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Abstract 12 

Long-term, high-resolution monitoring of carbon monoxide (CO) and methane (CH₄) is 13 

essential for understanding their spatiotemporal variability and guiding climate mitigation strategies. 14 

However, satellite observations like TROPOMI are often incomplete, and existing fusion methods 15 

have limitations in accuracy and continuity. This study proposes a signal-domain fusion approach 16 

combining 3D discrete cosine transform (DCT) and singular value decomposition (SVD) to 17 

integrate TROPOMI data with GEOS-Chem simulations. A lightweight residual U-Net is employed 18 

to refine the initial reconstruction by learning the residual field using meteorological drivers and 19 

model outputs, guided by a masked loss. The method produces global 0.25° and China-specific 20 

0.05° daily gap-free XCO and XCH₄ datasets from 2019 to 2023. The fused results outperform 21 

GEOS-Chem and are comparable or superior to TROPOMI, with R² values of 0.92 for XCO and 22 

0.85 for XCH₄. Trend analysis reveals regional patterns such as XCO increases in North America 23 

and declines in Eastern China, and widespread CH₄ growth. High-resolution data captures 24 

enhancements during the 2022 Chongqing wildfires, with average increases of 17.1 ppb in XCO 25 

and 24.5 ppb in XCH₄, and reveals lower XCH₄ increases over rice-growing areas compared to 26 
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TROPOMI, with overestimation reduced by 17–26%, and stronger XCO reductions, with satellite 27 

underestimations up to 38%. These results highlight agricultural contributions and policy impacts. 28 

This approach effectively reconstructs missing observations and enhances the utility of satellite–29 

model data for atmospheric research and emission assessments. The generated daily gap-free 30 

datasets are publicly available at https://doi.org/10.5281/zenodo.17936461. 31 

Keywords: CO; CH₄; TROPOMI; GEOS-Chem; Signal Domain Fusion; Deep Learning; 32 

Spatiotemporal Reconstruction 33 

1. Introduction  34 

Carbon monoxide (CO) and methane (CH₄) are two critical atmospheric gases that play a key 35 

role in air quality monitoring and climate change research. CO is primarily produced through 36 

incomplete combustion of fossil fuels and biomass, as well as the oxidation of methane and other 37 

hydrocarbons. Its main sink is the reaction with hydroxyl radicals (OH), which contributes to the 38 

formation of tropospheric ozone (O₃) and greenhouse gases such as carbon dioxide (CO₂) (Lelieveld 39 

et al., 2016; Spivakovsky et al., 2000). Due to its atmospheric lifetime of weeks to months, CO 40 

serves as an effective tracer for pollutant transport, facilitating the study of both horizontal and 41 

vertical atmospheric movements (Heald et al., 2003). Methane (CH₄) is a powerful greenhouse gas 42 

with a significantly longer atmospheric lifespan—around ten years—and a greater global warming 43 

potential compared to numerous other gases (Filonchyk et al., 2024; Heilig, 1994). It originates 44 

from both natural sources, such as wetlands, permafrost, and wildfires, and anthropogenic activities, 45 

including agriculture, livestock digestion, landfills, and fossil fuel extraction (Chai et al., 2016; 46 

Jackson et al., 2020). CH₄ plays a crucial role in atmospheric chemistry, influencing the oxidative 47 

capacity of the atmosphere and contributing to tropospheric ozone formation. Its rising 48 

concentration is a major driver of climate change. 49 

CO provides valuable insights into pollution transport and atmospheric chemistry, while CH₄ 50 

monitoring is critical for assessing greenhouse gas emissions and climate impacts. Both CO and 51 

CH₄ are essential targets for monitoring efforts due to their distinct roles in atmospheric processes. 52 

A comprehensive understanding of these gases is fundamental to improving air quality predictions 53 

and formulating climate mitigation policies. The spatial distribution of CO and CH₄ in the 54 
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atmosphere is now routinely determined through remote sensing observations. The source, transport, 55 

and removal processes of pollutants can be effectively tracked and analyzed through global-scale 56 

monitoring through satelite platforms. At present, a number of satellite instruments are equipped 57 

with the ability to observe CO and CH₄, including the Measurement of Pollutants in the Troposphere 58 

(MOPITT) (Deeter et al., 2003), Atmospheric Infrared Sounder (AIRS) (McMillan et al., 2005), 59 

Tropospheric Emission Spectrometer (TES) (Rinsland et al., 2006), and Interferometer for the 60 

Exploration of the Atmosphere in the Infrared (IASI) (Turquety et al., 2004). These instruments 61 

offer critical data support for the global distribution of CO and CH₄ in the atmosphere. 62 

The TROPOMI instrument of the Sentinel-5P mission of the European Space Agency (ESA) 63 

provides a greater degree of daily global coverage and spatial resolution than previous observing 64 

missions. TROPOMI has been able to monitor the total atmospheric XCO and XCH₄ (column 65 

concentrations of atmospheric CO and CH₄, respectively) through spectroscopic measurements in 66 

the ultraviolet (UV) to short-wave infrared (SWIR) bands, with a spatial resolution of approximately 67 

7 × 7 km and high radiometric precision, since its successful launch on October 13, 2017. 68 

TROPOMI has already been employed in numerous pertinent applications for XCO and XCH₄ 69 

investigations, including the calculation of emissions from biomass combustion (Goudar et al., 2023; 70 

Griffin et al., 2024). Nevertheless, the TROPOMI observations of XCO and XCH₄ at the surface 71 

and in the atmosphere are impeded by the ability of clouds and atmospheric aerosols to block or 72 

deflect reflected sunlight observed by satellite sensors. Observations may be incomplete, 73 

particularly in regions with elevated levels of air pollution or overcast skies. 74 

The continuous coverage of XCO and XCH₄ products for TROPOMI has been the subject of 75 

numerous efforts, which primarily fall into three categories. On one hand, machine learning-based 76 

interpolation methods (X. Chen et al., 2022; Hu et al., 2022; Valerio et al., 2025; Wei et al., 2025) 77 

can effectively address data gaps. However, their precision is contingent upon the quality and 78 

diversity of the training data, and inaccurate predictions may arise from insufficient or unbalanced 79 

datasets. In addition to these approaches, model fusion methods have been developed to leverage 80 

the complementary strengths of different data sources or modeling frameworks. For instance, 81 

statistical data assimilation and hybrid modeling schemes combine outputs from chemical transport 82 

models (Fritz et al., 2022; Schneising et al., 2023; Sicard et al., 2021) with satellite retrievals to 83 

generate more spatially consistent and temporally continuous products. By integrating physical 84 
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model constraints with empirical corrections, these methods can effectively reduce retrieval bias 85 

and improve gap-filling robustness(Inness et al., 2022; Wang et al., 2023). However, their 86 

performance often depends on the accuracy of prior model simulations and the representativeness 87 

of assimilated observations.On the other hand, enhanced spectral fitting algorithms (Borsdorff et al., 88 

