Earth System
Science

Data

https://doi.org/10.5194/essd-2025-824
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

Ten years of hydrometeorological observations at 10-minute
resolution and its application in machine learning hydrological
models

Kleber L. Rocha-Filho!, ® Lidiane S. Lima', ® Elton V. Escobar-Silva!, ® Rafael M. P. Teixeira',
Andrea S. Viteri Lépez!, ® Glauston R. T. Lima', ® Jaqueline A. J. P. Soares', ® Cristiano W.
Eichholz', Flavio Conde?, ® Carlos A. M. Rodriguez®, © Joaquin I. B. Garcia*, and ® Leonardo B. L.
Santos!
'National Center for Monitoring and Early Warning of Natural Disasters (Cemaden), Sdo José dos Campos, SP, 12247-016,
Brazil
2Hydraulics Technology Center Foundation (FTCH), Sao Paulo, SP, 05458-000, Brazil
3Institute of Astronomy, Geophysics, and Atmospheric Sciences, University of Sdo Paulo (USP), Sdo Paulo, SP, 05508-090,
Brazil
4Department of Civil and Environmental Engineering, University of Sdo Paulo (USP), Sdao Paulo, SP, 05508-010, Brazil

Correspondence: ® Leonardo B. L. Santos (leonardo.santos @cemaden.gov.br)

GRAPHICAL ABSTRACT
Quantitative Precipitation Estimation (QPE)
 10-minute time step (10-year period)
* 1 km resolution grid
YL
* 23 Rainfall gauge stations }10-year i
« 1 Stream gauge station dataset }
_\\\ . " ‘ input layer hidden layer output layer Local
; \\f{%m warning
---------- > A% B s o s
. x
Weather radar Rainfall Application of Al algorithms Flash flood forecast for
geospatialization for flood forecasting different lead times

Abstract. Accurate urban flash flood forecasting relies on well-spatialized rainfall data distribution. This study introduces and
utilizes the TTI-HydroMet dataset, a publicly available and unique collection for the Tamanduatei River Watershed, in Sao
Paulo (Brazil). The dataset includes rainfall measurements from 23 rain gauge stations, stage observations from a hydrological

gauge near the outlet, and quantitative precipitation estimates at 1-km radar resolution, accumulated in 10-minute precipitation
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fields over 10 years. The weather radar data presents missing values for only 0.3% of timestamps during rainfall events observed
by rain gauges. The Spearman correlation coefficient between weather radar and rain gauges varies from 0.675 (full period) to
0.949 (a specific event). It was used to assess the predictive capacity of Machine Learning (ML) hydrological models trained on
accumulated rainfall data from rain gauges and estimated by a weather radar. Using an advanced cross-validation framework,
two representative algorithms (LinearSVR and XGBRegressor) were tested across different rainfall source configurations and
showed strong performance at lead times up to 120 minutes. The Nash—Sutcliffe Efficiency index ranges from 0.781 to 0.996.
The statistically comparable performance of ML models driven by radar and rain gauge rainfall indicates that radar-based ML

approaches can represent a viable alternative for short-term stage forecasting in regions lacking rain gauge networks.

1 Introduction

Floods threaten lives, cause property damage, harm the environment, and disrupt economic and social activities (Lee et al.,
2020). In this context, precipitation is a crucial variable and a major source of uncertainty in hydrological studies. When
examining the relationship between precipitation and its impacts on urban areas, the complexity increases. This is mainly be-
cause urbanization, driven by human activities, increases soil impermeability, alters surface roughness, and alters precipitation
patterns and intensity (Yang et al., 2024).

One of the main methods for recording precipitation data is using rain gauges, which provide point measurements, are
cost-effective, and easy to install. However, their measurements are not precise enough to accurately represent precipitation
across an entire watershed. They can have errors of 30% or more, depending on the type of instrument or local conditions.
This challenge mainly arises from the intermittent nature of rain, its spatial and temporal variability, and its sensitivity to
environmental factors (Van de Ven, 1990; Sokol et al., 2021). In general, some sources of error in rain gauge precipitation
measurements include equipment malfunctions, systematic and random errors (instrumental errors), and the limited spatial
coverage of point measurements (spatial sampling errors) (Ochoa-Rodriguez et al., 2019).

Weather radars serve as a potential alternative for quantitative precipitation estimation (QPE), offering high spatiotempo-
ral resolution across large areas by emitting microwave pulses and analyzing the reflected and backscattered signals from
raindrops, snow, and hail (Sokol et al., 2021). Early radar systems relied solely on reflectivity (Z) to measure precipitation;
however, this method was affected by multiple sources of uncertainty (Doviak and Zrnic, 2014). More recently, the advent of
dual-polarization radars and the use of variables such as differential reflectivity (Zpr) and specific differential phase (Kpp)
have reduced several QPE uncertainties, including those associated with drop size distribution (DSD), attenuation, and bright
band contamination (Ryzhkov et al., 2022).

