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Abstract

Long-term, high-resolution monitoring of carbon monoxide (CO) and methane (CH.) is

essential for understanding their spatiotemporal variability and guiding climate mitigation strategies.

However, satellite observations like TROPOMI are often incomplete, and existing fusion methods
have limitations in accuracy and continuity. This study proposes a signal-domain fusion approach
combining 3D discrete cosine transform (DCT) and singular value decomposition (SVD) to
integrate TROPOMI data with GEOS-Chem simulations. A lightweight residual U-Net is employed
to refine the initial reconstruction by learning the residual field using meteorological drivers and
model outputs, guided by a masked loss. The method produces global 0.25° and China-specific
0.05° daily gap-free XCO and XCHa4 datasets from 2019 to 2023. The fused results outperform
GEOS-Chem and are comparable or superior to TROPOMI, with R? values of 0.92 for XCO and
0.85 for XCHa. Trend analysis reveals regional patterns such as XCO increases in North America
and declines in Eastern China, and widespread CHa growth. High-resolution data captures
enhancements during the 2022 Chongqing wildfires, with average increases of 17.1 ppb in XCO

and 24.5 ppb in XCHa, and reveals lower XCHa4 increases over rice-growing areas compared to
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TROPOMI, with overestimation reduced by 17-26%, and stronger XCO reductions, with satellite
underestimations up to 38%. These results highlight agricultural contributions and policy impacts.
This approach effectively reconstructs missing observations and enhances the utility of satellite—
model data for atmospheric research and emission assessments. The generated daily gap-free
datasets are publicly available at https://doi.org/10.5281/zenodo.17936461.

Keywords: CO; CHs; TROPOMI; GEOS-Chem; Signal Domain Fusion; Deep Learning;

Spatiotemporal Reconstruction

1. Introduction

Carbon monoxide (CO) and methane (CHa4) are two critical atmospheric gases that play a key
role in air quality monitoring and climate change research. CO is primarily produced through
incomplete combustion of fossil fuels and biomass, as well as the oxidation of methane and other
hydrocarbons. Its main sink is the reaction with hydroxyl radicals (OH), which contributes to the
formation of tropospheric ozone (Os) and greenhouse gases such as carbon dioxide (CO2) (Lelieveld
et al., 2016; Spivakovsky et al., 2000). Due to its atmospheric lifetime of weeks to months, CO
serves as an effective tracer for pollutant transport, facilitating the study of both horizontal and
vertical atmospheric movements (Heald et al., 2003). Methane (CHa4) is a powerful greenhouse gas
with a significantly longer atmospheric lifespan—around ten years—and a greater global warming
potential compared to numerous other gases (Filonchyk et al., 2024; Heilig, 1994). It originates
from both natural sources, such as wetlands, permafrost, and wildfires, and anthropogenic activities,
including agriculture, livestock digestion, landfills, and fossil fuel extraction (Chai et al., 2016;
Jackson et al., 2020). CHa4 plays a crucial role in atmospheric chemistry, influencing the oxidative
capacity of the atmosphere and contributing to tropospheric ozone formation. Its rising
concentration is a major driver of climate change.

CO provides valuable insights into pollution transport and atmospheric chemistry, while CHa
monitoring is critical for assessing greenhouse gas emissions and climate impacts. Both CO and
CHea are essential targets for monitoring efforts due to their distinct roles in atmospheric processes.
A comprehensive understanding of these gases is fundamental to improving air quality predictions

and formulating climate mitigation policies. The spatial distribution of CO and CHa in the
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atmosphere is now routinely determined through remote sensing observations. The source, transport,
and removal processes of pollutants can be effectively tracked and analyzed through global-scale
monitoring through satelite platforms. At present, a number of satellite instruments are equipped
with the ability to observe CO and CHa, including the Measurement of Pollutants in the Troposphere
(MOPITT) (Deeter et al., 2003), Atmospheric Infrared Sounder (AIRS) (McMillan et al., 2005),
Tropospheric Emission Spectrometer (TES) (Rinsland et al., 2006), and Interferometer for the
Exploration of the Atmosphere in the Infrared (IASI) (Turquety et al., 2004). These instruments
offer critical data support for the global distribution of CO and CHa in the atmosphere.

The TROPOMI instrument of the Sentinel-5P mission of the European Space Agency (ESA)
provides a greater degree of daily global coverage and spatial resolution than previous observing
missions. TROPOMI has been able to monitor the total atmospheric XCO and XCHa (column
concentrations of atmospheric CO and CHa, respectively) through spectroscopic measurements in
the ultraviolet (UV) to short-wave infrared (SWIR) bands, with a spatial resolution of approximately
7 x 7 km and high radiometric precision, since its successful launch on October 13, 2017.
TROPOMI has already been employed in numerous pertinent applications for XCO and XCHa
investigations, including the calculation of emissions from biomass combustion (Goudar et al., 2023;
Griffin et al., 2024). Nevertheless, the TROPOMI observations of XCO and XCHa at the surface
and in the atmosphere are impeded by the ability of clouds and atmospheric aerosols to block or
deflect reflected sunlight observed by satellite sensors. Observations may be incomplete,
particularly in regions with elevated levels of air pollution or overcast skies.

The continuous coverage of XCO and XCHa products for TROPOMI has been the subject of
numerous efforts, which primarily fall into three categories. On one hand, machine learning-based
interpolation methods (X. Chen et al., 2022; Hu et al., 2022; Valerio et al., 2025; Wei et al., 2025)
can effectively address data gaps. However, their precision is contingent upon the quality and
diversity of the training data, and inaccurate predictions may arise from insufficient or unbalanced
datasets. In addition to these approaches, model fusion methods have been developed to leverage
the complementary strengths of different data sources or modeling frameworks. For instance,
statistical data assimilation and hybrid modeling schemes combine outputs from chemical transport
models (Fritz et al., 2022; Schneising et al., 2023; Sicard et al., 2021) with satellite retrievals to

generate more spatially consistent and temporally continuous products. By integrating physical

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

model constraints with empirical corrections, these methods can effectively reduce retrieval bias
and improve gap-filling robustness(Inness et al., 2022; Wang et al., 2023). However, their
performance often depends on the accuracy of prior model simulations and the representativeness
of assimilated observations.On the other hand, enhanced spectral fitting algorithms (Borsdorff et al.,
2019; Guanter et al., 2015; Schneising et al., 2023; Wang et al., 2020) offer an alternative approach.
These algorithms can mitigate bias from fluctuations in spectral reflectance by increasing the order
of the polynomial fit. Nevertheless, this heightened complexity often demands greater
computational resources and leads to longer processing times.

This study aims to develop a robust framework for generating daily global and regional
continuous XCO and XCHa products over the period 2019-2023, at a spatial resolution of 0.25°
globally and 0.05° over China. The core objective is to address the frequent data gaps in satellite
observations, especially those caused by cloud coverage and retrieval errors in the TROPOMI sensor,
by leveraging complementary information from chemical transport modeling and frequency-domain
representations.

To achieve this, we propose a signal-domain guided spatio-temporal fusion method that
integrates GEOS-Chem simulations with TROPOMI observations. Our approach consists of two
stages: (1) a low-rank signal-domain reconstruction using 3D Discrete Cosine Transform (DCT)
(Rao and Yip, 2014) and Singular Value Decomposition (SVD) (Wall et al., 2003), which exploits
the shared spatio-temporal structure between model and satellite data to approximate missing values,
and (2) a learning-based refinement module that employs a lightweight residual U-Net to predict
pixel-level corrections based on GEOS-Chem output, reconstructed fields, and meteorological
variables(Ronneberger et al., 2015; Tang, n.d.).

Instead of using the TROPOMI data mask as a direct input, we apply it as a spatial constraint
during model training to focus learning only on valid observations(Wei et al., 2022). This masked
learning strategy improves generalization while preserving physical consistency.

By fusing model-driven priors and observational constraints in both frequency and spatial
domains, our method significantly improves the completeness and accuracy of XCO and XCHa4
datasets. Validation against held-out TROPOMI data shows that the fused outputs outperform
GEOS-Chem alone and remain comparable to or better than TROPOMI retrievals in cloud-covered

regions. The proposed framework provides an efficient and interpretable solution for large-scale
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trace gas monitoring and offers new opportunities for atmospheric data assimilation and long-term

climate analysis.

2. Measurement and materials

2.1. Data description

2.1.1. TROPOMI XCO and XCH4 product
This study employs TROPOMI Level-2 data products of column-averaged CO (XCO) and CH4

(XCHa4). Mounted on the Sentinel-5 Precursor (S5P) satellite, the TROPOspheric Monitoring
Instrument (TROPOMI) functions in a polar sun-synchronous orbit. The Sentinel-5 Precursor (S5P)
satellite is equipped with the TROPOMI, which operates in a polar sun-synchronous orbit.
TROPOMI provides daily global XCO measurements at 13:30 local solar time, thereby facilitating
daily global coverage. The pixel resolution of TROPOMI's XCO and XCHa data has been enhanced
from 7.0 x 7.0 km? to 7.0 x 5.5 km? as of June 2019.

