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Abstract3

Photosynthesis-irradiance and photosynthesis-depth experiments are two standard ways of experimentally quantify-4

ing primary production. These measurements have historically formed the backbone for the formulation of mathemati-5

cal models of primary production and to this day remain an invaluable resource for model development and refinement.6

From such experiments information on photosynthesis parameters can be extracted, which allows for the quantification7

of the photosynthesis light dependence, essential in the calculation of primary production. To this day, this is the only8

avenue for photosynthesis parameters estimation, making such data invaluable for primary production modelling. In9

the literature, there have been several efforts to form global datasets of photosynthesis parameters, collected at various10

sites across the world oceans and seas. Here, we use a publicly available global dataset of in situ primary production11

profiles and construct a new database of photosynthesis parameters. We use an inverse modelling approach that is12

described in great details, along with the data requirements. For a forward model, we employ a fully solvable analytical13

model of the production profile, and we use the inverse model to compare it with the measured production profile,14

while constraining it with measured daily watercolumn production. Using this approach, we successfully recovered15

4160 photosynthesis-irradiance parameters from the global oceans, which enabled a model versus data comparison for16

watercolumn production. The spatio-temporal distribution of the new dataset is presented and compared to existing17

datasets. Finally, the new photosynthesis parameters dataset is provided publicly, along with metadata needed for the18

implementation in primary production models.19

Keywords: primary production, photosynthesis parameters, parameter estimation, global dataset20

1 Introduction21

Estimation of global marine primary production is an ongoing pursuit of biophysical oceanography (Brewin et al., 2023)22

and over time a number of models and algorithms have been developed to tackle this problem (Platt & Sathyendranath,23

1988; Balch et al., 1992; Antoine et al., 1996; Campbell et al., 2002; Buitenhuis et al., 2013). Modern global state of the art24

models of marine primary production require four essential sources of information as a minimum: surface photosynthet-25

ically active radiation, attenuation coefficients for downwelling radiance, chlorophyll concentration and photosynthesis26
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parameters (Kulk et al., 2020, 2021; Westberry et al., 2023). Photosynthetically active radiation is readily available as27

data products on a global scale, or is easily measurable in situ via radiometers. The same would hold for the attenuation28

coefficient. Depending on the complexity of the models, namely being spectrally resolved or not and on whether the29

model admits vertical structure in phytoplankton or not (Sathyendranath & Platt, 1989a; Kyewalyanga et al., 1992),30

data requirements on surface photosynthetically active radiation and attenuation coefficients vary significantly (Platt31

et al., 2017). Global scale chlorophyll concentration for the surface ocean is typically estimated by using remotely sensed32

radiance data, since the time of the seminal paper by Gordon et al. (1983), whereas locally it can be estimated by a vari-33

ety of observational methods. The final requirements for model implementation are values of photosynthesis parameters,34

information on which is only available, to this date, via direct measurements at sea. Estimation of these parameters via35

remote sensing still eludes us (but see Topliss & Platt (1986)) and that is why such datasets (Bouman et al., 2018; Kulk36

et al., 2020, 2021) are an invaluable resource for primary production models. They also help constrain the magnitude of37

global primary production (Richardson et al., 2016), an important flux in the global carbon budget (Friedlingstein et al.,38

2024).39

In all classes of models, surface irradiance is used as the energy source to drive photosynthesis (Platt & Sathyendranath,40

1993; Behrenfeld & Falkowski, 1997a). A light penetration model is used to calculate the underwater light field, in41

combination with a model for the prescription of the chlorophyll profile (Platt & Sathyendranath, 1991). Depending42

on the complexity of the model, the effect of chlorophyll on the underwater light field may be included in the model43

(Sathyendranath & Platt, 1989b). However, knowing the chlorophyll concentration at a given depth, along with the44

available light, is not enough to calculate the carbon uptake through photosynthesis. The final step is achieved by using45

photosynthesis-irradiance functions (Platt et al., 1977; Jones et al., 2014), which themselves link chlorophyll, a state46

variable, with primary production, a flux, for a given irradiance level (Amirian et al., 2025). By integrating the flux of47

carbon through photosynthesis over time, typically one day, and over depth, the models arrive at an estimate of primary48

production per unit ocean surface (Platt et al., 1991). By subsequently integrating over the ocean surface the models49

arrive at a global estimate of primary production, and further integration over the course of one year yields an annual50

estimate of primary production (Longhurst et al., 1995; Buitenhuis et al., 2013).51

To make the models precise, information on the rate of primary production as a function of light is essential. This is52

provided by the photosynthesis-irradiance functions, the exact value of which is determined by the values of photosynthesis53

parameters (Gallegos & Platt, 1981). Direct estimation of photosynthesis parameters is based on costly and scarce54

field measurements of carbon assimilation by phytoplankton in labelled carbon experiments carried out in vitro, under55

controlled light conditions (Platt & Jassby, 1976; Bouman et al., 2018). A relatively novel method applies inverse56

modelling techniques to data from in situ incubations under natural light conditions (Kovač et al., 2016b). The in situ57

experiments are typically even more expensive and time consuming than direct photosynthesis-irradiance experiments,58

and the inverse modelling technique serves to extract additional information from them, and to fill gaps in the direct59

measurements of photosynthesis-irradiance experiments.60

The photosynthesis-irradiance experiments provide information on the rate of carbon assimilation as a function of61

irradiance, and parameter estimation is carried out by first selecting a photosynthesis irradiance function, followed by62

fitting it to the data (Jassby & Platt, 1976). The results yield best estimates of photosynthesis parameters. The controlled63

nature of the experiments, and the availability of a large parameter dataset was highly valuable, in that it provided the64

backbone for the formulation of primary production models based on first principles (Platt et al., 1988, 1990). The latest65

published archive of photosynthesis parameters estimated in such a way holds 5 711 estimated values of photosynthesis66

parameters from around the global ocean (Bouman et al., 2018). These parameters (or earlier subsets of the data) are67

routinely used in global models of primary production (Longhurst et al., 1995; Kulk et al., 2020, 2021).68
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The other set of measurements routinely performed at sea is the in situ implementation of the carbon assimilation69

method (Strickland & Parsons, 1972; Peterson, 1980; Behrenfeld & Falkowski, 1997b). These measurements provide70

information on the vertical structure of primary production (often reported as daily rates), the so called production71

profile. Measured production profiles have not been used routinely to derive photosynthesis parameters, until suitable72

methods emerged (Kovač et al., 2016b). These methods use inverse modelling to find the optimal values of photosynthesis73

parameters based on measured production profiles and have been successfully tested at two time series stations: Hawaii74