Weather radar data has been widely collected and utilized by national meteorological services worldwide for climatological
and hydrological studies. However, most of these centers maintain archives dating only from the 2000s onward. Among the
databases of 45 national centers analyzed by (Saltikoff et al., 2019), only 15 make their data available for research outside their
own institutions. In Brazil, in addition to the scarcity of long-term radar data records, there are also various challenges related

to data accessibility and heterogeneous formats.
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Beyond these challenges, weather radar records meet the key criteria for classifying data as big data. The concept of big
data refers to datasets characterized by high volume, velocity, and variety, which require specialized computational tools for
storage, processing, and analysis (Laney, 2001; Tang et al., 2022). Radar observations inherently satisfy these conditions:
each scan produces large multidimensional fields with millions of data points, collected at short temporal intervals, resulting
in rapidly expanding datasets over multi-year periods (Sokol et al., 2021). This complexity reinforces the need for advanced
computational methods, such as machine learning (ML) algorithms, to extract hydrometeorological information and support
operational applications.

Hydrodynamic models can be used to simulate realistic water flow by solving physics-based governing equations (Beven,
2012). They are often combined with hydrological models that focus on rainfall and watershed processes to provide a com-
prehensive understanding of floods and water systems. These models range from one-dimensional (1D) to three-dimensional
(3D), each suitable for different levels of complexity and precision (Teng et al., 2017). However, their main disadvantages
include high computational costs and significant data requirements for accurate setup and calibration (Kant et al., 2025; Zhu
et al., 2025). On the other hand, ML techniques are increasingly being integrated into hydrological modeling to enhance pre-
dictions and address the limitations of traditional methods (Hasan et al., 2024). These approaches are typically categorized
as either purely data-driven or hybrid. Data-driven models learn complex relationships between hydrological variables (e.g.,
rainfall, temperature, discharge) directly from data without explicitly modeling physical processes. In contrast, hybrid hydro-
logical models, which combine ML with physics-based models, aim to utilize the strengths of both physics-based (conceptual
or physically-based) and data-driven ML approaches (Chadalawada et al., 2020; Santos et al., 2025).

In Brazil, various efforts have been made in hydrological research. For example, (Amorim et al., 2022) evaluated the per-
formance of a hydrological model in estimating runoff using distributed rainfall data applied to an urban watershed with
macro drainage structures. (Hossoda et al., 2025) created an innovative flood warning system for an urban watershed, utilizing
parametric and ML models. (Escobar-Silva et al., 2023) assessed the performance of HEC-RAS, a hydrodynamic model, in
identifying flood-prone areas using two digital terrain models (DTMs) with different spatial resolutions. (Viteri Lépez and
Morales Rodriguez, 2020) presented a flash flood forecasting model that uses binary logistic regression to predict flash flood
events in various urban watersheds within Sao Paulo.

This paper presents the TTI-HydroMet dataset (Escobar-Silva et al., 2025). This unique collection comprises 10 years of
rainfall data from 23 rain gauges, river level data from a hydrological station, and weather radar QPE data at 10-minute temporal
and 1-km spatial resolutions. To the best of our knowledge, no comparable large-scale dataset with such high temporal and
spatial resolution is publicly available in the literature in such a context. Using this dataset, we compare hydrological models
trained with different ML algorithms, all of which use rain gauge or radar data. We provide both a curated open dataset and a
benchmark set of modeling experiments that can support the development, comparison, and operational products of ML-based

flash flood forecasting in densely urbanized watersheds.
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2 Materials and Methods

The study area is the Tamanduatef River basin (TRW), located within the Sao Paulo Metropolitan Region, Brazil. This region
is the country’s top economic zone, with the highest population concentration in Brazil, surpassing 20.6 million people IBGE,
2023). TRW covers a drainage area of 330.41 km?2, with its main river, the Tamanduatei River, flowing for 36.5 km (Figure 1).
It is a heavily urbanized sub-basin of the Tieté Upstream River (Alto Tiet€) Watershed. Over 80% of TRW is impermeable,
leading to frequent flooding along the riverbanks (Pereira Filho and dos Santos, 2006). The watershed also often faces extreme
rainfall events (Escobar-Silva et al., 2023). In addition, the study area has a humid subtropical climate (Cwa), characterized by
mild, rainy summers and moderate, dry winters, according to the Koppen climate classification (Beck et al., 2018). Lastly, the
average annual temperature is 19.5°C, with July being the coldest month and February the warmest. The mean annual rainfall
is about 1,500 mm.

The rainfall data used in this study were collected from 23 tipping-bucket automatic rain gauges with a sampling resolution
of 0.2 mm. Conversely, the stage data were obtained from an automatic station. It is important to note that all data — rainfall
and stage — were recorded at 10-minute intervals, and Station 413 collects both rainfall and stage measurements (Figure 1 (C)).
The stations are part of the Alto Tieté telemetric network and are managed by the Sao Paulo Flood Warning System (Barros
et al., 2016). Figure 1 (C) shows the spatial distribution of the stations.

Precipitation estimates were obtained from a Dual Polarization S-band Doppler weather radar (SPOL). The SPOL, located
in the eastern region of the state of Sio Paulo, covers an area of approximately 181,000 km? (Figure 1 (B)) and performs
volumetric scans in two operational modes: surveillance mode with two elevation angles every 15 minutes, and an operational
mode with seven elevation angles every 5 minutes. The precipitation fields at a 1 x 1 km spatial resolution were generated
using the DPSRI (Dual Polarization Surface Rainfall Intensity) algorithm, where the variables Z, Zpr, and K pp were used as
described in (Ryzhkov et al., 2005). Lastly, 381003 estimated rainfall fields were summed over 10-minute intervals, assuming
steady precipitation between scans.

