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Abstract

Photosynthesis-irradiance and photosynthesis-depth experiments are two standard ways of experimentally quantify-
ing primary production. These measurements have historically formed the backbone for the formulation of mathemati-
cal models of primary production and to this day remain an invaluable resource for model development and refinement.
From such experiments information on photosynthesis parameters can be extracted, which allows for the quantification
of the photosynthesis light dependence, essential in the calculation of primary production. To this day, this is the only
avenue for photosynthesis parameters estimation, making such data invaluable for primary production modelling. In
the literature, there have been several efforts to form global datasets of photosynthesis parameters, collected at various
sites across the world oceans and seas. Here, we use a publicly available global dataset of in situ primary production
profiles and construct a new database of photosynthesis parameters. We use an inverse modelling approach that is
described in great details, along with the data requirements. For a forward model, we employ a fully solvable analytical
model of the production profile, and we use the inverse model to compare it with the measured production profile,
while constraining it with measured daily watercolumn production. Using this approach, we successfully recovered
4160 photosynthesis-irradiance parameters from the global oceans, which enabled a model versus data comparison for
watercolumn production. The spatio-temporal distribution of the new dataset is presented and compared to existing
datasets. Finally, the new photosynthesis parameters dataset is provided publicly, along with metadata needed for the

implementation in primary production models.
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1 Introduction

Estimation of global marine primary production is an ongoing pursuit of biophysical oceanography (Brewin et al., 2023)
and over time a number of models and algorithms have been developed to tackle this problem (Platt & Sathyendranath,
1988; Balch et al., 1992; Antoine et al., 1996; Campbell et al., 2002; Buitenhuis et al., 2013). Modern global state of the art
models of marine primary production require four essential sources of information as a minimum: surface photosynthet-

ically active radiation, attenuation coefficients for downwelling radiance, chlorophyll concentration and photosynthesis
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z parameters (Kulk et al., 2020, 2021; Westberry et al., 2023). Photosynthetically active radiation is readily available as
s data products on a global scale, or is easily measurable in situ via radiometers. The same would hold for the attenuation
2 coefficient. Depending on the complexity of the models, namely being spectrally resolved or not and on whether the
s model admits vertical structure in phytoplankton or not (Sathyendranath & Platt, 1989a; Kyewalyanga et al., 1992),
s data requirements on surface photosynthetically active radiation and attenuation coefficients vary significantly (Platt
» et al., 2017). Global scale chlorophyll concentration for the surface ocean is typically estimated by using remotely sensed
5 radiance data, since the time of the seminal paper by Gordon et al. (1983), whereas locally it can be estimated by a vari-
u ety of observational methods. The final requirements for model implementation are values of photosynthesis parameters,
s information on which is only available, to this date, via direct measurements at sea. Estimation of these parameters via
s remote sensing still eludes us (but see Topliss & Platt (1986)) and that is why such datasets (Bouman et al., 2018; Kulk
s et al., 2020, 2021) are an invaluable resource for primary production models. They also help constrain the magnitude of
s global primary production (Richardson et al., 2016), an important flux in the global carbon budget (Friedlingstein et al.,
w 2024).

0 In all classes of models, surface irradiance is used as the energy source to drive photosynthesis (Platt & Sathyendranath,
a 1993; Behrenfeld & Falkowski, 1997a). A light penetration model is used to calculate the underwater light field, in
«2 combination with a model for the prescription of the chlorophyll profile (Platt & Sathyendranath, 1991). Depending
s on the complexity of the model, the effect of chlorophyll on the underwater light field may be included in the model
w (Sathyendranath & Platt, 1989b). However, knowing the chlorophyll concentration at a given depth, along with the
s available light, is not enough to calculate the carbon uptake through photosynthesis. The final step is achieved by using
s photosynthesis-irradiance functions (Platt et al., 1977; Jones et al., 2014), which themselves link chlorophyll, a state
« variable, with primary production, a flux, for a given irradiance level (Amirian et al., 2025). By integrating the flux of
s carbon through photosynthesis over time, typically one day, and over depth, the models arrive at an estimate of primary
s production per unit ocean surface (Platt et al., 1991). By subsequently integrating over the ocean surface the models
so arrive at a global estimate of primary production, and further integration over the course of one year yields an annual
si estimate of primary production (Longhurst et al., 1995; Buitenhuis et al., 2013).

52 To make the models precise, information on the rate of primary production as a function of light is essential. This is
53 provided by the photosynthesis-irradiance functions, the exact value of which is determined by the values of photosynthesis
s« parameters (Gallegos & Platt, 1981). Direct estimation of photosynthesis parameters is based on costly and scarce
55 field measurements of carbon assimilation by phytoplankton in labelled carbon experiments carried out in vitro, under
ss controlled light conditions (Platt & Jassby, 1976; Bouman et al., 2018). A relatively novel method applies inverse
57 modelling techniques to data from in situ incubations under natural light conditions (Kovaé¢ et al., 2016b). The in situ
ss experiments are typically even more expensive and time consuming than direct photosynthesis-irradiance experiments,
so and the inverse modelling technique serves to extract additional information from them, and to fill gaps in the direct
s measurements of photosynthesis-irradiance experiments.

61 The photosynthesis-irradiance experiments provide information on the rate of carbon assimilation as a function of
e irradiance, and parameter estimation is carried out by first selecting a photosynthesis irradiance function, followed by
& fitting it to the data (Jassby & Platt, 1976). The results yield best estimates of photosynthesis parameters. The controlled
e nature of the experiments, and the availability of a large parameter dataset was highly valuable, in that it provided the
e backbone for the formulation of primary production models based on first principles (Platt et al., 1988, 1990). The latest
e published archive of photosynthesis parameters estimated in such a way holds 5 711 estimated values of photosynthesis
& parameters from around the global ocean (Bouman et al., 2018). These parameters (or earlier subsets of the data) are

e routinely used in global models of primary production (Longhurst et al., 1995; Kulk et al., 2020, 2021).
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60 The other set of measurements routinely performed at sea is the in situ implementation of the carbon assimilation

7 method (Strickland & Parsons, 1972; Peterson, 1980; Behrenfeld & Falkowski, 1997b). These measurements provide
7 information on the vertical structure of primary production (often reported as daily rates), the so called production
» profile. Measured production profiles have not been used routinely to derive photosynthesis parameters, until suitable
73 methods emerged (Kovag et al., 2016b). These methods use inverse modelling to find the optimal values of photosynthesis
n parameters based on measured production profiles and have been successfully tested at two time series stations: Hawaii
s Ocean Time Series (Kova¢ et al., 2016a) and Bermuda Atlantic Time Series Study (Kovac et al., 2018).

