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S1 δ¹⁸O time series analysis 

Figure S1 shows the time series comparison of modelled and observed monthly δ¹⁸O in precipitation at the 51 sites. 75 

Observations (red stars) are compared with estimates from the Sine Curve model (dashed blue line), IsoGSM (purple crosses), 

and the Isoscape model (green circles). Each panel shows the number of monthly observations (n.obs) and model performance 

statistics (R² and RMSE).  
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Figure S1: Time series comparison of modelled and observed monthly δ¹⁸O in precipitation at 51 sites. Observations (red stars) are compared 

with estimates from the Sine Curve model (dashed blue line), IsoGSM (purple crosses), and the Isoscape model (green circles). Each panel 

shows the number of monthly observations (n.obs) and model performance statistics (R² and RMSE).  

S2 Evaluation of different precipitation δ²H data 

Fig.S2 presents the similar performance trends for δ²H predictions. The IsoGSM achieves the lowest RMSE median (~17 ‰) 100 

with a relatively narrow spread, reflecting the most accurate and consistent predictions. The Isoscape model follows closely 

with a slightly higher RMSE (~19 ‰) and a greater variability. The Sine Curve model shows the highest RMSE median value 

(~29 ‰) and the broadest RMSE distribution. For R², there is a slight shift in performance ranking compared to δ¹⁸O. The 

Isoscape model has the highest R² value (~0.5). The IsoGSM model has a lower R² (~0.4) with a more balanced distribution. 

The Sine Curve model exhibits the poorest fit with a median R² below 0.2. 105 

Fig.S3 presents δ²H time series comparisons between observations and simulations from three models at four sites: Heshang 

Cave, Yongxing Cave, Krbavica Spring and Laolongshui Spring( comparion for other sites shown in Figure S4). Similarly, 

the Sine Curve model shows the poorest agreement with observations at Heshang Cave, Yongxing Cave and Krbavica Spring  

as reflected by low R2 values of 0.37, 0.57 and 0.1 respectively and high RMSEs (up to 50.11 ‰). Although it shows relativley 

higher R2 values of 0.85 at Laolongshui Spring, its corresponding large RMSE value of 46.55 reveals substantial  absolute 110 

predictive errors. 

The IsoGSM model shows the best performance at Heshang Cave and Yongxing Cave, with the highest R2 (0.8 and 0.82) and 

lowest RMSE (15.53 ‰ and 10.56 ‰). These highlight IsoGSM model’s strong predictive accuracy in tracking δ²H variability 

at both sites.  

At Krbavica Spring, the IsoGSM and Isoscape exhibit comparable performance in terms of correlation with R2 values of 0.71 115 

and 0.7. However, IsoGSM shows a lower RMSE (21.3 ‰) compared to Isoscape (35.21 ‰), indicating that although both 

models reproduce the temporal variation similarly, IsoGSM offers more precise estimates of δ²H magnitudes. 

At Laolongshui Spring (Fig.S3(d)), the Isoscape model outperforms the IsoGSM model and Sine Curve model with the highest 

R2 and lowest RMSE values.  

 120 
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Figure S2: Statistical comparison of three model performance for δ2H in precipitation at cave (stars) and springs sites (circles). (a)Root 

Mean Square Error (RMSE); (b) Coefficient of determination (R²). Violin plots show the distribution of performance metrics for each model: 

IsoGSM (red), Isoscape (green), and Sine Curve (blue). Boxplots within violin indicate the median, interquartile range and outliers. Lower 125 

RMSE and higher R2 indicate better model performance. 
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Figure S3: Time series comparison of modelled and observed monthly δ2H in precipitation at two cave sites (a–b) and two spring sites (c–130 

d). Observations (red stars) are compared with estimates from the Sine Curve model (dashed blue line), IsoGSM (purple crosses), and the 

Isoscape model (green circles). Each panel shows the number of monthly observations (n.obs) and model performance statistics (R² and 

RMSE).  
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Figure S4: Time series comparison of modelled and observed monthly δ2H in precipitation at 36 sites are compared with estimates from the 

