10

15

20

25

30

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-821
Preprint. Discussion started: 14 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

Improved global daily nitrogen dioxide concentrations from 2005 to

2023 derived using a deep learning approach

Jiangshan Mu'?* Chenliang Tao>'*, Yugiang Zhang'*, Zhou Liu'!, Yingnan Zhang*, Na Zhao', Bin Luo',
Qionghui Zhou!, Qingzhu Zhang', Hongliang Zhang?, Likun Xue!”

"Environment Research Institute, Shandong University, 266237, Qingdao, China

Nicholas School of the Environment, Duke University, 27708, Durham, USA

3Department of Environmental Science and Engineering, Fudan University, 200233, Shanghai, China

“Department of Earth System Science, University of California, Irvine, 92697, California, USA

#These authors contributed equally to this work

Correspondence to: Yuqiang Zhang (yuqiang.zhang@sdu.edu.cn), Likun Xue (xuelikun@sdu.edu.cn)

Abstract. Nitrogen dioxide (NO>) is a critical air pollutant with significant environmental and human health impacts, yet
global and long-term NO> datasets with daily continuity and fine spatial resolution remain limited. In this study, we construct
a continuous global daily NO2 concentration spanning from 2005 to 2023 at a 0.1-degree resolution using the advanced Air
Transformer deep learning framework that integrates satellite observations, ground-based measurements, meteorological
reanalysis, land-use information, and auxiliary geophysical variables. The resulting dataset shows robust performance across
diverse regions and pollution regimes, with improved spatial consistency and reduced biases relative to existing global
products. Based on this dataset, we characterize the spatiotemporal evolution of global NO» concentrations over the past two
decades. Global annual mean NO: increased from 2005 to 2015, followed by a moderate decline during 2016-2019, a
pronounced decrease in 2020 associated with COVID-19-related reductions in economic activity and transportation, and a
partial rebound thereafter, reaching 3.38 ppbv in 2023. The Northern Hemisphere and tropical regions largely followed the
global trend, whereas the Southern Hemisphere exhibited distinct behaviour, with relatively stable or declining NO; levels
prior to 2015, a sharp decrease in 2020, and a stronger post-pandemic rebound during 2021-2023. As one of the global,
multi-decadal NO, datasets with daily resolution, this dataset provides a valuable resource for air quality assessment,

exposure analysis, and atmospheric model evaluation.

1 Introduction

Nitrogen dioxide (NOy) is a key atmospheric pollutant that plays a central role in tropospheric chemistry and air quality, and
has significant implications for public health and environmental sustainability (Health Effects Institute, 2024). As an
important precursor of ground-level ozone (Os) and secondary fine particulate matter (PMzs), NO, strongly influences
atmospheric oxidation processes and regional pollution levels (Li et al., 2019; Xue et al., 2014). Anthropogenic combustion
sources, including vehicle traffic, power generation, and industrial activities, dominate global NO; emissions and are highly
concentrated in urban and industrialized regions, resulting in pronounced spatial and temporal variability in surface

concentrations.
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At the global scale, NO: concentrations exhibit substantial regional differences driven by variations in emission intensity,
energy structure, and economic activity. Rapid urbanization and industrial development have led to increasing NO; levels in
many regions, while emission control policies and technological improvements have contributed to declines elsewhere.
Understanding these contrasting regional trends requires long-term, spatially consistent observations that can capture both
gradual changes and abrupt perturbations associated with large-scale events, such as sudden emission reductions.

Current efforts to characterize global NO: distributions remain constrained by limitations in data availability and modeling
approaches. Ground-based monitoring networks, while essential, are unevenly distributed, with most stations concentrated in
high-income urban areas (Huang et al., 2023; Cooper et al., 2022; Di et al., 2019; Huang et al., 2018). Chemical transport
models and traditional statistical approaches, including land-use regression models, often face challenges in reproducing
fine-scale spatial heterogeneity and long-term temporal variability at the global scale, particularly when observational
constraints are limited.

Recent advancements in remote sensing and data-driven methodologies provide promising opportunities to overcome these
challenges (Huang et al., 2023; Cooper et al., 2022; Di et al., 2019; Huang et al., 2018). Satellite observations, such as the
Ozone Monitoring Instrument (OMI) and the TROPOspheric Monitoring Instrument (TROPOMI), offer near-global
coverage of NO> concentrations (Sekiya et al., 2022; Levelt et al., 2006; Veefkind et al., 2012), while machine learning
techniques facilitate the integration of diverse geophysical, atmospheric, and socio-economic datasets (Huang et al., 2023;
Chan et al., 2021; Wong et al., 2021; Chi et al., 2022; Long et al., 2022). These innovations enable the development of high-
resolution datasets that capture spatial and temporal variations in NO> exposure, providing critical insights into the extent
and drivers of environmental inequality. However, existing approaches often suffer from several limitations, such as lacking
the spatial and temporal resolution needed to accurately reflect local variations, or failing to incorporate essential
geophysical and atmospheric parameters (Di et al., 2019).