7 One major obstacle with using these datasets more to extract photosynthesis parameters might have been that they
7 were dispersed over various data repositories, and not readily accessible. However, due to the recent work by Mattei
s & Scardi (2021), a vast collection of in situ data with 6084 primary production profiles has been assembled under one
7 umbrella. The dataset contains information on measured primary production profiles along with chlorophyll profiles,
s surface photosynthetically active radiation and the attenuation coefficient for underwater irradiance. These are the
s essential variables needed to estimate photosynthesis parameters from in situ production profiles via inverse modelling
2 (Kovac et al., 2017b). Therefore, having these data at hand implies there is a potential for the estimation of photosynthesis
s parameters from all these profiles, under the assumption that the inverse modelling procedure is successful in estimating
s the parameters from each measured production profile. Precisely this is explored in this paper.

& We first describe the inverse modelling methodology used to estimate the photosynthesis parameters from in situ
s production profiles. Subsequently, we describe the dataset, from the point of view of data needed for photosynthesis
&7 parameters estimation. Limitations of both the inverse model and the dataset are discussed, with details on the forward
s and the inverse models provided in the Appendices. Model data comparisons are made for production at depth and for
s watercolumn production. Finally, the new global database of photosynthesis parameters is made freely available online,

o along with the codes for data access.

« 2 Inverse model

e A canonical model for daily watercolumn primary production is based on an assumption of a functional dependence
o3 between available light and the rate of carbon assimilation by photosynthesis (Platt & Sathyendranath, 1991). This
o functional dependence is expressed mathematically with the photosynthesis-irradiance functions (Jassby & Platt, 1976),

s which state the rate of carbon assimilation P per unit biomass B as a function of irradiance I:
P 5= pB (I )7 (1)

o where PP is the biomass normalised production and the notation p® marks the photosynthesis irradiance function (Figure
o7 1). There are numerous such functions in oceanographic usage, with a rich history of applications (Zonneveld, 1998; Kova¢
s et al., 2017b). All functions are expressible using two parameters: the initial slope af and the assimilation number P2

o (Platt et al., 1977; Frenette et al., 1993; Behrenfeld et al., 2004), which we write as:
P8 =pB(I]a®,PF). (2)

o Here, the initial slope a® describes the linear response of primary production at low light, whereas the assimilation
w number PE describes the rate of primary production at saturating light intensities (MacIntyre et al., 2002; Falkowski,
102 1981; Milligan et al., 2015). In the ocean, irradiance is a function of both depth 2z and time ¢ and a light penetration
s model is required to calculate I = I(z,t) (Kirk, 2011). Keeping in mind the limitations of the Mattei & Scardi (2021)

s dataset, namely a single value for the attenuation coefficient K and a single value for noon irradiance Ij*, we employ a
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Figure 1: Graphical representation of the relation between the forward and inverse models. Both models are based on a functional relationship
between production and light, expressed using photosynthesis irradiance functions (top left). These functions require information on the
photosynthesis parameters: the initial slope a? and the assimilation number P2, which are typically estimated from in vitro photosynthesis
irradiance experiments. With information on the biomass profile and underwater irradiance (orange curve, bottom left) a forward model
calculates the daily production profile (blue curve on the right) and watercolumn production (blue surface on the right). An inverse model
does the opposite. With an in situ measured production profile (green dots) an inverse model estimates the values of the photosynthesis

parameters by minimizing the error between the model prediction (blue curve) and the measurements (green dots).

s relatively simple light penetration model:
I(z,t) = I sin (nt/ D) exp (— K z), (3)

s where D is daylength (time from sunrise till sunset). Knowing the underwater irradiance (3) and the response of primary
w7 production to it (2), enables the calculation of primary production per unit biomass, for a given depth and time, as
w  PP(z,t) = pB(I(2,1)). To calculate primary production, additional information on biomass at depth is needed, which
e is specified as B(z), and typically taken as constant during one day (but see Kova¢ et al. (2017a)). Multiplication of

1o normalised production by biomass and integration over daylength yields the daily production profile Pr(z):

D
mw:Bw/ﬁummw, (4)
0
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ur - which is the model analogue of the in situ measured production profile (Kova¢ et al., 2016a). By further integration over

12 depth we obtain daily watercolumn production as:
oo
PZ,T = /PT(Z) dz. (5)
0

1z The two integrals are typically solved numerically, but for the Platt et al. (1980) photosynthesis irradiance function, both
s have been solved analytically. The exact solution for watercolumn production with uniform biomass is provided by Platt
us et al. (1990), whereas solutions for the case of non-uniform biomass profiles can be found in Kovag et al. (2017a). The
us analytical solution for the daily production profile is given in Kova¢ et al. (2016a), with a summary of other analytical
u7  solutions provided by Kovac et al. (2017b). In the context of parameter estimation both (4) and (5) would be referred
ns  to as forward models, in the sense that for given parameter values the model calculates a primary production profile
uo  and watercolumn production (Figure 1). The opposite procedure to this, namely estimation of parameters from a known
o production profile, is referred to as an inverse procedure, or an inverse model (Figure 1). Details of the forward and
1 inverse models used in this study are given in Appendix A and Appendix B, respectively.

122 To extract the values of photosynthesis parameters given a measured in situ production profile, we first normalize the
123 production profile (4) with biomass, to get at the normalised daily production profile (Kovaé et al., 2016a), which we

124 recognize is also a function of parameter values themselves, written in analogy with (2), as:

PP (z) = PE(z |a®,PF). (6)

m

15 Now, for a given survey from the Mattei & Scardi (2021) dataset we obtain by measurement the following variables:
126 chlorophyll profile B(zn) and daily production profile IST(zn)7 both at a sequence of depths z,,, along with noon irradiance
127 I~6" and the attenuation coefficient K, complemented with daylength D. We use the tilde ~ to indicate a measured variable,
18 whereas without tilde, the variable refers to the model.
129 To be more precise, from measurements we obtain, for a given survey, a sequence of pairs: B(zn) and I5T(zn)7 at
10 depths z,, with n =1,2,..., N, and N being the total number of measurement depths for a given survey. For each depth
13z, by dividing measured daily production ﬁT(zn) by the measured biomass, E(z,,) we get the measured normalised daily
12 production profile as:

PE(0) = Pr(za) [ Bzn). (7)
13 To estimate the values of photosynthesis parameters, the model normalised production profile (6) is compared with the
1w measured normalised production profile (7). To help constrain the model we also compare the modelled and measured