To compare precipitation estimates from the weather radar with in situ measurements from rain gauge stations, both datasets’
temporal resolutions were first standardized to regular 10-minute intervals, ensuring consistent temporal alignment. The metric
adopted to represent radar-derived rainfall was based on the global mean of all radar cells within the area of interest, totaling 434
spatial units. Subsequently, the two time series, global radar and rain gauges, were merged into a single time-indexed dataset,
enabling direct comparison of average rainfall values. The agreement between the sources was evaluated using the Spearman
correlation coefficient, with the corresponding p-value, applied to the complete series and to the time steps with rainfall greater
than 0.2 mm. For illustrative purposes, an intense rainfall event is also shown (February 14, 2024). This analysis primarily
aimed to validate the radar’s accuracy as a supplementary data source for hydrological applications and monitoring extreme
precipitation events (Wang et al., 2015).

In preparing the hydrological dataset, the stage time series was preprocessed to remove outliers and smooth non-physical
fluctuations caused by sensor malfunction and/or environmental disturbances. Outlier detection was performed using a Hampel

identifier (window size set to 10 and n, = 2.5), which flags measurements exceeding a median-based deviation threshold within
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Figure 1. Location of the study area, the Tamanduatef River Watershed (TRW), within the Sdo Paulo Metropolitan Region, Brazil. (B) shows
the locations of TRW and the weather radar, along with the radar’s coverage area. (C) illustrates the distribution of the 23 rain gauge stations
and one stream gauge station within TRW, as well as the 1 km weather radar grids covering TRW. Station 413, the closest station to the

watershed outlet, collects both rainfall and stage data.

a sliding window and replaces them with the local median (Hampel, 1974; Liu et al., 2004). Subsequently, a custom filtering
procedure was applied to suppress high-frequency noise. A low-pass finite impulse response filter was used, with the cutoff
frequency set to 20% of the Nyquist frequency, employing a Hann temporal window and achieving zero-phase distortion by
means of a forward-reverse scheme (Gustafsson, 1996), which cancels the delays typically introduced by causal filters and
110 preserves the timing of hydrograph peaks. To mitigate boundary transients and ringing artifacts, the signal was processed with
a sliding window of size 500 with 10% reflection padding. The filtering procedure was applied twice: first to identify remaining

outliers relative to the locally smoothed signal, and then again — after removing these outliers — to obtain the final time series.
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To conduct the ML experiments, this study employed a dedicated framework that manages the entire modeling pipeline for
flash flood forecasting. This framework, called ML4FF (Soares et al., 2025), provides an integrated workflow that includes data
partitioning, model training, hyperparameter tuning, and performance assessment across multiple forecast lead times. In this
study, two representative methods from the available framework were selected for testing: Linear Support Vector Regression
(LinearSVR) and the eXtreme Gradient Boosting Regressor (XGBRegressor). In this paper, ML experiments are presented for
functional validation of the dataset, not for exhaustive algorithmic comparison. For each method and lead time combination,
the framework follows a workflow divided into two phases: a training-validation-test phase and a holdout assessment phase.
Initially, the complete time series is divided into two mutually exclusive subsets, one for each phase. The first phase employs
a nested cross-validation scheme consisting of 12 outer folds and 6 inner folds, and uses 87.5% of the data. The inner loops
use Bayesian optimization to explore different hyperparameter settings, while the outer loops estimate model performance and
computational cost across varying data partitions. The second phase is dedicated to final evaluation using the unseen 12.5% of
the data, which helps ensure accurate estimates of how the models will perform in real-world forecasting scenarios.

In the two ML approaches based on gauge stations, accumulated rainfall data were collected from all 23 automatic rain
gauges across the TRW. Combined with stage measurements from Station 413 (the gauge closest to the watershed outlet), this
yielded 24 synchronized time series. To enable direct comparison with the approaches based on accumulated rainfall derived
from radar fields, all 24 series were aligned to a common timeline defined by the overlapping intervals between the stage
and radar data. These time series were then used as input feature vectors to form datasets for training, validation, and test the
LinearSVR and XGBRegressor models, with the target variable being the stage at a specified forecast lead time. Hence, the
model output corresponded to the predicted stage at each lead time (10, 60, and 120 min).

Similarly, in the radar-based setup, radar-derived accumulated rainfall at each SPOL radar pixel (434 pixels covering the
watershed), combined with stage measurements, was used to build input datasets for training, validation, and test the two ML
models considered in this study (LinearSVR and XGBRegressor). The resulting 435 time series were aligned using the same
timeline as in the rain-gauge-based setup. These series were used as the input feature vectors for the radar-based models, which
generate stage predictions for the same set of forecast lead times.

Model performance was evaluated using three standard hydrological metrics: the Nash—Sutcliffe Efficiency (NSE), the
Kling—Gupta Efficiency (KGE), and the Root Mean Square Error (RMSE), following the comparison framework described
in (Soares et al., 2025). NSE quantifies how well predictions reproduce observed variability; values close to 1 indicate higher
skill. KGE incorporates correlation, bias, and variability components into a single metric, providing a balanced assessment
of predictive performance. RMSE measures the average magnitude of the prediction error, has the same units as the target
variable, and is often interpreted in relation to the standard deviation of the observations to contextualize its magnitude.