To address these challenges, we have developed a comprehensive global daily NO; dataset spanning from 2005 to 2023 at a
0.1° resolution using the Air Transformer (AiT) deep learning method. By taking advantage of the unique strengths of AiT in
predicting atmospheric pollutant concentrations which will be discussed later, and incorporating important geophysical,
atmospheric, and socio-economic parameters, the model overcomes retrieval uncertainties and better captures local
variations in NO2 concentrations, resulting in a more accurate and comprehensive understanding of NO; dynamics on a
global scale. This high-resolution dataset aims to provide more precise and reliable insights into NO: trends and their driving
factors, thereby overcoming the shortcomings of previous studies. Using this dataset, we further analyze the spatial and
temporal evolution of NO» concentrations at global and regional scales, offering a robust data foundation for studies of

atmospheric composition and air quality dynamics.
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2 Materials and methods
2.1 Data Collection and Processing

Surface NO> measurements with hourly resolution from 2005 to 2023 were collected from approximately 7,021 ground-
based monitoring stations worldwide, including China National Environmental Monitoring Centre (CNEMC),
Environmental Protection Agency (EPA), European Environment Agency (EEA), Tropospheric Ozone Assessment Report
database (TOAR), and Open Air Quality (OpenAQ). To create model labels, duplicate data were removed by retaining the
highest priority measurements according to the specified order (CNEMC/EPA/EEA > TOAR > OpenAQ). The raw data
underwent additional quality control measures, including removal of outliers such as negative values, duplicate values
(occurring for more than three consecutive hours), and extreme values (exceeding the 99.9th percentile). Days with at least
18 valid hourly NO: measurements were identified to calculate the daily average for each monitoring site. To ensure
consistency with auxiliary variables, all daily NO. measurements were adjusted to the Universal Time Coordinated (UTC)
zone and then used for independent training and validation of the machine learning model.

To accurately predict NO, concentrations, we incorporated a total of 17 independent features derived from multiple data
sources. Meteorological reanalysis data were obtained from the ECMWF Reanalysis v5 (ERAS) dataset, including boundary
layer height (BLH), temperature (TEMP), wind speed (WS), dewpoint temperature (DEW), pressure (PRE), precipitation
(PRECIP), evaporation (EVA), and long-wave solar radiation (LWSR), all at a spatial resolution of 0.25° x 0.25° for the
period 2005-2023. These meteorological variables are known to play key roles in controlling pollutant dispersion, vertical
mixing, chemical reaction rates, and surface—atmosphere exchanges, and therefore provide essential physical constraints for
NO: prediction. Satellite data of tropospheric column NO», formaldehyde (HCHO), and O3 were retrieved from the L3 level
products in OMI instrument at a resolution of 0.25° x 0.25° for 2005-2018, and from the L2 level products in TROPOMI
instrument at a finer resolution of 5.5 km x 3.5 km for 2019-2023, providing complementary chemical information related to
NO; emissions, photochemical activity, and oxidant levels.

To enable consistent long-term analysis and minimize discrepancies arising from differences in sensor characteristics,
retrieval algorithms, horizontal resolution, and overpass time between OMI and TROPOMI, we applied a seasonal, grid-
specific adjustment to OMI products using TROPOMI as a reference during their overlap period (2019-2022). This
harmonization step is particularly important for long-term trend analyses, as uncorrected inter-sensor differences could
introduce artificial discontinuities into the time series. Specifically, OMI observations for years without TROPOMI coverage

were corrected according to
Q G )= ¢ , )+ Q G ), M

where

Q (, )=- 2% ¢ .- ( ), @)
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resolution. This correction strategy preserves the spatial patterns and seasonal variability of the original satellite products
while ensuring temporal continuity and consistency of satellite-derived chemical variables across the entire study period.
Aecrosol Optical Depth (AOD) data, an important proxy for particulate matter, were sourced from MODIS product
(MCD19A2CMG) at a resolution of 0.05° x 0.05° for 2005-2023. The frequent occurrence of clouds in optical remote
sensing images hampers the detection of trace gases beneath the cloud layer, leading to gaps in satellite data. To address this
challenge, we implemented the eXtreme Gradient Boosting (XGBoost) machine learning algorithm, known for its efficiency,
to fill these gaps and obtain spatially comprehensive retrieval data. This gap-filling procedure improves the
representativeness of aerosol-related information and reduces potential biases associated with uneven data availability.
Additionally, we also included NDVI (2005-2023, MCD19A3CMG) to account for vegetation cover, population density data
(2005-2020, WorldPop, https://www.worldpop.org/) to capture human activity, land use data (2005-2022, MCDI12Cl,
providing sub-pixel proportions of nine class in forests, shrublands, savannas, wetlands, croplands, urban, snow and ice,
barren, water) to understand land cover changes, and road network density and Digital Elevation Model (DEM) to
incorporate infrastructural and topographical influences.

To ensure consistency across all input variables, the higher spatial resolution variables were aggregated to a homogeneous
0.1° x 0.1° grid using averaging, while the lower spatial resolution variables were resampled to the same grid using bilinear
interpolation. Bilinear interpolation estimates values at target grid cells by linearly weighting the four nearest neighboring
grid points in both latitude and longitude directions, thereby providing a smooth spatial transition while preserving large-
scale gradients and avoiding abrupt discontinuities. This approach is widely adopted in atmospheric and remote sensing
applications for spatial resampling, as it balances computational efficiency with the need to retain spatial coherence. This
harmonization process enables the seamless integration of multi-source datasets within the machine learning framework.
These processed variables were then used for subsequent air pollution modeling. This diverse set of features enabled a
comprehensive machine learning approach to modeling NO2 concentrations, providing robust predictions across various

spatial and temporal scales.

2.2 Air Transformer

This study applied an innovative deep learning model, the Air Transformer (AiT), to improve the accuracy of atmospheric
pollutant concentration prediction. The AiT model is based on the Transformer architecture and is specifically designed to
capture the spatiotemporal dependencies of atmospheric pollutants. The AiT model structure builds on the successful
application of the Transformer in natural language processing, incorporating cross-channel self-attention alongside pixel
self-attention and utilizing a decoder for enhanced prediction capabilities. The multi-dimensional attention mechanism

enables the model to capture dependencies not only across temporal and spatial dimensions but also among data channels,
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such as different pollutant concentrations and meteorological parameters. Transformers have the advantage of having no
recurrent units, and therefore require less training time than earlier recurrent neural architectures (RNNs) such as long short-
term memory (LSTM) (Zhao et al., 2019; Liu et al., 2024).

