tree method to the
preceding figure for global mean temperature anomalies. In this case, the family tree draws available data region-by-region from
the available reconstruction, reanalysis, and observational datasets (Supplemental Table S5). Additionally, AR1 process noise is
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315

320

added to provide consistency of each ensemble member as a draw from the internal dataset uncertainty when the ensemble spread
would underestimate the uncertainty. The Zanna et al. 2024 reconstruction is not used during the ARGO era, but from 1870-1900
it is the only product available. Before 1870, no net change in OHCA is assumed, but AR1 noise is used to broaden the ensemble
spread consistent with the first uncertainty value from Zanna et al.

Next, for each of the 7 realized and 2 attributable methods of Section 4, we estimate realized and anthropogenic warming 100
times, once with each of the ensemble member time series of temperature anomalies, and for EMB-KF-ta4 also 100 sampled
members of radiative forcing, ocean heat content, and ocean heat content non-structural uncertainty. When applying these
Section 4 methods, we assume no time-varying, measurement-related uncertainty for each ensemble member time series of
temperature anomalies and radiative forcing, which avoids a double counting of observational uncertainty. However, the bulk
of the total uncertainty reported by each of these methods is intrinsic to each method and unrelated to the observational
uncertainty. These intrinsic uncertainties generally arise from: the mechanics of nearest-neighbor sampling within a finite

ensemble (FaIR, CGWL 10y sfUKCP), solving for coefficients within an over-specified linear system (lowess, GWI), or core

dynamical parameters of a Bayesian system (EBMKF).

IAP Cheng et al., 2024 1940 2024 1992 2024 global

NCEI/Levitus Levitus et al., 2012 1955 2024 2005 2024 global
global

CORA Szekely et al., 2019 1960 2024 )
(gridded)

Levitus et al., 2009;

Gouretski & Reseghetti,

EN4.2.2.c14, global
2010;Cowley et al., 2013; 1900 2025 )

cl3, g10, 109 ) (gridded)
Cheng et al., 2014 bias

correction for c14

Miniére Miniére et al., 2023 1960 2023 global

von Schuckmann et al.,
GCOS 2023 1960 2020 60N to 60S
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330

335

340

345

GREP

Cocetta et al., 2024 2005 2019 60N to 60S
reanalyses
IMA Ishii et al., 2017 1955 2024 global
CSIRO/Domi

Domingues et al., 2008 1950 2023 60N to 60S
ngues
MOHeaCAN Marti et al., 2022 1993 2021 global

Table SS: Details of the different ocean heat content products used to form the ensemble estimates. Note that none of the datasets
space the whole historical period. Von Schuckman et al. (2024) and Miniére et al. (2023) were valuable resources in identifying these
data.

These data products were combined so as each depth range and region was selected from one available dataset to provide
complete data coverage. Then additional stochastic AR1 noise was added to the records where the spread from different
combinations of products did not exceed the reported uncertainty. In this way the ensemble has at least as much aleatoric
uncertainty as each reported record. The sampling from different datasets provides the estimate of the epistemic uncertainty to
do with different modeling, reconstruction, and statistical methods—as well as inclusion of different observations—which is

usually greater than the aleatoric uncertainty.

Systemic error for the EN4 dataset was established by fitting a function from the average pointwise uncertainty and the mean
observation weight to the IAP dataset's uncertainty, which was also adjusted on per region. CORA provided measures of
uncertainty that we did not find as useful, so the systemic uncertainty for each region and year was simply copied from EN4,
the other gridded dataset. Some regions were set to a systemic uncertainty of 0, for instance the 600-2000m layer if the

shallower 0-600m layer had more reported uncertainty than the whole 0-2000m chunk.

Once these records were downloaded and pre-processed, we constructed a 100-member ensemble of global ocean heat content
anomaly (OHCA) timeseries spanning 1850-2024 by systematically combining observational products and their

spatial/temporal subsets.

