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Abstract. Nitrogen dioxide (NO2) is a critical air pollutant with significant environmental and human health impacts, yet

global and long-term NO2 datasets with daily continuity and fine spatial resolution remain limited. In this study, we construct

a continuous global daily NO2 concentration spanning from 2005 to 2023 at a 0.1-degree resolution using the advanced Air

Transformer deep learning framework that integrates satellite observations, ground-based measurements, meteorological

reanalysis, land-use information, and auxiliary geophysical variables. The resulting dataset shows robust performance across15
diverse regions and pollution regimes, with improved spatial consistency and reduced biases relative to existing global

products. Based on this dataset, we characterize the spatiotemporal evolution of global NO2 concentrations over the past two

decades. Global annual mean NO2 increased from 2005 to 2015, followed by a moderate decline during 2016–2019, a

pronounced decrease in 2020 associated with COVID-19–related reductions in economic activity and transportation, and a

partial rebound thereafter, reaching 3.38 ppbv in 2023. The Northern Hemisphere and tropical regions largely followed the20
global trend, whereas the Southern Hemisphere exhibited distinct behaviour, with relatively stable or declining NO2 levels

prior to 2015, a sharp decrease in 2020, and a stronger post-pandemic rebound during 2021–2023. As one of the global,

multi-decadal NO2 datasets with daily resolution, this dataset provides a valuable resource for air quality assessment,

exposure analysis, and atmospheric model evaluation.

1 Introduction25

Nitrogen dioxide (NO2) is a key atmospheric pollutant that plays a central role in tropospheric chemistry and air quality, and

has significant implications for public health and environmental sustainability (Health Effects Institute, 2024). As an

important precursor of ground-level ozone (O3) and secondary fine particulate matter (PM2.5), NO2 strongly influences

atmospheric oxidation processes and regional pollution levels (Li et al., 2019; Xue et al., 2014). Anthropogenic combustion

sources, including vehicle traffic, power generation, and industrial activities, dominate global NO2 emissions and are highly30
concentrated in urban and industrialized regions, resulting in pronounced spatial and temporal variability in surface

concentrations.
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At the global scale, NO2 concentrations exhibit substantial regional differences driven by variations in emission intensity,

energy structure, and economic activity. Rapid urbanization and industrial development have led to increasing NO2 levels in

many regions, while emission control policies and technological improvements have contributed to declines elsewhere.35
Understanding these contrasting regional trends requires long-term, spatially consistent observations that can capture both

gradual changes and abrupt perturbations associated with large-scale events, such as sudden emission reductions.

Current efforts to characterize global NO2 distributions remain constrained by limitations in data availability and modeling

approaches. Ground-based monitoring networks, while essential, are unevenly distributed, with most stations concentrated in

high-income urban areas (Huang et al., 2023; Cooper et al., 2022; Di et al., 2019; Huang et al., 2018). Chemical transport40
models and traditional statistical approaches, including land-use regression models, often face challenges in reproducing

fine-scale spatial heterogeneity and long-term temporal variability at the global scale, particularly when observational

constraints are limited.

Recent advancements in remote sensing and data-driven methodologies provide promising opportunities to overcome these

challenges (Huang et al., 2023; Cooper et al., 2022; Di et al., 2019; Huang et al., 2018). Satellite observations, such as the45
Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI), offer near-global

coverage of NO2 concentrations (Sekiya et al., 2022; Levelt et al., 2006; Veefkind et al., 2012), while machine learning

techniques facilitate the integration of diverse geophysical, atmospheric, and socio-economic datasets (Huang et al., 2023;

Chan et al., 2021; Wong et al., 2021; Chi et al., 2022; Long et al., 2022). These innovations enable the development of high-

resolution datasets that capture spatial and temporal variations in NO2 exposure, providing critical insights into the extent50
and drivers of environmental inequality. However, existing approaches often suffer from several limitations, such as lacking

the spatial and temporal resolution needed to accurately reflect local variations, or failing to incorporate essential

geophysical and atmospheric parameters (Di et al., 2019).