2019; Guanter et al., 2015; Schneising et al., 2023; Wang et al., 2020) offer an alternative approach. 89 

These algorithms can mitigate bias from fluctuations in spectral reflectance by increasing the order 90 

of the polynomial fit. Nevertheless, this heightened complexity often demands greater 91 

computational resources and leads to longer processing times. 92 

This study aims to develop a robust framework for generating daily global and regional 93 

continuous XCO and XCH₄ products over the period 2019–2023, at a spatial resolution of 0.25° 94 

globally and 0.05° over China. The core objective is to address the frequent data gaps in satellite 95 

observations, especially those caused by cloud coverage and retrieval errors in the TROPOMI sensor, 96 

by leveraging complementary information from chemical transport modeling and frequency-domain 97 

representations. 98 

To achieve this, we propose a signal-domain guided spatio-temporal fusion method that 99 

integrates GEOS-Chem simulations with TROPOMI observations. Our approach consists of two 100 

stages: (1) a low-rank signal-domain reconstruction using 3D Discrete Cosine Transform (DCT) 101 

(Rao and Yip, 2014)  and Singular Value Decomposition (SVD) (Wall et al., 2003), which exploits 102 

the shared spatio-temporal structure between model and satellite data to approximate missing values, 103 

and (2) a learning-based refinement module that employs a lightweight residual U-Net to predict 104 

pixel-level corrections based on GEOS-Chem output, reconstructed fields, and meteorological 105 

variables(Ronneberger et al., 2015; Tang, n.d.). 106 

Instead of using the TROPOMI data mask as a direct input, we apply it as a spatial constraint 107 

during model training to focus learning only on valid observations(Wei et al., 2022). This masked 108 

learning strategy improves generalization while preserving physical consistency. 109 

By fusing model-driven priors and observational constraints in both frequency and spatial 110 

domains, our method significantly improves the completeness and accuracy of XCO and XCH₄ 111 

datasets. Validation against held-out TROPOMI data shows that the fused outputs outperform 112 

GEOS-Chem alone and remain comparable to or better than TROPOMI retrievals in cloud-covered 113 

regions. The proposed framework provides an efficient and interpretable solution for large-scale 114 
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trace gas monitoring and offers new opportunities for atmospheric data assimilation and long-term 115 

climate analysis. 116 

2. Measurement and materials 117 

2.1. Data description 118 

2.1.1. TROPOMI XCO and XCH₄ product 119 

This study employs TROPOMI Level-2 data products of column-averaged CO (XCO) and CH₄ 120 

(XCH₄). Mounted on the Sentinel-5 Precursor (S5P) satellite, the TROPOspheric Monitoring 121 

Instrument (TROPOMI) functions in a polar sun-synchronous orbit. The Sentinel-5 Precursor (S5P) 122 

satellite is equipped with the TROPOMI, which operates in a polar sun-synchronous orbit. 123 

TROPOMI provides daily global XCO measurements at 13:30 local solar time, thereby facilitating 124 

daily global coverage. The pixel resolution of TROPOMI's XCO and XCH₄ data has been enhanced 125 

from 7.0 × 7.0 km² to 7.0 × 5.5 km² as of June 2019.  126 

By measuring the Earth's radiation in the short-wave infrared (SWIR) spectral range (2305-127 

2385 nm), TROPOMI inverts XCO and XCH₄. TROPOMI exhibits a high sensitivity to the 128 

tropospheric boundary layer for XCO in clear-sky conditions, but this sensitivity is subject to 129 

variation based on the optical path in overcast conditions. TROPOMI employs absorption 130 

information in the oxygen-A band (760 nm) and the SWIR spectral range (2305-2385 nm) for 131 

inversion of XCH₄. 132 

In order to guarantee the quality of the data, we implemented rigorous data selection criteria 133 

and exclusively selected data points with a Quality Value (QV) greater than 0.5 for analysis (Kawka 134 

et al., 2021). The data were obtained from a secondary offline and reprocessed product provided by 135 

NASA (https://tropomi.gesdisc.eosdis.nasa.gov/data/) for the period 2019–2023. The data regarding 136 

XCO and XCH₄ are presented in the form of column-averaged dry air mole fractions in parts per 137 

billion (ppb) in this study.  138 

2.1.2. GEOS-Chem Chemical Transport Model 139 

This investigation employs the GEOS-Chem model, a three-dimensional global atmospheric 140 

chemistry model that is comprehensive and employs Goddard Earth Observation System (GEOS) 141 

meteorological data supplied by the NASA Global Modelling and Assimilation Office (GMAO). 142 

https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



6 
 

Global Observation System (GEOS) meteorological data supplied by the NASA Global Modelling 143 

and Assimilation Office (GMAO). We employed version 14.1.1 144 

(http://acmg.seas.harvard.edu/geos/), which is powered by GEOS-FP meteorological data. The most 145 

recent GEOS-5 meteorological data product to be provided by NASA/GMAO is GEOS-FP 146 

("forward processing") (http://gmao.com/gmao.html). This product has a native horizontal 147 

resolution of 0.25° latitude × 0.3125° longitude and a temporal resolution of hourly data and 3-148 

hourly data. 149 

To reduce computational overhead, we employed a 2°×2.5° GEOS-Chem horizontal grid for 150 

the global XCO and XCH₄ simulations and a 0.25°×0.3125° GEOS-Chem horizontal grid for the 151 

XCO and XCH₄ simulations for the China region in order to achieve more precise results. The model 152 

calculates the concentrations of CO and CH₄ by integrating emission inventories from various 153 

regions, which are based on surface emissions and chemical reactions. 154 

The following are specific emission inventories: The Air Pollutant Emission Inventory (APEI) 155 

v2016 was used to obtain Canadian anthropogenic emissions data, while the National Emission 156 

Inventory (NEI) v2015-03 was used to obtain North American regional emissions data. The Diffuse 157 

and Inefficient Combustion Emissions in Africa (DICE-Africa) inventory was used to obtain 158 

anthropogenic emissions data for the Africa region (Marais and Wiedinmyer, 2016). The MIX v1.1 159 

inventory was used to obtain regional emissions data in Asia (Li et al., 2017) and HTAP. The 160 

Community Emissions Data System (CEDS) inventory was used to derive global aircraft and ship 161 

emissions data (Hoesly et al., 2018).The Quick Fire Emissions Dataset (QFED): Documentation of 162 