Starting from 2010 (the period of maximum observational alignment), we processed each year through three sequential steps:
(1) latitude infilling, where records covering only 60°S-60°N were extended to global coverage by adding polar regions from
complementary datasets (alternating between CORA and EN4 bias-correction variants); (2) depth infilling, where records
covering 0-700m or 0-2000m were extended to full depth (0-6000m) using available deeper observations or the Zanna
reconstruction; and (3) temporal infilling, where missing years were populated by cycling through all complete records

available for that year. This process swept forward to 2024, then backward to 1850, with the Zanna reconstruction added to
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the available pool during the backward sweep. Each ensemble member's provenance was tracked via notation strings recording

all component datasets and their spatial domains.

We augmented the ensemble by sampling within-record uncertainties using an autoregressive AR(1) process. For each cell,
we calculated AR(1) coefficients from detrended 41-year windows, then generated temporally-correlated standard normal
deviates that evolved according to these coefficients while maintaining unit variance. These were scaled by reported standard
errors (using skewed-normal transformations for asymmetric uncertainties) and added to cumulative OHCA timeseries,

yielding 100 physically plausible ocean heat content realizations spanning observational and structural uncertainties.

3 Supplementary information for Section 5

Bayesian Interpretation

Our methodology has a Bayesian interpretation, whereby the assignment of probabilities to datasets, ocean heat content
datasets, and section 4 methods corresponds to the assignment of hyperpriors to each dataset or section 4 method. Under this
interpretation, the probability that exactly one of the GMST/GSAT datasets, exactly one of the ocean heat content datasets,
and exactly one of the section 4 methods have the correct statistical models is one, which, while implausible, provides a
reasonable framework to account for structural uncertainty. We consider the uncertainty distribution of each dataset as the
posterior distribution given observations and conditional on that dataset having the correct statistical model. Some datasets
have explicitly Bayesian frameworks (e.g., GETQUOCS), while others have explicitly frequentist frameworks (e.g.,
HadCRU_ MLE). For frequentist datasets, their frequentist likelihood distributions can be interpreted as approximate Bayesian
posterior distributions as their likelihood distributions are approximately multivariate normal and by invoking objective
Jeffrey's priors. The application of the section 4 methods can be interpreted as a Bayesian update to account for the information
of the section 4 methods and other data sources such as radiative forcing data. Therefore, the results of our study can be

interpreted as posterior distributions, and our uncertainty intervals can be considered credible intervals.

Limitations of the dataset merging method

Annual global time series (for each ensemble member or for a best estimate if no ensemble was available) were used for each
dataset, either as provided by the dataset provider or calculated by us from a simple mean of their monthly series or an annual

mean of area-weighted averages of available grid cells if only monthly grids were available.

Ideally, each dataset would have a native ensemble that included uncertainties associated with all known sources of error as
they pertained to that dataset. Unfortunately, this is not the case. By using perturbations calculated from
NOAAGIobalTempv5.0, ERAS, and HadCRUTS we may have mis-estimated the uncertainty. It’s not clear whether it would
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be an underestimate or an overestimate. However, using only the best estimates from non-ensemble datasets would have led

to a clear underestimate of the uncertainty which is obviously undesirable (see sensitivity tests).

By splicing the tail and head time series together using the midpoint of the reference period, our approach effectively treats
uncertainties prior to 1996 as uncorrelated with uncertainties after 1995. As a result, our approach might underestimate
uncertainty in the long-term change in global temperature since 1850-1900. The linear correlation coefficient in temperature
change from 1850-1900 to 2023 is negative (between -0.10 and -0.20) according to the ensemble members of HadCRUTS
Analysis (and related datasets), DCENT MLE, and GloSAT.

By using a single hierarchical tree, we perhaps give a greater weight to certain commonalities than others. In practice, a more
optimal weighting could be found based on the expected covariances between datasets. The covariances would reflect the
different weights given to the input datasets and any commonalities between them. This would still require subjective choices
to be made and the choices would be more numerous and more difficult. Furthermore, the covariances would likely vary in
time which means that no single choice of dataset weighting would be correct for all time steps. Therefore, to keep things

practical, the simpler family-tree method was retained.