The self-attention mechanism is the core component of the AiT model. For each input sequence, attention weights are
generated by computing the dot product between the query, key, and value vectors. These weights are used to perform a
weighted sum of the input sequence values, producing new feature representations. The self-attention mechanism further
enhances the model’s representational power by allowing it to simultaneously focus on different parts of the input data,
capturing richer spatiotemporal dependencies. In this study, the AiT model establishes a robust global surface—column
relationship by integrating variables related to pollutant transport, chemical transformation, and column density within
approximately 20 km of each target grid, enabling the reconstruction of gapless daily surface NO> concentrations at a spatial
resolution of 10 km.

Multi-source data were input into AiT as model features and labels. These data were pre-processed through feature
extraction layers and then fed into the Transformer’s encoder. The encoder comprises multiple self-attention layers and
feedforward neural network layers. Utilizing the multi-head attention mechanism, it processes input data in parallel,
capturing features at various temporal and spatial scales. The AiT model is trained using supervised learning, leveraging a
large amount of historical data. The model’s loss function comprises prediction errors (such as mean squared error (MSE),
Root Mean Square Error (RMSE)) and regularization terms to ensure prediction accuracy and stability. To improve the
model’s generalization ability, we introduced a multi-task learning strategy which was detailed discussed in our previous
work (Tao et al., 2024). Specifically, the model not only predicts pollutant concentrations but also simultaneously predicts
related meteorological parameters and remote sensing observations. This multi-task learning strategy helps the model better
understand the interrelationships between different variables, thereby enhancing prediction performance.

Model training was conducted for 300 epochs using the LAMB optimizer, which supports large batch sizes without
sacrificing convergence performance, thereby accelerating training on large-scale datasets. A warmup learning rate schedule
was applied, with the learning rate peaking at 0.001, and a batch size of 6,144 was used. An early stopping strategy was
implemented and triggered after 30 consecutive epochs without improvement. To mitigate overfitting, dropout was applied
within linear layers and self-attention modules, and a Gaussian Error Linear Unit (GeLU) activation function was employed
throughout the network.

The AiT model was implemented and trained using the PyTorch framework. Prior to training, all input features were
normalized across the entire dataset. Model performance was evaluated using both sample-based and site-based cross-
validation approaches. In these evaluations, all samples and monitoring sites were randomly divided into five folds, with four
folds used for training and one fold reserved for independent validation, allowing for a rigorous assessment of the model’s

spatiotemporal generalization capability.
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2.3 Random- and Spatial-based cross-validation

The performance of our models was evaluated using two five-fold cross-validation approaches: random-based and spatial-
based. The random-based approach involved 16,841,418 samples, with 3,368,283 samples used for validation in each fold.
This approach ensures a comprehensive assessment of the model’s predictive performance across diverse temporal and
spatial conditions represented in the full dataset, effectively testing the model’s ability to reproduce observed NO; variability
under a wide range of atmospheric and environmental settings. By randomly partitioning samples, this strategy primarily
evaluates the overall fitting accuracy and stability of the model when predicting NO2 concentrations at locations and times
similar to those seen during training.

In contrast, the spatial-based approach was designed to explicitly assess the model’s spatial transferability. This evaluation
included data from 7,021 monitoring sites, of which 1,404 sites were held out for validation in each fold. By withholding
entire monitoring locations from the training process, this approach tests the model’s ability to generalize to previously
unseen locations, which is critical for producing reliable spatially continuous NO> fields, particularly in regions with sparse
or no ground observations. This site-based validation provides a more stringent and realistic assessment of model
performance for global-scale mapping applications.

In both cross-validation approaches, validation data were strictly excluded from model training, ensuring an unbiased
evaluation of predictive performance. Together, the random-based and spatial-based cross-validation strategies provide
complementary perspectives on model accuracy and generalization capability, with the former primarily reflecting
interpolation performance within the sampled space-time domain and the latter evaluating extrapolation ability to
unmonitored locations. This combined evaluation framework is particularly well suited for global NO> mapping applications,

where reliable prediction in regions with limited observational constraints is essential.

2.4 Regional weighted averages

To accurately assess regional pollution levels and the potential health impacts, we employ two complementary weighted
averaging methods: geographically area-weighted averaging (Eq. (3)) and population-weighted averaging (Eq. (4)). These
equations incorporate spatial area and population data to produce weighted averages that more accurately reflect both

geographical and demographic factors in regional NO» concentration assessments.

B === ?3)

=1

where  is the NO2 concentration in the th region, is the area of the th region, and is the total number of regions.

. =< @)

=1

where  is the NO2 concentration in the th region, is the population of the th region, and is the total number of regions.

We used WorldPOP population datasets for this study. Population-weighted NO; concentration is a crucial indicator for

6
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assessing the public health impact of air pollution, as it integrates both pollutant concentration levels and the distribution of
human populations across different regions. This metric is particularly useful for capturing the actual exposure of
populations to NO: pollution, which is not adequately represented by area-weighted concentrations alone. By incorporating
population density, the population-weighted NO: concentration metric provides a more accurate reflection of the exposure

risk faced by people living and working in polluted areas.