135 normalised watercolumn production. Model normalised watercolumn production is given as:
oo
Plr= /P;?(z) dz, (8)
0
13 and measured normalised watercolumn production as:

N
PgT = Z PI?(*ZZ)AZTL-, (9)
n=1

1 where Az, is the depth interval associated with each measurement depth (see Appendix A and Appendix B). Quantifi-
s cation of the model data mismatch is defined with the following optimal function as:
N - 2
Pa®, PE) :Z (Pf (2n | @B, PB) - PTB(Z,,L)>
n=1 (10)
- 2
+ (PEr (a® PE) - PEr)
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Figure 2: The starting estimate for the value of the assimilation number can be estimated from measured surface values of primary production
by assuming saturation close to the surface (grey dashed line). The in situ production measurements carried out close to the ocean surface
(orange dot at depth z1) may experience photoinhibition due to exposure to high irradiance (irradiance profile given in green). This will cause
a dip in the production profile (red curve) close to the surface from what would otherwise be a saturating profile (blue curve). Likewise, the
starting estimate for the initial slope can be estimated from measurements at great depth where saturation of photosynthesis does not take

place during the experiment (green dot).

130 which is a function of photosynthesis parameters. The first term takes into account the shape of the measured production
1o profile (green dots on the right in Figure 1), while the second term takes into account normalised watercolumn production
w (blue surface on the right in Figure 1). Now, the problem of estimating photosynthesis parameters from measured
12 production profiles is reduced to finding the minimum of this function (Kova¢ et al., 2016a,b). Optimization methods for
13 achieving this, as well as the technical details of the forward and inverse model are provided in Appendix A and Appendix
s B. The inverse model is applied for each profile on its own, from which photosynthesis parameters are estimated. We label
s the estimated values of photosynthesis parameters as: ¢ and ]5,]3 This procedure is repeated over the entire Mattei &
us  Scardi (2021) dataset, which yields the new dataset of photosynthesis parameters. But prior to the application, we first
w describe the limitations of the approach, which stem from data and model limitations.

148 The strongest limitation on the inverse approach comes from the assumption of vertical homogeneity in photosynthesis
s parameters. This implies that one value of the initial slope o and one value of the assimilation number Pf is assigned
10 to phytoplankton throughout the entire water column. In the ocean, photosynthesis parameters may, and likely do vary

st vertically, especially in case of strong stratification (Bouman et al., 2018). Also, temporally, phytoplankton are known
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152 to adjust values of photosynthesis parameters over the course of a few generations (Reynolds, 2006). However, the time
153 scale of in situ incubations is of the order of one day, therefore it is unlikely that significant changes will occur within
15 the duration of the experiment. In principle, if there were numerous measurements carried out in the vertical, such
155 that the production and biomass profiles were resolved well vertically, a more complex model with vertically varying
156 photosynthesis parameters could be used. The same reasoning would apply if numerous shorter incubations were carried
157 out during the day.

158 A direct mathematical consequence of vertically uniform photosynthesis parameters is the constraints on the applica-
159 tion range of the model. In the case of uniform photosynthesis parameters, the normalised daily production profile is a

wo declining function of depth (Figure 2):
OPF (2)
0z

w1 Therefore, the model can only be expected to work well for in situ normalised production profiles which also decline with

<0. (11)

12 depth. This is easy to test by simply observing whether:
ﬁié;(zn) > ﬁ%;(zn-%—l) (12)

13 We should also stress that measurements near the surface, as shown in Figure 2, may be prone to photoinhibition: a
16« reduction of primary production at high irradiance (Marshall et al., 2000). The reduction of primary production due to
s photoinhibition is likely to occur if the incubations are carried out for prolonged periods of time under high irradiance
s (Ross et al., 2011b,a). In the ocean, phytoplankton are free floating and are continually being circulated in the mixed
167 layer, whereas for in situ incubations the experiments are carried out at fixed depths. This implies mixing is prevented
s and phytoplankton which would otherwise be freely mixed, are now exposed to significantly higher irradiance, which may
10 lead to light stress. Signs of photoinhibition are easily observed in the normalised production profile by testing whether
w  normalised daily production at the first measurement depth is less than that measured at the subsequent depths (Figure
m  2). Given that photoinhibition occurs close to the surface, its effect on watercolumn production is expected not to be
w2 pronounced (Platt et al., 1990; Ross et al., 2011b).

173 Further more, to enable faster and more accurate estimation of optimal photosynthesis parameters, initial values in
s the optimization procedure need to be specified (Kovac et al., 2016b). For the initial value of the assimilation number,
s we note first that saturation of photosynthesis is more likely close to the surface, but not at the first measurement depth,
ws  since that is where photoinhibition might occur. At the second measurement depth, it is more likely that photoinhibition
177 will not be pronounced and we can assume that during most of the incubation’s duration primary production at this
s depth will be close to saturation for most of the day, except when light levels drop towards zero at dawn and dusk (Figure

w  2). Therefore, we can approximate daily normalised production at the second depth as:
PE(z) ~ PED. (13)

1w This assumption leads easily to the starting value for the assimilation number (Figure 2), which we label as (P2):

qu?(@)‘

(P7§)0 = D

(14)

11 Likewise, the starting value of the initial slope can also be approximated from the production profile. At great depth,
12 photosynthesis will likely remain unsaturated for the duration of the incubation and production will depend on irradiance
183 linearly. This implies that we can approximate daily normalised production at the final depth zy, provided it is optically
e deep enough, as:

PP (zn) m P Ipe 52N, (15)
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Figure 3: Map of the in situ production profiles from the Mattei & Scardi (2021) dataset (orange dots). In total there are 6 084 chlorophyll and
production profiles in the dataset. Most of the data come from the Northern Hemisphere. The data were collected from 1958 till 2017, with the
total of 37 722 individual measurements of chlorophyll and primary production pairs. Also shown is the published archive of photosynthesis
parameters by Bouman et al. (2018), which contains 5 711 values of photosynthesis parameters globally in the time spam from 1977 to 2013
(green dots). The Mattei & Scardi (2021) dataset complements the Bouman et al. (2018) dataset by covering areas in which no photosynthesis

parameters were published, creating an incentive for photosynthesis parameters estimation from in situ production profiles.