Sine Curve model (dashed blue line), IsoGSM (purple crosses), and the Isoscape model (green circles). Each panel shows the number of 

monthly observations (n.obs) and model performance statistics (R² and RMSE).  
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S3 Complete list of sites included in the WoKaS-Iso database 

Table S1: Karst springs included in the WoKaS-Iso database 150 

ID Country Name Latitude Longitude References 

AT-S-0001 Austria LTER-Zoebelboden 47.8381 14.4411 Martin Kralic 

(Olarinoye et al., 2020) 

AT-S-0002 Austria Wasseralmquelle(A) 47.7329 15.6456 (eHYD, 2025) 

(Maloszewski et al., 2002) 

AT-S-0003 Austria Siebenquellen 47.6837 15.5658 (eHYD, 2025) 

(Maloszewski et al., 2002)  

AT-S-0004 Austria Lappenbachquelle 46.7245 13.0409 (eHYD, 2025) 

     Probost et al., 1998) 

AT-S-0005 Austria Hammerbachquelle 47.2100 15.3500 (eHYD, 2025) 

AT-S-0006 Austria Schreiende_Brunnen 47.4300 12.5800 (eHYD, 2025) 

     (Papesch and Rank, 1998; 

Humer et al., 2015) 

AT-S-0007 Austria Gerstenboedenquelle 47.2600 9.7700 (eHYD, 2025) 

(Kralik, 2015) 

AT-S-0008 Austria Wasseralmquelle(B) 47.7351 15.6486 (Olarinoye et al., 2020) 

(eHYD, 2025) 

(Wieselthaler, 2006) 

AT-S-0009 Austria Baumbachquelle(Gosau) 47.5444 13.5093 Martin Kralik 

AT-S-0010 Austria BrunnenbachQ (Gosau) 47.5453 13.5074 Martin Kralik 

AT-S-0011 Austria Jägerwaldquelle(Gosau) 47.5863 13.5732 Martin Kralik 

AT-S-0012 Austria Brunnbach Nebenquelle (Gosau) 47.5500 13.5201 Martin Kralik 

AT-S-0013 Austria Gosauseequelle (Gosau) 47.5228 13.5167 Martin Kralik 

AT-S-0014 Austria Brielbachquelle(Gosau) 47.5686 13.5509 Martin Kralik 

AT-S-0015 Austria Waldbachursprung (Hallstatt) 47.5430 13.6074 Martin Kralik 

(eHYD, 2025) 

AT-S-0016 Austria Hirschbrunn (Hallstatt) 47.5467 13.6584 Martin Kralik 

(eHYD, 2025) 

AT-S-0017 Austria Bühlerbachursprung (Obertraun) 47.5564 13.7265 Martin Kralik 
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ID Country Name Latitude Longitude References 

AT-S-0018 Austria Ödensee - Kaltwassertrichter 

(Pichl-Kainisch) 

47.5636 13.8257 Martin Kralik 

(eHYD, 2025) 

AT-S-0019 Austria Meeräuglquelle (Bögreinalm) 

(Sankt Andrä im Lungau) 

47.4696 13.5297 Martin Kralik 

AT-S-0020 Austria Koppenbrüllerquellen(Obertraun) 47.5568 13.7257 Martin Kralik 

AT-S-0021 Austria Groedig 47.7400 12.9900 (Reischer et al., 2015) 

AT-S-0022 Austria Fuerstenbrunner_Quellhoehe 47.7383 12.9947 (Reischer et al., 2015) 

AT-S-0023 Austria Veitlbruchquelle 47.7330 12.9730 (Reischer et al., 2015) 

AT-S-0024 Austria Halmquelle 47.7339 13.0359 (Reischer et al., 2015) 

AT-S-0025 Austria Glanegg-1-Quelle 47.7444 13.0081 (Reischer et al., 2015) 

AT-S-0026 Austria Hofingerquelle 47.5927 12.2310 (Joanneum Research, 2008) 

AT-S-0027 Austria Fieberbrunn 47.4300 12.5800  (Papesch and Rank, 1998; 

Humer et al., 2015) 