To address these challenges, we have developed a comprehensive global daily NO2 dataset spanning from 2005 to 2023 at a

0.1° resolution using the Air Transformer (AiT) deep learning method. By taking advantage of the unique strengths of AiT in55
predicting atmospheric pollutant concentrations which will be discussed later, and incorporating important geophysical,

atmospheric, and socio-economic parameters, the model overcomes retrieval uncertainties and better captures local

variations in NO2 concentrations, resulting in a more accurate and comprehensive understanding of NO2 dynamics on a

global scale. This high-resolution dataset aims to provide more precise and reliable insights into NO2 trends and their driving

factors, thereby overcoming the shortcomings of previous studies. Using this dataset, we further analyze the spatial and60
temporal evolution of NO2 concentrations at global and regional scales, offering a robust data foundation for studies of

atmospheric composition and air quality dynamics.

https://doi.org/10.5194/essd-2025-821
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



3

2 Materials and methods

2.1 Data Collection and Processing

Surface NO2 measurements with hourly resolution from 2005 to 2023 were collected from approximately 7,021 ground-65
based monitoring stations worldwide, including China National Environmental Monitoring Centre (CNEMC),

Environmental Protection Agency (EPA), European Environment Agency (EEA), Tropospheric Ozone Assessment Report

database (TOAR), and Open Air Quality (OpenAQ). To create model labels, duplicate data were removed by retaining the

highest priority measurements according to the specified order (CNEMC/EPA/EEA > TOAR > OpenAQ). The raw data

underwent additional quality control measures, including removal of outliers such as negative values, duplicate values70
(occurring for more than three consecutive hours), and extreme values (exceeding the 99.9th percentile). Days with at least

18 valid hourly NO2 measurements were identified to calculate the daily average for each monitoring site. To ensure

consistency with auxiliary variables, all daily NO2 measurements were adjusted to the Universal Time Coordinated (UTC)

zone and then used for independent training and validation of the machine learning model.

To accurately predict NO2 concentrations, we incorporated a total of 17 independent features derived from multiple data75
sources. Meteorological reanalysis data were obtained from the ECMWF Reanalysis v5 (ERA5) dataset, including boundary

layer height (BLH), temperature (TEMP), wind speed (WS), dewpoint temperature (DEW), pressure (PRE), precipitation

(PRECIP), evaporation (EVA), and long-wave solar radiation (LWSR), all at a spatial resolution of 0.25° × 0.25° for the

period 2005-2023. These meteorological variables are known to play key roles in controlling pollutant dispersion, vertical

mixing, chemical reaction rates, and surface–atmosphere exchanges, and therefore provide essential physical constraints for80
NO2 prediction. Satellite data of tropospheric column NO2, formaldehyde (HCHO), and O3 were retrieved from the L3 level

products in OMI instrument at a resolution of 0.25° × 0.25° for 2005-2018, and from the L2 level products in TROPOMI

instrument at a finer resolution of 5.5 km × 3.5 km for 2019-2023, providing complementary chemical information related to

NOx emissions, photochemical activity, and oxidant levels.

To enable consistent long-term analysis and minimize discrepancies arising from differences in sensor characteristics,85
retrieval algorithms, horizontal resolution, and overpass time between OMI and TROPOMI, we applied a seasonal, grid-

specific adjustment to OMI products using TROPOMI as a reference during their overlap period (2019–2022). This

harmonization step is particularly important for long-term trend analyses, as uncorrected inter-sensor differences could

introduce artificial discontinuities into the time series. Specifically, OMI observations for years without TROPOMI coverage

were corrected according to90
Ω������ �, ��, � = Ω��� �, ��, � + �Ω����ℎ�� �, � , (1)

where

�Ω����ℎ�� �, � = 1
� ��=2019

��=2022 (Ω������� �, ��, � − Ω��� �, ��, �� , (2)
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where Ω������ �, ��, � , Ω��� �, ��, � , Ω������� �, ��, � is adjusted OMI, original OMI and original TROPOMI products

for grid � at year �� season �, respectively. �Ω����ℎ�� �, � represents the difference between OMI and TROPOMI at target95

resolution. This correction strategy preserves the spatial patterns and seasonal variability of the original satellite products

while ensuring temporal continuity and consistency of satellite-derived chemical variables across the entire study period.