The TTI-HydroMet dataset (Escobar-Silva et al., 2025) is an original open dataset containing 10 years of hydrometeorolog-
ical data from the Tamanduatei River Watershed (TRW) in Sdo Paulo, Brazil. Rainfall data from 23 gauge stations and stage
measurements from one station were collected every 10 minutes. QPE is provided at a 1 km spatial resolution and updated
every 10 minutes. Additionally, the codes used and generated in this work are also available in the dataset. Lastly, it is important

to note that computational procedures were performed on a central processing unit (CPU) with an i9-12900KF (Intel, Santa



150

155

160

165

170

175

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-824
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

Clara, CA, USA), a PRO Z790-P WIFI (MSI, Zhonghe, Taiwan), and a GeForce RTX 4090 24GB (NVIDIA, Santa Clara, CA,
USA).

3 Results and Discussion

The analysis of the radar database, covering the period from April 1, 2015, to March 29, 2025, showed an overall data gap
rate of 69.3%. At first glance, this number might suggest operational failures; however, it results directly from the sensor’s
acquisition strategy. Radar data are collected every 5 minutes during significant precipitation events within the coverage area
and every 15 minutes during surveillance mode (when no rain is observed). This characteristic matches the rainfall pattern
of the study area, as shown by the clear seasonality observed in the time gaps in the data (Marcuzzo, 2020). Data absence
is more noticeable during the winter months, such as July (87.3%) and August (88.0%), which are usually dry periods. In
contrast, during the summer months of January (43.4%) and February (47.3%), the missing data rate is significantly lower,
reflecting increased convective activity and increased rainfall frequency (Minuzzi et al., 2007). Additionally, analysis of data
gap durations reveals that most (73.5%) are brief interruptions lasting 10 minutes, while 15.2% correspond to extended periods
exceeding one continuous hour.

To assess the integrity of the radar database under hydrologically relevant conditions, a conditional analysis was performed,
focusing only on time intervals with precipitation (> 0.2 mm). These events represent 8.6% of the total time series (45,093
out of 525,600 records), and within this subset, the missing-data rate was only 0.3%. This result demonstrates the radar’s high
reliability during precipitation events, highlighting its importance for monitoring weather conditions with potential impacts
(Yoon and Lim, 2022). The high data availability during these crucial moments demonstrates the robustness of the sensor
for applications in natural disaster studies, especially in detecting and spatially-temporally characterizing moderate to heavy
rainfall events (IPCC, 2023; Haddad and Teixeira, 2015). This methodological robustness is the key to creating integrated
databases that support predictive models and hydrological risk assessments.

The consistency between radar-derived accumulated rainfall and in situ rain gauge records was statistically verified using the
Spearman correlation coefficient, which yielded p = 0.604 (p < 0.001) for the complete time series and p = 0.675 (p < 0.001)
when considering only time steps with rainfall > 0.2 mm). These values indicate a moderate positive monotonic relationship,
confirming the radar as a highly relevant complementary data source for the composition of geospatial natural hazard databases.
Figure 2 illustrates this relationship: panel (a) displays the complete time series (01/04/2015-29/03/2025) of the average accu-
mulated rainfall from radar and recorded by rain gauges, while panel (b) highlights the intense event of February 14, 2024, used
as a case study, which showed a correlation of p = 0.949 (p < 0.001) between radar-based rainfall accumulations (QPE) and
gauge stations. During this event, radar performance remained closely aligned with ground-based observations, indicating that
the sensor maintained data integrity even under high-severity conditions. These findings strengthen the case for the integrated
use of remote sensing technologies to support early warning systems and mitigation strategies in regions vulnerable to extreme

events (Doswell III et al., 1996).
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Figure 2. Comparison between average quantitative precipitation estimation (QPE) derived from radar (Radar — average of all cells, in purple)
and the average records from rain gauge stations (Rain gauges, in blue dashed lines), with a temporal resolution of 10 minutes, over the period
from 01/04/2015 to 29/03/2025. Panel (a) shows the complete time series (2015-2025), highlighting the seasonal correspondence and overall
coherence between the two data sources. Panel (b) provides a more detailed view of the rainfall event on February 14, 2024, characterized by
moderate to heavy precipitation. Statistical analysis revealed a Spearman coefficient of p = 0.604 (p < 0.001) for the complete time series,

p =0.675 (p < 0.001) when considering only time steps with rainfall above 0.2 mm, and p = 0.949 (p < 0.001) for the highlighted event.

Figure 3 shows the distribution of the logarithm of the Mean Field Bias (log(MFB)) as a function of daily rainfall intensity
(mm/day), considering only events with accumulated rainfall greater than 0.2 mm). The calculation of log(MFB) followed a
methodology similar to that proposed by (He et al., 2013), serving as a metric to quantify the systematic deviation between
radar-derived accumulated rainfall and rain gauge records. The values are mostly concentrated around zero, indicating generally
good agreement between the two data sources and an approximately symmetrical distribution. However, dispersion increases
with rainfall intensity, especially for events exceeding 30 mm)/day, reflecting greater uncertainty in radar-based estimates
under extreme conditions, a behavior widely recognized in the literature. Compared to the results reported by (He et al., 2013),
the distribution in the present study is slightly wider, with log(MFB) values ranging up to approximately £1.5. In contrast, the
visual bounds in the reference study were close to 1.0. This difference may be related to greater spatial heterogeneity within
the basin under analysis, a higher frequency of extreme events, or the influence of local factors such as orographic blocking.
The pronounced variability at the distribution extremes also suggests that, despite good average performance, radar can be

significantly underestimated or overestimated in certain rainfall scenarios, reinforcing the importance of integrated validation
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Figure 3. Logarithmic distribution of the Mean Field Bias (log(MFB)) as a function of daily precipitation intensity. Data were filtered to
include only days with rainfall greater than 0.2 mm/day. The dashed vertical line indicates log(MFB) = 0, corresponding to the absence of

systematic bias between radar and rain gauge data.

approaches. As highlighted by (He et al., 2013), understanding how bias evolves at different rainfall intensities is essential to
improve the assimilation of radar data in operational hydrological models.