Ocean Time Series (Kovač et al., 2016a) and Bermuda Atlantic Time Series Study (Kovač et al., 2018).75

One major obstacle with using these datasets more to extract photosynthesis parameters might have been that they76

were dispersed over various data repositories, and not readily accessible. However, due to the recent work by Mattei77

& Scardi (2021), a vast collection of in situ data with 6084 primary production profiles has been assembled under one78

umbrella. The dataset contains information on measured primary production profiles along with chlorophyll profiles,79

surface photosynthetically active radiation and the attenuation coefficient for underwater irradiance. These are the80

essential variables needed to estimate photosynthesis parameters from in situ production profiles via inverse modelling81

(Kovač et al., 2017b). Therefore, having these data at hand implies there is a potential for the estimation of photosynthesis82

parameters from all these profiles, under the assumption that the inverse modelling procedure is successful in estimating83

the parameters from each measured production profile. Precisely this is explored in this paper.84

We first describe the inverse modelling methodology used to estimate the photosynthesis parameters from in situ85

production profiles. Subsequently, we describe the dataset, from the point of view of data needed for photosynthesis86

parameters estimation. Limitations of both the inverse model and the dataset are discussed, with details on the forward87

and the inverse models provided in the Appendices. Model data comparisons are made for production at depth and for88

watercolumn production. Finally, the new global database of photosynthesis parameters is made freely available online,89

along with the codes for data access.90

2 Inverse model91

A canonical model for daily watercolumn primary production is based on an assumption of a functional dependence92

between available light and the rate of carbon assimilation by photosynthesis (Platt & Sathyendranath, 1991). This93

functional dependence is expressed mathematically with the photosynthesis-irradiance functions (Jassby & Platt, 1976),94

which state the rate of carbon assimilation P per unit biomass B as a function of irradiance I:95

PB = pB(I), (1)

where PB is the biomass normalised production and the notation pB marks the photosynthesis irradiance function (Figure96

1). There are numerous such functions in oceanographic usage, with a rich history of applications (Zonneveld, 1998; Kovač97

et al., 2017b). All functions are expressible using two parameters: the initial slope αB and the assimilation number PB
m98

(Platt et al., 1977; Frenette et al., 1993; Behrenfeld et al., 2004), which we write as:99

PB = pB
(
I

∣∣αB , PB
m

)
. (2)

Here, the initial slope αB describes the linear response of primary production at low light, whereas the assimilation100

number PB
m describes the rate of primary production at saturating light intensities (MacIntyre et al., 2002; Falkowski,101

1981; Milligan et al., 2015). In the ocean, irradiance is a function of both depth z and time t and a light penetration102

model is required to calculate I = I(z, t) (Kirk, 2011). Keeping in mind the limitations of the Mattei & Scardi (2021)103

dataset, namely a single value for the attenuation coefficient K and a single value for noon irradiance Im
0 , we employ a104
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Figure 1: Graphical representation of the relation between the forward and inverse models. Both models are based on a functional relationship

between production and light, expressed using photosynthesis irradiance functions (top left). These functions require information on the

photosynthesis parameters: the initial slope αB and the assimilation number P B
m , which are typically estimated from in vitro photosynthesis

irradiance experiments. With information on the biomass profile and underwater irradiance (orange curve, bottom left) a forward model

calculates the daily production profile (blue curve on the right) and watercolumn production (blue surface on the right). An inverse model

does the opposite. With an in situ measured production profile (green dots) an inverse model estimates the values of the photosynthesis

parameters by minimizing the error between the model prediction (blue curve) and the measurements (green dots).

relatively simple light penetration model:105

I(z, t) = Im
0 sin (πt/D) exp (−Kz), (3)

where D is daylength (time from sunrise till sunset). Knowing the underwater irradiance (3) and the response of primary106

production to it (2), enables the calculation of primary production per unit biomass, for a given depth and time, as107

PB(z, t) = pB(I(z, t)). To calculate primary production, additional information on biomass at depth is needed, which108

is specified as B(z), and typically taken as constant during one day (but see Kovač et al. (2017a)). Multiplication of109

normalised production by biomass and integration over daylength yields the daily production profile PT (z):110

PT (z) = B (z)

D∫

0

pB
(
I (z, t)

)
dt, (4)
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which is the model analogue of the in situ measured production profile (Kovač et al., 2016a). By further integration over111

depth we obtain daily watercolumn production as:112

PZ,T =

∞∫

0

PT (z) dz. (5)

The two integrals are typically solved numerically, but for the Platt et al. (1980) photosynthesis irradiance function, both113

have been solved analytically. The exact solution for watercolumn production with uniform biomass is provided by Platt114

et al. (1990), whereas solutions for the case of non-uniform biomass profiles can be found in Kovač et al. (2017a). The115

analytical solution for the daily production profile is given in Kovač et al. (2016a), with a summary of other analytical116

solutions provided by Kovač et al. (2017b). In the context of parameter estimation both (4) and (5) would be referred117

to as forward models, in the sense that for given parameter values the model calculates a primary production profile118

and watercolumn production (Figure 1). The opposite procedure to this, namely estimation of parameters from a known119

production profile, is referred to as an inverse procedure, or an inverse model (Figure 1). Details of the forward and120

inverse models used in this study are given in Appendix A and Appendix B, respectively.121

To extract the values of photosynthesis parameters given a measured in situ production profile, we first normalize the122

production profile (4) with biomass, to get at the normalised daily production profile (Kovač et al., 2016a), which we123

recognize is also a function of parameter values themselves, written in analogy with (2), as:124

PB
T (z) = PB

T

(
z

∣∣αB , PB
m

)
. (6)

Now, for a given survey from the Mattei & Scardi (2021) dataset we obtain by measurement the following variables:125

chlorophyll profile B̃(zn) and daily production profile P̃T (zn), both at a sequence of depths zn, along with noon irradiance126

Ĩm
0 and the attenuation coefficient K̃, complemented with daylength D̃. We use the tilde∼ to indicate a measured variable,127

whereas without tilde, the variable refers to the model.128

To be more precise, from measurements we obtain, for a given survey, a sequence of pairs: B̃(zn) and P̃T (zn), at129

depths zn, with n = 1, 2, ..., N , and N being the total number of measurement depths for a given survey. For each depth130

zn, by dividing measured daily production P̃T (zn) by the measured biomass, B̃(zn) we get the measured normalised daily131

production profile as:132

P̃B
T (zn) = P̃T (zn)

/
B̃(zn). (7)