Aerosol Optical Depth (AOD) data, an important proxy for particulate matter, were sourced from MODIS product

(MCD19A2CMG) at a resolution of 0.05° × 0.05° for 2005-2023. The frequent occurrence of clouds in optical remote

sensing images hampers the detection of trace gases beneath the cloud layer, leading to gaps in satellite data. To address this100
challenge, we implemented the eXtreme Gradient Boosting (XGBoost) machine learning algorithm, known for its efficiency,

to fill these gaps and obtain spatially comprehensive retrieval data. This gap-filling procedure improves the

representativeness of aerosol-related information and reduces potential biases associated with uneven data availability.

Additionally, we also included NDVI (2005-2023, MCD19A3CMG) to account for vegetation cover, population density data

(2005-2020, WorldPop, https://www.worldpop.org/) to capture human activity, land use data (2005-2022, MCD12C1,105
providing sub-pixel proportions of nine class in forests, shrublands, savannas, wetlands, croplands, urban, snow and ice,

barren, water) to understand land cover changes, and road network density and Digital Elevation Model (DEM) to

incorporate infrastructural and topographical influences.

To ensure consistency across all input variables, the higher spatial resolution variables were aggregated to a homogeneous

0.1° × 0.1° grid using averaging, while the lower spatial resolution variables were resampled to the same grid using bilinear110
interpolation. Bilinear interpolation estimates values at target grid cells by linearly weighting the four nearest neighboring

grid points in both latitude and longitude directions, thereby providing a smooth spatial transition while preserving large-

scale gradients and avoiding abrupt discontinuities. This approach is widely adopted in atmospheric and remote sensing

applications for spatial resampling, as it balances computational efficiency with the need to retain spatial coherence. This

harmonization process enables the seamless integration of multi-source datasets within the machine learning framework.115
These processed variables were then used for subsequent air pollution modeling. This diverse set of features enabled a

comprehensive machine learning approach to modeling NO2 concentrations, providing robust predictions across various

spatial and temporal scales.

2.2 Air Transformer

This study applied an innovative deep learning model, the Air Transformer (AiT), to improve the accuracy of atmospheric120
pollutant concentration prediction. The AiT model is based on the Transformer architecture and is specifically designed to

capture the spatiotemporal dependencies of atmospheric pollutants. The AiT model structure builds on the successful

application of the Transformer in natural language processing, incorporating cross-channel self-attention alongside pixel

self-attention and utilizing a decoder for enhanced prediction capabilities. The multi-dimensional attention mechanism

enables the model to capture dependencies not only across temporal and spatial dimensions but also among data channels,125
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such as different pollutant concentrations and meteorological parameters. Transformers have the advantage of having no

recurrent units, and therefore require less training time than earlier recurrent neural architectures (RNNs) such as long short-

term memory (LSTM) (Zhao et al., 2019; Liu et al., 2024).

The self-attention mechanism is the core component of the AiT model. For each input sequence, attention weights are

generated by computing the dot product between the query, key, and value vectors. These weights are used to perform a130
weighted sum of the input sequence values, producing new feature representations. The self-attention mechanism further

enhances the model’s representational power by allowing it to simultaneously focus on different parts of the input data,

capturing richer spatiotemporal dependencies. In this study, the AiT model establishes a robust global surface–column

relationship by integrating variables related to pollutant transport, chemical transformation, and column density within

approximately 20 km of each target grid, enabling the reconstruction of gapless daily surface NO2 concentrations at a spatial135
resolution of 10 km.

Multi-source data were input into AiT as model features and labels. These data were pre-processed through feature

extraction layers and then fed into the Transformer’s encoder. The encoder comprises multiple self-attention layers and

feedforward neural network layers. Utilizing the multi-head attention mechanism, it processes input data in parallel,

capturing features at various temporal and spatial scales. The AiT model is trained using supervised learning, leveraging a140
large amount of historical data. The model’s loss function comprises prediction errors (such as mean squared error (MSE),

Root Mean Square Error (RMSE)) and regularization terms to ensure prediction accuracy and stability. To improve the

model’s generalization ability, we introduced a multi-task learning strategy which was detailed discussed in our previous

work (Tao et al., 2024). Specifically, the model not only predicts pollutant concentrations but also simultaneously predicts

related meteorological parameters and remote sensing observations. This multi-task learning strategy helps the model better145
understand the interrelationships between different variables, thereby enhancing prediction performance.