15 where Iy is the daily integral of surface irradiance (Figure 2). From this we can express the starting value of the initial

186 slope as:
Pr (2n)
By _ TT\AN
(@?)o = m~ (16)
17 Having the starting values for both the assimilation number and the initial slope, helps speed up the search process for
18 the optimal parameter values. It also aids in preventing the optimization algorithm from ending up in a local minima of
1 the error function (10), instead of the global minima. With the inverse model described, we now proceed to describe the

w0 dataset.

w3 Production profiles dataset

192 The Mattei & Scardi (2021) dataset contains primary production profiles measured in situ and distributed throughout
103 the global ocean as shown in Figure 3. The authors have compiled the dataset by complementing the already existing
14 dataset from the Oregon State University, which at the time was consisted of 2214 production profiles. This dataset was
105 used in the development of the Vertically Generalized Production Model (Behrenfeld & Falkowski, 1997a,b). It was then
105 supplemented by Mattei & Scardi (2021) with additional 3870 profiles from the world oceans.

197 The Mattei & Scardi (2021) dataset contains 6084 individual production profiles measured from 1958 till 2017, with
108 the total of 37722 individual pairs of measurements of primary production and chlorophyll. The vast majority (5 578) of
100 the profiles are from the Northern Hemisphere (Figure 3), whereas only 478 are located in the Southern Hemisphere. Over

20 the seasonal cycle, the authors report: 1701 for winter, 1802 for spring, 1589 for summer and 992 for autumn, which is
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20 a relatively uniform annual coverage. The full dataset contained 3755 profiles with measured surface photosynthetically

22 active radiation (PAR), whereas the missing PAR were filled with satellite estimates (see Mattei & Scardi (2021) for

23 details). PAR was provided in units of E m~2d~! and the conversion to W m~2

was done using Smith and Morel’s
2s procedure (Morel & Smith, 1974). Surface noon irradiance I§* was subsequently determined as = fTﬂ /2D, where TT
205 s the total received irradiance during daylength. Note that this conversion assumes a sine function for the time-dependent
26 variation of irradiance over the daylength, which is consistent with the model used here, namely equation (3) (see also
27 Platt et al. (1990)). For the profiles without measured PAR, Mattei & Scardi (2021) have performed gap filling from 2003
28 onwards. The authors have also performed gap filling of missing chlorophyll and production data with depth weighted
20 averages of the closest measured values.

210 For each primary production profile the authors provided numerous associated variables and metadata, but we focus
an - solely on the ones needed for photosynthesis parameters estimation using the above-described inverse model. The essen-
22 tial variables needed to estimate photosynthesis parameters from in situ experiments are: chlorophyll profile, primary
a3 production profile, surface photosynthetically active radiation and the diffuse attenuation coefficient for downwelling
24 irradiance. These are all given in the dataset. To be more precise, the euphotic zone depth Z. is given in the dataset,
25 with the calculation of the attenuation coefficient done simply as K = In(100)/Z,..

216 The dataset also contains auxiliary variables for each experiment, such as: day, month, year, latitude and longitude,
a7 euphotic zone depth, mixed layer depth, bottom depth, distance from coastline, as well as many other variables. See the
28 Supplementary material from the Mattei & Scardi (2021) paper for details on the dataset. The full dataset is available
20 on the PANGAEA repository via the following link: https://doi.pangaea.de/10.1594/PANGAEA.932417.

20 The auxiliary variables enable us to ascertain the adequacy of the dataset for the inverse model. From the standpoint
a1 of photosynthesis parameter estimation, it is important to know the range of irradiance experienced by the phytoplankton
2 during the incubations (Kovaé et al., 2016b), which can be ascertained by expressing the measurement depth of each
23 experiment as an optical depth (, as show in Figure 4.a. From the distribution of the measurement frequency as a
24 function of optical depth we observe that most of the measurements are carried out at shallow optical depths. As the
25 optical depth increases the number of measurements drops off. This is expected, given primary production measurements
26 are typically performed within the euphotic zone (corresponding to ¢ = 4.6).

227 In fact, after the estimation of optimal photosynthesis parameters, it is possible to partition the water column into
2s  depths for which I(z) > I, and depths for which I(z) < I. Nominally, for depths that meet the first criterion, production
29 would be determined by P2, and for the latter case, production would be determined by o (Kovag et al., 2016b). From
20 the limited case of application to computation of water-column production (which is the case dealt with, here), the
s importance is to get P2 right for depths that lie above the I(z) = Iy depth horizon, and to get o right for depths below
22 that horizon. For this reason it is important that the incubations are carried out over a range of optical depths.

233 Another important indicator for inverse model applicability is the value of the mixed layer depth relative to euphotic
24 depth for each station, shown in Figure 4.b. Here we observe that for most of the profiles mixed layer depth was of the
235 same order of magnitude as the euphotic depth. This implies probable vertical homogeneity in photosynthesis parameters
26 for the given incubations. The highest number of profiles has the mixed layer depth almost equal to the euphotic depth,
2 which is also a good indicator for the justification of vertical homogeneity of photosynthesis parameters.

238 Finally, for the inverse model to be able to estimate the values of photosynthesis parameters, the measured production
20 profile has to have a minimal number of depths to vertically resolve the shape of the normalised production profile. As
20 demonstrated by Kovac et al. (2016b) the normalised production profile (6) is uniquely determined by the photosynthesis
-1 parameters, whereas normalised daily watercolumn production (8) is not. This is because the normalised watercolumn

22 production is an integral of the normalised production profile (Figure 1) and therefore loses the degrees of freedom that
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Figure 4: Plots of auxiliary variables. a) Histogram of measurement depths expressed as optical depths. Each individual measurement is
treated as one entry. Euphotic zone (. is highlighted by the grey line. b) Histogram of the ratio between the euphotic depth and the mixed
layer depth. Here each profile is treated as one entry. c¢) Histogram of profiles with a given number of measurement depths. The two grey
arrows indicate that percentages refer to all the profiles below or above the grey line. d) Time series of the number of measured production

profiles per year globally.

«3  are present in the production profile, which enable the estimation of photosynthesis parameters. Therefore, a given pair
a4 Of photosynthesis parameters may not be an exact match for the normalised production profile, but it may be a good
25 match for watercolumn production.

26 ‘We have analysed the distribution of profiles with respect to the number of measurement depths per profile, as shown
27 in Figure 4.c. The highest number of profiles has 6 measurement depths, which is adequate for successful parameter
2 estimation. The total number of profiles with 6 or more measurement depths accounts for 72% of the measured profiles.
29 Around 20% of the profiles have 5 measurement depths, which is on the limit for successful parameter estimation. In
0 order to use as much of the available data as possible, we have opted to use these profiles as well in parameter estimation.
1 The remainder 8% of profiles have less than 5 measurement depths. In other words, out of the 6 084 profiles, 473. For
»2  these profiles, it is not feasible to estimate both parameters, and therefore we opted to exclude them. On the other end,
53 some profiles have measurements from 9 to 14 depths (which is excellent), but these account for less than 2% of all the
x4 profiles.