By measuring the Earth's radiation in the short-wave infrared (SWIR) spectral range (2305-
2385 nm), TROPOMI inverts XCO and XCHas. TROPOMI exhibits a high sensitivity to the
tropospheric boundary layer for XCO in clear-sky conditions, but this sensitivity is subject to
variation based on the optical path in overcast conditions. TROPOMI employs absorption
information in the oxygen-A band (760 nm) and the SWIR spectral range (2305-2385 nm) for
inversion of XCHa.

In order to guarantee the quality of the data, we implemented rigorous data selection criteria
and exclusively selected data points with a Quality Value (QV) greater than 0.5 for analysis (Kawka
et al., 2021). The data were obtained from a secondary offline and reprocessed product provided by
NASA (https://tropomi.gesdisc.eosdis.nasa.gov/data/) for the period 2019—2023. The data regarding
XCO and XCHa are presented in the form of column-averaged dry air mole fractions in parts per
billion (ppb) in this study.

2.1.2. GEOS-Chem Chemical Transport Model

This investigation employs the GEOS-Chem model, a three-dimensional global atmospheric
chemistry model that is comprehensive and employs Goddard Earth Observation System (GEOS)

meteorological data supplied by the NASA Global Modelling and Assimilation Office (GMAO).
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Global Observation System (GEOS) meteorological data supplied by the NASA Global Modelling
and Assimilation Office (GMAO). We employed version 14.1.1
(http://acmg.seas.harvard.edu/geos/), which is powered by GEOS-FP meteorological data. The most
recent GEOS-5 meteorological data product to be provided by NASA/GMAO is GEOS-FP
("forward processing") (http://gmao.com/gmao.html). This product has a native horizontal
resolution of 0.25° latitude x 0.3125° longitude and a temporal resolution of hourly data and 3-
hourly data.

To reduce computational overhead, we employed a 2°x2.5° GEOS-Chem horizontal grid for
the global XCO and XCHa4 simulations and a 0.25°%0.3125° GEOS-Chem horizontal grid for the
XCO and XCHa simulations for the China region in order to achieve more precise results. The model
calculates the concentrations of CO and CHa by integrating emission inventories from various
regions, which are based on surface emissions and chemical reactions.

The following are specific emission inventories: The Air Pollutant Emission Inventory (APEI)
v2016 was used to obtain Canadian anthropogenic emissions data, while the National Emission
Inventory (NEI) v2015-03 was used to obtain North American regional emissions data. The Diffuse
and Inefficient Combustion Emissions in Africa (DICE-Africa) inventory was used to obtain
anthropogenic emissions data for the Africa region (Marais and Wiedinmyer, 2016). The MIX v1.1
inventory was used to obtain regional emissions data in Asia (Li et al., 2017) and HTAP. The
Community Emissions Data System (CEDS) inventory was used to derive global aircraft and ship
emissions data (Hoesly et al., 2018).The Quick Fire Emissions Dataset (QFED): Documentation of
Versions 2.1, 2.2, and 2.4 was used to acquire carbon monoxide emissions data from biomass
combustion.

The time step for convective and advective transport in the simulation is 300 seconds, while
the time step for chemical processes is 600 seconds. The distribution of XCO and XCHa
concentrations and their alterations from 2019 to 2023 can be efficiently and accurately simulated
using the aforementioned setup.

2.1.3. Total Carbon Column Observing Network (TCCON) Measurements

TCCON employs a Fourier Transform Infrared Spectrometer (FTS) to measure direct solar
light in order to determine the total column concentrations of greenhouse gases in the atmosphere,

including carbon dioxide (CO:), methane (CH4), carbon monoxide (CO), and others (Buschmann et
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al., 2016; Kiel et al., 2016; Sha et al., 2019; Yang et al., 2020). These data are extensively utilized
to validate satellite remote sensing data (e.g., G. Chander et al., 2013; Imasu et al., 2023; Lin et al.,
2024; Loew et al., 2017; Wu et al., 2019; etc.) and to evaluate the performance of climate models.
They are rigorously calibrated and validated with high accuracy and reliability. TCCON's observing
stations are situated in numerous regions worldwide, providing a comprehensive understanding of
the global greenhouse gas distribution. These stations are capable of observing a diverse array of
climates and ecosystems. Harmonized processing is implemented for each site's data. In order to
guarantee data consistency and comparability, the data from each station is processed in a consistent
manner. TCCON's XCO and XCH4 Dry Air Mole Fraction (Xgas) in ppb are employed in this
investigation. Site-specific and time-scale data are accessible through the official website of
TCCON (https://tccon.ornl.gov/), and users may select the data that is most relevant to their research
requirements. The validation of XCO and XCHa4 products from TROPOMI and GEOS-Chem is
frequently conducted using TCCON (Borsdorff et al., 2019; Cogan et al., 2012; Inness et al., 2022;
Schneising et al., 2019). Figure 1 illustrates the global TCCON site location map, which comprises
operational, prospective, and former sites, accordingly. The TCCON data version GGG2020
(Laughner et al., 2023) was employed in this experiment. Table 1 provides a list of the sites that

were utilized and are cross-correlated with the time frames in our experiment.
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Fig. 1 Map showing global TCCON site locations, including operating sites, potential sites, and past

sites, respectively.
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Table 1. Details of the TCCON sites used in this study, No. is the serial number.

No. Site name Latitude Longitude | Location Start date End date
1 bremen01 53.104 8.85 Bremen, Germany 2009/1/6 2021/6/24
2 burgos01 18.5325 120.6496 Burgos, Philippines 2017/3/3 2023/6/23
3 darwin01 -12.425 130.891 Darwin, Australia 2013/1/1 2022/12/27
4 easttroutlake01 54.354 -104.987 East Trout Lake, Canada 2016/10/3 2024/2/15
5 edwards01 34.9599 -117.881 AFRC, Edwards, CA, USA 2013/7/20 2024/2/22
6 garmisch01 47.476 11.063 Garmisch, Germany 2007/7/18 2023/5/4

7 hefei0l 3191 117.17 Hefei, China 2015/11/2 2023/12/25
8 izana0l 28.31 -16.5 Izana, Tenerife, Spain 2014/1/2 2023/8/30
9 karlsruheO1 49.103 8.44 Karlsruhe, Germany 2014/1/15 2023/6/26
10 lamont01 36.604 -97.486 Lamont, Oklahoma, USA 2011/4/16 2024/2/25
11 lauder03 -45.038 169.684 Lauder, New Zealand 2018/10/2 2023/12/28
12 nicosia0l 35.141 33.381 Nicosia, Cyprus 2019/9/1 2023/5/10
13 orleans01 47.97 2.113 Orleans, France 2009/9/6 2023/6/23
14 parkfallsO1 45945 -90.273 Park Falls, Wisconsin, USA 2004/6/2 2024/2/25
15 pasadena01 34.136 -118.127 Pasadena, California, USA 2012/9/20 2024/2/25
16 reunion01 -20.901 55.485 Reunion Island, France 2015/3/1 2020/7/18
17 rikubetsu01 43.4567 143.7661 Rikubetsu, Hokkaido, Japan 2014/6/24 2021/6/30
18 sodankyla01 67.367 26.631 Sodankyld, Finland 2009/5/16 2023/5/30
19 tsukuba02 36.0513 140.1215 Tsukuba, Ibaraki, Japan, 125HR 2014/3/28 2021/3/31
20 wollongong01 -34.406 150.891 Wollongong, Australia 2013/1/4 2023/6/27
21 xianghe01 39.8 116.96 Xianghe, China 2018/6/14 2023/5/29

2.2. Methodology

In this study, we propose a two-stage fusion framework that integrates physical modeling,
signal-domain reconstruction, and deep learning-based residual correction to achieve continuous
and accurate global mapping of atmospheric trace gases. The overall workflow is illustrated in
Figure 2, which presents the main components and their interconnections. In the first stage, a signal-
domain spatio-temporal reconstruction is employed to exploit the low-frequency consistency and
spatio-temporal correlations between the TROPOMI observations and GEOS-Chem simulations,
effectively filling missing data regions caused by cloud cover or instrument limitations. In the
second stage, a residual learning network based on a lightweight residual U-Net is introduced to

refine the fused results by learning nonlinear and region-specific discrepancies between the
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Fig. 2. Overview of the proposed fusion framework combining physical modeling, signal-domain
reconstruction, and deep learning-based residual correction. The process includes data
preprocessing, DCT&SVD-based spatio-temporal fusion, and residual refinement via a lightweight

residual U-Net architecture. Arrows indicate the information flow across different modules.