Model training was conducted for 300 epochs using the LAMB optimizer, which supports large batch sizes without

sacrificing convergence performance, thereby accelerating training on large-scale datasets. A warmup learning rate schedule

was applied, with the learning rate peaking at 0.001, and a batch size of 6,144 was used. An early stopping strategy was

implemented and triggered after 30 consecutive epochs without improvement. To mitigate overfitting, dropout was applied150
within linear layers and self-attention modules, and a Gaussian Error Linear Unit (GeLU) activation function was employed

throughout the network.

The AiT model was implemented and trained using the PyTorch framework. Prior to training, all input features were

normalized across the entire dataset. Model performance was evaluated using both sample-based and site-based cross-

validation approaches. In these evaluations, all samples and monitoring sites were randomly divided into five folds, with four155
folds used for training and one fold reserved for independent validation, allowing for a rigorous assessment of the model’s

spatiotemporal generalization capability.
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2.3 Random- and Spatial-based cross-validation

The performance of our models was evaluated using two five-fold cross-validation approaches: random-based and spatial-

based. The random-based approach involved 16,841,418 samples, with 3,368,283 samples used for validation in each fold.160
This approach ensures a comprehensive assessment of the model’s predictive performance across diverse temporal and

spatial conditions represented in the full dataset, effectively testing the model’s ability to reproduce observed NO2 variability

under a wide range of atmospheric and environmental settings. By randomly partitioning samples, this strategy primarily

evaluates the overall fitting accuracy and stability of the model when predicting NO2 concentrations at locations and times

similar to those seen during training.165
In contrast, the spatial-based approach was designed to explicitly assess the model’s spatial transferability. This evaluation

included data from 7,021 monitoring sites, of which 1,404 sites were held out for validation in each fold. By withholding

entire monitoring locations from the training process, this approach tests the model’s ability to generalize to previously

unseen locations, which is critical for producing reliable spatially continuous NO2 fields, particularly in regions with sparse

or no ground observations. This site-based validation provides a more stringent and realistic assessment of model170
performance for global-scale mapping applications.

In both cross-validation approaches, validation data were strictly excluded from model training, ensuring an unbiased

evaluation of predictive performance. Together, the random-based and spatial-based cross-validation strategies provide

complementary perspectives on model accuracy and generalization capability, with the former primarily reflecting

interpolation performance within the sampled space–time domain and the latter evaluating extrapolation ability to175
unmonitored locations. This combined evaluation framework is particularly well suited for global NO2 mapping applications,

where reliable prediction in regions with limited observational constraints is essential.

2.4 Regional weighted averages

To accurately assess regional pollution levels and the potential health impacts, we employ two complementary weighted

averaging methods: geographically area-weighted averaging (Eq. (3)) and population-weighted averaging (Eq. (4)). These180
equations incorporate spatial area and population data to produce weighted averages that more accurately reflect both

geographical and demographic factors in regional NO2 concentration assessments.

�����−����ℎ��� = �=1
� ��×���

�=1
� ���

, (3)

where �� is the NO2 concentration in the �th region, �� is the area of the �th region, and � is the total number of regions.

�����������−����ℎ��� = �=1
� ��×���

�=1
� ���

, (4)185

where �� is the NO2 concentration in the �th region, �� is the population of the �th region, and � is the total number of regions.

We used WorldPOP population datasets for this study. Population-weighted NO2 concentration is a crucial indicator for
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assessing the public health impact of air pollution, as it integrates both pollutant concentration levels and the distribution of

human populations across different regions. This metric is particularly useful for capturing the actual exposure of

populations to NO2 pollution, which is not adequately represented by area-weighted concentrations alone. By incorporating190
population density, the population-weighted NO2 concentration metric provides a more accurate reflection of the exposure

risk faced by people living and working in polluted areas.

3 Results

3.1 AiT-NO2 performance

The detailed discussion about the Transformer can be seen in the Methods. Here we mainly focus on the performance195
evaluation from the AiT-NO2 products. We first evaluate the model using Random cross-validation and Spatial cross-

validation. In the Random cross-validation, the NO2 model exhibited outstanding predictive accuracy, with an R2 of 0.91, an

RMSE of 2.32 ppbv, and an MAE of 1.56 ppbv for daily predictions (Fig. 1a). The performance further improved for

monthly and annual predictions, achieving R2 values of 0.98 and 0.99, RMSE values of 0.97 ppbv and 0.59 ppbv, and MAE

values of 0.64 ppbv and 0.33 ppbv, respectively (Fig. 1c, e). This improvement reflects the reduction of short-term noise and200
random variability through temporal aggregation, indicating that the model effectively captures both high-frequency

variability and long-term NO2 signals.