255 Looking at the temporal distribution of measurements, as shown in Figure 4.d, the observations start in 1958, but
6 there is a gap from 1961 till 1966, with another gap year in 1973. After 1975, there is a surge in data collection, with
»7  the highest number of profiles being measured in 1980 and in the neighbouring years. Afterwards, the global number of
s measured profiles is of the order of 100 per year. This is arguably very low, highlighting the value of such measurements,
0 given the high demand for photosynthesis parameters in remote sensing applications and in ecosystem models. With this

»0 in mind, we now proceed to describe the application of the inverse model and the obtained results.
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« 4 Results

%2 As a first step in the application of the inverse model we have analysed primary production profiles for signs of vertical
263 homogeneity in photosynthesis parameters, by testing whether they meet condition (12), and if so for how many depths.
¢ Out of the total 5611 profiles with more than 4 measurement depths, 988 profiles do not violate this condition at all, 2407
x5 profiles violate it at one depth, 1469 at two depths and 747 at three or more depths. We have at first applied the inverse
%6 model on all profiles only to find that those profiles which strongly violate the vertical homogeneity condition result in
27 outlier values for photosynthesis parameters. Therefore, we focus on those profiles for which the vertical homogeneity
xs condition is not violated, or violated at one or two depths. In total there are 4864 such profiles. This accounts for 80%
20 of the original 6084 profiles in the Mattei & Scardi (2021) dataset.

270 Distributions of photosynthesis parameters obtained from these profiles are provided in Figure 5. The obtained pa-
o1 rameter values are within the expected ranges thus far reported in the literature (Kovag et al., 2017b; Bouman et al., 2018;
a2 Amirian et al., 2025). The estimated values of the initial slope o range from above 0 to 0.6 mg C (mg Chl) ™" (Wm~2) "' h~1,
s with only a handful parameter values above the upper limit. The majority of values of the assimilation number P2 are
2 found to be below 10 mg C (mg Chl) ™" h=!, with the bulk of the estimates being above 0 and below 5 mg C (mg Chl)_1 h— 1
s consistent with conventional photosynthesis-irradiance experiments. Neither of these parameters are normally distributed,
26 being positively skewed and exhibiting long tails. The mean and median of the inital slope o” being 0.194 and 0.130
ar mgC (mgChl)™" (Wm~2)""h~!, respectively, with the mean and median of the assimilation number P2 begin 4.315
2 and 2.736 mg C (mg Chl)71 h~!, respectively. From the information on the values of the initial slope and the assimilation

a9 number it is straightforward to calculate the photoadaptation parameter, defined as:

_ P

=" (17)

20 The photoadaptation parameter describes how phytoplankton adjust their light-harvesting capacity to ambient light
s conditions (Reynolds, 2006; Kirk, 2011). It represents the irradiance at which phytoplankton transition from light limited
2 to light saturated photosynthesis (Jassby & Platt, 1976) and is also a measure of the light level to which phytoplankton
23 have adapted (Zonneveld, 1997). Distribution of the photoadaptation parameter is also given in Figure 5. It is positively
2 skewed with a long tail. The bulk of the photoadaptation parameter values are found below 50 W m~2. The mean and
25 the median are 20.862 and 11.615 W m™2, respectively.

26 We stress here that the objective of this study was not to provide an interpretation of this specific dataset, but rather
s to increase the number of photosynthesis parameters available for usage in primary production models. A comprehensive
s interpretation of the estimated parameter values would necessitate a detailed oceanographic analysis and knowledge
20 of regional, or local biogeochemical processes, which falls outside the scope of the present work and is a potential
20 course for future research. To facilitate this, we provide the obtained parameter values in a table published online at
21 https://zenodo.org/records/17973417 (Kovac et al., 2025). Along with each estimated pair of photosynthesis parameters
22 we provide the original profile number given by Mattei & Scardi (2021) so that the parameter values can be traced back
203 to the profiles from which they had been estimated. We also give the date of each profile, along with coordinates. To
24 be more precise the data are comprised of the following: date (year, month, day), latitude, longitude, initial slope o,
s assimilation number PZ and the original profile number from Mattei & Scardi (2021), each given in a separate column.
26 There are also instances where one parameter value is estimated, but the other is not, due to insufficient information in
27 the measured primary production profiles to reliably estimate both parameters. Therefore, we only published parameter
28 pairs in which values of both parameters were estimated successfully, in line with the limitations set by the experiment
20 and the inverse procedure, described in detail in Kovaé et al. (2016b). We also flag the values where the inverse procedure

a0 did not result in realistic values of photosynthesis parameters with 0, the ones where the initial slope is too high with 0.5
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Figure 5: Histograms of the estimated photosynthesis parameters: a) Distribution of the initial slope o, b) Distribution of the assimilation

number PZ, c) Photoadaptation parameter I;. The horizontal axis shows parameter values, and the vertical axis indicates the percentage of

mo

profiles within each interval of those values.

sa  and the realistic values with 1.

302 In the provided table, parameter values for which the inverse model did not converge onto realistic values are flagged
w3 and given as NaN. In some of these cases the model did yield reasonable estimates for watercolumn production, but for
s unrealistic values of photosynthesis parameters. This occurs due to the fact that watercolumn production is not uniquely
w05 determined by the photosynthesis parameters, but the production profile is (Kovag et al., 2016b). Therefore, the method
w6 may converge on a combination of parameter values for which watercolumn production is estimated rather well, but the
sor - production profile is not. In short, for those cases, the model gives the correct answer for watercolumn production, but
w8 for the wrong reasons. Keeping in mind the parameter values are estimated from the shape of the production profile we
300 consider the error in the profile to take precedence. Another reason for plausible divergence in the values of photosynthesis
s parameters is the potential lack of information in the shape of the production profile to estimate both parameters. Under
s certain irradiance conditions, and based on the optical depths at which the incubations have been carried out, there may
a2 only be sufficient information on one parameter to be estimated (Kovac et al., 2016b). If this is the case, the value of the

a3 other parameter is not uniquely determined by the measured production profile and the inverse model estimate of that
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Figure 6: Comparison of measured normalised watercolumn production versus the analytical solution for normalised daily watercolumn pro-

duction (18) by Platt et al. (1990). The abscissa represents the dimensionless noon irradiance I7* (19) while the ordinate gives the normalised

watercolumn production divided by PED/K. The solid curve corresponds to the f(I™) function.

su parameter value can diverge. In such instances the parameter values were also flagged.