To estimate the values of photosynthesis parameters, the model normalised production profile (6) is compared with the133

measured normalised production profile (7). To help constrain the model we also compare the modelled and measured134

normalised watercolumn production. Model normalised watercolumn production is given as:135

PB
Z,T =

∞∫

0

PB
T (z) dz, (8)

and measured normalised watercolumn production as:136

P̃B
Z,T =

N∑

n=1

P̃B
T (zz)∆zn, (9)

where ∆zn is the depth interval associated with each measurement depth (see Appendix A and Appendix B). Quantifi-137

cation of the model data mismatch is defined with the following optimal function as:138

P(αB , PB
m ) =

N∑

n=1

(
PB

T

(
zn | αB , PB

m

)
− P̃B

T (zn)
)2

+
(
PB

Z,T

(
αB , PB

m

)
− P̃B

Z,T

)2

,

(10)
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Figure 2: The starting estimate for the value of the assimilation number can be estimated from measured surface values of primary production

by assuming saturation close to the surface (grey dashed line). The in situ production measurements carried out close to the ocean surface

(orange dot at depth z1) may experience photoinhibition due to exposure to high irradiance (irradiance profile given in green). This will cause

a dip in the production profile (red curve) close to the surface from what would otherwise be a saturating profile (blue curve). Likewise, the

starting estimate for the initial slope can be estimated from measurements at great depth where saturation of photosynthesis does not take

place during the experiment (green dot).

which is a function of photosynthesis parameters. The first term takes into account the shape of the measured production139

profile (green dots on the right in Figure 1), while the second term takes into account normalised watercolumn production140

(blue surface on the right in Figure 1). Now, the problem of estimating photosynthesis parameters from measured141

production profiles is reduced to finding the minimum of this function (Kovač et al., 2016a,b). Optimization methods for142

achieving this, as well as the technical details of the forward and inverse model are provided in Appendix A and Appendix143

B. The inverse model is applied for each profile on its own, from which photosynthesis parameters are estimated. We label144

the estimated values of photosynthesis parameters as: α̂B and P̂B
m . This procedure is repeated over the entire Mattei &145

Scardi (2021) dataset, which yields the new dataset of photosynthesis parameters. But prior to the application, we first146

describe the limitations of the approach, which stem from data and model limitations.147

The strongest limitation on the inverse approach comes from the assumption of vertical homogeneity in photosynthesis148

parameters. This implies that one value of the initial slope αB and one value of the assimilation number PB
n is assigned149

to phytoplankton throughout the entire water column. In the ocean, photosynthesis parameters may, and likely do vary150

vertically, especially in case of strong stratification (Bouman et al., 2018). Also, temporally, phytoplankton are known151
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to adjust values of photosynthesis parameters over the course of a few generations (Reynolds, 2006). However, the time152

scale of in situ incubations is of the order of one day, therefore it is unlikely that significant changes will occur within153

the duration of the experiment. In principle, if there were numerous measurements carried out in the vertical, such154

that the production and biomass profiles were resolved well vertically, a more complex model with vertically varying155

photosynthesis parameters could be used. The same reasoning would apply if numerous shorter incubations were carried156

out during the day.157

A direct mathematical consequence of vertically uniform photosynthesis parameters is the constraints on the applica-158

tion range of the model. In the case of uniform photosynthesis parameters, the normalised daily production profile is a159

declining function of depth (Figure 2):160

∂PB
T (z)
∂z

< 0. (11)

Therefore, the model can only be expected to work well for in situ normalised production profiles which also decline with161

depth. This is easy to test by simply observing whether:162

P̃B
T (zn) > P̃B

T (zn+1). (12)

We should also stress that measurements near the surface, as shown in Figure 2, may be prone to photoinhibition: a163

reduction of primary production at high irradiance (Marshall et al., 2000). The reduction of primary production due to164

photoinhibition is likely to occur if the incubations are carried out for prolonged periods of time under high irradiance165

(Ross et al., 2011b,a). In the ocean, phytoplankton are free floating and are continually being circulated in the mixed166

layer, whereas for in situ incubations the experiments are carried out at fixed depths. This implies mixing is prevented167

and phytoplankton which would otherwise be freely mixed, are now exposed to significantly higher irradiance, which may168

lead to light stress. Signs of photoinhibition are easily observed in the normalised production profile by testing whether169

normalised daily production at the first measurement depth is less than that measured at the subsequent depths (Figure170

2). Given that photoinhibition occurs close to the surface, its effect on watercolumn production is expected not to be171

pronounced (Platt et al., 1990; Ross et al., 2011b).172

Further more, to enable faster and more accurate estimation of optimal photosynthesis parameters, initial values in173

the optimization procedure need to be specified (Kovač et al., 2016b). For the initial value of the assimilation number,174

we note first that saturation of photosynthesis is more likely close to the surface, but not at the first measurement depth,175

since that is where photoinhibition might occur. At the second measurement depth, it is more likely that photoinhibition176

will not be pronounced and we can assume that during most of the incubation’s duration primary production at this177

depth will be close to saturation for most of the day, except when light levels drop towards zero at dawn and dusk (Figure178

2). Therefore, we can approximate daily normalised production at the second depth as:179

P̃B
T (z2) ≈ PB

mD. (13)

This assumption leads easily to the starting value for the assimilation number (Figure 2), which we label as (PB
m )0:180

(PB
m )0 =

P̃B
T (z2)
D

. (14)

Likewise, the starting value of the initial slope can also be approximated from the production profile. At great depth,181

photosynthesis will likely remain unsaturated for the duration of the incubation and production will depend on irradiance182

linearly. This implies that we can approximate daily normalised production at the final depth zN , provided it is optically183

deep enough, as:184

PB
T (zN ) ≈ αBIT e−KzN , (15)
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Figure 3: Map of the in situ production profiles from the Mattei & Scardi (2021) dataset (orange dots). In total there are 6 084 chlorophyll and

production profiles in the dataset. Most of the data come from the Northern Hemisphere. The data were collected from 1958 till 2017, with the

total of 37 722 individual measurements of chlorophyll and primary production pairs. Also shown is the published archive of photosynthesis

parameters by Bouman et al. (2018), which contains 5 711 values of photosynthesis parameters globally in the time spam from 1977 to 2013

(green dots). The Mattei & Scardi (2021) dataset complements the Bouman et al. (2018) dataset by covering areas in which no photosynthesis

parameters were published, creating an incentive for photosynthesis parameters estimation from in situ production profiles.