Versions 2.1, 2.2, and 2.4 was used to acquire carbon monoxide emissions data from biomass 163 

combustion. 164 

The time step for convective and advective transport in the simulation is 300 seconds, while 165 

the time step for chemical processes is 600 seconds. The distribution of XCO and XCH₄ 166 

concentrations and their alterations from 2019 to 2023 can be efficiently and accurately simulated 167 

using the aforementioned setup. 168 

2.1.3. Total Carbon Column Observing Network (TCCON) Measurements 169 

TCCON employs a Fourier Transform Infrared Spectrometer (FTS) to measure direct solar 170 

light in order to determine the total column concentrations of greenhouse gases in the atmosphere, 171 

including carbon dioxide (CO₂), methane (CH₄), carbon monoxide (CO), and others (Buschmann et 172 
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al., 2016; Kiel et al., 2016; Sha et al., 2019; Yang et al., 2020). These data are extensively utilized 173 

to validate satellite remote sensing data (e.g., G. Chander et al., 2013; Imasu et al., 2023; Lin et al., 174 

2024; Loew et al., 2017; Wu et al., 2019; etc.) and to evaluate the performance of climate models. 175 

They are rigorously calibrated and validated with high accuracy and reliability. TCCON's observing 176 

stations are situated in numerous regions worldwide, providing a comprehensive understanding of 177 

the global greenhouse gas distribution. These stations are capable of observing a diverse array of 178 

climates and ecosystems. Harmonized processing is implemented for each site's data. In order to 179 

guarantee data consistency and comparability, the data from each station is processed in a consistent 180 

manner. TCCON's XCO and XCH₄ Dry Air Mole Fraction (Xgas) in ppb are employed in this 181 

investigation. Site-specific and time-scale data are accessible through the official website of 182 

TCCON (https://tccon.ornl.gov/), and users may select the data that is most relevant to their research 183 

requirements. The validation of XCO and XCH₄ products from TROPOMI and GEOS-Chem is 184 

frequently conducted using TCCON (Borsdorff et al., 2019; Cogan et al., 2012; Inness et al., 2022; 185 

Schneising et al., 2019). Figure 1 illustrates the global TCCON site location map, which comprises 186 

operational, prospective, and former sites, accordingly. The TCCON data version GGG2020 187 

(Laughner et al., 2023) was employed in this experiment. Table 1 provides a list of the sites that 188 

were utilized and are cross-correlated with the time frames in our experiment. 189 

 190 
Fig. 1 Map showing global TCCON site locations, including operating sites, potential sites, and past 191 

sites, respectively. 192 

 193 
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 194 

Table 1.  Details of the TCCON sites used in this study, No. is the serial number. 195 

No. Site name Latitude Longitude Location Start date End date 

1 bremen01 53.104 8.85 Bremen, Germany 2009/1/6 2021/6/24 

2 burgos01 18.5325 120.6496 Burgos, Philippines 2017/3/3 2023/6/23 

3 darwin01 -12.425 130.891 Darwin, Australia 2013/1/1 2022/12/27 

4 easttroutlake01 54.354 -104.987 East Trout Lake, Canada 2016/10/3 2024/2/15 

5 edwards01 34.9599 -117.881 AFRC, Edwards, CA, USA 2013/7/20 2024/2/22 

6 garmisch01 47.476 11.063 Garmisch, Germany 2007/7/18 2023/5/4 

7 hefei01 31.91 117.17 Hefei, China 2015/11/2 2023/12/25 

8 izana01 28.31 -16.5 Izana, Tenerife, Spain 2014/1/2 2023/8/30 

9 karlsruhe01 49.103 8.44 Karlsruhe, Germany 2014/1/15 2023/6/26 

10 lamont01 36.604 -97.486 Lamont, Oklahoma, USA 2011/4/16 2024/2/25 

11 lauder03 -45.038 169.684 Lauder, New Zealand 2018/10/2 2023/12/28 

12 nicosia01 35.141 33.381 Nicosia, Cyprus 2019/9/1 2023/5/10 

13 orleans01 47.97 2.113 Orleans, France 2009/9/6 2023/6/23 

14 parkfalls01 45.945 -90.273 Park Falls, Wisconsin, USA 2004/6/2 2024/2/25 

15 pasadena01 34.136 -118.127 Pasadena, California, USA 2012/9/20 2024/2/25 

16 reunion01 -20.901 55.485 Reunion Island, France 2015/3/1 2020/7/18 

17 rikubetsu01 43.4567 143.7661 Rikubetsu, Hokkaido, Japan 2014/6/24 2021/6/30 

18 sodankyla01 67.367 26.631 Sodankylä, Finland 2009/5/16 2023/5/30 

19 tsukuba02 36.0513 140.1215 Tsukuba, Ibaraki, Japan, 125HR 2014/3/28 2021/3/31 

20 wollongong01 -34.406 150.891 Wollongong, Australia 2013/1/4 2023/6/27 

21 xianghe01 39.8 116.96 Xianghe, China 2018/6/14 2023/5/29 

 196 

2.2. Methodology 197 

In this study, we propose a two-stage fusion framework that integrates physical modeling, 198 

signal-domain reconstruction, and deep learning-based residual correction to achieve continuous 199 

and accurate global mapping of atmospheric trace gases. The overall workflow is illustrated in 200 

Figure 2, which presents the main components and their interconnections. In the first stage, a signal-201 

domain spatio-temporal reconstruction is employed to exploit the low-frequency consistency and 202 

spatio-temporal correlations between the TROPOMI observations and GEOS-Chem simulations, 203 

effectively filling missing data regions caused by cloud cover or instrument limitations. In the 204 

second stage, a residual learning network based on a lightweight residual U-Net is introduced to 205 

refine the fused results by learning nonlinear and region-specific discrepancies between the 206 
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preliminary reconstruction and the true satellite observations.207 

 208 

Fig. 2. Overview of the proposed fusion framework combining physical modeling, signal-domain 209 

reconstruction, and deep learning-based residual correction. The process includes data 210 

preprocessing, DCT&SVD-based spatio-temporal fusion, and residual refinement via a lightweight 211 

residual U-Net architecture. Arrows indicate the information flow across different modules. 212 

 213 

2.2.1. Data Preprocessing 214 

Data preprocessing is a critical component in guaranteeing the reliability and rationality of the 215 

fusion results. In this investigation, values with data quality less than 0.5 in XCO and XCH₄ in 216 

TROPOMI are discarded to eliminate inaccurate data and are subsequently aligned to a global 217 

coverage of 720 x 1440 (0.25°) horizontal grid through area-weighted aggregation (Wang et al., 218 

2018). The global-scale data from GEOS-Chem simulations should be aligned to the same 0.25° 219 

horizontal grid by inverse distance-weighted interpolation, and the TROPOMI data should be 220 

maintained at the same resolving power as GEOS-Chem (Setianto and Triandini, 2013). Global-221 

scale data were simulated by GEOS-Chem and aligned to the same 0.25° horizontal grid. 222 
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To reconcile the heterogeneous spatial supports of satellite retrievals and model simulations, 223 

the TROPOMI XCO and XCH₄ data are first filtered by discarding pixels with a quality flag below 224 

0.5 and then regridded to a global 0.25°×0.25° grid (720×1440) using area-weighted aggregation 225 