315 The estimated photosynthesis parameters allows us to further calculate model accuracy, which to the best of our
a6 knowledge has not been done thus far on such a large in situ dataset. Model accuracy can be tested on production at
sz depth as well as on watercolumn production. Of primary interest in remote sensing applications would be the latter,
s1s whereas for parameter estimation the former is of higher importance. Before presenting model accuracy, we should
a0 highlight that similar analysis have been performed by Behrenfeld & Falkowski (1997b) on the Ocean productivity
20 dataset, which at the time of publication in 1997 had 10857 individual incubations (their Figure 4). That dataset is
s now a subset of the Mattei & Scardi (2021) dataset, which holds 37723 individual incubations, whilst keeping most of
s the Behrenfeld & Falkowski (1997b) data within it. The details on which data from Behrenfeld & Falkowski (1997b) are
»  included in the the Mattei & Scardi (2021) dataset is provided in their paper.

324 To present the overall model fitness in calculating watercolumn production, we use the estimated parameter values
»s  to normalize the data and compare it to the Platt et al. (1990) analytical solution for watercolumn production, following
26 the procedure described in Kovaé et al. (2016a). For the Platt et al. (1980) photosynthesis irradiance function, used in

sz this work, exact analytical solution for normalised watercolumn production can be written as:

PBD
Ppp = == f(I), (18)
' K
28 where:
aBrm
" 1
=t (19)

20 is the normalised noon irradiance and f(I2*) a known function (see Appendix A). By rewriting the above expression as:

KPZ, aBIp
PBD PB )

(20)

s and using the estimated parameter values &7 and pB along with noon irradiance I~6", enables the calculation of I},

mo

s which is the argument of the f function on the right hand side. On the left hand side, daylength D is known for each
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Figure 7: Time series of the global number of publicly available photosynthesis parameters. a) Parameter values estimated from in situ
production profiles under natural light conditions estimated in this work. In blue is the number of successfully estimated photosynthesis
parameters, whereas in orange is the number of available production profiles (same as in Figure 4.d). b) Parameter values estimated from in

vitro experiments under controlled light conditions, published by Bouman et al. (2018), given in green.

sz measured profile and the attenuation coefficient is measured K. From the measured normalised production profile ]315 (2n)
s (7), normalised watercolumn production is easily calculated using the trapezoidal rule. Therefore, the left hand side is
su known. This further enables the comparison of the f(I*) function with the entire dataset, by simply plotting the data
= as ordered pairs (AP 15/ PB K ﬁgT /PE D) on the same plot as f(I'™). Details on this procedure are provided in Kovaé
s et al. (2016a). The results are given in Figure 6. The coefficient of determination R? of our model is 71.31 %.

337 In comparison to Kova¢ et al. (2016a) the optimal function used here (10) has the additional constraint on normalised
18 watercolumn production. This helps the inverse model to come close to the measured estimate of normalised watercolumn
s production, while simultaneously describing the production profile. Upon testing the inverse model we have found this
w to be advantageous, as it prevents it from diverging in numerous cases. It also aided in constraining the estimate of
s watercolumn production, by balancing the estimate of production at depth alongside watercolumn production. The
s benefit from simultaneously constraining watercolumn production and production at all measured depths was most

a3 pronounced with profiles having a small number of measurement depths.

. 5 Discussion

us In contemporary oceanography, estimation of global primary production is carried out using remote sensing algorithms
us  (Westberry et al., 2023) and biogeochemical models (Follows et al., 2007). In both, primary production is calculated us-
s ing parameters that describe the response of phytoplankton photosynthesis to available light. This response is described
xs  mathematically using photosynthesis irradiance functions (Platt & Jassby, 1976; Jones et al., 2014). These functions
us  are uniquely determined by two parameters: the initial slope and the assimilation number, together termed the photo-
30 synthesis parameters (Sakshaug et al., 1997). Unlike other essential parameters and variables that are used in primary
1 production models, such as chlorophyll, attenuation coefficient and photosynthetically available radiation, photosynthesis
2 parameters are unfortunately not easily amenable to remote sensing, making photosynthesis parameter assignment a
353 bottleneck in global primary production models. Given that global calculations of primary production are very sensitive

3 to photosynthesis parameters (Platt et al., 1988; Kulk et al., 2020, 2021) and given we cannot regularly estimate them by
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s remote sensing, the increase in spatio-temporal coverage in photosynthesis parameters becomes a priority. In line with
6 this, active research on photosynthesis irradiance functions and novel methods for parameter estimation, with the aim of
s refining models and increasing the availability of photosynthesis parameters, is still ongoing (Amirian et al., 2025; Britten
s et al., 2025).

350 One of the approaches to the assignment of parameters has been on the basis of ecological provinces, following the
s0  pioneering work of Longhurst et al. (1995). To implement, large amounts of field data were, and still are, required
s1 (Platt et al., 2008). These data typically include chlorophyll, primary production, surface irradiance and the attenuation
2 coefficient. Ideally, photosynthesis irradiance experiments are performed in as many locations and seasons as possible,
s and archived (Platt et al., 2017). Having photosynthesis parameters at our disposal then enables coupling of the in situ
¢ data to the remotely sensed data via various algorithmic approaches (Platt et al., 2008; Picart et al., 2014). This then
ss  makes possible the inverse, which is the assignment of photosynthesis parameters to a given region of the ocean (Platt &
s Sathyendranath, 1999; Devred et al., 2007).

367 Photosynthesis irradiance experiments have been carried out numerous times yielding parameters in various oceans
sss  and seas, with the most recent published global archive of photosynthesis parameters by Bouman et al. (2018) containing
0 5711 parameter values globally. Most of the Bouman et al. (2018) data are from the North Atlantic and the Arctic, with
s pockets of data in the Southern Ocean, Indian Ocean and in the South Atlantic, with scarcely any data in the Pacific
snocean (Figure 3), such that the global ocean is spatially undersampled with respect to photosynthesis parameters.