where IT is the daily integral of surface irradiance (Figure 2). From this we can express the starting value of the initial185

slope as:186

(αB)0 =
PB

T (zN )
IT e−KzN

. (16)

Having the starting values for both the assimilation number and the initial slope, helps speed up the search process for187

the optimal parameter values. It also aids in preventing the optimization algorithm from ending up in a local minima of188

the error function (10), instead of the global minima. With the inverse model described, we now proceed to describe the189

dataset.190

3 Production profiles dataset191

The Mattei & Scardi (2021) dataset contains primary production profiles measured in situ and distributed throughout192

the global ocean as shown in Figure 3. The authors have compiled the dataset by complementing the already existing193

dataset from the Oregon State University, which at the time was consisted of 2214 production profiles. This dataset was194

used in the development of the Vertically Generalized Production Model (Behrenfeld & Falkowski, 1997a,b). It was then195

supplemented by Mattei & Scardi (2021) with additional 3870 profiles from the world oceans.196

The Mattei & Scardi (2021) dataset contains 6084 individual production profiles measured from 1958 till 2017, with197

the total of 37722 individual pairs of measurements of primary production and chlorophyll. The vast majority (5 578) of198

the profiles are from the Northern Hemisphere (Figure 3), whereas only 478 are located in the Southern Hemisphere. Over199

the seasonal cycle, the authors report: 1701 for winter, 1802 for spring, 1589 for summer and 992 for autumn, which is200
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a relatively uniform annual coverage. The full dataset contained 3755 profiles with measured surface photosynthetically201

active radiation (PAR), whereas the missing PAR were filled with satellite estimates (see Mattei & Scardi (2021) for202

details). PAR was provided in units of E m−2d−1 and the conversion to W m−2 was done using Smith and Morel’s203

procedure (Morel & Smith, 1974). Surface noon irradiance Im
0 was subsequently determined as Ĩm

0 = ĨT π/2D, where ĨT204

is the total received irradiance during daylength. Note that this conversion assumes a sine function for the time-dependent205

variation of irradiance over the daylength, which is consistent with the model used here, namely equation (3) (see also206

Platt et al. (1990)). For the profiles without measured PAR, Mattei & Scardi (2021) have performed gap filling from 2003207

onwards. The authors have also performed gap filling of missing chlorophyll and production data with depth weighted208

averages of the closest measured values.209

For each primary production profile the authors provided numerous associated variables and metadata, but we focus210

solely on the ones needed for photosynthesis parameters estimation using the above-described inverse model. The essen-211

tial variables needed to estimate photosynthesis parameters from in situ experiments are: chlorophyll profile, primary212

production profile, surface photosynthetically active radiation and the diffuse attenuation coefficient for downwelling213

irradiance. These are all given in the dataset. To be more precise, the euphotic zone depth Ze is given in the dataset,214

with the calculation of the attenuation coefficient done simply as K̃ = ln(100)/Ze.215

The dataset also contains auxiliary variables for each experiment, such as: day, month, year, latitude and longitude,216

euphotic zone depth, mixed layer depth, bottom depth, distance from coastline, as well as many other variables. See the217

Supplementary material from the Mattei & Scardi (2021) paper for details on the dataset. The full dataset is available218

on the PANGAEA repository via the following link: https://doi.pangaea.de/10.1594/PANGAEA.932417.219

The auxiliary variables enable us to ascertain the adequacy of the dataset for the inverse model. From the standpoint220

of photosynthesis parameter estimation, it is important to know the range of irradiance experienced by the phytoplankton221

during the incubations (Kovač et al., 2016b), which can be ascertained by expressing the measurement depth of each222

experiment as an optical depth ζ, as show in Figure 4.a. From the distribution of the measurement frequency as a223

function of optical depth we observe that most of the measurements are carried out at shallow optical depths. As the224

optical depth increases the number of measurements drops off. This is expected, given primary production measurements225

are typically performed within the euphotic zone (corresponding to ζ = 4.6).226

In fact, after the estimation of optimal photosynthesis parameters, it is possible to partition the water column into227

depths for which I(z) > Ik, and depths for which I(z) < Ik. Nominally, for depths that meet the first criterion, production228

would be determined by PB
m , and for the latter case, production would be determined by αB (Kovač et al., 2016b). From229

the limited case of application to computation of water-column production (which is the case dealt with, here), the230

importance is to get PB
m right for depths that lie above the I(z) = Ik depth horizon, and to get αB right for depths below231

that horizon. For this reason it is important that the incubations are carried out over a range of optical depths.232

Another important indicator for inverse model applicability is the value of the mixed layer depth relative to euphotic233

depth for each station, shown in Figure 4.b. Here we observe that for most of the profiles mixed layer depth was of the234

same order of magnitude as the euphotic depth. This implies probable vertical homogeneity in photosynthesis parameters235

for the given incubations. The highest number of profiles has the mixed layer depth almost equal to the euphotic depth,236

which is also a good indicator for the justification of vertical homogeneity of photosynthesis parameters.237

Finally, for the inverse model to be able to estimate the values of photosynthesis parameters, the measured production238

profile has to have a minimal number of depths to vertically resolve the shape of the normalised production profile. As239

demonstrated by Kovač et al. (2016b) the normalised production profile (6) is uniquely determined by the photosynthesis240

parameters, whereas normalised daily watercolumn production (8) is not. This is because the normalised watercolumn241

production is an integral of the normalised production profile (Figure 1) and therefore loses the degrees of freedom that242
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Figure 4: Plots of auxiliary variables. a) Histogram of measurement depths expressed as optical depths. Each individual measurement is

treated as one entry. Euphotic zone ζe is highlighted by the grey line. b) Histogram of the ratio between the euphotic depth and the mixed

layer depth. Here each profile is treated as one entry. c) Histogram of profiles with a given number of measurement depths. The two grey

arrows indicate that percentages refer to all the profiles below or above the grey line. d) Time series of the number of measured production

profiles per year globally.

are present in the production profile, which enable the estimation of photosynthesis parameters. Therefore, a given pair243

of photosynthesis parameters may not be an exact match for the normalised production profile, but it may be a good244

match for watercolumn production.245

We have analysed the distribution of profiles with respect to the number of measurement depths per profile, as shown246

in Figure 4.c. The highest number of profiles has 6 measurement depths, which is adequate for successful parameter247

estimation. The total number of profiles with 6 or more measurement depths accounts for 72% of the measured profiles.248

Around 20% of the profiles have 5 measurement depths, which is on the limit for successful parameter estimation. In249

order to use as much of the available data as possible, we have opted to use these profiles as well in parameter estimation.250