CH-S-0001 Switzerland Rappenfluh 47.4868 7.6664 Andreas Hartmann 

(Olarinoye et al., 2020) 

CN-S-0001 China Jiajiang Spring 29.6766 106.3014 Xiao Qiong 

CN-S-0002 China Bei Wenquan Hot Spring 29.8491 106.4186 Xiao Qiong 

CN-S-0003 China Qiaocun Spring 25.056 107.5451 Xiao Qiong 

CN-S-0004 China Gantianba Spring 25.0874 107.6539 Xiao Qiong 

CN-S-0005 China Xiaolongdong Spring 25.1789 107.7198 Xiao Qiong 

CN-S-0006 China Banzhai Spring  25.2188 108.0078 (Zhao et al., 2018) 

CN-S-0007 China Chenqi Spring  26.2638 105.7682 (Zhao et al., 2018) 

CN-S-0008 China Dengzhanhe Spring  26.2506 105.7682 (Zhao et al., 2018) 

CN-S-0009 China Qingshuitan Spring 25.1407 102.7462 (Huang et al., 2015) 

CN-S-0010 China Hunshuitan Spring 25.1411 102.7463 (Huang et al., 2015) 

CN-S-0011 China Xiaoshuitan Spring 26.8908 100.2323 (Huang et al., 2015) 

CN-S-0012 China Baotu Spring 36.6612 117.0159 (Guo et al., 2019) 

CN-S-0013 China Heihu Spring 36.6626 117.0332 (Guo et al., 2019) 

CN-S-0014 China Jinlongdong Spring 25.7161 101.3281 (Lyu et al., 2023) 

CN-S-0015 China Chaoshuidong spring 30.7354 111.0869 (Guo et al., 2022) 

CN-S-0016 China Wulongdong Spring 31.2508 110.8921 (Luo et al., 2018) 

(Olarinoye et al., 2020) 
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ID Country Name Latitude Longitude References 

CN-S-0017 China Shuimoxi Spring 31.3262 110.7978 (Luo et al., 2016) 

CN-S-0018 China Xiangshuidong Spring 31.3400 110.7970 (Luo et al., 2016) 

CN-S-0019 China Bailongquan Spring 31.2394 110.8635 (Luo et al., 2018) 

CN-S-0020 China Heilongquan Spring 31.2402 110.8681 (Luo et al., 2018) 

CN-S-0021 China Yunlongdong Spring 31.2517 110.8970 (Luo et al., 2018) 

CN-S-0022 China Qinglongkou Spring 31.4256 111.0116 (Luo et al., 2018) 

CN-S-0023 China Miaopingquan Spring 30.7798 110.8990 (Wang et al., 2022) 

CN-S-0024 China Yuquandong Spring 30.7380 110.9183 (Wang et al., 2022) 

CN-S-0025 China Migongquan Spring 30.7206 110.9132 (Wang et al., 2022) 

CN-S-0026 China Changliushui C1 Spring 25.0281 110.3711 Wang Zhijun 

CN-S-0027 China Beidiping Spring 25.1824 110.5607 Huang Fen 

CN-S-0028 China Laolongshui Spring 25.1737 110.5560 Huang Fen 

CN-S-0029 China Yaji S31 Spring 25.2458 110.3779 Yu Shi 

CN-S-0030 China Luxi No.1 Spring 24.4678 103.8444 Pu Junbing 

CN-S-0031 China Luxi No.2 Spring 24.4678 103.8444 Pu Junbing 

CN-S-0032 China Luxi No.3 Spring 24.4678 103.8444 Pu Junbing 

CN-S-0033 China Nandong underground river 23.6500 103.2900 Pu Junbing 

(Olarinoye et al., 2020) 

CN-S-0034 China Guancun underground river 24.8694 109.3353 Pu Junbing 

(Olarinoye et al., 2020) 

CN-S-0035 China Babu Spring 26.8502 105.7774 (Ren et al., 2021, 2022) 