3 Results
3.1 AiT-NO; performance

The detailed discussion about the Transformer can be seen in the Methods. Here we mainly focus on the performance
evaluation from the AiT-NO: products. We first evaluate the model using Random cross-validation and Spatial cross-
validation. In the Random cross-validation, the NO2 model exhibited outstanding predictive accuracy, with an R? of 0.91, an
RMSE of 2.32 ppbv, and an MAE of 1.56 ppbv for daily predictions (Fig. la). The performance further improved for
monthly and annual predictions, achieving R? values of 0.98 and 0.99, RMSE values of 0.97 ppbv and 0.59 ppbv, and MAE
values of 0.64 ppbv and 0.33 ppbv, respectively (Fig. 1c, ¢). This improvement reflects the reduction of short-term noise and
random variability through temporal aggregation, indicating that the model effectively captures both high-frequency
variability and long-term NO signals.

Similarly, the Spatial cross-validation results were also impressive. For daily predictions, the NO> model achieved an R? of
0.62, an RMSE of 4.77 ppbv, and an MAE of 3.31 ppbv (Fig. 1b). For monthly and annual predictions, the model showed R?
values of 0.65 and 0.63, RMSE values of 3.92 ppbv and 3.64 ppbv, and MAE values of 2.71 ppbv and 2.51 ppbv,
respectively (Fig. 1d, ). As expected, predictive performance under Spatial cross-validation is lower than that under Random
cross-validation, reflecting the greater difficulty of extrapolating to previously unseen locations. Nevertheless, the relatively
stable performance across temporal scales indicates that the model maintains robust spatial transferability and is capable of
reproducing NO; variability in regions with limited or no monitoring coverage.

Overall, the performance metrics obtained from both validation strategies demonstrate that the AiT-NOz model performs
consistently well across multiple temporal scales and validation settings. The Spatial cross-validation results are generally
comparable to, or exceed, those reported in previous global and regional NO, modeling studies (Wei et al., 2019; Wei et al.,
2023), underscoring the robustness and reliability of the AiT-based framework for constructing spatially continuous, long-

term NO; datasets.
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Figure 1: Model validation and uncertainties from the Random-based (left) and Spatial-based (right) cross-validation. Black lines
are 1:1 lines, and grey dashed lines are best-fit lines from linear regression. Additional statistical metrics given are the correlation
coefficient (R%), mean absolute error (MAE), root-mean-square error (RMSE) and sample number.

As we mentioned earlier, the SoGA2024 for the first time included NO:x in its report, as well as the annual NO> concentration
datasets they generated using a global LUR model (Anenberg et al., 2022). The detailed methodology is available in Larkin
et al. (Anenberg et al., 2022). Here, we mainly focus on the performance of the two datasets in simulating NO, concentration
in major urban observation sites in several observation-dense countries, such as Austria, Belgium, China, France, Germany,
India, Poland, Spain, and US. Overall, the AiTNO> model shows much better alignment with observational values,
outperforming the LUR model. In most countries, except the US, predictions from the AiTNO> model tend to be slightly
higher or almost comparable to the observational data, whereas the LUR model consistently underestimates NO-

concentrations. For countries like China and India, where pollution levels are particularly high, the AiTNO2 model provides
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significantly more accurate predictions, closely reflecting the actual pollution patterns observed in these regions. This
highlights the efficacy of the AiITNO: model. We estimated that the LUR method could significantly underestimate the
regional NO:2 concentration by at least 50% for most of the regions, except for HI (Supplement Fig. S3; Table S2). When
examining different regions, our results has much higher NO» estimation compared to LUR NOy, particularly in the Northern
Hemisphere (1.6 to 2.1 times) and tropical regions (2.5 to 3.0 times), where there are more monitoring stations and higher
pollution levels (Supplementary Fig. S4). The primary reason for this discrepancy is that the AiTNO2 model relies on urban
stations data for training, which are typically located in city centres with high pollution levels, enabling it to more effectively
capture elevated NO> concentrations in these localized urban areas. In contrast, the LUR model, which utilizes lower-
resolution land use variables and satellite data, is less capable of fully reflecting high NO> concentration areas, especially in
urban settings. Furthermore, the AiITNO2 model was featured in higher sensitivity in capturing the temporal and spatial
variations of atmospheric pollutants, accurately predicting these changes by learning from time series data (Tao et al., 2024).

In conclusion, both cross-validation approaches confirm the strong predictive capabilities of our model. The Random
validation highlights the model’s accuracy across diverse data points, while the Spatial validation underscores its
effectiveness in generalizing to new locations. These comprehensive evaluations attest to the high quality and reliability of
our predictive models, making them valuable tools for accurate NO2 concentration predictions. The AiTNO2 model shows
higher accuracy in predicting NO2 concentrations across the selected countries, especially in regions with severe pollution
and dense monitoring networks. While the LUR model captures the general trends in NO; variation, its predictions are often
conservative and fail to adequately represent pollution levels in some countries, particularly in high-pollution areas. The
AiTNO: model, by leveraging deep learning and observational data, compensates for these limitations and demonstrates its
potential as a valuable tool for air pollution monitoring and forecasting. These advantages highlight the value of the AiT-
based approach for constructing high-resolution global NO» datasets and for improving the representation of surface NO»

concentrations in data-driven air quality analyses.