The remainder 8% of profiles have less than 5 measurement depths. In other words, out of the 6 084 profiles, 473. For251

these profiles, it is not feasible to estimate both parameters, and therefore we opted to exclude them. On the other end,252

some profiles have measurements from 9 to 14 depths (which is excellent), but these account for less than 2% of all the253

profiles.254

Looking at the temporal distribution of measurements, as shown in Figure 4.d, the observations start in 1958, but255

there is a gap from 1961 till 1966, with another gap year in 1973. After 1975, there is a surge in data collection, with256

the highest number of profiles being measured in 1980 and in the neighbouring years. Afterwards, the global number of257

measured profiles is of the order of 100 per year. This is arguably very low, highlighting the value of such measurements,258

given the high demand for photosynthesis parameters in remote sensing applications and in ecosystem models. With this259

in mind, we now proceed to describe the application of the inverse model and the obtained results.260
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4 Results261

As a first step in the application of the inverse model we have analysed primary production profiles for signs of vertical262

homogeneity in photosynthesis parameters, by testing whether they meet condition (12), and if so for how many depths.263

Out of the total 5611 profiles with more than 4 measurement depths, 988 profiles do not violate this condition at all, 2407264

profiles violate it at one depth, 1469 at two depths and 747 at three or more depths. We have at first applied the inverse265

model on all profiles only to find that those profiles which strongly violate the vertical homogeneity condition result in266

outlier values for photosynthesis parameters. Therefore, we focus on those profiles for which the vertical homogeneity267

condition is not violated, or violated at one or two depths. In total there are 4864 such profiles. This accounts for 80%268

of the original 6084 profiles in the Mattei & Scardi (2021) dataset.269

Distributions of photosynthesis parameters obtained from these profiles are provided in Figure 5. The obtained pa-270

rameter values are within the expected ranges thus far reported in the literature (Kovač et al., 2017b; Bouman et al., 2018;271

Amirian et al., 2025). The estimated values of the initial slope αB range from above 0 to 0.6 mg C (mg Chl)−1 (W m−2)−1 h−1,272

with only a handful parameter values above the upper limit. The majority of values of the assimilation number PB
m are273

found to be below 10 mg C (mg Chl)−1 h−1, with the bulk of the estimates being above 0 and below 5 mg C (mg Chl)−1 h−1,274

consistent with conventional photosynthesis-irradiance experiments. Neither of these parameters are normally distributed,275

being positively skewed and exhibiting long tails. The mean and median of the inital slope αB being 0.194 and 0.130276

mg C (mg Chl)−1 (W m−2)−1 h−1, respectively, with the mean and median of the assimilation number PB
m begin 4.315277

and 2.736 mg C (mg Chl)−1 h−1, respectively. From the information on the values of the initial slope and the assimilation278

number it is straightforward to calculate the photoadaptation parameter, defined as:279

Ik =
PB

m

αB
. (17)

The photoadaptation parameter describes how phytoplankton adjust their light-harvesting capacity to ambient light280

conditions (Reynolds, 2006; Kirk, 2011). It represents the irradiance at which phytoplankton transition from light limited281

to light saturated photosynthesis (Jassby & Platt, 1976) and is also a measure of the light level to which phytoplankton282

have adapted (Zonneveld, 1997). Distribution of the photoadaptation parameter is also given in Figure 5. It is positively283

skewed with a long tail. The bulk of the photoadaptation parameter values are found below 50 W m−2. The mean and284

the median are 20.862 and 11.615 W m−2, respectively.285

We stress here that the objective of this study was not to provide an interpretation of this specific dataset, but rather286

to increase the number of photosynthesis parameters available for usage in primary production models. A comprehensive287

interpretation of the estimated parameter values would necessitate a detailed oceanographic analysis and knowledge288

of regional, or local biogeochemical processes, which falls outside the scope of the present work and is a potential289

course for future research. To facilitate this, we provide the obtained parameter values in a table published online at290

https://zenodo.org/records/17973417 (Kovač et al., 2025). Along with each estimated pair of photosynthesis parameters291

we provide the original profile number given by Mattei & Scardi (2021) so that the parameter values can be traced back292

to the profiles from which they had been estimated. We also give the date of each profile, along with coordinates. To293

be more precise the data are comprised of the following: date (year, month, day), latitude, longitude, initial slope αB ,294

assimilation number PB
m and the original profile number from Mattei & Scardi (2021), each given in a separate column.295

There are also instances where one parameter value is estimated, but the other is not, due to insufficient information in296

the measured primary production profiles to reliably estimate both parameters. Therefore, we only published parameter297

pairs in which values of both parameters were estimated successfully, in line with the limitations set by the experiment298

and the inverse procedure, described in detail in Kovač et al. (2016b). We also flag the values where the inverse procedure299

did not result in realistic values of photosynthesis parameters with 0, the ones where the initial slope is too high with 0.5300
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profiles within each interval of those values.

and the realistic values with 1.301

In the provided table, parameter values for which the inverse model did not converge onto realistic values are flagged302

and given as NaN. In some of these cases the model did yield reasonable estimates for watercolumn production, but for303

unrealistic values of photosynthesis parameters. This occurs due to the fact that watercolumn production is not uniquely304

determined by the photosynthesis parameters, but the production profile is (Kovač et al., 2016b). Therefore, the method305

may converge on a combination of parameter values for which watercolumn production is estimated rather well, but the306

production profile is not. In short, for those cases, the model gives the correct answer for watercolumn production, but307

for the wrong reasons. Keeping in mind the parameter values are estimated from the shape of the production profile we308

consider the error in the profile to take precedence. Another reason for plausible divergence in the values of photosynthesis309

parameters is the potential lack of information in the shape of the production profile to estimate both parameters. Under310

certain irradiance conditions, and based on the optical depths at which the incubations have been carried out, there may311

only be sufficient information on one parameter to be estimated (Kovač et al., 2016b). If this is the case, the value of the312

other parameter is not uniquely determined by the measured production profile and the inverse model estimate of that313
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Figure 6: Comparison of measured normalised watercolumn production versus the analytical solution for normalised daily watercolumn pro-

duction (18) by Platt et al. (1990). The abscissa represents the dimensionless noon irradiance Im
∗ (19) while the ordinate gives the normalised

watercolumn production divided by P B
mD/K. The solid curve corresponds to the f(Im

∗ ) function.

parameter value can diverge. In such instances the parameter values were also flagged.314