CZ-S-0001 Czech 

Republic 

Jedovnicky Potok 49.3083 16.6922 Pavel Pracný/Jiří 

Faimon/Marek Lang 

DE-S-0001 Germany Schwarbachloch 47.6392 12.8472 Garvelmann/Kunstmann 

DE-S-0002 Germany Gletscherquellen 47.6070 12.8808 Garvelmann/Kunstmann 

DE-S-0003 Germany Klauswandl 47.5693 12.8021 Garvelmann/Kunstmann 

DE-S-0004 Germany Obere Wimbachquellen 47.5955 12.9165 Garvelmann/Kunstmann 

DE-S-0005 Germany Schapbach 47.5832 12.9530 Garvelmann/Kunstmann 

DE-S-0006 Germany Schwarzbrunn 47.5859 12.8295 Garvelmann/Kunstmann 

DE-S-0007 Germany Staumauer_unten 47.5846 12.9066 Garvelmann/Kunstmann 

DE-S-0008 Germany Wasserversorgung_Bgd 47.5848 12.9064 Garvelmann/Kunstmann 

DE-S-0009 Germany Tunnel Spring 47.4442 11.0415 Goldscheider 
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DE-S-0010 Germany Gorge entrance Spring 47.4497 11.0477 Goldscheider 

DE-S-0011 Germany Rotgraben Spring 47.4510 11.0495 Goldscheider 

DE-S-0012 Germany Mariensprung 47.4393 11.0312 Goldscheider 

DE-S-0013 Germany Hammersbachquelle 47.4393 11.0312 Goldscheider 

DE-S-0014 Germany H3 47.4393 11.0312 Goldscheider 

DE-S-0015 Germany H4 47.4393 11.0312 Goldscheider 

ES-S-0001 Spain Benaojan (Spring S-2) 36.7151 -5.2452 Andreo/ Mudarra 

(Olarinoye et al., 2020) 

ES-S-0002 Spain Genal 36.6403 -5.1184 Andreo/ Mudarra 

(Olarinoye et al., 2020) 

ES-S-0003 Spain Canamero 36.8931 -4.9976 Andreo/ Mudarra 

(Olarinoye et al., 2020) 

ES-S-0004 Spain Canamero overflow 36.8738 -5.0105 Andreo/ Mudarra 

(Olarinoye et al., 2020) 

ES-S-0005 Spain Algarrobal 36.6713 -5.4459 (Marín et al., 2021; Antonio 

and Fornell, 2020) 

ES-S-0006 Spain Pileta 36.6646 -5.2805 Andreo/ Mudarra 

ES-S-0007 Spain Verde 36.6721 -5.0255 Andreo/ Mudarra 

ES-S-0008 Spain Grande 36.7217 -4.9378 Andreo/ Mudarra 

ES-S-0009 Spain Jorox 36.7323 -4.8906 Andreo/ Mudarra 

ES-S-0010 Spain 9_Canos 36.6813 -5.4454 Andreo/ Mudarra 

ES-S-0011 Spain Arroyomolinos 36.8102 -5.3734 Andreo/ Mudarra 

ES-S-0012 Spain Benamahoma 36.7677 -5.4628 Andreo/ Mudarra 

ES-S-0013 Spain Bocaleones 36.7677 -5.4628 Andreo/ Mudarra 

ES-S-0014 Spain Villanueva del Rosario 36.9855 -4.3554 (Mudarra Martínez, 2012) 

ES-S-0015 Spain Canamero 36.8914 -4.9998 (Barberá-Fornell, 2014) 

ES-S-0016 Spain Carrizal 36.8712 -5.0444 (Barberá-Fornell, 2014) 

ES-S-0017 Spain El Burgo 36.7780 -5.9835 (Barberá-Fornell, 2014) 

ES-S-0018 Spain Hierbabuena 36.7742 -5.9948 (Barberá-Fornell, 2014) 

FR-S-0001 France Cents-Fonts 43.7598 3.6241 Ladouche 

(Olarinoye et al., 2020) 

FR-S-0002 France Cernon 43.9752 3.1456 (Plagnes, 1997) 
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(Olarinoye et al., 2020) 

FR-S-0003 France Durzon 43.9909 3.2617 (Plagnes, 1997) 