2.2.1. Data Preprocessing

Data preprocessing is a critical component in guaranteeing the reliability and rationality of the
fusion results. In this investigation, values with data quality less than 0.5 in XCO and XCHa4 in
TROPOMI are discarded to eliminate inaccurate data and are subsequently aligned to a global
coverage of 720 x 1440 (0.25°) horizontal grid through area-weighted aggregation (Wang et al.,
2018). The global-scale data from GEOS-Chem simulations should be aligned to the same 0.25°
horizontal grid by inverse distance-weighted interpolation, and the TROPOMI data should be
maintained at the same resolving power as GEOS-Chem (Setianto and Triandini, 2013). Global-

scale data were simulated by GEOS-Chem and aligned to the same 0.25° horizontal grid.
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To reconcile the heterogeneous spatial supports of satellite retrievals and model simulations,
the TROPOMI XCO and XCHa4 data are first filtered by discarding pixels with a quality flag below
0.5 and then regridded to a global 0.25°%0.25° grid (720x1440) using area-weighted aggregation
(Wang et al., 2018). The GEOS-Chem outputs are interpolated onto the same 0.25° grid via inverse
distance weighting to ensure spatial compatibility between the datasets (Setianto and Triandini,
2013). The choice of 0.25° represents a widely adopted trade-off: it is fine enough to preserve
mesoscale spatial gradients without excessively increasing data volume or the computational burden
for multi-year global fusion analyses (Hu et al., 2024; Wang et al., 2023).

2.2.2. Spatio-Temporal Data Fusion Method Based on Signal Domain Reconstruction

The accuracy of the inventory typically results in an underestimation of GEOS-Chem
simulation data, as demonstrated by previous research(Hu et al., 2018; Liang et al., 2023). However,
the spatio-temporal consistency of the GEOS-Chem simulation data with TROPOMI data is still
satisfactory (i.e., similar increase—decrease patterns over time). The spatio-temporal correlation
between GEOS-Chem simulation data and TROPOMI data can be thoroughly leveraged to derive
continuous coverage data through data fusion (J. Chen et al., 2022; He et al., 2022; Wang et al.,
2021).

We will assume that a spatio-temporal relationship function exists between XCO and XCHa

for GEOS-Chem and TROPOMI, as shown below:
XT = f(XG, Lat, Lon, Date) o)

Where Lat, Lon, and Date denote latitude, longitude, and time series, respectively, and XG is
the GEOS-Chem XCO and XCHa concentration value. That is, the TROPOMI value at a given
spatial and temporal coordinate can be determined by taking the modeled concentration value and
the spatial and temporal coordinates to which it pertains.

In order to simplify the resolution of this issue, we convert the aforementioned equation to the

form of a scalar product of XG with a spacetime transformation matrix M, as follows:
XT = XG *p 2)
The parameter relationships corresponding to GEOS-Chem and TROPOMI are established at

each spatio-temporal coordinate in p, a spatio-temporal three-dimensional matrix with the same
scale as XT and XG. p is a smoothed three-dimensional parameter matrix, inspired by previous work

on filling in the vacant values in the spatio-temporal data and enhancing the smoothing of the data
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using the multidimensional discrete cosine transform (Elharar et al., 2007; Garcia, 2010, 2010; J.
Robinson and V. Kecman, 2003; Okolie and Smit, 2022; Peng et al., 2005; Rao and Yip, 2014; Wang
et al., 2023). The majority of the known parameters in p can be obtained from the valid values in
GEOS-Chem and TROPOMI. We suggest a spatio-temporal 3D matrix smoothing algorithm that is
based on Singular Value Decomposition (SVD) and Discrete Cosine Transform (DCT) to enhance
the smoothness of the data and fill unoccupied values in spatio-temporal data. This algorithm is
designed to suit our data. The method effectively manages spatio-temporal data with missing values
while maintaining the spatio-temporal correlation of the data by combining spatio-temporal nearest-
neighbor interpolation and regularized optimization techniques.

We find the spatio-temporal 3D matrix p that minimizes Eq. (3) by means of the 3D discrete
cosine transform method, as a way to obtain the best estimate of the vacancy value, including the

residual term on the left-hand side and the smoothing term on the right-hand side.

I

B(p) =i+ (5 —p) + el 5 I 3

where [lll denotes the Euclidean paradigm, w is a binary mask indicating the availability of
a parameter corresponding to the spatio-temporal location of p, & denotes the smoothing parameter,
and V? denotes the Laplace operator. This satisfied condition p can be solved by iteration of Eq.

).
p =a IDCTs( I3 *DCTs (w*(p—p)+p)) +(1—a) p (C)

where a is a parametric factor for accelerating convergence, ' denotes the 3D spatio-
temporal filtering matrix associated with the smoothing term, which can be obtained through Eq.
(5), and DCT3 and IDCT3 denote the 3D discrete cosine signal transform and its inverse transform,

respectively, with Egs. (6) and (7) as their transformation rules.

1
r i31'i2’i3 - 1+e¥3_, 2 l—cos% )

Here, i, denotes the ith value along the kth dimension and n;, denotes the size of p along the
kth dimension. This means that the value at each position of this three-dimensional spatio-temporal
filtering matrix is completely determined by its position, and the closer its position is to the element
of the matrix at position (1, 1, 1), the larger (the closer it is to 1) the value is, and vice versa the

smaller it is. The value at position (1, 1, 1) is 1. Since the low frequencies of the discrete cosine

transformed signal matrix are mainly located close to position (1, 1, 1), with this filtering matrix, it

11
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is possible to search for p that is suitable for smoothing. In this study, the total number of iterations

is empirically set to 100, a is set to 0.75, and ¢ takes values in the middle of the range from 103

to 1071,
2 — — — w(2x+1)u n(2y+1)v
F(u,v,w) = WZQ’:& Y3 XEZ3 f(x,y,2)cos ( o )cos ( o )cos (6)
Three-dimensional discrete cosine signal transform (DCTs) rule, where u=0, 1, 2, ..., N-1,

v=0,1, 2, ..., M-1, w=0, 1, 2, ..., P -1. N, M, and P represent the magnitude of the signal in each of

the three dimensions.

flx,y,2)= ﬁxﬁ;& ML P F(u,v,w)cos (H(Z;:l)u) cos ("(2;';1)17) cos (7)

Three-dimensional discrete cosine inverse transform (IDCTs) rule, where x=0, 1, 2, ..., N-1,
y=0,1,2,..,M-1,and z=0, 1, 2, ..., P-1. N, M, and P represent the magnitude of the signal in each
of the three dimensions.

Furthermore, the 3D discrete cosine transform is provided with a complete 3D matrix for signal
conversion. Consequently, we interpolate p with missing values using the spatio-temporal
autocorrelation property of p. Subsequently, we employ singular value decomposition (SVD) to
retain 80% of the singular value energy, thereby enabling data downscaling and compression. The
rules of the singular value decomposition (SVD) are illustrated in Eq. (8) as a method of preserving

the primary p components for the iteration of Eq. (4).
A=UzyT (8)
where the matrices A € R™™ | U € R™™ are orthogonal matrices whose column vectors

are called left singular vectors; T € R™"

is a diagonal matrix whose diagonal elements are the
singular values oy =0, =+ =0, =0 (r is the rank of the matrix A). V € R™" is an
orthogonal matrix whose column vectors are called right singular vectors.

Calculate the total energy of the singular values Eigra = Yi=q 07, and find the smallest k
such that the first k singular values account for at least 80% of the total energy, i.c.,
(ZF., 02)/Eww = 0.8. Setting the last r — k smaller singular values in I to zero yields the
truncated diagonal matrix X, = diag(ay, 0, ..., 0%, 0, ...,0), and reconstructing the approximation

matrix using the truncated singular value matrix A4, = UZ, V7.

2.2.3. Deep Residual Refinement via Learning-Based Mask Reconstruction
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To further enhance the reconstruction quality, we introduce a residual learning module based
on a deep neural network to refine the fused product. To evaluate the effectiveness of the residual
learning module, we conducted a site-based validation experiment across all TCCON stations, using
data from the year 2021, to provide a rigorous comparison of the five reconstruction methods: (1)
only DCT fusion(Garcia, 2010), (2) DCT and SVD mixed-signal reconstruction(M. Bengherabi et
al., 2008; Majhi and Pal, 2021), (3) residual CNN(Y. Jiang et al., 2024), (4) residual U-
Net(Ronneberger et al., 2015; Yan et al., 2022), and (5) residual XGBoost(Naseem et al., 2024). The
performance was assessed using the coefficient of determination (R2), root mean square error
(RMSE), and mean bias ().

As shown in Tables S1 and S2, the residual U-Net consistently outperforms other methods for
both XCO and XCHa. Specifically, R? increased from 0.8227 (only DCT) to 0.845 for XCO and
from 0.7056 to 0.7598 for XCHa, while RMSE decreased correspondingly. These results
demonstrate a improvement in the quality of the reconstructed data.