The estimated photosynthesis parameters allows us to further calculate model accuracy, which to the best of our315

knowledge has not been done thus far on such a large in situ dataset. Model accuracy can be tested on production at316

depth as well as on watercolumn production. Of primary interest in remote sensing applications would be the latter,317

whereas for parameter estimation the former is of higher importance. Before presenting model accuracy, we should318

highlight that similar analysis have been performed by Behrenfeld & Falkowski (1997b) on the Ocean productivity319

dataset, which at the time of publication in 1997 had 10857 individual incubations (their Figure 4). That dataset is320

now a subset of the Mattei & Scardi (2021) dataset, which holds 37723 individual incubations, whilst keeping most of321

the Behrenfeld & Falkowski (1997b) data within it. The details on which data from Behrenfeld & Falkowski (1997b) are322

included in the the Mattei & Scardi (2021) dataset is provided in their paper.323

To present the overall model fitness in calculating watercolumn production, we use the estimated parameter values324

to normalize the data and compare it to the Platt et al. (1990) analytical solution for watercolumn production, following325

the procedure described in Kovač et al. (2016a). For the Platt et al. (1980) photosynthesis irradiance function, used in326

this work, exact analytical solution for normalised watercolumn production can be written as:327

PB
Z,T =

PB
mD

K
f(Im

∗ ), (18)

where:328

Im
∗ =

αBIm
0

PB
m

, (19)

is the normalised noon irradiance and f(Im
∗ ) a known function (see Appendix A). By rewriting the above expression as:329

KPB
Z,T

PB
mD

= f

(
αBIm

0

PB
m

)
, (20)

and using the estimated parameter values α̂B and P̂B
m , along with noon irradiance Ĩm

0 , enables the calculation of Im
∗ ,330

which is the argument of the f function on the right hand side. On the left hand side, daylength D is known for each331
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production profiles under natural light conditions estimated in this work. In blue is the number of successfully estimated photosynthesis

parameters, whereas in orange is the number of available production profiles (same as in Figure 4.d). b) Parameter values estimated from in

vitro experiments under controlled light conditions, published by Bouman et al. (2018), given in green.

measured profile and the attenuation coefficient is measured K̃. From the measured normalised production profile P̃B
T (zn)332

(7), normalised watercolumn production is easily calculated using the trapezoidal rule. Therefore, the left hand side is333

known. This further enables the comparison of the f(Im
∗ ) function with the entire dataset, by simply plotting the data334

as ordered pairs (α̂B Ĩm
0 /P̂B

m , K̃P̃B
Z,T /P̂B

mD) on the same plot as f(Im
∗ ). Details on this procedure are provided in Kovač335

et al. (2016a). The results are given in Figure 6. The coefficient of determination R2 of our model is 71.31 %.336

In comparison to Kovač et al. (2016a) the optimal function used here (10) has the additional constraint on normalised337

watercolumn production. This helps the inverse model to come close to the measured estimate of normalised watercolumn338

production, while simultaneously describing the production profile. Upon testing the inverse model we have found this339

to be advantageous, as it prevents it from diverging in numerous cases. It also aided in constraining the estimate of340

watercolumn production, by balancing the estimate of production at depth alongside watercolumn production. The341

benefit from simultaneously constraining watercolumn production and production at all measured depths was most342

pronounced with profiles having a small number of measurement depths.343

5 Discussion344

In contemporary oceanography, estimation of global primary production is carried out using remote sensing algorithms345

(Westberry et al., 2023) and biogeochemical models (Follows et al., 2007). In both, primary production is calculated us-346

ing parameters that describe the response of phytoplankton photosynthesis to available light. This response is described347

mathematically using photosynthesis irradiance functions (Platt & Jassby, 1976; Jones et al., 2014). These functions348

are uniquely determined by two parameters: the initial slope and the assimilation number, together termed the photo-349

synthesis parameters (Sakshaug et al., 1997). Unlike other essential parameters and variables that are used in primary350

production models, such as chlorophyll, attenuation coefficient and photosynthetically available radiation, photosynthesis351

parameters are unfortunately not easily amenable to remote sensing, making photosynthesis parameter assignment a352

bottleneck in global primary production models. Given that global calculations of primary production are very sensitive353

to photosynthesis parameters (Platt et al., 1988; Kulk et al., 2020, 2021) and given we cannot regularly estimate them by354
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remote sensing, the increase in spatio-temporal coverage in photosynthesis parameters becomes a priority. In line with355

this, active research on photosynthesis irradiance functions and novel methods for parameter estimation, with the aim of356

refining models and increasing the availability of photosynthesis parameters, is still ongoing (Amirian et al., 2025; Britten357

et al., 2025).358

One of the approaches to the assignment of parameters has been on the basis of ecological provinces, following the359

pioneering work of Longhurst et al. (1995). To implement, large amounts of field data were, and still are, required360

(Platt et al., 2008). These data typically include chlorophyll, primary production, surface irradiance and the attenuation361

coefficient. Ideally, photosynthesis irradiance experiments are performed in as many locations and seasons as possible,362

and archived (Platt et al., 2017). Having photosynthesis parameters at our disposal then enables coupling of the in situ363

data to the remotely sensed data via various algorithmic approaches (Platt et al., 2008; Picart et al., 2014). This then364

makes possible the inverse, which is the assignment of photosynthesis parameters to a given region of the ocean (Platt &365

Sathyendranath, 1999; Devred et al., 2007).366

Photosynthesis irradiance experiments have been carried out numerous times yielding parameters in various oceans367

and seas, with the most recent published global archive of photosynthesis parameters by Bouman et al. (2018) containing368

5711 parameter values globally. Most of the Bouman et al. (2018) data are from the North Atlantic and the Arctic, with369

pockets of data in the Southern Ocean, Indian Ocean and in the South Atlantic, with scarcely any data in the Pacific370

ocean (Figure 3), such that the global ocean is spatially undersampled with respect to photosynthesis parameters.371

The photosynthesis parameters estimated from the Mattei & Scardi (2021) dataset complement the direct estimates372

with respect to location (Figure 3), filling gaps in many parts of the world ocean. The dataset contains 6084 measured373

production profiles from the global oceans. It is comprised of already published and freely available data, as well as374

some data which were less well known. By using the inverse model (Kovač et al., 2016a,b) we were able to estimate 3776375

photosynthesis parameters pairs from this dataset and thereby we have created a new dataset containing photosynthesis376

parameters from the North Pacific Ocean, the Eastern Equatorial Pacific Ocean, close to both the east and west coasts377

of North America, the Indian Ocean and the northern high latitudes (Figure 3). A large swath of the Eastern Pacific378