The MLAFF framework was used to obtain optimized LinearSVR and XGBRegressor models for lead times of 10, 60,
and 120 minutes. To assess their performance under unseen conditions, the complete predicted stage series was analyzed
using the holdout dataset. In comparison with the dataset used in the training-validation-test phase, with N = 138128 stage
measurements totaling 959 days within a 3107-day calendar period, the holdout dataset has N = 19733 stage measurements
totaling 137 days (546-day calendar period). The stage distributions for both datasets show very similar statistical properties,
as confirmed by the Wasserstein distance (1¥'), which measures the minimal transport cost needed to convert one distribution
into the other. This metric offers a robust and understandable way to compare empirical distributions and avoids the sensitivity
problems that affect hypothesis-testing methods when N is large. Using the standard dimensionless form with a significance
level of @ = 0.05 and applying common scaling factors to normalize both datasets, the resulting value W = 0.007 < « indicates
that the two-stage distributions are very similar in overall shape. This supports the conclusion that the holdout dataset provided
a statistically representative basis for evaluating the trained ML models under unseen operating conditions.

Motivated by previous findings, particular attention was given to the same intense event on February 14, 2024. Along with

the confirmed radar-rain gauge agreement during this episode, it is one of the few major occurrences in the holdout period that
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is representative of a typical flash flood, exhibiting a clear two-phase stage response: a rapid rise — surpassing the 722.779 m
threshold (set by the local authorities) that signals flood-warning conditions — driven by intense rainfall, followed by a slower
recession phase. Figure 4 shows the predicted stage time series along with the observed values, allowing a direct comparison
of how rain gauge- and radar-based models perform during intense rainfall conditions (time interval marked by vertical dashed
lines). The two models successfully replicated the rapid increase of nearly 7 m during the stage rise, and — except for the radar-
based XGBRegressor in panel (d) — all predictions exceed the warning threshold (horizontal dashed line), indicating that an
operational alert would be triggered. Since the models were trained to forecast using only information available at the current
time, the predicted series naturally exhibit some lag and occasional sharp rises, as they associate future stage increases with the
rainfall signals available at the moment of prediction. For LinearSVR models, panels (a) and (c), this behavior appears as spike-
like predictions whose amplitude and timing vary with lead times, with each peak at time ¢ indicating the model’s dependence
on rainfall at ¢ — ¢ (jcad time )- Rain gauge-based XGBRegressor models, panel (b), replicate the overall rising pattern with fewer
abrupt changes and provide a closer match near the stage maximum. Radar-based XGBRegressor models, panel (d), also
follow the general trend. However, their predictions tend to smooth out the maximum region, resulting in plateau-like values
that remain slightly below the warning threshold.

An analysis of a one-day time series (Figure 4) shows consistent differences between the predicted and observed stage time
series, particularly in the timing and magnitude of the peak stage. These discrepancies depend on the precipitation input type
(rain gauges or radar) and the ML algorithm used (LinearSVR or XGBRegressor). For the shortest lead time (10 min), all
models accurately detect the start of the hydrograph’s rise, except for the radar-based XGBRegressor, which shows a slight
positive lag. For longer lead times (60 and 120 min), a consistent positive lag emerges across all configurations, regardless of
precipitation source or ML method. This pattern arises from the models’ dependence on past rainfall to predict future stages;
with radar inputs, it is further intensified by the high spatial persistence of radar rainfall fields, which tends to smooth out
sudden temporal changes. The combined effects of this smoothing and reliance on past rainfall result in a delayed response.
This behavior is well documented in the literature, as radar-derived rainfall estimates are affected by structural uncertainties —
such as volumetric sampling, bright-band contamination, noise, and range-dependent corrections — that can alter the temporal
pattern of precipitation and, consequently, the timing of runoff (He et al., 2013). In this study, these radar-related effects are
especially apparent in the outputs of the XGBRegressor, which show flattened (plateau-like) peaks and, in some instances (e.g.,
Fig. 4d), slight underestimations of the maximum stage. Conversely, models based on rain gauge measurements tend to produce
sharper peaks (reflecting the higher temporal variability of point-scale observations) and may occasionally overestimate the
peak stage, with this effect being most evident in the LinearSVR.