Residual Learning Objective

Let Xpcr denote the preliminary fused XCO/XCHa field obtained from the DCT/SVD-based
reconstruction, and Xtropom; be the valid observational values from the satellite. The residual
between the fusion estimate and the true value (only available at observed locations) is defined as:

AXtrue = XTROPOMI — XDCT, Where M =1 €))

Here, M € {0,1}*" is a binary mask indicating the presence (1) or absence (0) of valid
satellite data. The goal is to train a model Fg(-) parameterized by 0 to predict the residual AXpreq
across the entire domain:

AXpred = Fo(Xe, Xper A) (10)

Where X; denotes the GEOS-Chem full-coverage simulation data; Xpcr denotes the
DCT/SVD-reconstructed preliminary fusion; A denotes the auxiliary information such as
meteorological fields and emission inventories. Precursor meteorological data simulated by GEOS-
Chem and emission inventory were used in this study. The final fused product is obtained by
correcting the DCT/SVD estimate with the predicted residual:

Xtused = Xpcr + AXpred (11)

Loss Function Design
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The model is trained using only the valid observations, i.e., locations where M=1. The loss

function is designed to minimize the residual error at these observed locations:
£(0) = By My - (X0 = axSD) 12)

This masked mean squared error ensures that the learning focuses on valid regions, while
generalization to unobserved regions is achieved through the spatial context and auxiliary inputs.
Model Architecture and Training

In this study, we employ a lightweight residual U-Net architecture to predict the full-domain
residual field AXpreq, which represents the correction from the DCT/SVD reconstruction to the
expected TROPOMI observation. The network inputs include the GEOS-Chem simulation, the
DCT/SVD reconstruction output, and auxiliary meteorological variables (Wang et al., 2025). The
TROPOMI mask is not used as an input but is instead applied during the loss computation to focus
learning only on valid pixels.

The residual U-Net consists of an encoder-decoder structure with skip connections and
lightweight residual blocks to enhance gradient flow and convergence speed. The input and output
spatial dimensions remain unchanged (i.e., 720 x 1440 at 0.25° resolution), enabling pixel-wise
learning of spatial residuals. The training data comprises daily global maps from 2019 to 2023.

To ensure stable training and prevent overfitting, we implemented standard regularization
strategies by incorporating early stopping, dropout layers (p = 0.3), and input normalization (mean
=0, std = 1). The final output is truncated to avoid physically implausible corrections, by enforcing:

[AXpredl <V - OrrOPOML Y € [2,3] (13)

where orpopomi denotes the standard deviation of observed valid values, and y is a

hyperparameter controlling confidence bounds.

2.2.4. Evaluation Schem

Our study's evaluation methodology encompasses ground station validation and the assessment
of geographical dispersion alongside relevant applications. The ground site validation entails the
assessment of GEOS-Chem simulations, TROPOM]I, and the fusion-generated XCO and XCHa data
against TCCON measurements. This process encompasses the validation of overall results across
all sites in comparison to individual site evaluations, utilizing the coefficient of determination (R?),

root mean square error (RMSE), mean bias (i), and standard deviation of the bias (o) (Karunasingha,
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2022; Kobayashi and Salam, 2000; Wang et al., 2023). The aforementioned measures were
computed using a significant threshold of p < 0.01 (Walsh et al.,, 2014). The assessment of
geographical distribution includes the analysis of GEOS-Chem simulations, TROPOMI, and
integrated XCO and XCHa4 data over several temporal scales, including multi-year averages,
seasonal variations, and yearly metrics. Relevant applications include the evaluation of TROPOMI
data acquisition, the integration of XCO and XCHa4 data at extremes, and the comparative analysis

of multi-year column concentration increase rates across various geographies.

3. Results and discussion

3.1. TCCON Site Validation

The TCCON sites are uniformly spread worldwide, and the TROPOMI satellite traverses the
region at around 13:30 local time; hence, we use the average column concentrations from the
TCCON sites at 13:30+1h local time as the validation data for the ground stations. The GEOS-
Chem simulation, TROPOMI, and the integrated data are then collected within a 2° radius
surrounding each location as the corresponding validation outcomes. Only those cases in which the
satellite data exhibit a missing rate exceeding 0.5 at the site are retained for comparison.

Figure 3 and 4 illustrate the time series of daily GEOS-Chem, TROPOMI, fusion data, and
TCCON's XCO and XCHa4 data for several different ground stations, respectively. Figure 3 presents
a time series plot of carbon monoxide column concentrations from three stations: easttroutlakeO1,
lamont01, and parkfallsOl. Figure 4 illustrates a daily time series plot of methane column
concentrations, exemplified by edwards01, nicosia0l, and pasadena0l. In comparison to TCCON,
both GEOS-Chem simulated XCO and XCHa data exhibit underestimation; nonetheless, they
maintain time-varying consistency (i.e., similar increase—decrease patterns over time) with the
TCCON site data, suggesting that the model simulation may serve as a reference for temporal and
geographic fluctuations in the fused data. The temporal trend of TROPOMI and integrated XCO
and XCHa data aligns with that of TCCON. The amalgamated data exhibit reduced biases p (-0.79,
-3.58, -1.08 ppb for XCO; -5.43, -2.49, -4.34 ppb for XCHa4) and diminished standard deviations ¢

(9.93,4.26, 5.73 ppb for XCO; 5.99, 6.87, 6.77 ppb for XCH4) in comparison to the TROPOMI data.
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Fig. 3 (a)(b)(c) Time-series scatter plots of daily GEOS-Chem, TROPOMI, fusion data, and TCCON
on XCO at three sites, easttroutlake01, lamont01, and parkfallsO1, respectively. The first and second
numbers in parentheses indicate the deviation (n) and standard deviation (o), respectively, both in

parts per billion (ppb).
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Fig. 4 (a)(b)(c) Scatterplots of daily time series of GEOS-Chem, TROPOMI, fusion data, and
TCCON on XCHea for the three sites edwards01, nicosia0Ol, and pasadenaOl, respectively. The first
and second numbers in parentheses indicate the deviation (n) and standard deviation (o),
respectively, both in parts per billion (ppb).

The systematic underestimation of GEOS-Chem model simulations may introduce bias in the
correlation analysis when directly compared with TCCON observations. The average bias of the
GEOS-Chem simulation data was corrected using a manual correction method, which more
accurately reflects the relationship with TCCON observation data, thereby enhancing the reliability
of the correlation analysis. This study further enhances scientific validity and relevance by screening
TROPOMI satellite observation data samples with a missing rate exceeding 50% at the stations, and
comparing these with TCCON data for validation. This screening method effectively addresses

uncertainty arising from insufficient data coverage while concentrating on the incremental aspects
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of the study, thereby enhancing the scientific basis for model optimization and satellite data
validation.

Representative sites were selected based on data completeness to ensure statistical validity.
Specifically, for each TCCON station, we computed the fraction of TROPOMI retrievals with a
quality flag = 0.5 within the 13:30 + 1 h local-time window. Stations with the highest
availability ratios were retained for analysis. Three sites, burgosO1, izana01, and nicosia0l, were
utilized for XCO validation (refer to Figure 5). The findings indicate that the fused datasets at the
burgos01 and izanaOl sites demonstrate notable superiority compared to the GEOS-Chem
simulation results and TROPOMI satellite observations, as evidenced by higher coefficients of
determination (R?), reduced root-mean-square error (RMSE), diminished bias (p), and lower
standard deviation (o). This suggests that the fusion methods effectively enhance data accuracy and
consistency. The fusion results on the nicosia0l site do not significantly exceed those of TROPOMI,
yet they demonstrate comparable performance, thereby further validating the robustness of the
fusion method. To validate XCHa, we examine three sites: burgos01, rikubetsu01, and xianghe01
(refer to Figure 6). The analysis indicates that at the burgos01 and xiangheOl1 sites, the fused dataset
markedly outperforms GEOS-Chem and shows modest but consistent improvements over
TROPOMI across key evaluation metrics, including the coefficient of determination (R2), root mean
square error (RMSE), bias (), and standard deviation (o). This finding suggests that the fusion
method significantly enhances the quality of XCHa data. The fusion results on the rikubetsu01 site
do not significantly exceed those of TROPOMI, yet they remain comparable, further illustrating the
wide applicability and reliability of the fusion method. Table S3 and Table S4 present the validation
results for each valid individual site for XCO and XCHa, respectively. The fusion results
demonstrate superior performance compared to the TROPOMI results at a minimum of 70% of the

sites examined.
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439  Fig. 5 (a, d, g) Scatterplots of the results of the independent validation of the (a, d, g GEOS-Chem,
440 (b, e, h) TROPOM]I, and (c, f, i) fused XCO data at the burgos01, izana01, and nicosia0l sites,
441  respectively. Black dashed lines and red realizations represent 1:1 and fitted lines, respectively. The
442  x-axis is TCCON data, and the y-axis is GEOS-Chem, TROPOMI, and fusion data, all in parts per

443 billion (ppb).
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Fig. 6 (a, d, g) Scatterplots of the results of the independent validation of the (a, d, g) GEOS-Chem,
(b, e, h) TROPOM]I, and (c, £, i) fused XCHa data at the burgos01, rikubetsu01, and xianghe01 sites,
respectively. Black dashed lines and red realizations represent 1:1 and fitted lines, respectively. The
x-axis is TCCON data, and the y-axis is GEOS-Chem, TROPOM]I, and fusion data, all in parts per
billion (ppb).