(Olarinoye et al., 2020) 

FR-S-0004 France Esperelle 44.1210 3.2085 (Plagnes, 1997) 

(Olarinoye et al., 2020) 

FR-S-0005 France Homede 44.0769 3.0605 (Plagnes, 1997) 

(Olarinoye et al., 2020) 

FR-S-0006 France Boundou 44.0667 3.0481 (Plagnes, 1997) 

(Olarinoye et al., 2020) 

FR-S-0007 France St. Andre 43.6930 3.6010 (Aquilina et al., 2006) 

FR-S-0008 France Rogues 43.8790 3.6000 (Aquilina et al., 2006) 

FR-S-0009 France Hortus 43.8290 3.7980 (Aquilina et al., 2006) 

FR-S-0010 France Fontanilles 43.7529 3.6233 Ladouche 

(Aquilina et al., 2006) 

FR-S-0011 France Bueges 43.8133 3.5910 Ladouche 

(Aquilina et al., 2006) 

FR-S-0012 France Lamalou 43.8230 3.8010 Ladouche 

(Aquilina et al., 2006) 

FR-S-0013 France Lavencou 44.0356 3.0422 (Plagnes, 1997) 

FR-S-0014 France Mouline 43.9921 3.0942 (Plagnes, 1997) 

FR-S-0015 France Verneau 46.9785 6.0057 (Charlier J.-B. et al, 2024) 

FR-S-0016 France Lison 46.9654 6.0113 (Charlier J.-B. et al, 2024) 

FR-S-0017 France Loue 47.0107 6.2998 (Charlier J.-B. et al, 2024) 

FR-S-0018 France Baume Archée 47.0295 6.2847 (Charlier J.-B. et al, 2024) 

FR-S-0019 France Ecoutot 47.0991 6.0388 (Charlier J.-B. et al, 2024) 

FR-S-0020 France Maine 47.0946 6.0581 (Charlier J.-B. et al, 2024) 

FR-S-0021 France Bief Poutot 47.0411 6.2507 (Charlier J.-B. et al, 2024) 

GB-S-0001 UK Blewbury 51.5672 -1.2388 Darling 

(Olarinoye et al., 2020) 

GB-S-0002 UK Letcombe_B 51.5652 -1.4608 Darling 

(Olarinoye et al., 2020) 

GB-S-0003 UK E_Ginge 51.5768 -1.3583 Darling 
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GB-S-0004 UK Jannaways 51.4252 -1.3546 Darling 

GB-S-0005 UK Kimber 51.4394 -1.1636 Darling 

GB-S-0006 UK Upton 51.5730 -1.2532 Darling 

GB-S-0007 UK Weston 51.4633 -1.4263 Darling 

GB-S-0008 UK Woolstone 51.5822 -1.5736 Darling 

GR-S-0001 Greece Uni Patras P1 37.8677 22.4733 Eleni Zagana 

GR-S-0002 Greece Uni Patras P2 37.8695 22.4640 Eleni Zagana 

GR-S-0003 Greece Meliggoi 39.5157 20.8149 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0004 Greece Viros 39.4325 20.8403 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0005 Greece Geroplatanos 39.3313 20.9445 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0006 Greece Pesta 39.4600 20.9172 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0007 Greece Sklivani 39.4327 20.9368 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0008 Greece Priala 39.2346 20.8296 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0009 Greece Agios Georgios 39.2702 20.8513 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0010 Greece Skala 39.1757 20.7678 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0011 Greece Kambi 39.2176 20.9020 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0012 Greece Petra 39.1537 20.8220 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

GR-S-0013 Greece Chanopoulo 39.1967 20.9404 (Katsanou, 2012; D’Alessandro 

et al., 2013) 

HR-S-0001 Croatia Rjecina Spring 45.4251 14.4242 (Mance et al., 2022) 

HR-S-0002 Croatia Perilo Spring 45.3072 14.535 (Mance et al., 2022) 

HR-S-0003 Croatia Dobra Spring 45.2992 14.5553 (Mance et al., 2022) 