Dataset merging sensitivity tests

A number of sensitivity tests were performed to see to what degree a range of reasonable methodological choices might affect
the resulting long-term warming estimates, including their uncertainties. In most respects they did not matter greatly with
minor differences between reasonable choices. The mean of the ensemble generally changed very little unless obviously poor

choices were made (such as deliberately choosing an unbalanced ensemble). The spread of the ensemble varied more.
The choice of family tree was tested by using a range of different trees using different subsets of data as follows (Figure S5):

Grouping by SST dataset (a)

Grouping by LSAT dataset (b)

Grouping by interpolation method (c)

Equal weighting for all datasets (d)

Tree-of-trees method combining the trees 1-3 (not shown)

Random tree, with each ensemble member using a randomly generated tree. (not shown)
Deliberately unbalanced tree ()

As for 1 but with reanalyses grouped with the most similar SST datasets (f)

® NNk WD
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(a) SST
HadCRUTS
HadCRU_MLE
Kadow et al
Berkeley Earth (HadCRUTS)
GISTEMP (HadCRUTS)
NOAA v5.1 (NOAA v5.0)
NOAA v6 (NOAA v5.0)
NOAA v6 (HadCRUTS)
CMST3 (HadCRUTS)
CMST3 (NOAA v5.0)
JRA-3Q (ERAS)
ERAS
GloSAT
COBE-STEMP3 (HadCRUTS)
DCENT_MLE

(d) Equal

JRA-3Q (ERAS)
ERAS

DCENT_MLE

COBE-STEMP3 (HadCRUTS)
CMST3 (NOAA v5.0)
NOAA_ensemble

NOAA v6 (HadCRUTS)
NOAA v6 (NOAA v5.0)
NOAA V5.1 (NOAA v5.0)
Kadow et al

GISTEMP (HadCRUTS)
HadCRU_MLE

Berkeley Earth (HadCRUTS)
HadCRUTS

GloSAT

Figure SS. Alternative family tree approaches used to create the large multidataset ensemble. These distinct approaches yield
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(e) Unbalanced
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(f) SST reanalysis switched

ERAS

HadCRUTS

HadCRU_MLE

Kadow et al

Berkeley Earth (HadCRUTS)
GISTEMP (HadCRUTS)
NOAA v5.1 (NOAA v5.0)
NOAA v6 (NOAA v5.0)
NOAA v6 (HadCRUTS)
CMST3 (HadCRUTS]
CMST3 (NOAA v5.0)
GloSAT

JRA-3Q (ERA5)
COBE-STEMP3 (HadCRUTS)
DCENT_MLE

different implicit weightings in ensemble construction to individual underlying products.

The LSAT grouping (2) generally had the largest ensemble spread (Figure S6), followed by the tree of trees (5) and SST(1)
groupings. Equal weighting (4) and interpolation (3) trees gave similar spreads followed by random weighting (6), and finally

the unbalanced tree (7) which was dead last (by design).
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410 Figure S6: Comparison of the effect of different dataset family trees on (a) the global temperature ensemble mean; (b) the ensemble
spread at annual timescales; and (c) the ensemble spread at multi-decadal timescales. The ensemble spread is represented by its
standard deviation from its 1850-1900 average.

In addition, some of these were run in three modes:
415 1. Using datasets without modification (mix of ensemble and non-ensemble datasets).
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2. Using native ensemble datasets only (hence a reduced set of datasets)
3. Using native ensemble datasets and pseudo ensembles generated for every dataset that
did not have one.

Overall, methods which used ensembles (2, 3) typically had larger ensemble spreads (Figure S7) than those that did not (1).
Methods using pseudo ensembles (3) had the largest spread after around 1930 and only native ensemble datasets (2) before.
Ensemble-only datasets having a wider spread pre-1930 is likely due to large differences between GloSAT and DCENT _MLE
in the early 20™ Century though all choices have a larger ensemble spread at that time. Method (2) excludes all ERSST-based
datasets so it warms more than the other combinations. All versions of NOAAGlobalTemp warm less than the balance of other

datasets.
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(a) Annual global mean temperatures and smoothed temperatures
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Figure S7: As Fig. S6, but comparison of non-ensemble, only native ensemble, and pseudo-ensemble datasets.