Similarly, the Spatial cross-validation results were also impressive. For daily predictions, the NO2 model achieved an R2 of

0.62, an RMSE of 4.77 ppbv, and an MAE of 3.31 ppbv (Fig. 1b). For monthly and annual predictions, the model showed R2

values of 0.65 and 0.63, RMSE values of 3.92 ppbv and 3.64 ppbv, and MAE values of 2.71 ppbv and 2.51 ppbv,205
respectively (Fig. 1d, f). As expected, predictive performance under Spatial cross-validation is lower than that under Random

cross-validation, reflecting the greater difficulty of extrapolating to previously unseen locations. Nevertheless, the relatively

stable performance across temporal scales indicates that the model maintains robust spatial transferability and is capable of

reproducing NO2 variability in regions with limited or no monitoring coverage.

Overall, the performance metrics obtained from both validation strategies demonstrate that the AiT-NO2 model performs210
consistently well across multiple temporal scales and validation settings. The Spatial cross-validation results are generally

comparable to, or exceed, those reported in previous global and regional NO2 modeling studies (Wei et al., 2019; Wei et al.,

2023), underscoring the robustness and reliability of the AiT-based framework for constructing spatially continuous, long-

term NO2 datasets.
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215
Figure 1: Model validation and uncertainties from the Random-based (left) and Spatial-based (right) cross-validation. Black lines
are 1:1 lines, and grey dashed lines are best-fit lines from linear regression. Additional statistical metrics given are the correlation
coefficient (R2), mean absolute error (MAE), root-mean-square error (RMSE) and sample number.

As we mentioned earlier, the SoGA2024 for the first time included NO2 in its report, as well as the annual NO2 concentration

datasets they generated using a global LUR model (Anenberg et al., 2022). The detailed methodology is available in Larkin220
et al. (Anenberg et al., 2022). Here, we mainly focus on the performance of the two datasets in simulating NO2 concentration

in major urban observation sites in several observation-dense countries, such as Austria, Belgium, China, France, Germany,

India, Poland, Spain, and US. Overall, the AiTNO2 model shows much better alignment with observational values,

outperforming the LUR model. In most countries, except the US, predictions from the AiTNO2 model tend to be slightly

higher or almost comparable to the observational data, whereas the LUR model consistently underestimates NO2225
concentrations. For countries like China and India, where pollution levels are particularly high, the AiTNO2 model provides
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significantly more accurate predictions, closely reflecting the actual pollution patterns observed in these regions. This

highlights the efficacy of the AiTNO2 model. We estimated that the LUR method could significantly underestimate the

regional NO2 concentration by at least 50% for most of the regions, except for HI (Supplement Fig. S3; Table S2). When

examining different regions, our results has much higher NO2 estimation compared to LUR NO2, particularly in the Northern230
Hemisphere (1.6 to 2.1 times) and tropical regions (2.5 to 3.0 times), where there are more monitoring stations and higher

pollution levels (Supplementary Fig. S4). The primary reason for this discrepancy is that the AiTNO2 model relies on urban

stations data for training, which are typically located in city centres with high pollution levels, enabling it to more effectively

capture elevated NO2 concentrations in these localized urban areas. In contrast, the LUR model, which utilizes lower-

resolution land use variables and satellite data, is less capable of fully reflecting high NO2 concentration areas, especially in235
urban settings. Furthermore, the AiTNO2 model was featured in higher sensitivity in capturing the temporal and spatial

variations of atmospheric pollutants, accurately predicting these changes by learning from time series data (Tao et al., 2024).