3.2 Global Trend of NO:

Based on the geographically area-weighted average AiTNO, we have a systematic understanding of the global spatial and
temporal trends in NO,. The global annual average concentration of NO; exhibited distinct trends among regions from 2005
to 2023 (Supplementary Fig. S5a). Specifically, from 2005 to 2010, NO: concentrations remained relatively stable,
increasing slightly from 3.32 ppbv to 3.44 ppbv. From 2010 to 2015, concentrations continued to rise, peaking at 4.05 ppbv
in 2015. Subsequently, despite a decrease to 3.73 ppbv by 2019, concentrations remained relatively high. In 2020, due to the
significant reduction in global economic activities and transportation caused by the COVID-19 pandemic, NO;
concentrations notably dropped to 3.42 ppbv. From 2021 to 2023, with the gradual recovery of economic activities, NO2
concentrations rebounded slightly in 2021 but then declined again in 2022 and 2023, reaching 3.38 ppbv in 2023. Figures
S5b and S5c show that the NO> concentrations in the Northern Hemisphere and tropical regions exhibited similar trends. In

contrast to global trends, the Southern Hemisphere exhibited unique characteristics in the annual average NO> concentrations

9
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from 2005 to 2023 (Supplementary Fig. S5d). Between 2005 and 2009, NO: levels decreased from 2.83 ppbv to 2.66 ppbv,
likely due to the initial implementation of air pollution control measures in certain regions. From 2010 to 2015, NO:
concentrations fluctuated, overall declining from 2.68 ppbv to 2.65 ppbv. This period's fluctuations may reflect the dynamic
balance between economic activities and air quality management policies. Between 2016 and 2019, NO; levels remained
relatively stable, ranging from 2.63 ppbv to 2.69 ppbv, indicating a balance between ongoing mitigation efforts and
economic growth. In 2020, the COVID-19 pandemic led to a significant reduction in economic activities and transportation,
causing NO; concentrations to drop sharply to 2.45 ppbv, highlighting the substantial impact of anthropogenic activities on
NO; emissions. From 2021 to 2023, as economic activities gradually resumed, NO> levels increased markedly, reaching 3.15
ppbv in 2022 before slightly declining to 3.11 ppbv in 2023. This upward trend is likely associated with economic recovery,
increased traffic, and the relaxation of emission control measures in some areas. Overall, these results highlight pronounced
regional differences in long-term NOz evolution and underscore the combined influence of anthropogenic activity, emission

control measures, and large-scale external perturbations on global and hemispheric NO> concentrations.

3.3 Spatial and Temporal Trends based on AiTNO>

We examine the spatial distribution and regional evolution of NO: concentrations from 2005 to 2023 to characterize
geographic heterogeneity and regional hotspots. Significant spatial heterogeneous in NO; concentration across regions have
been identified from 2005 to 2023 (Fig. S7), with hotspots in eastern China and northern India. In 2005, regions including
the Beijing-Tianjin-Hebei area and the Yangtze River Delta exhibited very high NO2 concentrations due to their status as
major industrial and economic centres. However, after 2013, these regions experienced significant reductions in NO: levels,
largely attributed to the Chinese government's stringent air quality management policies, including the Air Pollution
Prevention and Control Action Plan, which effectively reduced industrial emissions and vehicle exhaust (Feng et al., 2019;
Liu et al., 2024; Gao et al., 2022; Geng et al., 2019). In India, NO; hotspots are concentrated in major cities located in the
Indo-Gangetic Plain such as Delhi and Mumbai. Between 2005 and 2015, NOz concentrations in these cities gradually
increased due to rapid urbanization and industrialization. However, recent years have seen a decrease in NOz levels as the
Indian government has intensified efforts to control air pollution (Xie et al., 2024). Conversely, Western European countries
like Germany, France, and the United Kingdom had high NO. concentrations in 2005, reflecting their industrialized cities
and busy transportation networks, and then significantly decreased due to the European Union’s strict emission standards
and air quality regulations (Guerreiro et al., 2014; Sicard et al., 2021; Georgoulias et al., 2019; Crippa et al., 2016). In North
America, the northeastern industrial corridor of the US and Canada, along with major cities like Los Angeles and New York,
shared a similar pattern as Western European countries. While overall NO: concentrations are lower in Africa and South
America, industrial centres and major cities like Johannesburg in South Africa and Sao Paulo in Brazil have shown increased

NO:z levels in certain years. These areas require further pollution control measures to improve air quality.
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Figure 2: Temporal trends of annual NO: concentration from 2005 to 2023 in seven GBD super-regions for a) area-weighted
average; c) population-weighted average. b) Heatmap of monthly area-weighted average, with scatter plots indicating monthly
averages over the 19-year period. d) Heatmap of annual population-weighted average NO: concentrations for each country within
the super-regions from 2005 to 2023. The seven super-regions defined in GBD are South-East Asia, East Asia & Oceania (SEAO),
Central Europe, Eastern Europe & Central Asia (CEECA), High-income (HI), Latin America & Caribbean (LAC), North Africa
& Middle East (NAME), South Asia (SA), and Sub-Saharan Africa (SSA).

We further discussed the annual NO» changes in seven super-regions (Fig. 2a, b) following the definitions by Global Burden
of Disease (GBD) (Fig. S2): South-East Asia, East Asia & Oceania (SEAO), Central Europe, Eastern Europe & Central Asia
(CEECA), High-income (HI), Latin America & Caribbean (LAC), North Africa & Middle East (NAME), South Asia (SA),
and Sub-Saharan Africa (SSA). SA region has consistently the highest area-weighted NO2 levels among all regions, followed
by SEAO and NAME. NO; concentrations in these regions, as well as in CEECA, showed an increasing trend until 2015. In
SA, SEAO, and NAME, the rise was primarily driven by rapid industrialization, urbanization, and increased transportation
demand, while in CEECA, the increase was also linked to a reliance on fossil fuels and slower implementation of emission
control measures. After 2015, NO; levels began to stabilize or decline due to local emission reduction efforts and global
events like the COVID-19 pandemic.