Figure 7 illustrates the findings of the comprehensive correlation validation between XCO and
XCHa across all verified locations. For XCO, the integrated dataset markedly surpasses the GEOS-
Chem simulations for data quality and exceeds the TROPOMI satellite observations across
numerous critical criteria. The fused data exhibit a coefficient of determination (R?) of 0.92,
markedly surpassing that of TROPOMI, thereby demonstrating superior capacity to encapsulate
observational variability. The root mean square error (RMSE) is 4.85 ppb, and the standard deviation
(o) is 4.70 ppb, both of which outperform the corresponding metrics of TROPOMI, further
substantiating the enhanced accuracy and consistency of the fused data. Moreover, the fused data

exhibit a deviation () index comparable to TROPOMLI, indicating that systematic errors have been
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efficiently managed and the overall performance is more resilient. The fused dataset for XCH4
demonstrates notable advantages, exhibiting a coefficient of determination (R?) of 0.85, surpassing
that of TROPOMI, thereby indicating superior interpretative capability; additionally, it presents a
standard deviation (o) of 12.59 ppb, which is more favorable than TROPOMI's, further
substantiating the efficacy of the fused data in minimizing dispersion. While the fused data exhibits
comparable performance to TROPOMI for root mean square error (RMSE) and bias (1) parameters,
its overall efficacy reflects a significant level of stability and consistency, particularly in complex

contexts. This illustrates the favorable outcomes attained by the aforementioned fusion approach.
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Fig. 7 Scatterplots of the results of the overall validation of (a, d) GEOS-Chem, (b, ¢) TROPOMI,
and (c, f) fused XCO vs. XCHa data at all respective validated sites. Black dashed lines and red
realizations represent 1:1 and fitted lines, respectively. The x-axis is TCCON data, and the y-axis is

GEOS-Chem, TROPOM]I, and fusion data, all in parts per billion (ppb).

3.2. Multi-Scale Spatio-Temporal Analysis

Figure S1 illustrates the comparison of worldwide yearly GEOS-Chem, TROPOMI, fused
XCO, and XCHs4 for the years 2020 and 2022. The fused data exhibit a similar geographical

distribution with TROPOMI. Despite a substantial underestimation of GEOS-Chem, it retains a
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robust geographic distribution alignment with TROPOMI, providing a critical reference for data
fusion, and this underestimation is markedly altered post-fusion.

Figure S2 illustrates the global distribution of fused XCO and XCHa for three representative
days in 2020 and 2022, respectively. The fusion findings, as seen in the image, offer comprehensive
information on atmospheric CO and CHas, distinctly revealing their worldwide geographical
distribution. For comparison, Figure S3 illustrates the global distribution of XCO and XCHa
observed by TROPOMI on these corresponding days. Meteorological factors have resulted in
several gaps in the satellite observations, particularly evident in the XCHa data, when compared to
Figure S2. Figure S2 illustrates that the integrated data addresses the deficiencies in geographical
and temporal information, so improving data continuity while preserving the integrity of the satellite
observations.

Figure 8 illustrates the global multi-year average distributions of fused XCO and XCHa for the
period 2019-2023. Elevated concentrations of both gases are predominantly observed across Asia,
particularly over China and India. For XCO, distinct high-value regions are also evident in Central
Africa and northern South America. Figures S4 and S5 illustrate the seasonal averages of the fused
global XCO and XCHa data from 2019 to 2023. The seasonal variations in the geographical
distribution are distinctly captured by the fusion results. Notably, XCO exhibits more pronounced
spatiotemporal variability compared to XCHa. Specifically, CO tends to be spatially concentrated in

certain regions, whereas CH4 displays a relatively more uniform global distribution.
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Fig. 8 (a) Global concentration distribution of fused XCO data averaged over multiple years from
2019 to 2023; (b) Global concentration distribution of fused XCHa data averaged over multiple
years from 2019 to 2023. The color bars indicate the concentrations of XCO and XCHe. in parts per
billion (ppb).

Figures S6 and S7 illustrate the annual trends of global XCO and XCHa from 2019 to 2023,
alongside their respective regional trajectories. Figure S6 indicates that XCO levels in North
America showed a consistent increase from 2019 to 2023, while Central Africa and Eastern China
exhibited a declining trend. Global XCHa4 levels demonstrated a steady increase over this period,

with a notably higher growth rate observed in Central Africa (Figure S7).
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3.3. Local High-Resolution Data Analysis

To enhance the refinement capability of our fused data, we employed GEOS-Chem to simulate
0.25x0.3125 nested gridded data for the Chinese region. Utilizing the same methodology, we refined
the fused data for this region, achieving a grid accuracy of 0.05°, which served as the basis for our
analysis of the local area in China.

Figure S8 and S9 illustrate the fluctuations of XCO and XCH4 in the TROPOMI and fusion
datasets, respectively, during the late August 2022 hill fire in Chongqing. This encompasses a
comparative analysis of the TROPOMI and fusion data over three days during the fire, along with
a histogram depicting the daily variations in mean XCO and XCHa4 concentrations within the fire-
affected area during the mid to late months of the event. The Figure demonstrate that the fused data
preserves local observational details from the satellite, thereby enhancing the comprehensiveness of
the satellite data to a certain degree. The histograms reveal that the fused data reflects an upward
trend in XCO and XCHa4 concentrations during the hill fires, with average increases of 17.1 ppb and
24.5 ppb, respectively, during the hill fire period compared to the non-hill fire period at midday.

Figure 9 and 10 depict the fluctuations in XCO and XCHa recorded by TROPOMI and
integrated data in rice cultivation areas of Northeast and Southeast China, respectively. XCHa
exhibits a steady increase in both satellite and fused data across these areas. In contrast to the fused
data, the yearly growth rate obtained from satellite XCH4 demonstrates an overestimation in both

regions, with discrepancies of 17% and 26% for the Southeast and Northeast, respectively.
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Fig. 9 (a, ¢) Line plots of daily changes in parts per billion (ppb) for TROPOMI and (b, d) fused

H

XCO data over rice-growing regions of northeastern China and southeastern China, respectively;

the red dashed line is the fitted line of annual growth rate, and the annual growth rate is shown in
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Fig. 10 (a, c) Line plots of daily changes in parts per billion (ppb) for TROPOMI and (b, d) fused
XCHa data over rice-growing regions in northeastern China versus southeastern China, respectively;
red dashed line is the fitted line of the annual growth rate, and in parentheses is the annual growth
rate in parts per billion per year (ppb/year).

XCO exhibits a downward trajectory in both satellite and fused data across rice cultivation
areas of Northeast and Southeast China. Nonetheless, the annual decline rate of satellite XCO is
underestimated relative to the fused data, with discrepancies of 7% and 38% for the Southeast and
Northeast regions, respectively. This variance results from absent values in the satellite data,
which omit specific low-concentration areas from the computations, thereby inflating the estimation
of concentration changes. In contrast, the fused data somewhat alleviate the intensity of these
fluctuations.

Rice paddies, as a major source of methane emissions, exhibit a robust association between
their increasing cultivation area and the persistent growth in methane emissions. The expansion of
rice farming has resulted in a proportional increase in methane emissions, underscoring the
considerable influence of agricultural practices on greenhouse gas output(Shen et al., 2024). Straw
burning is a key source of carbon monoxide, and the enforcement of pertinent control laws has

markedly reduced CO emissions, leading to a steady decline in carbon monoxide levels in both

regions(Huang et al., 2021).
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4. Conclusions

This study introduces a two-stage spatio-temporal fusion approach that integrates GEOS-Chem
model outputs with TROPOMI satellite data. The method initially performs a signal-domain
reconstruction using three-dimensional discrete cosine transform (DCT) and singular value
decomposition (SVD), followed by a residual refinement step based on a lightweight convolutional
neural network, enabling accurate gap-filling and spatial smoothing. This method successfully
produces global daily continuous coverage of XCO and XCHs products at a resolution of 0.25° for
the years 2019-2023, achieving high-resolution data fusion at 0.05°. The findings indicate that the
fused data surpass the GEOS-Chem simulation results in accuracy and consistency and are
comparable to or exceed the TROPOMI satellite observations across numerous critical criteria. The
integrated data provide notable improvements in the coefficient of determination (R?), root mean
square error (RMSE), bias (p), and standard deviation (o) globally, particularly in addressing
missing areas and enhancing smoothness. This study effectively addressed the systematic
underestimation issue of the GEOS-Chem model, attributed to inaccuracies in emission inventories,
through data fusion, enabling the fused data to more accurately represent the long-term spatial and
temporal distributions and seasonal variations of global XCO and XCHa.