HR-S-0004 Croatia Dobrica Spring 45.2964 14.5611 (Mance et al., 2022) 
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HR-S-0005 Croatia Krbavica main Spring 47.7190 15.6279 (Stroj et al., 2020) 

HR-S-0006 Croatia Zvir Spring 45.3344 14.4531 (Mance et al., 2022) 

HR-S-0007 Croatia Martinscica well 2 45.3181 14.48361 (Mance et al., 2022) 

HU-S-0001 Hungary Anyak 46.1363 18.2253 (Palcsu et al., 2021) 

(Fórizs et al., 2020) 

HU-S-0002 Hungary Csurgo 46.2030 18.3248 (Palcsu et al., 2021) 

(Fórizs et al., 2020) 

HU-S-0003 Hungary Pasztor 46.2183 18.3601 (Palcsu et al., 2021) 

(Fórizs et al., 2020) 

IE-S-0001 Ireland Kinvara (west) 53.1406 -8.9283 Laurence Gill / Ted 

McCormack) 

IE-S-0002 Ireland Kinvara (east) 53.1416 -8.9261 Laurence Gill / Ted 

McCormack) 

IL-S-0001 Israel Dan 33.2490 35.6530 Alon Rimmer / Heike 

Brielmann 

(Olarinoye et al., 2020) 

IL-S-0002 Israel Banias 33.2483 35.6946 Alon Rimmer / Heike 

Brielmann 

(Olarinoye et al., 2020) 

IL-S-0003 Israel Ein Harod 32.5480 35.3550 Lange 

(Olarinoye et al., 2020) 

IL-S-0004 Israel Ein Homa & Ein Migdal (close 

but different datasets in Wokas) 

32.5000 35.4530 Lange 

(Olarinoye et al., 2020) 

IL-S-0005 Israel Ein Amall 32.5050 35.4450 Lange 

(Olarinoye et al., 2020) 

IL-S-0006 Israel Ein Moda 32.4960 35.4450 Lange 

(Olarinoye et al., 2020) 

IL-S-0007 Israel Leshem 33.2489 35.6514 Lange 

(Olarinoye et al., 2020) 

IL-S-0008 Israel Kezinim 33.2469 35.6878 Lange 

(Olarinoye et al., 2020) 

IQ-S-0001 Iraq Sarwchawa 36.2800 44.7573 (Mustafa et al., 2015) 

IQ-S-0002 Iraq Shkarta 36.3061 44.7219 (Mustafa et al., 2015) 
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IQ-S-0003 Iraq Betwata 36.3434 44.7088 (Mustafa et al., 2015) 

IQ-S-0004 Iraq Zewa 36.3956 44.6454 (Mustafa et al., 2015) 

IQ-S-0005 Iraq Chewqa 36.3490 44.5783 (Mustafa et al., 2015) 

IQ-S-0006 Iraq Bla 36.5186 44.4925 (Mustafa et al., 2015) 

IQ-S-0007 Iraq Qala Saida 36.3397 44.7647 (Mustafa et al., 2015) 

IQ-S-0008 Iraq Gullan 36.3881 44.6939 (Mustafa et al., 2015) 

IT-S-0001 Italy Molinetto 46.0079 12.4735 (Filippini et al., 2018) 

IT-S-0002 Italy Santissima 46.0210 12.4749 (Filippini et al., 2018) 

IT-S-0003 Italy Gorgazzo 46.0398 12.4969 (Filippini et al., 2018) 

IT-S-0004 Italy Pradidali Spring 46.2275 11.8689 (Lucianetti et al., 2019) 

IT-S-0005 Italy Agaroi 46.0703 12.5110 Maria Filippini /Stumpp 

IT-S-0006 Italy Budoia 46.0758 12.5117 Maria Filippini /Stumpp 

IT-S-0007 Italy Tornidor 46.0729 12.5106 Maria Filippini /Stumpp 

IT-S-0008 Italy Polla1 Santissima 46.0177 12.4762 Maria Filippini /Stumpp 

IT-S-0009 Italy Polla2 Santissima 46.0180 12.4764 Maria Filippini /Stumpp 

IT-S-0010 Italy Cavalli 46.0098 12.4772 Maria Filippini /Stumpp 

IT-S-0011 Italy Angheraz Spring 46.2839 11.9218 Ente Parco di Paneveggio Pale 

di San Martino 

IT-S-0012 Italy Poiano Spring 44.3875 10.4375 (Ronchetti et al., 2023) 