Ocean in the equatorial region is also covered. In comparison to the Bouman et al. (2018) dataset, also shown in Figure379

3, the new dataset complements and increases the spatial coverage of photosynthesis parameters in the global ocean. In380

both the Bouman et al. (2018) and the new dataset, there are also scattered pockets of data from various other regions381

of the ocean.382

From the temporal standpoint these datasets are not by any means homogenous in the number of parameters per383

year (Figure 7). The number per year is low, both for the new dataset developed here, and for the Bouman et al. (2018)384

dataset. The Bouman et al. (2018) dataset begins in 1977 and ends in 2013, whereas the new one starts is 1960 and ends in385

2017. Construction of a joint time series using both datasets would not be a trivial problem, because of the disparities in386

time and location. Nevertheless, construction of local time series of photosynthesis parameters would be plausible, given387

there are time series stations at which photosynthesis parameters have been estimated from in situ production profiles.388

For example, at the Hawaii Ocean Time Series and the Bermuda Atlantic Time Series, photosynthesis parameters have389

been estimated by Kovač et al. (2016a) and Kovač et al. (2018), respectively. Some of those data are also contained in390

the Mattei & Scardi (2021) dataset. Primary production measurements are ongoing at those stations, though the latest391

values are not, naturally, included in the Mattei & Scardi (2021) dataset. Measurements at Hawaii Ocean Time Series392

started in 1989 and at Bermuda Atlantic Time Series in 1988. Therefore, there is a potential to construct time series393

of photosynthesis parameters that are at least 30 years long at these locations. The construction of such time series394

would provide testing grounds for studying the effect of time dependent photosynthesis parameters on remote sensing395

algorithms and ecosystem models. This might improve the current estimates at these time series (Wu et al., 2024) and396
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assist in future modelling efforts (Zheng et al., 2025).397

Time series analysis of the photosynthesis parameters themselves would also help assess whether seasonal variability398

in photosynthesis parameters dominates over the interannual variability, or vice versa, and to study the rate of change399

of photosynthesis parameters. Information on the time scales of variability would help mold future developments in400

remote sensing algorithms and help in parameter assignment procedures more broadly, like in marine ecosystem models.401

Naturally, analysis of trends would be possible once such time series had been established. These are all potential402

applications of the dataset assembled here.403

In this context, the importance of proper data storage and accessibility, cannot be exaggerated. This work would not404

have been possible without the publicly available dataset from Mattei & Scardi (2021). From the historical standpoint,405

production profiles data are not distributed under a central data hub and subsequently are not easily accessible. From406

the standpoint of primary production models, this is unfortunate, as quality data are essential for model development407

and testing, arguably with a minimum standard for archiving data satisfied (Platt et al., 2017). When measuring primary408

production at sea, the essential variables that are typically archived are the chlorophyll and primary production profiles.409

These should be complemented by archiving daily irradiance and the irradiance profile ideally, whenever available. Having410

such auxiliary information would allow the estimation of photosynthesis parameters, as demonstrated here. If, however,411

information on surface and underwater irradiance is not stored, statistical methods, such as Bayesian approaches or412

machine learning algorithms, could be used for estimating photosynthesis parameters. Such methods could also provide413

reliable uncertainty measures for photosynthesis parameters and potentially also for watercolumn production estimates.414

They might also be able to relax the requirement on the minimum number of vertical levels at which the production profiles415

have to be measured. Therefore, we recognize the application of Bayesian methods and machine learning algorithms are416

a potential course for future research.417

A point that merits consideration is whether the parameters extracted from in situ primary production data subjected418

to inverse modelling techniques applied to a non-spectral model, as is done here, would be directly applicable to a spectral419

model of primary production. It has been demonstrated (Sathyendranath & Platt, 2007) that spectral models and non-420

spectral models of primary production are fundamentally different from each other in one major respect: spectral models421

are able to account for the spectral variability in underwater light fields, and for the covariance of spectrally-resolved422

light with the spectral variability in the action spectrum of photosynthesis. Here, action spectrum is the term used to423

describe the spectral variability in αB . Direct measurements of action spectrum in the field are rare (but see Lewis et al.424

(1985), Schofield et al. (1991), Kyewalyanga et al. (1997)); and so spectral models of primary production exploit the425

similarity in the shape of the action spectrum with that of phytoplankton absorption (Kyewalyanga et al., 1998), but426

allow the mean magnitude of the action spectrum to match the value of αB measured under spectrally-neutral white light427

(Sathyendranath & Platt, 1989a). It is therefore important that the αB values provided as inputs to spectral models are428

estimated under white light, or corrected for the spectral quality of light in the incubator. The αB inferred from in situ429

primary-production profile, on the other hand, correspond to the spectral quality of the light that the phytoplankton430

experienced at the time of their incubations. Therefore, αB inferred using a non-spectral model should not be used431

without appropriate correction to a spectral model.432

Spectral quality of light becomes important when combining in situ experiments with simulated in situ incubations.433

In the latter, the samples are incubated on deck (rather than under water), and different filters are used to reduce the434

light level reaching the samples to simulate light levels reaching different depths of the water column. Often, these are435

neutral filters such that there is no attempt to simulate the spectral quality of light underwater. On the other hand, in436

some experiments, green or blue filters are used to represent better the spectral quality of light underwater. The Mattei437

and Scardi (2021) database contains data from in situ incubations and simulated in situ incubations. They have all been438
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treated alike in the inverse model, and hence are subject to some unknown uncertainties associated with the spectral439

quality of light in the simulated in situ experiments.440

In addition to this, most ocean colour models estimate primary production on a daily timescale, which aligns with both441

the approximate duration of phytoplankton cell division and the temporal resolution at which phytoplankton biomass442

can be observed using Earth-orbiting satellites (Marra, 2002). However, rate parameters derived from conventional short-443

term (2 to 3 hours) photosynthesis irradiance incubations have been shown to exhibit diel periodicity (MacCaull & Platt,444

1977; Prezelin et al., 1986; Harding et al., 1983; Bruyant et al., 2005). Such fluctuations in photosynthesis parameters are445

not accounted for in current primary production models, which typically assume that photosynthesis parameters remain446

constant throughout the day based on the assumption that diel variability is relativity minor compared to differences447

observed across biogeochemical provinces (Babin et al., 1996). It has also been argued that respiratory losses relative to448

carbon assimilation may also vary over the course of the day, which would also cause rates of carbon uptake to be dependent449

on the duration of the incubation (Marra, 2009). This new dataset will allow future comparisons of photosynthesis450

parameters derived from 24 hour in situ incubations with those derived from short-term photo-physiological experiments451