The fused data offer a definitive overview of the geographical distribution patterns of XCO
and XCHa, together with their temporal trends. In regions like Asia, Africa, and North America, the
fusion data effectively captured pronounced spatiotemporal variations and regional patterns. The
fusion data demonstrates a robust capacity to detect extreme events (e.g., wildfires) and accurately
represent short-term significant fluctuations in XCO and XCH4 concentrations, serving as an
excellent instrument for monitoring severe weather and pollution occurrences. This study elucidates
the atmospheric distribution and alterations in specific locations of China using high-resolution data
fusion. Particularly in the examination of methane emissions from the mountain fire incident and
rice cultivation region in Chonggqing, the integrated data exhibit elevated spatial resolution and
temporal continuity, thereby offering significant data support for regional air quality monitoring and
climate change research. All created fusion data may be obtained upon request from the authors for

academics and policymakers.
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This study has yielded significant outcomes in data fusion and product production; nonetheless,
several deficiencies require more enhancement and optimization in further research. The GEOS-
Chem model exhibits systematic bias in simulating XCO and XCHa. While the data fusion approach
has largely mitigated this issue, additional optimization of the emission inventories and chemical
reaction processes is necessary to enhance simulation accuracy. This work primarily utilizes
TROPOMI and GEOS-Chem data; however, the incorporation of additional satellite observation
data (e.g., GOSAT, OCO-2) and ground observation data in the future might enhance the diversity
and precision of data fusion.

This work effectively produced high-resolution XCO and XCHa products for global and
Chinese areas by employing multi-source data fusion and spatio-temporal distribution analysis
methodologies, therefore offering significant data assistance for climate change and air quality
monitoring. In the future, as model accuracy improves, data fusion methods are optimized, and
multi-source data is introduced, the methodologies and findings of this study are anticipated to have
a more significant impact across a broader array of application situations. Data Availability
Statement The global (0.25°) and China-specific (0.05°) daily gap-free XCO and XCHa4 datasets
(2019-2023) generated in this study are openly available in the Zenodo repository at

https://doi.org/10.5281/zenodo.17936461.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Data availability

The primary dataset generated in this work is available at Zenodo via

https://doi.org/10.5281/zenodo.17936461(Li et al., 2025).

27

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

602

603

604

605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

Acknowledgments

This research was jointly funded by the National Key Research and Development Program of

China (2022YFC3700103) and the National Natural Science Foundation of China (42205151).

References

Borsdorff, T., aan de Brugh, J., Schneider, A., Lorente, A., Birk, M., Wagner, G., Kivi, R., Hase, F.,
Feist, D.G., Sussmann, R., 2019. Improving the TROPOMI CO data product: update of the
spectroscopic database and destriping of single orbits. Atmospheric Measurement
Techniques 12, 5443-5455.

Buschmann, M., Deutscher, N.M., Sherlock, V., Palm, M., Warneke, T., Notholt, J., 2016. Retrieval
of xCO 2 from ground-based mid-infrared (NDACC) solar absorption spectra and
comparison to TCCON. Atmospheric Measurement Techniques 9, 577-585.

Chai, X., Tonjes, D.J., Mahajan, D., 2016. Methane emissions as energy reservoir: Context, scope,
causes and mitigation strategies. Progress in Energy and Combustion Science 56, 33—70.
https://doi.org/10.1016/j.pecs.2016.05.001

Chen, J., Shen, H., Li, X., Li, T., Wei, Y., 2022. Ground-level ozone estimation based on geo-
intelligent machine learning by fusing in-situ observations, remote sensing data, and model
simulation data. International Journal of Applied Earth Observation and Geoinformation
112, 102955. https://doi.org/10.1016/j.jag.2022.102955

Chen, X., Huang, Y., Nie, C., Zhang, S., Wang, G., Chen, S., Chen, Z., 2022. A long-term
reconstructed TROPOMI solar-induced fluorescence dataset using machine learning
algorithms. Scientific Data 9, 427. https://doi.org/10.1038/s41597-022-01520-1

Cogan, A.J., Boesch, H., Parker, R.J., Feng, L., Palmer, P.I., Blavier, J.-F., Deutscher, N.M.,
Macatangay, R., Notholt, J., Roehl, C., 2012. Atmospheric carbon dioxide retrieved from
the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based
TCCON observations and GEOS-Chem model calculations. Journal of Geophysical
Research: Atmospheres 117.

Deeter, M.N., Emmons, L.K., Francis, G.L., Edwards, D.P., Gille, J.C., Warner, J.X., Khattatov, B.,
Ziskin, D., Lamarque, J. -F., Ho, S. -P., Yudin, V., Attié, J. -L., Packman, D., Chen, J., Mao,
D., Drummond, J.R., 2003. Operational carbon monoxide retrieval algorithm and selected
results for the MOPITT instrument. J. Geophys. Res. 108, 2002JD003186.
https://doi.org/10.1029/2002JD003186

Elharar, E., Stern, A., Hadar, O., Javidi, B., 2007. A Hybrid Compression Method for Integral
Images Using Discrete Wavelet Transform and Discrete Cosine Transform. J. Display
Technol. 3, 321-325.

Filonchyk, M., Peterson, M.P., Zhang, L., Hurynovich, V., He, Y., 2024. Greenhouse gases emissions
and global climate change: Examining the influence of CO2, CH4, and N20O. Science of
The Total Environment 935, 173359. https://doi.org/10.1016/j.scitotenv.2024.173359

Fritz, T.M., Eastham, S.D., Emmons, L.K., Lin, H., Lundgren, E.W., Goldhaber, S., Barrett, S.R.H.,
Jacob, D.J., 2022. Implementation and evaluation of the GEOS-Chem chemistry module

28

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

version 13.1.2 within the Community Earth System Model v2.1. Geosci. Model Dev. 15,
8669-8704. https://doi.org/10.5194/gmd-15-8669-2022

G. Chander, T. J. Hewison, N. Fox, X. Wu, X. Xiong, W. J. Blackwell, 2013. Overview of
Intercalibration of Satellite Instruments. IEEE Transactions on Geoscience and Remote
Sensing 51, 1056—1080. https://doi.org/10.1109/TGRS.2012.2228654

Garcia, D., 2010. Robust smoothing of gridded data in one and higher dimensions with missing
values.  Computational  Statistics &  Data  Analysis 54, 1167-1178.
https://doi.org/10.1016/j.csda.2009.09.020

Goudar, M., Anema, J.C.S., Kumar, R., Borsdorff, T., Landgraf, J., 2023. Plume detection and
emission estimate for biomass burning plumes from TROPOMI carbon monoxide
observations using APE vl.l. Geosci. Model Dev. 16, 4835-4852.
https://doi.org/10.5194/gmd-16-4835-2023

Griffin, D., Chen, J., Anderson, K., Makar, P., McLinden, C.A., Dammers, E., Fogal, A., 2024.
Biomass burning CO emissions: exploring insights through TROPOMI-derived emissions
and  emission  coefficients.  Atmos. Chem. Phys. 24, 10159-10186.
https://doi.org/10.5194/acp-24-10159-2024

Guanter, L., Aben, 1., Tol, P., Krijger, J.M., Hollstein, A., Koéhler, P., Damm, A., Joiner, J.,
Frankenberg, C., Landgraf, J., 2015. Potential of the TROPOspheric Monitoring Instrument
(TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll
fluorescence. Atmos. Meas. Tech. 8, 1337—1352. https://doi.org/10.5194/amt-8-1337-2015

He, C., Ji, M., Grieneisen, M.L., Zhan, Y., 2022. A review of datasets and methods for deriving
spatiotemporal distributions of atmospheric CO2. Journal of Environmental Management
322, 116101. https://doi.org/10.1016/j. jenvman.2022.116101

Heald, C.L., Jacob, D.J., Fiore, A.M., Emmons, L. K., Gille, J.C., Deeter, M.N., Warner, J., Edwards,
D.P,, Crawford, J.H., Hamlin, A.J., Sachse, G.W., Browell, E.V., Avery, M.A., Vay, S.A,,
Westberg, D.J., Blake, D.R., Singh, H.B., Sandholm, S.T., Talbot, R.W., Fuelberg, H.E.,
2003. Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution:
An integrated satellite, aircraft, and model perspective. J. Geophys. Res. 108,
2003JD003507. https://doi.org/10.1029/2003JD003507

Heilig, G.K., 1994. The greenhouse gas methane (CH4): Sources and sinks, the impact of population
growth, possible interventions. Population and Environment 16, 109-137.
https://doi.org/10.1007/BF02208779

Hoesly, R.M., Smith, S.J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J.J.,
Vu, L., Andres, R.J., Bolt, R.M., Bond, T.C., Dawidowski, L., Kholod, N., Kurokawa, J.-1.,
Li, M., Liu, L., Lu, Z., Moura, M.C.P.,, O’Rourke, P.R., Zhang, Q., 2018. Historical (1750—
2014) anthropogenic emissions of reactive gases and aerosols from the Community
Emissions Data System (CEDS). Geosci. Model Dev. 11, 369-408.
https://doi.org/10.5194/gmd-11-369-2018

Hu, J, Jia, J., Ma, Y., Liu, L., Yu, H., 2022. A Reconstructed Global Daily Seamless SIF Product at
0.05 Degree Resolution Based on TROPOMI, MODIS and ERAS Data. Remote Sensing
14, 1504. https://doi.org/10.3390/rs14061504

Hu, K., Liu, Z., Shao, P., Ma, K., Xu, Y., Wang, S., Wang, Y., Wang, H., Di, L., Xia, M., 2024. A
review of satellite-based CO2 data reconstruction studies: Methodologies, challenges, and
advances. Remote Sensing 16.