(Wang et al., 2018). The GEOS-Chem outputs are interpolated onto the same 0.25° grid via inverse 226 

distance weighting to ensure spatial compatibility between the datasets (Setianto and Triandini, 227 

2013). The choice of 0.25° represents a widely adopted trade-off: it is fine enough to preserve 228 

mesoscale spatial gradients without excessively increasing data volume or the computational burden 229 

for multi-year global fusion analyses (Hu et al., 2024; Wang et al., 2023). 230 

2.2.2. Spatio-Temporal Data Fusion Method Based on Signal Domain Reconstruction 231 

The accuracy of the inventory typically results in an underestimation of GEOS-Chem 232 

simulation data, as demonstrated by previous research(Hu et al., 2018; Liang et al., 2023). However, 233 

the spatio-temporal consistency of the GEOS-Chem simulation data with TROPOMI data is still 234 

satisfactory (i.e., similar increase–decrease patterns over time). The spatio-temporal correlation 235 

between GEOS-Chem simulation data and TROPOMI data can be thoroughly leveraged to derive 236 

continuous coverage data through data fusion (J. Chen et al., 2022; He et al., 2022; Wang et al., 237 

2021). 238 

We will assume that a spatio-temporal relationship function exists between XCO and XCH₄ 239 

for GEOS-Chem and TROPOMI, as shown below: 240 

XT = 𝑓𝑓(XG, Lat, Lon,   Date)                     (1) 241 

Where Lat, Lon, and Date denote latitude, longitude, and time series, respectively, and XG is 242 

the GEOS-Chem XCO and XCH₄ concentration value. That is, the TROPOMI value at a given 243 

spatial and temporal coordinate can be determined by taking the modeled concentration value and 244 

the spatial and temporal coordinates to which it pertains. 245 

In order to simplify the resolution of this issue, we convert the aforementioned equation to the 246 

form of a scalar product of XG with a spacetime transformation matrix M, as follows: 247 

XT =  𝑋𝑋𝑋𝑋 ∗ ρ                               (2) 248 

The parameter relationships corresponding to GEOS-Chem and TROPOMI are established at 249 

each spatio-temporal coordinate in ρ, a spatio-temporal three-dimensional matrix with the same 250 

scale as XT and XG. ρ is a smoothed three-dimensional parameter matrix, inspired by previous work 251 

on filling in the vacant values in the spatio-temporal data and enhancing the smoothing of the data 252 

https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



11 
 

using the multidimensional discrete cosine transform (Elharar et al., 2007; Garcia, 2010, 2010; J. 253 

Robinson and V. Kecman, 2003; Okolie and Smit, 2022; Peng et al., 2005; Rao and Yip, 2014; Wang 254 

et al., 2023). The majority of the known parameters in ρ can be obtained from the valid values in 255 

GEOS-Chem and TROPOMI. We suggest a spatio-temporal 3D matrix smoothing algorithm that is 256 

based on Singular Value Decomposition (SVD) and Discrete Cosine Transform (DCT) to enhance 257 

the smoothness of the data and fill unoccupied values in spatio-temporal data. This algorithm is 258 

designed to suit our data. The method effectively manages spatio-temporal data with missing values 259 

while maintaining the spatio-temporal correlation of the data by combining spatio-temporal nearest-260 

neighbor interpolation and regularized optimization techniques. 261 

We find the spatio-temporal 3D matrix ρ� that minimizes Eq. (3) by means of the 3D discrete 262 

cosine transform method, as a way to obtain the best estimate of the vacancy value, including the 263 

residual term on the left-hand side and the smoothing term on the right-hand side. 264 

E( ρ� ) = ∥∥
∥ 𝜔𝜔

1
2  ∗  ( ρ�  − ρ)∥∥

∥2  +  𝜀𝜀 ∥∥∇2  ρ�   ∥∥2                    (3) 265 

where ∥∥  denotes the Euclidean paradigm, 𝜔𝜔 is a binary mask indicating the availability of 266 

a parameter corresponding to the spatio-temporal location of ρ, 𝜀𝜀 denotes the smoothing parameter, 267 

and ∇2 denotes the Laplace operator. This satisfied condition ρ� can be solved by iteration of Eq. 268 

(4). 269 

ρ�  = 𝛼𝛼  IDCT₃� 𝛤𝛤3  ∗ DCT₃ (𝜔𝜔 ∗ (ρ −  ρ�   ) + ρ�   )�  + (1− 𝛼𝛼)   ρ�           (4) 270 

where 𝛼𝛼  is a parametric factor for accelerating convergence, 𝛤𝛤3  denotes the 3D spatio-271 

temporal filtering matrix associated with the smoothing term, which can be obtained through Eq. 272 

(5), and DCT₃ and IDCT₃ denote the 3D discrete cosine signal transform and its inverse transform, 273 

respectively, with Eqs. (6) and (7) as their transformation rules. 274 

  𝛤𝛤 i1,i2,i3
3  = 1

1+𝜀𝜀 ∑  3
𝑘𝑘=1 2�1−cos (𝑖𝑖𝑘𝑘−1)𝜋𝜋

𝑛𝑛𝑘𝑘
�
                              (5) 275 

Here, i𝑘𝑘 denotes the ith value along the kth dimension and 𝑛𝑛𝑘𝑘 denotes the size of ρ along the 276 

kth dimension. This means that the value at each position of this three-dimensional spatio-temporal 277 

filtering matrix is completely determined by its position, and the closer its position is to the element 278 

of the matrix at position (1, 1, 1), the larger (the closer it is to 1) the value is, and vice versa the 279 

smaller it is. The value at position (1, 1, 1) is 1. Since the low frequencies of the discrete cosine 280 

transformed signal matrix are mainly located close to position (1, 1, 1), with this filtering matrix, it 281 
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is possible to search for ρ that is suitable for smoothing. In this study, the total number of iterations 282 

is empirically set to 100, 𝛼𝛼 is set to 0.75, and 𝜀𝜀 takes values in the middle of the range from 103 283 

to 10-1. 284 

𝐹𝐹(𝑢𝑢,𝑣𝑣,𝑤𝑤) = 2
√𝑁𝑁𝑁𝑁𝑁𝑁

∑  𝑁𝑁−1
𝑥𝑥=0 ∑  𝑀𝑀−1

𝑦𝑦=0 ∑  𝑃𝑃−1
𝑧𝑧=0 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)cos �𝜋𝜋(2𝑥𝑥+1)𝑢𝑢