During the recession phase of the hydrograph, all models consistently reproduced the stage decline, reinforcing their ap-
plicability despite the structural peculiarities of the precipitation inputs. LinearSVR models (for both radar and rain gauge
data) generated smooth recession curves. In contrast, the XGBRegressor produced a more stepwise decay pattern, which is
consistent with the piecewise-constant behavior inherent to decision-tree-based algorithms. This effect is particularly evident
in radar-driven simulations because radar rainfall fields exhibit strong spatial and temporal persistence; when consecutive time

steps contain very similar rainfall patterns, the model tends to follow the same decision pathways, resulting in nearly identical

10
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Figure 4. Stage time series comparisons over a 1-day period centered on the warning event that occurred on February 14, 2024. This example,
during the holdout period, shows observed values alongside predictions from rain-gauge- and radar-based ML models trained to forecast lead
times (LDs) of 10, 60, and 120 minutes. The plots provide a detailed view of each model’s predictive ability, evaluated only during periods
when both stage and radar data are available (gray-shaded areas). Panels (a) and (b) present results for the rain gauge-based LinearSVR
and XGBRegressor models, respectively. In contrast, panels (c) and (d) show the corresponding results for the radar-based LinearSVR and
XGBRegressor models. The black dashed line indicates the warning threshold of 722.779 m, and the vertical dashed lines in panels (a)-

(b)/(c)-(d) mark the beginning and end of the event as determined from the gauge/radar rainfall data.

stage predictions. In contrast, rain gauge inputs, which exhibit greater temporal variability at the point scale, lead to greater fluc-
tuations in the predicted hydrograph. These differences are most apparent during peak attenuation, yet the consistent recession
behavior across all models and data sources highlights their reliability in capturing the falling limb of flood events.

To further evaluate the agreement between predicted and observed stage values, scatter plots are shown for both rain gauge-
and radar-based models across all lead times (Figure 5). Overall, the results show distributions within 1 meter of the 1:1
line (shaded area), indicating that the predictions are closely aligned with the observed series. A closer examination of these
distributions reveals key aspects of how both types of ML models perform: (i) for stages < 720 m, the predictive skill of the
models gradually declines as the lead time increases, as indicated by the increase in the dispersion of points in the scatter
plots, primarily reflecting an underestimate; (ii) for stages > 720 m, this behavior is less apparent, and the predictions stay
more consistent. In this range, LinearSVR models, panels (a) and (c), perform better at shorter lead times (10 and 60 minutes)
but display larger deviations for longer horizons (120 minutes), where the XGBRegressor models, panels (b) and (d), show
comparatively superior performance; (iii) LinearSVR models are more likely to overestimate the stage when compared with

XGBRegressor models, as previously indicated by the warning event time series analysis; and (iv) the scatter plot (d) also
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Figure 5. Scatter plots of predicted versus observed stage values within the holdout period. Panels (a) and (b) show results for the rain
gauge-based LinearSVR and XGBRegressor ML models, respectively, while panels (c) and (d) display the corresponding results for the
radar-based LinearSVR and XGBRegressor models. Results are displayed for models trained to forecast lead times (LDs) of 10, 60, and 120

minutes. The gray shaded band represents a £1.0 m deviation from the black dashed 1:1 reference line.

exhibits plateau-like structures, similar to those in Figure 4(d). Still, these do not correspond to large deviations, as they fall
within the 1-meter error band in most instances.

Previous observations are supported quantitatively by the coefficient of determination (R2), calculated for each model based
on the observed stages (Table 1). The consistently high R? values demonstrate strong predictive ability for both the LinearSVR
and XGBRegressor models. The hypothesis tests produce very small p-values (< 10~°), even when repeated on much smaller
random subsets of the data, simply showing that the correlation between predicted and observed stages is significantly different
from zero. However, such statistical significance provides little insight in large datasets. In this case, the effect size (R?) is

more meaningful, as it directly indicates the strength of the linear relationship and better characterizes model performance.

Table 1. Coefficient of determination (R?) for rain gauge- and radar-based ML models (LinearSVR and XGBRegressor) assessed from
predicted versus observed values during the holdout period. Results are presented for models trained to forecast lead times of 10, 60, and 120

minutes.

LinearSVR XGBRegressor

Score type

10 min 60 min 120 min  p-value 10 min 60 min 120 min  p-value

R* — Rain gauge 0.996 0.933 0.783 <107° 0.995 0.939 0.809 < 107°

R? — Radar 0.992 0.926 0.788 < 107© 0.990 0.921 0780 <107°

12
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The stage-duration curves for observed and predicted stages at lead times of 10, 60, and 120 min (Figure 6) show the
proportion of time each stage level is reached or exceeded, providing an integrated view of how well the models capture
the entire stage distribution. Predictions were generated using two ML models (LinearSVR and XGBRegressor) along with
rainfall data from both rain gauges and radar-derived accumulations. The 5% exceedance stage (= 719.6 m) corresponds to
relatively high and infrequent conditions, whereas the 95% exceedance stage (= 716.5 m) represents typical levels for normal
low-stage periods. For lead times of 10 and 60 minutes, both ML models closely follow the observed curve across nearly all
exceedance probabilities, with median deviations typically below 6 cm and maximum differences between 0.15 and 0.80 m,
indicating that up to 60-minute forecasts preserve the overall statistical structure of the stage distribution. At a lead time of
120 min, deviations occur mainly at low exceedance probabilities (<10%), suggesting a slight underestimation of medium- to
high-stage conditions. Median deviations increase from approximately 2.5-7 cm, with a maximum deviation of about 1.3 m
(LinearSVR - rain gauge), but the models remain consistent for the more frequently occurring medium and low stages. These
findings are consistent with the patterns observed in Figure 5, which show that, as the lead time increases, errors become more
frequent in the moderate stage range — where greater dispersion and underestimation were also observed in the scatter plots —
while predictions remain comparatively stable under the highest stage conditions. Across all lead times, the curves based on
radar and gauge rainfall data remain largely consistent. Overall, the results indicate that both rainfall sources provide reliable
predictions, with only a slight decrease in performance over longer lead times.