The choice to change datasets in the subperiod 1981-2010 was also explored (all overlaps were spliced at the midpoint).

1. 30-year fixed overlap, 1981-2010 (Basic)
2. 30-year overlap, any 30-year period common to the two datasets being spliced, and different each time (Variable
430 overlap)
3. 10-year overlap, any 10-year period common to the two datasets being spliced, and different each time (Short
overlap)
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4. 2-year overlap, any 2-year period common to the two datasets being spliced, and different each time. (Shortest
overlap)

The shortest overlap (4) generally had the largest ensemble spread (Figure S8) with longer moving overlaps (2, 3) having
progressively smaller ensemble spreads. This is as one might expect as matching on a shorter period will be more affected by
noise in single years and this will be averaged out on moving to longer periods. A fixed overlap (1) tends to have a comparable
ensemble spread to that with the shortest overlap (4) except between roughly 1925 and 1980 where it is lower than the other
methods (2-4).
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(a) Annual global mean temperatures and smoothed temperatures
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Figure S8: As Fig. S6, but comparison of different overlap splicing schemes.

We also compared 5 different methods of generating 100 ensemble members and evaluated their representativeness based on
their Fréchet distances to a simple 10,000 member ensemble. In these calculations, we approximated distributions as
multivariate normal using their sample means and covariance matrices. This metric considers differences in means, variances,
and covariances when evaluating representativeness. We used Fréchet distances (Dowson & Landau, 1982) since many other
common metrics used to compare multivariate normal distributions, such as Kullback-Leibler divergence (Kullback & Leibler,

1951), the Bhattacharyya distance (Schweppe, 1967), or the Hellinger distance (Eslinger & Woodward, 1990) would not be
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applicable as relevant sample covariance matrices could have zero rank either due to a small number of ensemble members or

450  due to our splicing of head and tail datasets.
The different methods of generating 100 ensemble members were:

1. simple random sample of 100 ensemble members
2. balanced k-means, in which balanced k-means was used to cluster the 10,000 member ensemble into 100 clusters
each with 100 members and then one member from each cluster was selected at random
455 3. warming rate clustering, in which the ensemble members were ranked according to their long-term warming
(difference between 1850-1900 and 2015-2024), split into 100 equal groups and then a random member of each
group was chosen
4. balanced sampling, where 100 ensemble members were generated in such a way that the number of ensemble
members generated from each dataset was representative of the underlying distribution (e.g., for the SST-based tree,
460 an approximately equal number of ensemble members would be generated from each of the 3 HadCRUTS5-based
datasets)
5. rescaled ensemble, where we rescaled a simple random sample of 100 ensemble members to have the same sample
mean and variances as the 10,000 member ensemble

Our results suggest that balanced k-means generated the most representative 100 member ensemble, although the reduction in
465 the Fréchet distance was minor, perhaps due to the strong dependence on the HadCRUTS5 ensemble limiting the effective
dimensionality of the generated ensemble. Tests that used greater variation in donor ensemble datasets (not shown) found that
balanced k-means, warming rate clustering, and balanced sampling greatly improved representativeness of the generated
ensemble and even outperformed the simple random sampling of 1000 ensemble members. Techniques similar to our balanced
k-means sampling have been used in diverse fields including chemical spectral data (Daszykowski et al., 2002), cellular RNA

470 data (Li et al., 2022), and soil data (Robertson & Price, 2024).

The three methods all give similar results to the full ensemble (Figure S9) with the k-means method (2) perhaps coming closest
of the three to the full ensemble though all means of reducing the ensemble are, as one might expect, noisier in the annual

averages.
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475  Figure S9: As Fig. S6, but comparison of different schemes for reducing the ensemble size.

Based on these sensitivity studies, it is suggested to generate:

a large 10,000 member ensemble: which gives a stable estimate of the ensemble spread
using a fixed overlap (1981-2010): preferred for operational reasons
with each dataset converted to an ensemble if it was not already an ensemble: which makes use of the widest range
480 of datasets and associated information
e The 10,000-member ensemble can be reduced to a 100-member ensemble using balanced k-means
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