2𝑁𝑁
� cos �𝜋𝜋(2𝑦𝑦+1)𝑣𝑣

2𝑀𝑀
� cos   （6） 285 

Three-dimensional discrete cosine signal transform (DCT₃) rule, where u=0, 1, 2, ..., N-1, 286 

v=0,1, 2, ..., M-1, w=0, 1, 2, ..., P -1. N, M, and P represent the magnitude of the signal in each of 287 

the three dimensions. 288 

𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 2
√𝑁𝑁𝑁𝑁𝑁𝑁

∑  𝑁𝑁−1
𝑢𝑢=0 ∑  𝑀𝑀−1

𝑣𝑣=0 ∑  𝑃𝑃−1
𝑤𝑤=0 𝐹𝐹(𝑢𝑢, 𝑣𝑣,𝑤𝑤)cos �𝜋𝜋(2𝑥𝑥+1)𝑢𝑢

2𝑁𝑁
� cos �𝜋𝜋(2𝑦𝑦+1)𝑣𝑣

2𝑀𝑀
� cos  （7） 289 

Three-dimensional discrete cosine inverse transform (IDCT₃) rule, where x=0, 1, 2, ..., N-1, 290 

y=0, 1, 2, ..., M-1, and z=0, 1, 2, ..., P -1. N, M, and P represent the magnitude of the signal in each 291 

of the three dimensions. 292 

Furthermore, the 3D discrete cosine transform is provided with a complete 3D matrix for signal 293 

conversion. Consequently, we interpolate ρ with missing values using the spatio-temporal 294 

autocorrelation property of ρ. Subsequently, we employ singular value decomposition (SVD) to 295 

retain 80% of the singular value energy, thereby enabling data downscaling and compression. The 296 

rules of the singular value decomposition (SVD) are illustrated in Eq. (8) as a method of preserving 297 

the primary ρ components for the iteration of Eq. (4). 298 

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇                           （8） 299 

where the matrices 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 , 𝑈𝑈 ∈ ℝ𝑚𝑚×𝑚𝑚 are orthogonal matrices whose column vectors 300 

are called left singular vectors; Σ ∈ ℝ𝑚𝑚×𝑛𝑛 is a diagonal matrix whose diagonal elements are the 301 

singular values 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑟𝑟 ≥ 0  (𝑟𝑟  is the rank of the matrix 𝐴𝐴 ).  𝑉𝑉 ∈ ℝ𝑛𝑛×𝑛𝑛  is an 302 

orthogonal matrix whose column vectors are called right singular vectors. 303 

Calculate the total energy of the singular values 𝐸𝐸total = ∑  𝑟𝑟
𝑖𝑖=1 𝜎𝜎𝑖𝑖2, and find the smallest 𝑘𝑘 304 

such that the first 𝑘𝑘  singular values account for at least 80% of the total energy, i.e., 305 

( ∑  𝑘𝑘
𝑖𝑖=1 𝜎𝜎𝑖𝑖2 )/𝐸𝐸total  ≥ 0.8. Setting the last 𝑟𝑟 − 𝑘𝑘 smaller singular values in Σ to zero yields the 306 

truncated diagonal matrix Σ𝑘𝑘 = diag(𝜎𝜎1,𝜎𝜎2, … ,𝜎𝜎𝑘𝑘 , 0, … ,0), and reconstructing the approximation 307 

matrix using the truncated singular value matrix 𝐴𝐴𝑘𝑘 = 𝑈𝑈Σ𝑘𝑘𝑉𝑉𝑇𝑇. 308 

2.2.3. Deep Residual Refinement via Learning-Based Mask Reconstruction 309 
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To further enhance the reconstruction quality, we introduce a residual learning module based 310 

on a deep neural network to refine the fused product. To evaluate the effectiveness of the residual 311 

learning module, we conducted a site-based validation experiment across all TCCON stations, using 312 

data from the year 2021, to provide a rigorous comparison of the five reconstruction methods: (1) 313 

only DCT fusion(Garcia, 2010), (2) DCT and SVD mixed-signal reconstruction(M. Bengherabi et 314 

al., 2008; Majhi and Pal, 2021), (3) residual CNN(Y. Jiang et al., 2024), (4) residual U-315 

Net(Ronneberger et al., 2015; Yan et al., 2022), and (5) residual XGBoost(Naseem et al., 2024). The 316 

performance was assessed using the coefficient of determination (R²), root mean square error 317 

(RMSE), and mean bias (μ). 318 

As shown in Tables S1 and S2, the residual U-Net consistently outperforms other methods for 319 

both XCO and XCH₄. Specifically, R² increased from 0.8227 (only DCT) to 0.845 for XCO and 320 

from 0.7056 to 0.7598 for XCH₄, while RMSE decreased correspondingly. These results 321 

demonstrate a improvement in the quality of the reconstructed data. 322 

Residual Learning Objective 323 

Let 𝑋𝑋DCT denote the preliminary fused XCO/XCH₄ field obtained from the DCT/SVD-based 324 

reconstruction, and 𝑋𝑋TROPOMI  be the valid observational values from the satellite. The residual 325 

between the fusion estimate and the true value (only available at observed locations) is defined as: 326 

Δ𝑋𝑋true = 𝑋𝑋TROPOMI − 𝑋𝑋DCT, where  𝑀𝑀 = 1                  (9) 327 

Here, 𝑀𝑀 ∈ {0,1}𝐻𝐻×𝑊𝑊  is a binary mask indicating the presence (1) or absence (0) of valid 328 

satellite data. The goal is to train a model ℱ𝜃𝜃(⋅) parameterized by θ to predict the residual Δ𝑋𝑋pred 329 

across the entire domain: 330 

Δ𝑋𝑋pred = ℱ𝜃𝜃(𝑋𝑋G,𝑋𝑋DCT,𝐀𝐀)                          (10) 331 

Where 𝑋𝑋G  denotes the GEOS-Chem full-coverage simulation data; 𝑋𝑋DCT  denotes the 332 

DCT/SVD-reconstructed preliminary fusion; 𝐀𝐀  denotes the auxiliary information such as 333 

meteorological fields and emission inventories. Precursor meteorological data simulated by GEOS-334 

Chem and emission inventory were used in this study. The final fused product is obtained by 335 

correcting the DCT/SVD estimate with the predicted residual: 336 

  𝑋𝑋fused = 𝑋𝑋DCT + Δ𝑋𝑋pred                          (11) 337 

Loss Function Design 338 
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The model is trained using only the valid observations, i.e., locations where M=1. The loss 339 

function is designed to minimize the residual error at these observed locations: 340 

ℒ(𝜃𝜃) = 1
∑𝑀𝑀𝑖𝑖,𝑗𝑗

∑  𝑖𝑖,𝑗𝑗 𝑀𝑀𝑖𝑖,𝑗𝑗 ⋅ �Δ𝑋𝑋pred
(𝑖𝑖,𝑗𝑗) − Δ𝑋𝑋true

(𝑖𝑖,𝑗𝑗)�
2
                      (12) 341 

This masked mean squared error ensures that the learning focuses on valid regions, while 342 

generalization to unobserved regions is achieved through the spatial context and auxiliary inputs. 343 

Model Architecture and Training 344 

In this study, we employ a lightweight residual U-Net architecture to predict the full-domain 345 

residual field Δ𝑋𝑋pred, which represents the correction from the DCT/SVD reconstruction to the 346 

expected TROPOMI observation. The network inputs include the GEOS-Chem simulation, the 347 