2 The photosynthesis parameters estimated from the Mattei & Scardi (2021) dataset complement the direct estimates
s with respect to location (Figure 3), filling gaps in many parts of the world ocean. The dataset contains 6084 measured
s production profiles from the global oceans. It is comprised of already published and freely available data, as well as
ws  some data which were less well known. By using the inverse model (Kova¢ et al., 2016a,b) we were able to estimate 3776
w6 photosynthesis parameters pairs from this dataset and thereby we have created a new dataset containing photosynthesis
s parameters from the North Pacific Ocean, the Eastern Equatorial Pacific Ocean, close to both the east and west coasts
s of North America, the Indian Ocean and the northern high latitudes (Figure 3). A large swath of the Eastern Pacific
s Ocean in the equatorial region is also covered. In comparison to the Bouman et al. (2018) dataset, also shown in Figure
w0 3, the new dataset complements and increases the spatial coverage of photosynthesis parameters in the global ocean. In
s both the Bouman et al. (2018) and the new dataset, there are also scattered pockets of data from various other regions
s of the ocean.

383 From the temporal standpoint these datasets are not by any means homogenous in the number of parameters per
s« year (Figure 7). The number per year is low, both for the new dataset developed here, and for the Bouman et al. (2018)
ss  dataset. The Bouman et al. (2018) dataset begins in 1977 and ends in 2013, whereas the new one starts is 1960 and ends in
s 2017. Construction of a joint time series using both datasets would not be a trivial problem, because of the disparities in
s7 time and location. Nevertheless, construction of local time series of photosynthesis parameters would be plausible, given
s there are time series stations at which photosynthesis parameters have been estimated from in situ production profiles.
s For example, at the Hawaii Ocean Time Series and the Bermuda Atlantic Time Series, photosynthesis parameters have
s0 been estimated by Kovaé et al. (2016a) and Kovaé et al. (2018), respectively. Some of those data are also contained in
s the Mattei & Scardi (2021) dataset. Primary production measurements are ongoing at those stations, though the latest
32 values are not, naturally, included in the Mattei & Scardi (2021) dataset. Measurements at Hawaii Ocean Time Series
33 started in 1989 and at Bermuda Atlantic Time Series in 1988. Therefore, there is a potential to construct time series
s of photosynthesis parameters that are at least 30 years long at these locations. The construction of such time series
s would provide testing grounds for studying the effect of time dependent photosynthesis parameters on remote sensing

ws algorithms and ecosystem models. This might improve the current estimates at these time series (Wu et al., 2024) and
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s7  assist in future modelling efforts (Zheng et al., 2025).
308 Time series analysis of the photosynthesis parameters themselves would also help assess whether seasonal variability

39 in photosynthesis parameters dominates over the interannual variability, or vice versa, and to study the rate of change
w0 of photosynthesis parameters. Information on the time scales of variability would help mold future developments in
a1 remote sensing algorithms and help in parameter assignment procedures more broadly, like in marine ecosystem models.
sz Naturally, analysis of trends would be possible once such time series had been established. These are all potential
«03 applications of the dataset assembled here.

404 In this context, the importance of proper data storage and accessibility, cannot be exaggerated. This work would not
w5 have been possible without the publicly available dataset from Mattei & Scardi (2021). From the historical standpoint,
w6 production profiles data are not distributed under a central data hub and subsequently are not easily accessible. From
w07 the standpoint of primary production models, this is unfortunate, as quality data are essential for model development
w8 and testing, arguably with a minimum standard for archiving data satisfied (Platt et al., 2017). When measuring primary
a9 production at sea, the essential variables that are typically archived are the chlorophyll and primary production profiles.
a0 These should be complemented by archiving daily irradiance and the irradiance profile ideally, whenever available. Having
a1 such auxiliary information would allow the estimation of photosynthesis parameters, as demonstrated here. If, however,
a2 information on surface and underwater irradiance is not stored, statistical methods, such as Bayesian approaches or
a3 machine learning algorithms, could be used for estimating photosynthesis parameters. Such methods could also provide
aa  reliable uncertainty measures for photosynthesis parameters and potentially also for watercolumn production estimates.
a5 They might also be able to relax the requirement on the minimum number of vertical levels at which the production profiles
a5 have to be measured. Therefore, we recognize the application of Bayesian methods and machine learning algorithms are
a7 a potential course for future research.

a1 A point that merits consideration is whether the parameters extracted from in situ primary production data subjected
a0 to inverse modelling techniques applied to a non-spectral model, as is done here, would be directly applicable to a spectral
«20 model of primary production. It has been demonstrated (Sathyendranath & Platt, 2007) that spectral models and non-
a1 spectral models of primary production are fundamentally different from each other in one major respect: spectral models
4 are able to account for the spectral variability in underwater light fields, and for the covariance of spectrally-resolved
«3  light with the spectral variability in the action spectrum of photosynthesis. Here, action spectrum is the term used to
24 describe the spectral variability in . Direct measurements of action spectrum in the field are rare (but see Lewis et al.
s (1985), Schofield et al. (1991), Kyewalyanga et al. (1997)); and so spectral models of primary production exploit the
w26 similarity in the shape of the action spectrum with that of phytoplankton absorption (Kyewalyanga et al., 1998), but
w2 allow the mean magnitude of the action spectrum to match the value of o measured under spectrally-neutral white light
25 (Sathyendranath & Platt, 1989a). It is therefore important that the a values provided as inputs to spectral models are
w20 estimated under white light, or corrected for the spectral quality of light in the incubator. The of inferred from in situ
40 primary-production profile, on the other hand, correspond to the spectral quality of the light that the phytoplankton
m  experienced at the time of their incubations. Therefore, a®? inferred using a non-spectral model should not be used
a2 without appropriate correction to a spectral model.

33 Spectral quality of light becomes important when combining in situ experiments with simulated in situ incubations.
s¢  In the latter, the samples are incubated on deck (rather than under water), and different filters are used to reduce the
a5 light level reaching the samples to simulate light levels reaching different depths of the water column. Often, these are
4 neutral filters such that there is no attempt to simulate the spectral quality of light underwater. On the other hand, in
.7 some experiments, green or blue filters are used to represent better the spectral quality of light underwater. The Mattei

s and Scardi (2021) database contains data from in situ incubations and simulated in situ incubations. They have all been
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40 treated alike in the inverse model, and hence are subject to some unknown uncertainties associated with the spectral
o quality of light in the simulated in situ experiments.