In conclusion, both cross-validation approaches confirm the strong predictive capabilities of our model. The Random

validation highlights the model’s accuracy across diverse data points, while the Spatial validation underscores its

effectiveness in generalizing to new locations. These comprehensive evaluations attest to the high quality and reliability of240
our predictive models, making them valuable tools for accurate NO2 concentration predictions. The AiTNO2 model shows

higher accuracy in predicting NO2 concentrations across the selected countries, especially in regions with severe pollution

and dense monitoring networks. While the LUR model captures the general trends in NO2 variation, its predictions are often

conservative and fail to adequately represent pollution levels in some countries, particularly in high-pollution areas. The

AiTNO2 model, by leveraging deep learning and observational data, compensates for these limitations and demonstrates its245
potential as a valuable tool for air pollution monitoring and forecasting. These advantages highlight the value of the AiT-

based approach for constructing high-resolution global NO2 datasets and for improving the representation of surface NO2

concentrations in data-driven air quality analyses.

3.2 Global Trend of NO2

Based on the geographically area-weighted average AiTNO2, we have a systematic understanding of the global spatial and250
temporal trends in NO2. The global annual average concentration of NO2 exhibited distinct trends among regions from 2005

to 2023 (Supplementary Fig. S5a). Specifically, from 2005 to 2010, NO2 concentrations remained relatively stable,

increasing slightly from 3.32 ppbv to 3.44 ppbv. From 2010 to 2015, concentrations continued to rise, peaking at 4.05 ppbv

in 2015. Subsequently, despite a decrease to 3.73 ppbv by 2019, concentrations remained relatively high. In 2020, due to the

significant reduction in global economic activities and transportation caused by the COVID-19 pandemic, NO2255
concentrations notably dropped to 3.42 ppbv. From 2021 to 2023, with the gradual recovery of economic activities, NO2

concentrations rebounded slightly in 2021 but then declined again in 2022 and 2023, reaching 3.38 ppbv in 2023. Figures

S5b and S5c show that the NO2 concentrations in the Northern Hemisphere and tropical regions exhibited similar trends. In

contrast to global trends, the Southern Hemisphere exhibited unique characteristics in the annual average NO2 concentrations
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from 2005 to 2023 (Supplementary Fig. S5d). Between 2005 and 2009, NO2 levels decreased from 2.83 ppbv to 2.66 ppbv,260
likely due to the initial implementation of air pollution control measures in certain regions. From 2010 to 2015, NO2

concentrations fluctuated, overall declining from 2.68 ppbv to 2.65 ppbv. This period's fluctuations may reflect the dynamic

balance between economic activities and air quality management policies. Between 2016 and 2019, NO2 levels remained

relatively stable, ranging from 2.63 ppbv to 2.69 ppbv, indicating a balance between ongoing mitigation efforts and

economic growth. In 2020, the COVID-19 pandemic led to a significant reduction in economic activities and transportation,265
causing NO2 concentrations to drop sharply to 2.45 ppbv, highlighting the substantial impact of anthropogenic activities on

NO2 emissions. From 2021 to 2023, as economic activities gradually resumed, NO2 levels increased markedly, reaching 3.15

ppbv in 2022 before slightly declining to 3.11 ppbv in 2023. This upward trend is likely associated with economic recovery,

increased traffic, and the relaxation of emission control measures in some areas. Overall, these results highlight pronounced

regional differences in long-term NO2 evolution and underscore the combined influence of anthropogenic activity, emission270
control measures, and large-scale external perturbations on global and hemispheric NO2 concentrations.

3.3 Spatial and Temporal Trends based on AiTNO2

We examine the spatial distribution and regional evolution of NO2 concentrations from 2005 to 2023 to characterize

geographic heterogeneity and regional hotspots. Significant spatial heterogeneous in NO2 concentration across regions have275
been identified from 2005 to 2023 (Fig. S7), with hotspots in eastern China and northern India. In 2005, regions including

the Beijing-Tianjin-Hebei area and the Yangtze River Delta exhibited very high NO2 concentrations due to their status as

major industrial and economic centres. However, after 2013, these regions experienced significant reductions in NO2 levels,

largely attributed to the Chinese government's stringent air quality management policies, including the Air Pollution

Prevention and Control Action Plan, which effectively reduced industrial emissions and vehicle exhaust (Feng et al., 2019;280
Liu et al., 2024; Gao et al., 2022; Geng et al., 2019). In India, NO2 hotspots are concentrated in major cities located in the