The quantitative evaluation of model performance was performed using the Nash-Sutcliffe Efficiency (NSE), Kling-Gupta
Efficiency (KGE), and root mean square error (RMSE) metrics (Table 2). Rain gauge- and radar-based models show similar
performance across all lead times, although rain gauge-based models consistently achieve slightly higher scores. The table
also shows the CPU time required during training, validation, and test, indicating that XGBRegressor models are much more
computationally intensive than LinearSVR models. Still, both models are less expensive than traditional physical models.
Additionally, radar-based models incur costs nearly 10 times higher than their rain gauge-based counterparts — an expected
result given the large difference in input dimensionality (23 rain gauges versus 434 radar cells). Notably, despite differences
in training costs, the prediction time across the entire holdout dataset was about 0.1 s for all models. Therefore, from an
operational perspective, the most time-consuming part of the workflow is obtaining stage and rainfall data from rain gauge
and/or radar sources, as well as training the algorithm, since predicting stage requires minimal computational effort.

The Mann—Whitney U tests on the NSE, KGE, and RMSE distributions from the cross-validation partitions confirmed that
forecast lead time was the most influential factor in model performance. The Mann—Whitney U test is a non-parametric test
that evaluates whether two independent samples differ statistically by comparing the rankings of their sample values. All
pairwise comparisons between 10, 60 and 120 minutes showed very low p-values for RMSE, NSE, and KGE (mean p-value
~ 0.0007). The median RMSE gradually increased with longer lead times, while NSE and KGE values decreased (e.g., the
NSE for the XGBRegressor-Radar dropped from 0.98 to 0.39 and for the LinearSVR-Rain Gauge from 0.99 to 0.35). This
pattern, consistent across all scenarios, indicates a steady decline in predictive accuracy as the lead time extends.

Both rainfall data sources (rain gauges and radar) produced satisfactory results, and it can be concluded that the choice of

input source does not significantly affect predictive model performance. However, minor differences were observed between
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Figure 6. Comparison of stage duration curves derived from holdout data (black) and predicted stages at lead times of (a) 10, (b) 60, and (c)

120 minutes. Predictions were generated using the LinearSVR and XGBRegressor models with rainfall inputs from rain gauges (blue) and

radar (purple). The red and brown dashed horizontal lines indicate the 5th and 95th percentiles of the observed stage distribution, respectively.

Insets show a zoomed-in view of the low-exceedance region (0-10%).

the rainfall data sources. Rain gauge-based models generally yielded slightly higher NSE and KGE scores and lower RMSE

compared to radar-based models, except for the RMSE of LinearSVR at a lead time of 120 minutes. It is important to note

that KGE is a more balanced metric that considers correlation, bias, and variability (or the ratio of coefficients of variation). In

contrast, NSE depends on the expected squared error.
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Table 2. Overview of the metrics Nash—Sutcliffe Efficiency (NSE), Kling—Gupta Efficiency (KGE) and Root Mean Square Error (RMSE)
for the holdout assessment phase. The CPU-time during the training and cross-validation phase is also presented. The results are shown for

rain gauge- and radar-based ML LinearSVR and XGBRegressor models trained for forecasting lead times of 10, 60 and 120 minutes.

Score type LinearSVR XGBRegressor

10 min 60 min 120 min 10 min 60 min 120 min
NSE - Rain Gauge 0.996 0.933 0.783 0.995 0.939 0.809
NSE — Radar 0.992 0.926 0.788 0.990 0.921 0.781
KGE - Rain Gauge 0.990 0.934 0.830 0.990 0.961 0.857
KGE - Radar 0.989 0.903 0.806 0.951 0.893 0.776
RMSE (m) — Rain Gauge 0.070 0.279 0.500 0.080 0.266 0.469
RMSE (m) — Radar 0.094 0.291 0.494 0.105 0.301 0.503
CPU time (s) — Rain Gauge 242 108 81 2166 3128 3133
CPU time (s) — Radar 3895 3599 3469 32515 32416 32373

The comparison of the ML algorithms also showed only minor differences, suggesting that the choice of algorithm does
not significantly affect the forecasts. Regarding RMSE, rain gauge-based LinearSVR forecasts had lower values for a 10-
minute lead time and higher values for 60- and 120-minute lead times compared to XGBRegressor forecasts, while radar-
based LinearSVR forecasts had lower values for all lead times. Concerning NSE, rain gauge-based LinearSVR forecasts had
higher NSE values for a 10-minute lead time and lower values for 60- and 120-minute lead times compared to XGBRegressor
forecasts, whereas radar-based LinearSVR forecasts had higher NSE values for all lead times. Finally, for KGE, rain gauge-
based LinearSVR forecasts perform similarly at 10-minute lead times as XGBRegressor forecasts but produced lower KGE for
60- and 120-minute lead times; however, radar-based LinearSVR forecasts consistently outperformed XGBRegressor.