DCT/SVD reconstruction output, and auxiliary meteorological variables (Wang et al., 2025). The 348 

TROPOMI mask is not used as an input but is instead applied during the loss computation to focus 349 

learning only on valid pixels. 350 

The residual U-Net consists of an encoder-decoder structure with skip connections and 351 

lightweight residual blocks to enhance gradient flow and convergence speed. The input and output 352 

spatial dimensions remain unchanged (i.e., 720 × 1440 at 0.25° resolution), enabling pixel-wise 353 

learning of spatial residuals. The training data comprises daily global maps from 2019 to 2023. 354 

To ensure stable training and prevent overfitting, we implemented standard regularization 355 

strategies by incorporating early stopping, dropout layers (p = 0.3), and input normalization (mean 356 

= 0, std = 1). The final output is truncated to avoid physically implausible corrections, by enforcing: 357 

|Δ𝑋𝑋pred| < 𝛾𝛾 ⋅ 𝜎𝜎TROPOMI, 𝛾𝛾 ∈ [2,3]                         (13) 358 

where 𝜎𝜎TROPOMI  denotes the standard deviation of observed valid values, and 𝛾𝛾 is a 359 

hyperparameter controlling confidence bounds. 360 

 361 

2.2.4. Evaluation Schem 362 

Our study's evaluation methodology encompasses ground station validation and the assessment 363 

of geographical dispersion alongside relevant applications. The ground site validation entails the 364 

assessment of GEOS-Chem simulations, TROPOMI, and the fusion-generated XCO and XCH₄ data 365 

against TCCON measurements. This process encompasses the validation of overall results across 366 

all sites in comparison to individual site evaluations, utilizing the coefficient of determination (R²), 367 

root mean square error (RMSE), mean bias (μ), and standard deviation of the bias (σ) (Karunasingha, 368 
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2022; Kobayashi and Salam, 2000; Wang et al., 2023). The aforementioned measures were 369 

computed using a significant threshold of p < 0.01 (Walsh et al., 2014). The assessment of 370 

geographical distribution includes the analysis of GEOS-Chem simulations, TROPOMI, and 371 

integrated XCO and XCH₄ data over several temporal scales, including multi-year averages, 372 

seasonal variations, and yearly metrics. Relevant applications include the evaluation of TROPOMI 373 

data acquisition, the integration of XCO and XCH₄ data at extremes, and the comparative analysis 374 

of multi-year column concentration increase rates across various geographies. 375 

3. Results and discussion 376 

3.1. TCCON Site Validation 377 

The TCCON sites are uniformly spread worldwide, and the TROPOMI satellite traverses the 378 

region at around 13:30 local time; hence, we use the average column concentrations from the 379 

TCCON sites at 13:30±1h local time as the validation data for the ground stations. The GEOS-380 

Chem simulation, TROPOMI, and the integrated data are then collected within a 2 °  radius 381 

surrounding each location as the corresponding validation outcomes. Only those cases in which the 382 

satellite data exhibit a missing rate exceeding 0.5 at the site are retained for comparison. 383 

Figure 3 and 4 illustrate the time series of daily GEOS-Chem, TROPOMI, fusion data, and 384 

TCCON's XCO and XCH₄ data for several different ground stations, respectively. Figure 3 presents 385 

a time series plot of carbon monoxide column concentrations from three stations: easttroutlake01, 386 

lamont01, and parkfalls01. Figure 4 illustrates a daily time series plot of methane column 387 

concentrations, exemplified by edwards01, nicosia01, and pasadena01. In comparison to TCCON, 388 

both GEOS-Chem simulated XCO and XCH₄ data exhibit underestimation; nonetheless, they 389 

maintain time-varying consistency (i.e., similar increase–decrease patterns over time) with the 390 

TCCON site data, suggesting that the model simulation may serve as a reference for temporal and 391 

geographic fluctuations in the fused data. The temporal trend of TROPOMI and integrated XCO 392 

and XCH₄ data aligns with that of TCCON. The amalgamated data exhibit reduced biases μ (-0.79, 393 

-3.58, -1.08 ppb for XCO; -5.43, -2.49, -4.34 ppb for XCH₄) and diminished standard deviations σ 394 

(9.93, 4.26, 5.73 ppb for XCO; 5.99, 6.87, 6.77 ppb for XCH₄) in comparison to the TROPOMI data. 395 
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 396 
Fig. 3 (a)(b)(c) Time-series scatter plots of daily GEOS-Chem, TROPOMI, fusion data, and TCCON 397 

on XCO at three sites, easttroutlake01, lamont01, and parkfalls01, respectively. The first and second 398 

numbers in parentheses indicate the deviation (μ) and standard deviation (σ), respectively, both in 399 

parts per billion (ppb). 400 
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 401 
Fig. 4 (a)(b)(c) Scatterplots of daily time series of GEOS-Chem, TROPOMI, fusion data, and 402 

TCCON on XCH₄ for the three sites edwards01, nicosia01, and pasadena01, respectively. The first 403 

and second numbers in parentheses indicate the deviation (μ) and standard deviation ( σ ), 404 

respectively, both in parts per billion (ppb). 405 

The systematic underestimation of GEOS-Chem model simulations may introduce bias in the 406 

correlation analysis when directly compared with TCCON observations. The average bias of the 407 

GEOS-Chem simulation data was corrected using a manual correction method, which more 408 

accurately reflects the relationship with TCCON observation data, thereby enhancing the reliability 409 

of the correlation analysis. This study further enhances scientific validity and relevance by screening 410 

TROPOMI satellite observation data samples with a missing rate exceeding 50% at the stations, and 411 

comparing these with TCCON data for validation. This screening method effectively addresses 412 

uncertainty arising from insufficient data coverage while concentrating on the incremental aspects 413 
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of the study, thereby enhancing the scientific basis for model optimization and satellite data 414 

validation. 415 

Representative sites were selected based on data completeness to ensure statistical validity. 416 

Specifically, for each TCCON station, we computed the fraction of TROPOMI retrievals with a 417 

quality flag ≥  0.5 within the 13:30 ±  1 h local-time window. Stations with the highest 418 

availability ratios were retained for analysis. Three sites, burgos01, izana01, and nicosia01, were 419 

utilized for XCO validation (refer to Figure 5). The findings indicate that the fused datasets at the 420 

burgos01 and izana01 sites demonstrate notable superiority compared to the GEOS-Chem 421 

simulation results and TROPOMI satellite observations, as evidenced by higher coefficients of 422 

determination (R²), reduced root-mean-square error (RMSE), diminished bias (μ), and lower 423 

standard deviation (σ). This suggests that the fusion methods effectively enhance data accuracy and 424 

consistency. The fusion results on the nicosia01 site do not significantly exceed those of TROPOMI, 425 

yet they demonstrate comparable performance, thereby further validating the robustness of the 426 

fusion method. To validate XCH₄, we examine three sites: burgos01, rikubetsu01, and xianghe01 427 