Indo-Gangetic Plain such as Delhi and Mumbai. Between 2005 and 2015, NO2 concentrations in these cities gradually

increased due to rapid urbanization and industrialization. However, recent years have seen a decrease in NO2 levels as the

Indian government has intensified efforts to control air pollution (Xie et al., 2024). Conversely, Western European countries

like Germany, France, and the United Kingdom had high NO2 concentrations in 2005, reflecting their industrialized cities285
and busy transportation networks, and then significantly decreased due to the European Union’s strict emission standards

and air quality regulations (Guerreiro et al., 2014; Sicard et al., 2021; Georgoulias et al., 2019; Crippa et al., 2016). In North

America, the northeastern industrial corridor of the US and Canada, along with major cities like Los Angeles and New York,

shared a similar pattern as Western European countries. While overall NO2 concentrations are lower in Africa and South

America, industrial centres and major cities like Johannesburg in South Africa and Sao Paulo in Brazil have shown increased290
NO2 levels in certain years. These areas require further pollution control measures to improve air quality.
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Figure 2: Temporal trends of annual NO2 concentration from 2005 to 2023 in seven GBD super-regions for a) area-weighted
average; c) population-weighted average. b) Heatmap of monthly area-weighted average, with scatter plots indicating monthly
averages over the 19-year period. d) Heatmap of annual population-weighted average NO2 concentrations for each country within295
the super-regions from 2005 to 2023. The seven super-regions defined in GBD are South-East Asia, East Asia & Oceania (SEAO),
Central Europe, Eastern Europe & Central Asia (CEECA), High-income (HI), Latin America & Caribbean (LAC), North Africa
& Middle East (NAME), South Asia (SA), and Sub-Saharan Africa (SSA).

We further discussed the annual NO2 changes in seven super-regions (Fig. 2a, b) following the definitions by Global Burden

of Disease (GBD) (Fig. S2): South-East Asia, East Asia & Oceania (SEAO), Central Europe, Eastern Europe & Central Asia300
(CEECA), High-income (HI), Latin America & Caribbean (LAC), North Africa & Middle East (NAME), South Asia (SA),

and Sub-Saharan Africa (SSA). SA region has consistently the highest area-weighted NO2 levels among all regions, followed

by SEAO and NAME. NO2 concentrations in these regions, as well as in CEECA, showed an increasing trend until 2015. In

SA, SEAO, and NAME, the rise was primarily driven by rapid industrialization, urbanization, and increased transportation

demand, while in CEECA, the increase was also linked to a reliance on fossil fuels and slower implementation of emission305
control measures. After 2015, NO2 levels began to stabilize or decline due to local emission reduction efforts and global

events like the COVID-19 pandemic.

In contrast, AiTNO2 concentrations in other super-regions (LAC, HI, and SSA) are relatively low, with annual averages of

less than 4 ppbv for the past two decades (Fig. 2a). The LAC region benefits from a combination of lower vehicle density in

rural areas and successful urban air quality initiatives in major cities (Riojas-Rodríguez et al., 2016; Huneeus et al., 2020).310
The lower NO2 levels in the HI region are largely due to stringent environmental regulations, advanced pollution control

technologies, and a significant shift towards cleaner energy sources. SSA presents a unique case where low industrialization
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and vehicle ownership contribute to lower NO2 levels. However, the region is still impacted by biomass burning for cooking

and heating, which can lead to localized spikes in NO2 (Fig. S7).

315
Figure 3: Top 10 countries ranked by population-weighted NO2 concentration (2005-2023) and their regional distribution. The left
y-axis corresponds to the scatter plot, representing population-weighted AiTNO2 concentrations in parts per billion by volume
(ppbv) for each country. The right y-axis corresponds to the background colors, which represent the proportion of countries from
different super-regions (HI, SEAO, NAME, SA, and CEECA) that are ranked in the top 10 based on AiTNO2 concentration. The
background color segments show the percentage of top 10 countries that belong to each region, reflecting how the regional320
representation in the top 10 has evolved over time.