29

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

Hu, L., Keller, C.A., Long, M.S., Sherwen, T., Auer, B., Da Silva, A., Nielsen, J.E., Pawson, S.,
Thompson, M.A., Trayanov, A.L., Travis, K.R., Grange, S.K., Evans, M.J., Jacob, D.J.,
2018. Global simulation of tropospheric chemistry at 12.5 km resolution: performance and
evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth
system model (GEOS-5 ESM). Geosci. Model Dev. 11, 4603—-4620.
https://doi.org/10.5194/gmd-11-4603-2018

Huang, L., Zhu, Y., Wang, Q., Zhu, A., Liu, Z., Wang, Y., Allen, D.T., Li, L., 2021. Assessment of
the effects of straw burning bans in China: Emissions, air quality, and health impacts.
Science of The Total Environment 789, 147935.
https://doi.org/10.1016/j.scitotenv.2021.147935

Imasu, R., Matsunaga, T., Nakajima, M., Yoshida, Y., Shiomi, K., Morino, 1., Saitoh, N., Niwa, Y.,
Someya, Y., Oishi, Y., Hashimoto, M., Noda, H., Hikosaka, K., Uchino, O., Maksyutov, S.,
Takagi, H., Ishida, H., Nakajima, T.Y., Nakajima, T., Shi, C., 2023. Greenhouse gases
Observing SATellite 2 (GOSAT-2): mission overview. Progress in Earth and Planetary
Science 10, 33. https://doi.org/10.1186/s40645-023-00562-2

Inness, A., Aben, 1., Ades, M., Borsdorff, T., Flemming, J., Jones, L., Landgraf, J., Langerock, B.,
Nedelec, P., Parrington, M., Ribas, R., 2022. Assimilation of SSP/TROPOMI carbon
monoxide data with the global CAMS near-real-time system. Atmos. Chem. Phys. 22,
14355-14376. https://doi.org/10.5194/acp-22-14355-2022

J. Robinson, V. Kecman, 2003. Combining support vector machine learning with the discrete cosine
transform in image compression. IEEE Transactions on Neural Networks 14, 950-958.
https://doi.org/10.1109/TNN.2003.813842

Jackson, R.B., Saunois, M., Bousquet, P., Canadell, J.G., Poulter, B., Stavert, A.R., Bergamaschi, P.,
Niwa, Y., Segers, A., Tsuruta, A., 2020. Increasing anthropogenic methane emissions arise
equally from agricultural and fossil fuel sources. Environmental Research Letters 15,
071002. https://doi.org/10.1088/1748-9326/ab9ed2

Karunasingha, D.S.K., 2022. Root mean square error or mean absolute error? Use their ratio as well.
Information Sciences 585, 609-629. https://doi.org/10.1016/j.ins.2021.11.036

Kawka, M., Struzewska, J., Kaminski, J.W., 2021. Spatial and Temporal Variation of NO2 Vertical
Column Densities (VCDs) over Poland: Comparison of the Sentinel-5P TROPOMI
Observations and the GEM-AQ Model Simulations. Atmosphere  12.
https://doi.org/10.3390/atmos 12070896

Kiel, M., Wunch, D., Wennberg, P.O., Toon, G.C., Hase, F., Blumenstock, T., 2016. Improved
retrieval of gas abundances from near-infrared solar FTIR spectra measured at the
Karlsruhe TCCON station. Atmospheric Measurement Techniques 9, 669-682.

Kobayashi, K., Salam, M.U., 2000. Comparing Simulated and Measured Values Using Mean
Squared Deviation and its Components. Agronomy Journal 92, 345-352.
https://doi.org/10.2134/agronj2000.922345x

Laughner, J.L., Roche, S., Kiel, M., Toon, G.C., Wunch, D., Baier, B.C., Biraud, S., Chen, H., Kivi,
R., Laemmel, T., McKain, K., Quéhé, P.-Y., Rousogenous, C., Stephens, B.B., Walker, K.,
Wennberg, P.O., 2023. A new algorithm to generate a priori trace gas profiles for the
GGG2020  retrieval  algorithm.  Atmos. Meas. Tech. 16, 1121-1146.
https://doi.org/10.5194/amt-16-1121-2023

Lelieveld, J., Gromov, S., Pozzer, A., Taraborrelli, D., 2016. Global tropospheric hydroxyl

30

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

distribution, budget and reactivity. Atmos. Chem. Phys. 16, 12477-12493.
https://doi.org/10.5194/acp-16-12477-2016

Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D.G.,
Carmichael, G.R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., Zheng,
B., 2017. MIX: a mosaic Asian anthropogenic emission inventory under the international
collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935-963.
https://doi.org/10.5194/acp-17-935-2017

Li, Z., Tian, Y., Lin, P., Chang, B., Xue, J., 2025. Signal-Domain Guided Deep Learning for Gap-
Filling of XCO and XCHa: A Masked Spatio-Temporal Fusion of TROPOMI and GEOS-
Chem (2019-2023). https://doi.org/10.5281/zenodo.17936462

Liang, R., Zhang, Y., Chen, W., Zhang, P., Liu, J., Chen, C., Mao, H., Shen, G., Qu, Z., Chen, Z.,
Zhou, M., Wang, P., Parker, R.J., Boesch, H., Lorente, A., Maasakkers, J.D., Aben, 1., 2023.
East Asian methane emissions inferred from high-resolution inversions of GOSAT and
TROPOMI observations: a comparative and evaluative analysis. Atmos. Chem. Phys. 23,
8039-8057. https://doi.org/10.5194/acp-23-8039-2023

Lin, P, Tian, Y., Borsdorff, T., Landgraf, J., Li, Z., Wu, H., Xue, J., Ding, D., Ye, H., Zhu, Y., Liu,
C., 2024. Tropomi Unravels Transboundary Transport Pathways of Atmospheric Carbon
Monoxide in Tibet, China. https://doi.org/10.2139/ssrn.4756008

Loew, A., Bell, W., Brocca, L., Bulgin, C.E., Burdanowitz, J., Calbet, X., Donner, R.V., Ghent, D.,
Gruber, A., Kaminski, T., Kinzel, J., Klepp, C., Lambert, J., Schaepman-Strub, G., Schroder,
M., Verhoelst, T., 2017. Validation practices for satellite-based Earth observation data
across communities. Reviews of Geophysics 55, 779-817.
https://doi.org/10.1002/2017rg000562

M. Bengherabi, L. Mezai, F. Harizi, A. Guessoum, M. Cheriet, 2008. Score Fusion of SVD and
DCT-RLDA for Face Recognition, in: 2008 First Workshops on Image Processing Theory,
Tools and Applications. Presented at the 2008 First Workshops on Image Processing Theory,
Tools and Applications, pp. 1-8. https://doi.org/10.1109/IPTA.2008.4743776

Majhi, M., Pal, A.K., 2021. An image retrieval scheme based on block level hybrid dct-svd fused
features. Multimedia Tools and Applications 80, 7271-7312.
https://doi.org/10.1007/s11042-020-10005-5

Marais, E.A., Wiedinmyer, C., 2016. Air Quality Impact of Diffuse and Inefficient Combustion
Emissions in Africa (DICE-Africa). Environ. Sci. Technol. 50, 10739-10745.
https://doi.org/10.1021/acs.est.6b02602

McMillan, W.W., Barnet, C., Strow, L., Chahine, M.T., McCourt, M.L., Warner, J.X., Novelli, P.C.,
Korontzi, S., Maddy, E.S., Datta, S., 2005. Daily global maps of carbon monoxide from
NASA’s Atmospheric Infrared Sounder. Geophysical Research Letters 32, 2004GL021821.
https://doi.org/10.1029/2004GL021821

Naseem, S., Mahmood, T., Khan, A.R., Farooq, U., Nawazish, S., Alamri, F.S., Saba, T., 2024.
Image Fusion Using Wavelet Transformation and XGboost Algorithm. Computers,
Materials & Continua 79.

Okolie, C.J., Smit, J.L., 2022. A systematic review and meta-analysis of Digital elevation model
(DEM) fusion: pre-processing, methods and applications. ISPRS Journal of
Photogrammetry and Remote Sensing 188, 1-29.
https://doi.org/10.1016/j.isprsjprs.2022.03.016

31

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

773
774
775
776
7
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

Peng, J., Kim, C.-S., Jay Kuo, C.-C., 2005. Technologies for 3D mesh compression: A survey.
Journal of Visual Communication and Image Representation 16, 688-733.
https://doi.org/10.1016/j.jvcir.2005.03.001

Rao, K.R., Yip, P., 2014. Discrete cosine transform: algorithms, advantages, applications. Academic
press.