(refer to Figure 6). The analysis indicates that at the burgos01 and xianghe01 sites, the fused dataset 428 

markedly outperforms GEOS-Chem and shows modest but consistent improvements over 429 

TROPOMI across key evaluation metrics, including the coefficient of determination (R²), root mean 430 

square error (RMSE), bias (μ), and standard deviation (σ). This finding suggests that the fusion 431 

method significantly enhances the quality of XCH₄ data. The fusion results on the rikubetsu01 site 432 

do not significantly exceed those of TROPOMI, yet they remain comparable, further illustrating the 433 

wide applicability and reliability of the fusion method. Table S3 and Table S4 present the validation 434 

results for each valid individual site for XCO and XCH₄, respectively. The fusion results 435 

demonstrate superior performance compared to the TROPOMI results at a minimum of 70% of the 436 

sites examined. 437 
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 438 

Fig. 5 (a, d, g) Scatterplots of the results of the independent validation of the (a, d, g) GEOS-Chem, 439 

(b, e, h) TROPOMI, and (c, f, i) fused XCO data at the burgos01, izana01, and nicosia01 sites, 440 

respectively. Black dashed lines and red realizations represent 1:1 and fitted lines, respectively. The 441 

x-axis is TCCON data, and the y-axis is GEOS-Chem, TROPOMI, and fusion data, all in parts per 442 

billion (ppb). 443 
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 444 

Fig. 6 (a, d, g) Scatterplots of the results of the independent validation of the (a, d, g) GEOS-Chem, 445 

(b, e, h) TROPOMI, and (c, f, i) fused XCH₄ data at the burgos01, rikubetsu01, and xianghe01 sites, 446 

respectively. Black dashed lines and red realizations represent 1:1 and fitted lines, respectively. The 447 

x-axis is TCCON data, and the y-axis is GEOS-Chem, TROPOMI, and fusion data, all in parts per 448 

billion (ppb). 449 

Figure 7 illustrates the findings of the comprehensive correlation validation between XCO and 450 

XCH₄ across all verified locations. For XCO, the integrated dataset markedly surpasses the GEOS-451 

Chem simulations for data quality and exceeds the TROPOMI satellite observations across 452 

numerous critical criteria. The fused data exhibit a coefficient of determination (R²) of 0.92, 453 

markedly surpassing that of TROPOMI, thereby demonstrating superior capacity to encapsulate 454 

observational variability. The root mean square error (RMSE) is 4.85 ppb, and the standard deviation 455 

(σ) is 4.70 ppb, both of which outperform the corresponding metrics of TROPOMI, further 456 

substantiating the enhanced accuracy and consistency of the fused data. Moreover, the fused data 457 

exhibit a deviation (μ) index comparable to TROPOMI, indicating that systematic errors have been 458 
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efficiently managed and the overall performance is more resilient. The fused dataset for XCH₄ 459 

demonstrates notable advantages, exhibiting a coefficient of determination (R²) of 0.85, surpassing 460 

that of TROPOMI, thereby indicating superior interpretative capability; additionally, it presents a 461 

standard deviation (σ) of 12.59 ppb, which is more favorable than TROPOMI's, further 462 

substantiating the efficacy of the fused data in minimizing dispersion. While the fused data exhibits 463 

comparable performance to TROPOMI for root mean square error (RMSE) and bias (μ) parameters, 464 

its overall efficacy reflects a significant level of stability and consistency, particularly in complex 465 

contexts. This illustrates the favorable outcomes attained by the aforementioned fusion approach. 466 

 467 

Fig. 7 Scatterplots of the results of the overall validation of (a, d) GEOS-Chem, (b, e) TROPOMI, 468 

and (c, f) fused XCO vs. XCH₄ data at all respective validated sites. Black dashed lines and red 469 

realizations represent 1:1 and fitted lines, respectively. The x-axis is TCCON data, and the y-axis is 470 

GEOS-Chem, TROPOMI, and fusion data, all in parts per billion (ppb). 471 

 472 

3.2. Multi-Scale Spatio-Temporal Analysis 473 

Figure S1 illustrates the comparison of worldwide yearly GEOS-Chem, TROPOMI, fused 474 

XCO, and XCH₄ for the years 2020 and 2022. The fused data exhibit a similar geographical 475 

distribution with TROPOMI. Despite a substantial underestimation of GEOS-Chem, it retains a 476 
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robust geographic distribution alignment with TROPOMI, providing a critical reference for data 477 

fusion, and this underestimation is markedly altered post-fusion. 478 

Figure S2 illustrates the global distribution of fused XCO and XCH₄ for three representative 479 

days in 2020 and 2022, respectively. The fusion findings, as seen in the image, offer comprehensive 480 

information on atmospheric CO and CH₄, distinctly revealing their worldwide geographical 481 

distribution. For comparison, Figure S3 illustrates the global distribution of XCO and XCH₄ 482 

observed by TROPOMI on these corresponding days. Meteorological factors have resulted in 483 

several gaps in the satellite observations, particularly evident in the XCH₄ data, when compared to 484 

Figure S2. Figure S2 illustrates that the integrated data addresses the deficiencies in geographical 485 

and temporal information, so improving data continuity while preserving the integrity of the satellite 486 

observations. 487 

Figure 8 illustrates the global multi-year average distributions of fused XCO and XCH₄ for the 488 

period 2019–2023. Elevated concentrations of both gases are predominantly observed across Asia, 489 

particularly over China and India. For XCO, distinct high-value regions are also evident in Central 490 

Africa and northern South America. Figures S4 and S5 illustrate the seasonal averages of the fused 491 

global XCO and XCH₄ data from 2019 to 2023. The seasonal variations in the geographical 492 

distribution are distinctly captured by the fusion results. Notably, XCO exhibits more pronounced 493 

spatiotemporal variability compared to XCH₄. Specifically, CO tends to be spatially concentrated in 494 

certain regions, whereas CH₄ displays a relatively more uniform global distribution. 495 
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 496 

Fig. 8 (a) Global concentration distribution of fused XCO data averaged over multiple years from 497 

2019 to 2023; (b) Global concentration distribution of fused XCH₄ data averaged over multiple 498 

years from 2019 to 2023. The color bars indicate the concentrations of XCO and XCH₄ in parts per 499 

billion (ppb). 500 

Figures S6 and S7 illustrate the annual trends of global XCO and XCH₄ from 2019 to 2023, 501 

alongside their respective regional trajectories. Figure S6 indicates that XCO levels in North 502 

America showed a consistent increase from 2019 to 2023, while Central Africa and Eastern China 503 

exhibited a declining trend. Global XCH₄ levels demonstrated a steady increase over this period, 504 

with a notably higher growth rate observed in Central Africa (Figure S7). 505 
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3.3. Local High-Resolution Data Analysis 506 