When considering the population exposure, we found that high levels of NO2 were also observed in some developed regions,

such as HI (including North America, Western Europe, Southern Latin America, Asia Pacific, and Australasia), which

ranked first among the seven super-regions from 2005 to 2007 (Fig. 2c; Fig. S9). The higher population-weighted average of

NO2 in HI was mainly attributed to several population dense countries, including South Korea, Japan, Singapore, Andorra,325
Germany and Italy (Fig. 2d; Fig. S9). Figure 3 illustrates the proportion of super regions that include the top ten countries

with the highest population-weighted NO2 exposure over the past two decades. During the early years of the study period,

the HI region accounted for 60% of the top ten countries in terms of NO2 exposure. However, this proportion gradually

decreased, leaving only one country from the HI region among the top ten in recent years. In contrast, the NAME region

experienced a sharp increase in its share of countries with high NO2 exposure, eventually becoming the predominant area for330
such countries. This shift underscores the dynamic nature of NO2 exposure distribution, influenced by both changes in NO2

emissions and population dynamics.

We estimated that in recent years, SEAO, NAME, and SA are among the top regions with the highest population-weighted

NO2 concentration, with multiple year average of 10.78 ± 1.02 ppbv, 10.54 ± 0.55 ppbv, 9.81 ± 0.70 ppbv from 2005 to 2023,

respectively. NO2 exposure was increasing by 0.19 and 0.72 ppbv/decade in NAME and SA, while decreasing by 0.68, 0.40,335
2.53, 0.85, 0.12 ppbv/decade in SEAO, CEECA, HI, LAC, and SSA, respectively (Fig. 2c). These contrasting trends

highlight substantial temporal changes in population-weighted NO2 distributions across super-regions, reflecting the

combined influence of evolving emission patterns and regional population dynamics.
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4 Data availability

The global NO2 dataset developed using the Air Transformer (AiT) framework is available at:340
https://doi.org/10.5281/zenodo.13842191 (Mu and Tao, 2025).

5 Discussion and conclusion

This study delivers a long-term, spatially consistent global nitrogen dioxide (NO2) data resource that supports systematic

analyses of NO2 variability and evolution across regions with contrasting emission characteristics. By providing a unified

representation of surface NO2 concentrations over nearly two decades, the dataset enables comparative investigations of345
regional patterns and temporal changes and facilitates intercomparison with existing observation- and model-based products.

As a globally consistent data foundation, it helps improve the coherence of long-term NO2 analyses across different

geographic and climatic regimes and provides valuable insights for future epidemiological research. In addition, the dataset

may facilitate downstream assessments that relate NO2 distributions to commonly used guideline values.

This dataset consists of high-resolution global daily surface NO2 concentrations for the period 2005–2023, generated using350
the Air Transformer (AiT) deep learning model. The dataset represents a major advancement in air quality research by

overcoming the limitations of traditional ground-based monitoring networks and providing a fine-scale temporal resolution

capable of capturing daily variations in NO2 concentrations. Such high-frequency data is crucial for understanding the short-

term dynamics of NO2 pollution, which are often influenced by transient meteorological conditions, industrial emissions, and

traffic patterns. The model's robust validation against independent datasets demonstrates its reliability and predictive355
performance, offering a more detailed depiction of NO2 pollution trends across diverse geographical regions, including both

densely populated urban areas and remote locations with limited observational data.

The implications of this work extend far beyond conventional air quality monitoring. The dataset provides a valuable

resource for assessing the localized impacts of anthropogenic activities, such as industrial production and urban development,

as well as the effectiveness of pollution control measures. This fine-grained understanding of NO2 distribution is particularly360
critical in densely populated areas, where exposure to elevated NO2 levels poses significant public health risks, including

respiratory and cardiovascular diseases. The dataset's high spatial and temporal resolution enhances the precision of exposure

assessments, supporting epidemiological studies and the formulation of targeted public health interventions.

Furthermore, the framework established in this study has the potential to be adapted and extended for the monitoring of other

air pollutants, such as ozone (O3) and fine particulate matter (PM2.5), which also exhibit significant spatial and temporal365
variability. This versatility underscores the broader applications of the AiT model in environmental policy and public health

management. By enabling more accurate and granular assessments of air quality, this dataset can inform regulatory actions

and contribute to the development of more effective strategies for mitigating air pollution and protecting human health.
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Future work should focus on expanding data sources, such as emissions inventories and traffic data, to further improve the

model's accuracy, especially in less urbanized regions, enabling more comprehensive global assessments of NO2 pollution370
and contributing to the development of more targeted and effective air quality management strategies.
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