In contrast, AITNO: concentrations in other super-regions (LAC, HI, and SSA) are relatively low, with annual averages of
less than 4 ppbv for the past two decades (Fig. 2a). The LAC region benefits from a combination of lower vehicle density in
rural areas and successful urban air quality initiatives in major cities (Riojas-Rodriguez et al., 2016; Huneeus et al., 2020).
The lower NO; levels in the HI region are largely due to stringent environmental regulations, advanced pollution control

technologies, and a significant shift towards cleaner energy sources. SSA presents a unique case where low industrialization
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and vehicle ownership contribute to lower NO: levels. However, the region is still impacted by biomass burning for cooking
and heating, which can lead to localized spikes in NO2 (Fig. S7).

20 Top 10 Country of POP-Weighted AiTNO,
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Figure 3: Top 10 countries ranked by population-weighted NO; concentration (2005-2023) and their regional distribution. The left
y-axis corresponds to the scatter plot, representing population-weighted AiTNO: concentrations in parts per billion by volume
(ppbv) for each country. The right y-axis corresponds to the background colors, which represent the proportion of countries from
different super-regions (HI, SEAO, NAME, SA, and CEECA) that are ranked in the top 10 based on AiTNO; concentration. The
background color segments show the percentage of top 10 countries that belong to each region, reflecting how the regional
representation in the top 10 has evolved over time.

When considering the population exposure, we found that high levels of NO> were also observed in some developed regions,
such as HI (including North America, Western Europe, Southern Latin America, Asia Pacific, and Australasia), which
ranked first among the seven super-regions from 2005 to 2007 (Fig. 2c; Fig. S9). The higher population-weighted average of
NO:; in HI was mainly attributed to several population dense countries, including South Korea, Japan, Singapore, Andorra,
Germany and Italy (Fig. 2d; Fig. S9). Figure 3 illustrates the proportion of super regions that include the top ten countries
with the highest population-weighted NO> exposure over the past two decades. During the early years of the study period,
the HI region accounted for 60% of the top ten countries in terms of NOz exposure. However, this proportion gradually
decreased, leaving only one country from the HI region among the top ten in recent years. In contrast, the NAME region
experienced a sharp increase in its share of countries with high NO: exposure, eventually becoming the predominant area for
such countries. This shift underscores the dynamic nature of NO2 exposure distribution, influenced by both changes in NO»
emissions and population dynamics.

We estimated that in recent years, SEAO, NAME, and SA are among the top regions with the highest population-weighted
NOs concentration, with multiple year average of 10.78 + 1.02 ppbv, 10.54 £ 0.55 ppbv, 9.81 £ 0.70 ppbv from 2005 to 2023,
respectively. NO2 exposure was increasing by 0.19 and 0.72 ppbv/decade in NAME and SA, while decreasing by 0.68, 0.40,
2.53, 0.85, 0.12 ppbv/decade in SEAO, CEECA, HI, LAC, and SSA, respectively (Fig. 2c). These contrasting trends
highlight substantial temporal changes in population-weighted NO, distributions across super-regions, reflecting the

combined influence of evolving emission patterns and regional population dynamics.
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4 Data availability

The global NO; dataset developed wusing the Air Transformer (AiT) framework is available at:
https://doi.org/10.5281/zenodo.13842191 (Mu and Tao, 2025).

5 Discussion and conclusion

This study delivers a long-term, spatially consistent global nitrogen dioxide (NO) data resource that supports systematic
analyses of NO> variability and evolution across regions with contrasting emission characteristics. By providing a unified
representation of surface NO2 concentrations over nearly two decades, the dataset enables comparative investigations of
regional patterns and temporal changes and facilitates intercomparison with existing observation- and model-based products.
As a globally consistent data foundation, it helps improve the coherence of long-term NO: analyses across different
geographic and climatic regimes and provides valuable insights for future epidemiological research. In addition, the dataset
may facilitate downstream assessments that relate NO: distributions to commonly used guideline values.

This dataset consists of high-resolution global daily surface NO2 concentrations for the period 2005-2023, generated using
the Air Transformer (AiT) deep learning model. The dataset represents a major advancement in air quality research by
overcoming the limitations of traditional ground-based monitoring networks and providing a fine-scale temporal resolution
capable of capturing daily variations in NO: concentrations. Such high-frequency data is crucial for understanding the short-
term dynamics of NO: pollution, which are often influenced by transient meteorological conditions, industrial emissions, and
traffic patterns. The model's robust validation against independent datasets demonstrates its reliability and predictive
performance, offering a more detailed depiction of NO: pollution trends across diverse geographical regions, including both
densely populated urban areas and remote locations with limited observational data.

The implications of this work extend far beyond conventional air quality monitoring. The dataset provides a valuable
resource for assessing the localized impacts of anthropogenic activities, such as industrial production and urban development,
as well as the effectiveness of pollution control measures. This fine-grained understanding of NO> distribution is particularly
critical in densely populated areas, where exposure to elevated NO2 levels poses significant public health risks, including
respiratory and cardiovascular diseases. The dataset's high spatial and temporal resolution enhances the precision of exposure
assessments, supporting epidemiological studies and the formulation of targeted public health interventions.

Furthermore, the framework established in this study has the potential to be adapted and extended for the monitoring of other
air pollutants, such as ozone (O3) and fine particulate matter (PMzs), which also exhibit significant spatial and temporal
variability. This versatility underscores the broader applications of the AiT model in environmental policy and public health
management. By enabling more accurate and granular assessments of air quality, this dataset can inform regulatory actions

and contribute to the development of more effective strategies for mitigating air pollution and protecting human health.
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Future work should focus on expanding data sources, such as emissions inventories and traffic data, to further improve the
model's accuracy, especially in less urbanized regions, enabling more comprehensive global assessments of NO2 pollution

and contributing to the development of more targeted and effective air quality management strategies.