To enhance the refinement capability of our fused data, we employed GEOS-Chem to simulate 507 

0.25x0.3125 nested gridded data for the Chinese region. Utilizing the same methodology, we refined 508 

the fused data for this region, achieving a grid accuracy of 0.05°, which served as the basis for our 509 

analysis of the local area in China. 510 

Figure S8 and S9 illustrate the fluctuations of XCO and XCH₄ in the TROPOMI and fusion 511 

datasets, respectively, during the late August 2022 hill fire in Chongqing. This encompasses a 512 

comparative analysis of the TROPOMI and fusion data over three days during the fire, along with 513 

a histogram depicting the daily variations in mean XCO and XCH₄ concentrations within the fire-514 

affected area during the mid to late months of the event. The Figure demonstrate that the fused data 515 

preserves local observational details from the satellite, thereby enhancing the comprehensiveness of 516 

the satellite data to a certain degree. The histograms reveal that the fused data reflects an upward 517 

trend in XCO and XCH₄ concentrations during the hill fires, with average increases of 17.1 ppb and 518 

24.5 ppb, respectively, during the hill fire period compared to the non-hill fire period at midday. 519 

Figure 9 and 10 depict the fluctuations in XCO and XCH₄ recorded by TROPOMI and 520 

integrated data in rice cultivation areas of Northeast and Southeast China, respectively. XCH₄ 521 

exhibits a steady increase in both satellite and fused data across these areas. In contrast to the fused 522 

data, the yearly growth rate obtained from satellite XCH₄ demonstrates an overestimation in both 523 

regions, with discrepancies of 17% and 26% for the Southeast and Northeast, respectively.  524 

 525 

Fig. 9 (a, c) Line plots of daily changes in parts per billion (ppb) for TROPOMI and (b, d) fused 526 

XCO data over rice-growing regions of northeastern China and southeastern China, respectively; 527 

the red dashed line is the fitted line of annual growth rate, and the annual growth rate is shown in 528 
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parentheses, in parts per billion per year (ppb/year). 529 

 530 

 531 

Fig. 10 (a, c) Line plots of daily changes in parts per billion (ppb) for TROPOMI and (b, d) fused 532 

XCH₄ data over rice-growing regions in northeastern China versus southeastern China, respectively; 533 

red dashed line is the fitted line of the annual growth rate, and in parentheses is the annual growth 534 

rate in parts per billion per year (ppb/year). 535 

XCO exhibits a downward trajectory in both satellite and fused data across rice cultivation 536 

areas of Northeast and Southeast China.  Nonetheless, the annual decline rate of satellite XCO is 537 

underestimated relative to the fused data, with discrepancies of 7% and 38% for the Southeast and 538 

Northeast regions, respectively.  This variance results from absent values in the satellite data, 539 

which omit specific low-concentration areas from the computations, thereby inflating the estimation 540 

of concentration changes.  In contrast, the fused data somewhat alleviate the intensity of these 541 

fluctuations.   542 

Rice paddies, as a major source of methane emissions, exhibit a robust association between 543 

their increasing cultivation area and the persistent growth in methane emissions. The expansion of 544 

rice farming has resulted in a proportional increase in methane emissions, underscoring the 545 

considerable influence of agricultural practices on greenhouse gas output(Shen et al., 2024). Straw 546 

burning is a key source of carbon monoxide, and the enforcement of pertinent control laws has 547 

markedly reduced CO emissions, leading to a steady decline in carbon monoxide levels in both 548 

regions(Huang et al., 2021).  549 

 550 
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4. Conclusions 551 

This study introduces a two-stage spatio-temporal fusion approach that integrates GEOS-Chem 552 

model outputs with TROPOMI satellite data. The method initially performs a signal-domain 553 

reconstruction using three-dimensional discrete cosine transform (DCT) and singular value 554 

decomposition (SVD), followed by a residual refinement step based on a lightweight convolutional 555 

neural network, enabling accurate gap-filling and spatial smoothing. This method successfully 556 

produces global daily continuous coverage of XCO and XCH₄ products at a resolution of 0.25° for 557 

the years 2019-2023, achieving high-resolution data fusion at 0.05°. The findings indicate that the 558 

fused data surpass the GEOS-Chem simulation results in accuracy and consistency and are 559 

comparable to or exceed the TROPOMI satellite observations across numerous critical criteria. The 560 

integrated data provide notable improvements in the coefficient of determination (R²), root mean 561 

square error (RMSE), bias (μ), and standard deviation (σ) globally, particularly in addressing 562 

missing areas and enhancing smoothness. This study effectively addressed the systematic 563 

underestimation issue of the GEOS-Chem model, attributed to inaccuracies in emission inventories, 564 

through data fusion, enabling the fused data to more accurately represent the long-term spatial and 565 

temporal distributions and seasonal variations of global XCO and XCH₄. 566 

The fused data offer a definitive overview of the geographical distribution patterns of XCO 567 

and XCH₄, together with their temporal trends. In regions like Asia, Africa, and North America, the 568 

fusion data effectively captured pronounced spatiotemporal variations and regional patterns. The 569 

fusion data demonstrates a robust capacity to detect extreme events (e.g., wildfires) and accurately 570 

represent short-term significant fluctuations in XCO and XCH₄ concentrations, serving as an 571 

excellent instrument for monitoring severe weather and pollution occurrences. This study elucidates 572 

the atmospheric distribution and alterations in specific locations of China using high-resolution data 573 

fusion. Particularly in the examination of methane emissions from the mountain fire incident and 574 

rice cultivation region in Chongqing, the integrated data exhibit elevated spatial resolution and 575 

temporal continuity, thereby offering significant data support for regional air quality monitoring and 576 

climate change research. All created fusion data may be obtained upon request from the authors for 577 

academics and policymakers. 578 
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This study has yielded significant outcomes in data fusion and product production; nonetheless, 579 

several deficiencies require more enhancement and optimization in further research. The GEOS-580 

Chem model exhibits systematic bias in simulating XCO and XCH₄. While the data fusion approach 581 

has largely mitigated this issue, additional optimization of the emission inventories and chemical 582 

reaction processes is necessary to enhance simulation accuracy. This work primarily utilizes 583 

TROPOMI and GEOS-Chem data; however, the incorporation of additional satellite observation 584 

data (e.g., GOSAT, OCO-2) and ground observation data in the future might enhance the diversity 585 

and precision of data fusion. 586 

This work effectively produced high-resolution XCO and XCH₄ products for global and 587 

Chinese areas by employing multi-source data fusion and spatio-temporal distribution analysis 588 

methodologies, therefore offering significant data assistance for climate change and air quality 589 

monitoring. In the future, as model accuracy improves, data fusion methods are optimized, and 590 

multi-source data is introduced, the methodologies and findings of this study are anticipated to have 591 

a more significant impact across a broader array of application situations. Data Availability 592 
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