Rinsland, C.P., Luo, M., Logan, J.A., Beer, R., Worden, H., Kulawik, S.S., Rider, D., Osterman, G.,
Gunson, M., Eldering, A., Goldman, A., Shephard, M., Clough, S.A., Rodgers, C., Lampel,
M., Chiou, L., 2006. Nadir measurements of carbon monoxide distributions by the
Tropospheric Emission Spectrometer instrument onboard the Aura Spacecraft: Overview
of analysis approach and examples of initial results. Geophysical Research Letters 33,
2006GL027000. https://doi.org/10.1029/2006GL027000

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image
Segmentation, in: Navab, N., Hornegger, J., Wells, WM., Frangi, A.F. (Eds.), Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2015. Springer
International Publishing, Cham, pp. 234-241.

Schneising, O., Buchwitz, M., Hachmeister, J., Vanselow, S., Reuter, M., Buschmann, M.,
Bovensmann, H., Burrows, J.P.,, 2023. Advances in retrieving XCH4 and XCO from
Sentinel-5 Precursor: improvements in the scientific TROPOMI/WFMD algorithm. Atmos.
Meas. Tech. 16, 669—-694. https://doi.org/10.5194/amt-16-669-2023

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., Burrows, J.P., Borsdorff, T., Deutscher,
N.M,, Feist, D.G., Griffith, D.W.T., Hase, F., Hermans, C., Iraci, L.T., Kivi, R., Landgraf,
J., Morino, 1., Notholt, J., Petri, C., Pollard, D.F., Roche, S., Shiomi, K., Strong, K.,
Sussmann, R., Velazco, V.A., Warneke, T., Wunch, D., 2019. A scientific algorithm to
simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-
5 Precursor. Atmos. Meas. Tech. 12, 6771-6802. https://doi.org/10.5194/amt-12-6771-
2019

Setianto, A., Triandini, T., 2013. Comparison of kriging and inverse distance weighted (IDW)
interpolation methods in lineament extraction and analysis. Journal of Applied Geology 5.

Sha, M.K., De Maziere, M., Notholt, J., Blumenstock, T., Chen, H., Dehn, A., Griffith, D.W., Hase,
F., Heikkinen, P., Hermans, C., 2019. Intercomparison of low and high resolution infrared
spectrometers for ground-based solar remote sensing measurements of total column
concentrations of CO 2, CH 4 and CO. Atmospheric Measurement Techniques Discussions
2019, 1-67.

Shen, N., Tan, J., Wang, W., Xue, W., Wang, Y., Huang, L., Yan, G., Song, Y., Li, L., 2024. Long-
term changes of methane emissions from rice cultivation during 2000 — 2060 in China:
Trends, driving factors, predictions and policy implications. Environment International 191,
108958. https://doi.org/10.1016/j.envint.2024.108958

Sicard, P., Crippa, P., De Marco, A., Castruccio, S., Giani, P., Cuesta, J., Paoletti, E., Feng, Z., Anav,
A., 2021. High spatial resolution WRF-Chem model over Asia: Physics and chemistry
evaluation. Atmospheric Environment 244, 118004.
https://doi.org/10.1016/j.atmosenv.2020.118004

Spivakovsky, C.M., Logan, J.A., Montzka, S.A., Balkanski, Y.J., Foreman-Fowler, M., Jones,
D.B.A., Horowitz, L.W., Fusco, A.C., Brenninkmeijer, C.A.M., Prather, M.J., Wofsy, S.C.,
McElroy, M.B., 2000. Three-dimensional climatological distribution of tropospheric OH:

32

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860

Update and evaluation. J. Geophys. Res. 105, 8931-8980.
https://doi.org/10.1029/1999JD901006

Tang, Z., n.d. Gap-filling using machine learning: implementations and applications in remote
sensing.

Turquety, S., Hadji-Lazaro, J., Clerbaux, C., Hauglustaine, D.A., Clough, S.A., Cassé, V., Schliissel,
P., Mégie, G., 2004. Operational trace gas retrieval algorithm for the Infrared Atmospheric
Sounding Interferometer. J. Geophys. Res. 109, 2004JD004821.
https://doi.org/10.1029/2004JD004821

Valerio, A., Chen, Y.-C., Liu, C.-Y., Chen, Y.-Y., Lin, C.-Y., 2025. A Hybrid Regression—Kriging—
Machine Learning Framework for Imputing Missing TROPOMI NO2 Data over Taiwan.
Remote Sensing 17. https://doi.org/10.3390/rs17122084

Wall, M.E., Rechtsteiner, A., Rocha, L.M., 2003. Singular Value Decomposition and Principal
Component Analysis, in: Berrar, D.P., Dubitzky, W., Granzow, M. (Eds.), A Practical
Approach to Microarray Data Analysis. Springer US, Boston, MA, pp. 91-109.
https://doi.org/10.1007/0-306-47815-3 5

Walsh, M., Srinathan, S.K., McAuley, D.F., Mrkobrada, M., Levine, O., Ribic, C., Molnar, A.O.,
Dattani, N.D., Burke, A., Guyatt, G., Thabane, L., Walter, S.D., Pogue, J., Devereaux, P.J.,
2014. The statistical significance of randomized controlled trial results is frequently fragile:
a case for a Fragility Index. Journal of Clinical Epidemiology 67, 622-628.
https://doi.org/10.1016/j.jclinepi.2013.10.019

Wang, M., Jiang, Z., Chen, X., Han, W., Zhu, L., He, T.-L., Shen, Y., 2025. Daily seamless dataset
of HCHO concentrations: Vertical relationship between surface and column HCHO in
China in 2019-2022. Atmospheric Environment 362, 121546.
https://doi.org/10.1016/j.atmosenv.2025.121546

Wang, Y., Qi, Q., Liu, Y., 2018. Unsupervised segmentation evaluation using area-weighted variance
and Jeffries-Matusita distance for remote sensing images. Remote Sensing 10, 1193.

Wang, Y., Yuan, Q., Li, T., Tan, S., Zhang, L., 2021. Full-coverage spatiotemporal mapping of
ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets:
Considering the precursors and chemical compositions. Science of The Total Environment
793, 148535. https://doi.org/10.1016/j.scitotenv.2021.148535

Wang, Y., Yuan, Q., Li, T,, Yang, Y., Zhou, S., Zhang, L., 2023. Seamless mapping of long-term
(2010-2020) daily global XCO2 and XCH4 from the Greenhouse Gases Observing
Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and CAMS global
greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporally self-supervised fusion
method.

Wang, Y., Yuan, Q., Xiao, R., Li, T., Zhang, L., 2020. Recovery of the Carbon Monoxide Product
from S5P-TROPOMI by Fusing Multiple Datasets: A Case Study in Hubei Province, China,
in: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium.
IEEE, pp. 5529-5532.

Wei, C., Fan, H., Xie, S., Wu, C.-Y., Yuille, A., Feichtenhofer, C., 2022. Masked Feature Prediction
for Self-Supervised Visual Pre-Training, in: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). Presented at the 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, New Orleans, LA, USA, pp.
14648-14658. https://doi.org/10.1109/CVPR52688.2022.01426

33

Open Access

Earth System
Science

Data

suoIssnoasiq



https://doi.org/10.5194/essd-2025-817
Preprint. Discussion started: 27 January 2026
(© Author(s) 2026. CC BY 4.0 License.

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

877
878
879
880

Wei, Q., Song, W., Dai, B., Wu, H., Zuo, X., Wang, J., Chen, J., Li, J., Li, S., Chen, Z., 2025.
Spatiotemporal estimation of surface NO2 concentrations in the Pearl River Delta region
based on TROPOMI data and machine learning. Atmospheric Pollution Research 16,
102353. https://doi.org/10.1016/j.apr.2024.102353

Wu, X., Xiao, Q., Wen, J., You, D., Hueni, A., 2019. Advances in quantitative remote sensing
product validation: Overview and current status. Earth-Science Reviews 196, 102875.
https://doi.org/10.1016/j.earscirev.2019.102875

Y. Jiang, C. Si, L. Yang, 2024. Improvement Strategies for Mask R-CNN in Satellite Image Analysis,
in: 2024 3rd International Conference on Electronics and Information Technology (EIT).
Presented at the 2024 3rd International Conference on Electronics and Information
Technology (EIT), pp. 739-744. https://doi.org/10.1109/E1T63098.2024.10762551

Yan, C., Fan, X., Fan, J., Wang, N., 2022. Improved U-Net Remote Sensing Classification Algorithm
Based on  Multi-Feature ~ Fusion  Perception. Remote Sensing 14.
https://doi.org/10.3390/rs14051118

Yang, Y., Zhou, M., Langerock, B., Sha, M.K., Hermans, C., Wang, T., Ji, D., Vigouroux, C., Kumps,
N., Wang, G., 2020. New ground-based Fourier-transform near-infrared solar absorption
measurements of XCO2, XCH4 and XCO at Xianghe, China.

34

Open Access

Earth System
Science

Data

suoIssnoasiq