Author contributions

YQZ conceived the study, and reviewed and edited the manuscript. LX secured project funding and reviewed the manuscript.
JM drafted the original manuscript, contributed to methodology development and visualization, refined the methods, and
edited the manuscript. CT contributed to methodology development and visualization and refined the methods. ZL, YNZ,
NZ, BL, and QHZ contributed to methodology development. QZZ and HZ reviewed the manuscript. JM and CT contributed
equally to this work.

Competing interests

At least one of the (co-)authors is a member of the editorial board of Earth System Science Data.

Financial support

This work was funded by Development Program of the Ministry of Science and Technology of China (grant no.
2022YFC3701101).

References

Anenberg, S. C., Mohegh, A., Goldberg, D. L., Kerr, G. H., Brauer, M., Burkart, K., Hystad, P., Larkin, A., Wozniak, S., and
Lamsal, L.: Long-term trends in urban NO> concentrations and associated paediatric asthma incidence: estimates from global
datasets, Lancet Planet. Health, 6, e49—e58, https://doi.org/10.1016/S2542-5196(21)00255-2, 2022.

Chan, K. L., Khorsandi, E., Liu, S., Baier, F., and Valks, P.: Estimation of surface NO; concentrations over Germany from

TROPOMI  satellite  observations wusing a machine learning method, Remote Sens., 13, 969,

https://doi.org/10.3390/rs13050969, 2021.

14



395

400

405

410

415

420

425

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-821
Preprint. Discussion started: 14 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

Chi, Y., Fan, M., Zhao, C., Yang, Y., Fan, H., Yang, X., Yang, J., and Tao, J.: Machine learning-based estimation of ground-
level NO: concentrations over China, Sci. Total Environ., 807, 150721, https://doi.org/10.1016/j.scitotenv.2021.150721,
2022.

Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., and
McLinden, C. A.: Global fine-scale changes in ambient NO, during COVID-19 lockdowns, Nature, 601, 380-387,
https://doi.org/10.1038/s41586-021-04229-0, 2022.

Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., and
Granier, C.: Forty years of improvements in European air quality: regional policy-industry interactions with global impacts,
Atmos. Chem. Phys., 16, 3825-3841, https://doi.org/10.5194/acp-16-3825-2016, 2016.

Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M. B., Choirat, C., Koutrakis, P., and Lyapustin, A.:
Assessing NO; concentration and model uncertainty with high spatiotemporal resolution across the contiguous United States
using ensemble model averaging, Environ. Sci. Technol., 54, 1372—-1384, https://doi.org/10.1021/acs.est.9b03358, 2019.
Feng, Y., Ning, M., Lei, Y., Sun, Y., Liu, W., and Wang, J.: Defending blue sky in China: effectiveness of the “Air Pollution
Prevention and Control Action Plan” on air quality improvements from 2013 to 2017, J. Environ. Manage., 252, 109603,
https://doi.org/10.1016/j.jenvman.2019.109603, 2019.

Gao, J., Yang, Y., Wang, H., Wang, P., Li, H., Li, M., Ren, L., Yue, X., and Liao, H.: Fast climate responses to emission
reductions in aerosol and ozone precursors in China during 2013-2017, Atmos. Chem. Phys., 22, 7131-7142,
https://doi.org/10.5194/acp-22-7131-2022, 2022.

Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, K., and Liu, Y.: Impact of China’s air
pollution prevention and control action plan on PM>s chemical composition over eastern China, Sci. China Earth Sci., 62,
18721884, https://doi.org/10.1007/s11430-018-9353-x, 2019.

Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., and Eskes, H. J.: Trends and trend reversal detection in 2
decades of tropospheric NO; satellite observations, Atmos. Chem. Phys., 19, 6269-6294, https://doi.org/10.5194/acp-19-
6269-2019, 2019.

Guerreiro, C. B., Foltescu, V., and De Leeuw, F.: Air quality status and trends in Europe, Atmos. Environ., 98, 376-384,
https://doi.org/10.1016/j.atmosenv.2014.09.017, 2014.

Health Effects Institute: State of Global Air 2024; Special Report; Health Effects Institute, Boston, MA,
https://www.stateofglobalair.org, 2024.

Huang, K., Xiao, Q., Meng, X., Geng, G., Wang, Y., Lyapustin, A., Gu, D., and Liu, Y.: Predicting monthly high-resolution
PMys concentrations with random forest model in the North China Plain, Environ. Pollut.,, 242, 675-683,
https://doi.org/10.1016/j.envpol.2018.07.016, 2018.

Huang, K., Zhu, Q., Lu, X., Gu, D., and Liu, Y.: Satellite-based long-term spatiotemporal trends in ambient NO:
concentrations and attributable health burdens in China from 2005 to 2020, GeoHealth, 7, e€2023GH000798,
https://doi.org/10.1029/2023GH000798, 2023.

15



430

435

440

445

450

455

a

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-821
Preprint. Discussion started: 14 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
SUOISSNOSI

Huneeus, N., van Der Gon, H. D., Castesana, P., Menares, C., Granier, C., Granier, L., Alonso, M., de Fatima Andrade, M.,
Dawidowski, L., and Gallardo, L.: Evaluation of anthropogenic air pollutant emission inventories for South America at
national and city scale, Atmos. Environ., 235, 117606, https://doi.org/10.1016/j.atmosenv.2020.117606, 2020.