(e.g. Bouman et al. (2018)) and will allow us to assess whether the two approaches yield similar spatio-temporal patterns452

in photosynthetic response across a range of biogeochemical domains.453

6 Conclusions454

In this work we have derived a global set of photosynthesis parameters estimated from primary production profiles455

published by Mattei & Scardi (2021). In the parameter estimation procedure we have used an analytically solvable model456

of the production profile by Kovač et al. (2016a) as the forward model (Figure 1). For the inverse model we have used457

an optimization procedure with the Nelder & Mead (1965) search algorithm, constrained by the analytical solution for458

watercolumn production by Platt et al. (1990). We have discussed the advantages, as well as the limitations of the459

approach stemming from both the model and the data (Figures 2 and 4). The overall model versus data comparison was460

performed on watercolumn production, as shown in Figure 6, with the model performance being quite good, having an461

R2 of 71.31 %.462

The new dataset of photosynthesis parameters that was constructed in this work is complementary to the prior dataset463

published by Bouman et al. (2018) and provides a comparable spatio-temporal coverage (Figures 3 and 7). With this464

work the global archive of publicly available data on photosynthesis parameters has effectively doubled. A straightforward465

application of the new photosynthesis parameters dataset is in global primary production models, such as by Kulk et al.466

(2020, 2021), or in biogeochemical models, such as by Follows et al. (2007). The new dataset is publicly available at467

https://zenodo.org/records/17973417 (Kovač et al., 2025), along with metadata for referencing it to the original Mattei468

& Scardi (2021) dataset.469

Having the new dataset available opens the avenue for novel research directions, such as testing existing remote470

sensing models with the novel parameter values in regions of the ocean where non where known prior, constructing471

local or regional algorithms for photosynthesis parameters assignment, or constructing time series of photosynthesis472

parameters. Also, having demonstrated that the recovery of photosynthesis parameters from such a large global dataset473

is plausible, the application of other methods and models, might as well be a potential course for future research. From474

an operational standpoint, we conclude that creating a global hub for primary production data, be it production profiles,475

or photosynthesis irradiance experiments, is due.476
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Appendix A: Forward model492

The primary production model used in this paper is based on the work of Platt et al. (1990) in which the exponential493

photosynthesis irradiance function from a previous paper, also by Platt et al. (1980), is used in (1):494

pB(I) = PB
m

(
1− exp

(
−αBI/PB

m

))
. (21)

The underwater irradiance model is as stated in (3). Platt et al. (1990) have solved the watercolumn production integral495

(5) exactly for the case of uniform time independent biomass B(z, t) = B. Their solution reads:496

PZ,T =
BPB

mD

K
f(Im

∗ ), (22)

where the f(Im
∗ ) function is given as:497

f(Im
∗ e−Kz) =

∞∑

n=1

2
(
Im
∗ e−Kz

)2n−1

π (2n− 1) (2n− 1)!
(2n− 2)!!
(2n− 1)!!

−
∞∑

n=1

(
Im
∗ e−Kz

)2n

2n (2n)!
(2n− 1)!!

(2n)!!
.

(23)

By rearranging expression (22) the analytical solution for normalised watercolumn production (18) is obtained:498

PB
Z,T =

PB
mD

K
f(Im

∗ ). (24)

Based on the solution (24), in a paper by Kovač et al. (2016a), the analytical solution of the integral for the normalised499

daily production profile (4) was solved. It reads:500

PB
T (z) = PB

mD fz(Im
∗ e−Kz), (25)
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where now the fz(Im
∗ e−Kz) function is given as:501

fz(Im
∗ e−Kz) =

∞∑

n=1

2
(
Im
∗ e−Kz

)2n−1

π (2n− 1)!
(2n− 2)!!
(2n− 1)!!

−
∞∑

n=1

(
Im
∗ e−Kz

)2n

(2n)!
(2n− 1)!!

(2n)!!
.

(26)

The two functions, (23) and (26), are related by:502

fz

(
Im
∗ e−Kz

)
= − 1

K

d
dz

f
(
Im
∗ e−Kz

)
. (27)

From (25) the daily production profile is simply calculated by multiplication with biomass:503

PT = B(z)PB
mD fz(Im

∗ e−Kz), (28)

where B(z) is prescribed. The normalised daily production profile (25) and the normalised daily watercolumn production504

are then used in the optimal function of the inverse model (10) to estimate photosynthesis parameters from a measured505

normalised daily production profile.506

Appendix B: Inverse model507

For an individual survey, we have at disposal the following set of measurements: noon irradiance Ĩm
0 , attenuation coefficient508

K̃, daylength D̃, production profile P̃T (zn) and biomass profile B̃(zn), where n = 1, 2, ..., N . By calculating the measured509

normalised production profile as:510

P̃B
T (zn) = P̃T (zn)

/
B̃(zn) (29)

we formulate the error of the forward model as:511

P
(
αB , PB

m

)
=

N∑

n=1

(
PB

mD̃fz

(
αB Ĩm

0 e−K̃zn/PB
m

)
− P̃B

T (zn)
)2

+
(

PB
mD̃

K̃
f(αB Ĩm

0 /PB
m )−

N∑

n=1

P̃B
T (zz)∆zn

)2

,

(30)

This function is then used as the optimal function in the inverse model. The first sum in the optimal function goes over512

the measurement depths and compares the model prediction PB
T

(
zn | αB , PB

m

)
with the measured value at that depth513

P̃B
T (zn) (green dots on the right in Figure 1). The second term compares the model prediction of normalised watercolumn514

production PB
mD̃f(αB Ĩm

0 /PB
m )/K̃ with the measured normalised daily watercolumn production

∑N
n=1 P̃B

T (zz)∆zn (blue515

surface on the right in Figure 1). The photosynthesis parameter values at the minimum of P
(
αB , PB

m

)
are taken as the516

optimal values and are labelled as: α̂B and P̂B
m .517

In the implementation stage of the inverse model we have opted to use the Nelder-Mead optimization algorithm518

(Nelder & Mead, 1965), a direct search algorith already tested on this type of problems by Kovač et al. (2016a,b). To519

reduce the search in the parameter space we have set the constraints on the photosynthesis parameters to be positive,520

namely αB > 0 and PB
m > 0, given that by definition the parameters are positive. Also, the two analytical expressions521

used in the optimal function (30), one for the normalised daily production profile and the other for the normalied daily522

watercolumn produciton, are both infinite sums. This implies that at implementation these sums have to be truncated523

and we have opted to truncate both at 50 elements in the sum.524
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