This behavior contrasts with most traditional rainfall-runoff modeling studies, in which rain gauge data generally outper-
form raw radar estimates unless the latter are bias-corrected or merged with gauge observations. This is illustrated by two types
of rainfall-runoff simulations conducted with the HEC-HMS model using rain gauge and NEXRAD data, in which rain gauge-
based precipitation produced runoff simulations with R? = 0.88 and 0.87, MFB-corrected radar rainfall achieved R? = 0.78
and 0.68, and radar-only inputs resulted in R = 0.75 and 0.66 (Ahmed et al., 2022). Other works demonstrate that radar can
add hydrological value when properly processed, such as the MIKE SHE groundwater simulations by (He et al., 2013), which
reported approximately 5% reductions in RMSE, the debris-flow early-warning study by (Bernard and Gregoretti, 2021), and
the physics-based flash flood modeling by (Looper and Vieux, 2012). Neural network models using radar have also achieved

high performance; for example, the ANN model of (Santos et al., 2023) achieved NSE > 0.85 with 12-h accumulated radar
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input, confirming the utility of radar in ML hydrology when high-resolution observations are available. Although these studies
highlight the benefits of radar, only a few explicitly compare rain gauge and radar rainfall as alternative inputs to the same hy-
drological model, notably (He et al., 2013; Bernard and Gregoretti, 2021; Ahmed et al., 2022). None of these studies evaluates

this comparison within a short-term ML forecasting framework with multiple lead times.

4 Conclusions

This paper presents the TTI-HydroMet dataset, an original dataset with 10-minute temporal resolution, 1 km radar spatial
resolution, and observations of 23 rain gauges over 10 years (Escobar-Silva et al., 2025). Furthermore, this study used the
TTI-HydroMet dataset with two ML algorithms (LinearSVR and XGBRegressor) for hydrological modeling.

Evidence that radar data can serve as a reliable supplementary input for hydrological modeling emerged from complementary
quantitative analyses. Specifically, radar rainfall estimates exhibited high temporal continuity, with missing records accounting
for 0.3% of timestamps during rainfall events observed by rain gauges (> 0.2 mm per 10 min). Additionally, the consistency
between radar and gauge rainfall magnitudes was assessed quantitatively, with agreement reflected in moderate correlations
computed over all rainfall periods meeting this threshold, and especially in the strong correlations observed during high-
intensity events, such as the episode of 14 February 2024.

Scatter-plot analyses showed that predictions from both ML models mostly stayed within £1 m of observations, with a
slight decline in accuracy as lead time increased (60 and 120 m). This decline was more apparent at lower stages (< 720 m),
where underestimation became more common. For higher, hydrologically critical stages (> 720 m), predictions showed a small
reduction in dispersion and mostly remained within the =1 m range across all lead times. These patterns were consistent with
the high R? values obtained (0.78-0.996).

Stage-duration analyses revealed that both ML models, driven by radar or rain gauge rainfall, accurately reproduced the
overall stage distribution for lead times up to 60 minutes. Deviations increased only at 120 minutes, mainly at low exceedance
probabilities, indicating a slight underestimation of medium-to-high stages. Despite this decline, predictions remained stable
under the highest stage conditions, and the two rainfall inputs produced highly consistent results. Overall, the models main-
tained the statistical structure of observed stages across lead times, with only a modest decrease in performance at longer
horizons.

When tested on the extreme event of February 14, 2024, both ML models, driven either by rain gauge or radar inputs,
effectively captured the main hydrodynamic features observed, especially the rapid rise and fall of the river stage across the
three simulated lead times. This indicates their potential for short-term forecasting in fast-responding urban basins. Minor
deviations in peak timing and shape — such as spikes (stage overestimation), plateaus (stage underestimation), or small phase
lags — highlight the inherent temporal and spatial characteristics of rainfall inputs.

The comparative analysis of rain gauge- and radar-based models showed that both data sources produced similar predictive
performance across all forecast horizons. Rain gauge-based models achieved slightly higher NSE, KGE, and RMSE scores.

LinearSVR consistently used less computational power than XGBRegressor during training. In contrast, radar-based models
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required nearly 10 times as much CPU time as their rain gauge counterparts due to the much larger input size. Despite these
differences in training effort, all models took only about 0.1 s to generate predictions for the entire holdout dataset. From
an operational standpoint, this indicates that the main time-consuming steps are data acquisition and model training, whereas
real-time forecasting needs minimal computational resources. Overall, the performance metrics confirm that the ML models
trained with both rain gauge and radar inputs provide reliable short-term stage predictions.

The statistically comparable performance of ML models driven by radar and rain-gauge rainfall indicates that radar-based
ML approaches can represent a viable alternative for short-term stage forecasting in regions lacking rain-gauge networks.

A major challenge in applying ML models to hydrological modeling, as noted in existing studies, is the quality and size
of available datasets, as well as the time needed to develop comprehensive datasets (Sit et al., 2020; Schmidt et al., 2020;
Fang et al., 2022). The freely available TTI-HydroMet dataset (Escobar-Silva et al., 2025), which provides a 10-year record
collected every 10 minutes, represents a significant step forward in addressing these issues. In addition, for operational use,
improvements in radar data assimilation are crucial. The results of the log(MFB) distribution of daily radar precipitation
indicate notable pointwise biases that can lead to overestimations or underestimations of larger rainfall totals.

Lastly, for future studies, it is recommended to evaluate additional ML algorithms and improve feature engineering and
selection by including time-series lags and relevant watershed physical features. It is also suggested to compare results across
different urban areas susceptible to flash floods, including regions without rain gauges but with radar coverage. Ultimately,

analyzing short-lead-time radar forecasts will be essential for advancing hydrological predictions.

5 Code and data availability

The TTI-HydroMet dataset, which includes 10 years of hydrometeorological data for the study area along with the codes used
and generated in this work, is publicly available in https://zenodo.org/records/17654660 (Escobar-Silva et al. (2025)).
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