Levelt, P. F., Van Den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., De Vries, J., Stammes, P., Lundell, J. O., and
Saari, H.: The ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093-1101,
https://doi.org/10.1109/TGRS.2006.872333, 2006.

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017 trends in summer
surface ozone in China, Proc. Natl. Acad. Sci. U.S.A., 116, 422-427, https://doi.org/10.1073/pnas.1812168116, 2019.

Liu, R., Shao, M., and Wang, Q.: Multi-timescale variation characteristics of PM> s in different regions of China during
2014-2022, Sci. Total Environ., 920, 171008, https://doi.org/10.1016/j.scitotenv.2024.171008, 2024.

Liu, X., Zhang, X., Wang, R., Liu, Y., Hadiatullah, H., Xu, Y., Wang, T., Bendl, J., Adam, T., and Schnelle-Kreis, J.: High-
precision microscale particulate matter prediction in diverse environments using a Long Short-Term Memory neural network
and street view imagery, Environ. Sci. Technol., 58, 3869—3882, https://doi.org/10.1021/acs.est.3c06511, 2024.

Long, S., Wei, X., Zhang, F., Zhang, R., Xu, J.,, Wu, K., Li, Q., and Li, W.: Estimating daily ground-level NO:
concentrations over China based on TROPOMI observations and machine learning approach, Atmos. Environ., 289, 119310,
https://doi.org/10.1016/j.atmosenv.2022.119310, 2022.

Mu, J. and Tao, C.: GlobalNO2 AIT: 0.1° annual resolution global ground-level NO, dataset, Zenodo,
https://doi.org/10.5281/zenodo.13842191, 2025.

Riojas-Rodriguez, H., da Silva, A. S., Texcalac-Sangrador, J. L., and Moreno-Banda, G. L.: Air pollution management and
control in Latin America and the Caribbean: implications for climate change, Rev. Panam. Salud Publica, 40, 150-159, 2016.
Sekiya, T., Miyazaki, K., Eskes, H., Sudo, K., Takigawa, M., and Kanaya, Y.: A comparison of the impact of TROPOMI
and OMI tropospheric NO: on global chemical data assimilation, Atmos. Meas. Tech., 15, 1703-1728,
https://doi.org/10.5194/amt-15-1703-2022, 2022.

Sicard, P., Agathokleous, E., De Marco, A., Paoletti, E., and Calatayud, V.: Urban population exposure to air pollution in
Europe over the last decades, Environ. Sci. Eur., 33, 1-12, https://doi.org/10.1186/s12302-020-00450-2, 2021.

Tao, C., Peng, Y., Zhang, Q., Zhang, Y., Gong, B., Wang, Q., and Wang, W.: Diagnosing ozone—NO,—VOC-aerosol
sensitivity and uncovering causes of urban—nonurban discrepancies in Shandong, China, using transformer-based estimations,
Atmos. Chem. Phys., 24, 4177-4192, https://doi.org/10.5194/acp-24-4177-2024, 2024.

Veefkind, J. P., Aben, 1., McMullan, K., Forster, H., De Vries, J., Otter, G., Claas, J., Eskes, H., De Haan, J., and Kleipool,
Q.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition
for climate, air quality and ozone layer applications, Remote Sens. Environ.,, 120, 70-78,

https://doi.org/10.1016/j.rse.2011.09.027, 2012.

16



460

465

470

https://doi.org/10.5194/essd-2025-821 @ Earth System ©
Preprint. Discussion started: 14 January 2026 § Science ¢
(© Author(s) 2026. CC BY 4.0 License. é D a ta %

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., and Cribb, M.: Estimating 1-km-resolution PM25 concentrations
across China wusing the space-time random forest approach, Remote Sens. Environ., 231, 111221,
https://doi.org/10.1016/j.rse.2019.111221, 2019.

Wei, J, Li, Z., Chen, X., Li, C., Sun, Y., Wang, J., Lyapustin, A., Brasseur, G. P., Jiang, M., and Sun, L.: Separating daily 1
km PM> s inorganic chemical composition in China since 2000 via deep learning integrating ground, satellite, and model data,
Environ. Sci. Technol., 57, 18282—18295, https://doi.org/10.1021/acs.est.3¢00272, 2023.

Wong, P.-Y., Su, H.-J.,, Lee, H.-Y., Chen, Y.-C., Hsiao, Y.-P., Huang, J.-W., Teo, T.-A., Wu, C.-D., and Spengler, J. D.:
Using land-use machine learning models to estimate daily NO> concentration variations in Taiwan, J. Clean. Prod., 317,
128411, https://doi.org/10.1016/j.jclepro.2021.128411, 2021.

Xie, Y., Zhou, M., Hunt, K. M., and Mauzerall, D. L.: Recent PMs air quality improvements in India benefited from
meteorological variation, Nat. Sustain., 1-11, https://doi.org/10.1038/s41893-024-01366-y, 2024.

Xue, L., Wang, T., Gao, J., Ding, A., Zhou, X., Blake, D., Wang, X., Saunders, S., Fan, S., and Zuo, H.: Ground-level ozone
in four Chinese cities: precursors, regional transport and heterogenecous processes, Atmos. Chem. Phys., 14, 1317513188,
https://doi.org/10.5194/acp-14-13175-2014, 2014.

Zhao, Y., Wang, L., Luo, J., Huang, T., Tao, S., Liu, J., Yu, Y., Huang, Y., Liu, X., and Ma, J.: Deep learning prediction of
polycyclic ~ aromatic  hydrocarbons in the high arctic, Environ. Sci. Technol,, 53, 13238-13245,
https://doi.org/10.1021/acs.est.9b05000, 2019.

17