a1 In addition to this, most ocean colour models estimate primary production on a daily timescale, which aligns with both
w42 the approximate duration of phytoplankton cell division and the temporal resolution at which phytoplankton biomass
w3 can be observed using Earth-orbiting satellites (Marra, 2002). However, rate parameters derived from conventional short-
ws  term (2 to 3 hours) photosynthesis irradiance incubations have been shown to exhibit diel periodicity (MacCaull & Platt,
ws  1977; Prezelin et al., 1986; Harding et al., 1983; Bruyant et al., 2005). Such fluctuations in photosynthesis parameters are
s not accounted for in current primary production models, which typically assume that photosynthesis parameters remain
w7 constant throughout the day based on the assumption that diel variability is relativity minor compared to differences
ws  observed across biogeochemical provinces (Babin et al., 1996). It has also been argued that respiratory losses relative to
a0 carbon assimilation may also vary over the course of the day, which would also cause rates of carbon uptake to be dependent
0 on the duration of the incubation (Marra, 2009). This new dataset will allow future comparisons of photosynthesis
s parameters derived from 24 hour in situ incubations with those derived from short-term photo-physiological experiments
52 (e.g. Bouman et al. (2018)) and will allow us to assess whether the two approaches yield similar spatio-temporal patterns

s3  in photosynthetic response across a range of biogeochemical domains.

s 6 Conclusions

5 In this work we have derived a global set of photosynthesis parameters estimated from primary production profiles
6 published by Mattei & Scardi (2021). In the parameter estimation procedure we have used an analytically solvable model
w7 of the production profile by Kovaé et al. (2016a) as the forward model (Figure 1). For the inverse model we have used
s an optimization procedure with the Nelder & Mead (1965) search algorithm, constrained by the analytical solution for
0 watercolumn production by Platt et al. (1990). We have discussed the advantages, as well as the limitations of the
w0 approach stemming from both the model and the data (Figures 2 and 4). The overall model versus data comparison was
s performed on watercolumn production, as shown in Figure 6, with the model performance being quite good, having an
w  R%of 71.31 %.

163 The new dataset of photosynthesis parameters that was constructed in this work is complementary to the prior dataset
s+ published by Bouman et al. (2018) and provides a comparable spatio-temporal coverage (Figures 3 and 7). With this
45 work the global archive of publicly available data on photosynthesis parameters has effectively doubled. A straightforward
w6 application of the new photosynthesis parameters dataset is in global primary production models, such as by Kulk et al.
w7 (2020, 2021), or in biogeochemical models, such as by Follows et al. (2007). The new dataset is publicly available at
ws  https://zenodo.org/records/17973417 (Kova¢ et al., 2025), along with metadata for referencing it to the original Mattei
wo & Scardi (2021) dataset.

470 Having the new dataset available opens the avenue for novel research directions, such as testing existing remote
a sensing models with the novel parameter values in regions of the ocean where non where known prior, constructing
4z local or regional algorithms for photosynthesis parameters assignment, or constructing time series of photosynthesis
a3 parameters. Also, having demonstrated that the recovery of photosynthesis parameters from such a large global dataset
4 is plausible, the application of other methods and models, might as well be a potential course for future research. From
a5 an operational standpoint, we conclude that creating a global hub for primary production data, be it production profiles,

a6 or photosynthesis irradiance experiments, is due.
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« Appendix A: Forward model

w3 The primary production model used in this paper is based on the work of Platt et al. (1990) in which the exponential

w4 photosynthesis irradiance function from a previous paper, also by Platt et al. (1980), is used in (1):
pP(I) = PE (1 — exp (—aPI/PE)). (21)

w5 The underwater irradiance model is as stated in (3). Platt et al. (1990) have solved the watercolumn production integral

ws  (5) exactly for the case of uniform time independent biomass B(z,t) = B. Their solution reads:

BPED
Py = =2 (I, (22
w7 where the f(I™) function is given as:
S (Lre 5™ (20— 2)1
* N m(2n—1)(2n —1)! (2n — 1!
n=1
oo 2n (23)
(Ime=%=)"" (2n — 1)
— 2n(2n)! (2n)!!
ws By rearranging expression (22) the analytical solution for normalised watercolumn production (18) is obtained:
PED
Py =" . (24)

w0 Based on the solution (24), in a paper by Kovac et al. (2016a), the analytical solution of the integral for the normalised

so daily production profile (4) was solved. It reads:

Pf(z) = PD f.(I7e™ %), (25)
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where now the f,(I™e™%#) function is given as:

=2 (I k)" (2 — )11
fz(L':rLe—Kz) _ Z ( « € ) ( n )
m(2n—-1)  (2n-—1)!

n=1

(26)
Z I’” )2” (2n — 1)
(2n)N!
The two functions, (23) and (26), are related by:
f (Ime—Kz) — 1d (Ime—Kz) (27)
z * K d * .

From (25) the daily production profile is simply calculated by multiplication with biomass:

Pr = B(2)PyD f.(I"e” %), (28)

where B(z) is prescribed. The normalised daily production profile (25) and the normalised daily watercolumn production
are then used in the optimal function of the inverse model (10) to estimate photosynthesis parameters from a measured

normalised daily production profile.

Appendix B: Inverse model

For an individual survey, we have at disposal the following set of measurements: noon irradiance fé”, attenuation coefficient
K, daylength D, production profile Pr(z,) and biomass profile B(z,), where n = 1,2, ..., N. By calculating the measured
normalised production profile as:

PF(z0) = Pr(za) [ B(zn) (29)

we formulate the error of the forward model as:

(a7, P2) :Z(Pﬁﬁfz (aPTyre R0 /P2) — PRC0))

- v (30)

PED . - ) :
+ | — Iy m ZZ AZ" ’
(P2 rae Ty /e - Y- PR

n=1
This function is then used as the optimal function in the inverse model. The first sum in the optimal function goes over

BPB

the measurement depths and compares the model prediction PF (z, | o®, P5

) with the measured value at that depth
]3%3 (2n) (green dots on the right in Figure 1). The second term compares the model prediction of normalised watercolumn

production PED f(aP I m /PB)/K with the measured normalised daily watercolumn production SV PB(2.)Az, (blue

n=1
surface on the right in Figure 1). The photosynthesis parameter values at the minimum of P (aB, pE ) are taken as the
optimal values and are labelled as: & and PZ.

In the implementation stage of the inverse model we have opted to use the Nelder-Mead optimization algorithm
(Nelder & Mead, 1965), a direct search algorith already tested on this type of problems by Kova¢ et al. (2016a,b). To
reduce the search in the parameter space we have set the constraints on the photosynthesis parameters to be positive,
namely o > 0 and P2 > 0, given that by definition the parameters are positive. Also, the two analytical expressions
used in the optimal function (30), one for the normalised daily production profile and the other for the normalied daily

watercolumn produciton, are both infinite sums. This implies that at implementation these sums have to be truncated

and we have opted to truncate both at 50 elements in the sum.
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