IT-S-0013 Italy Capodacqua di Spigno Spring 41.2857 13.7149 (Iacurto et al., 2021) 

IT-S-0014 Italy Mazzoccolo Spring 41.2593 13.6080 Giuseppe Sappa /Silvia Iacurto 

IT-S-0015 Italy S1 (Longano) 41.5167 14.2498 (Aquino et al., 2015) 

(Centro Funzionale Multirischi 

di Protezione Civile Regione 

Campania, 2025) 

IT-S-0016 Italy La Marca Spring 41.9143 13.8781 (Petitta et al., 2010) 

IT-S-0017 Italy Pila Spring 41.1449 14.2615 (Corniello et al., 2024) 

(Centro Funzionale Multirischi 

di Protezione Civile Regione 

Campania, 2025) 

IT-S-0018 Italy Triflisco Spring 41.1361 14.2542 (Corniello et al., 2024) 
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(Centro Funzionale Multirischi 

di Protezione Civile Regione 

Campania, 2025) 

IT-S-0019 Italy S.Sofia Spring 41.1409 14.3248 (Corniello et al., 2024) 

(Centro Funzionale Multirischi 

di Protezione Civile Regione 

Campania, 2025) 

JO-S-0001 Jordan Tanour Spring 32.4080 35.7450 (Hamdan et al., 2016) 

KO-S-0001 Korea S41 Spring 37.2361 128.4894 (Yu et al., 2021) 

KO-S-0002 Korea S45 Spring 37.2361 128.4894 (Yu et al., 2021) 

KO-S-0003 Korea S46 Spring 37.2361 128.4894 (Yu et al., 2021) 

LB-S-0001 Lebanon Jeita 33.9436 35.6420 (Margne and Stoeckl, 2013) 

(Königer and Margane, 2014) 

LB-S-0002 Lebanon Naber al Labbane 33.9947 35.8284 (Margne and Stoeckl, 2013) 

(Königer and Margane, 2014) 

LB-S-0003 Lebanon Naber al Assal 34.0099 35.8385 (Margne and Stoeckl, 2013) 

(Königer and Margane, 2014) 

LB-S-0004 Lebanon Kashkoush 33.9428 35.6390 (Margne and Stoeckl, 2013) 

(Königer and Margane, 2014) 

LB-S-0005 Lebanon Afqa 34.0678 35.8933 (Margne and Stoeckl, 2013) 

(Königer and Margane, 2014) 

LB-S-0006 Lebanon Rouaiss 34.1089 35.9090 (Margne and Stoeckl, 2013) 

(Königer and Margane, 2014) 

MA-S-0001 Morocco WT Spring 30.6806 -9.3448 Applied Geology and Geo-

Environment Laboratory, Ibn 

Zohr University 

PA-S-0001 Panama Sultan_Elisha 31.8697 35.4433 (Kroitoru et al., 1985; Schmidt, 

2014) 

PA-S-0002 Panama Fara 31.8333 35.2991 (Kroitoru et al., 1985) 

SI-S-0001 Slovenia Timavo 45.7863 13.5873 (Doctor and Alexander, 2005) 

SI-S-0002 Slovenia Sardos 45.7929 13.5866 (Doctor and Alexander, 2005) 

SI-S-0003 Slovenia Moschenizze_North 45.8030 13.5817 (Doctor and Alexander, 2005) 

SK-S-0001 Slovakia Drienovec Spring 48.6249 20.9523 Alena Gessert 
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SK-S-0002 Slovakia Vinica 48.6227 20.8914 Alena Gessert 

SK-S-0003 Slovakia Pekna Dievcina 48.6742 20.9762 Alena Gessert 

SK-S-0004 Slovakia Teplica 48.6749 20.9458 Alena Gessert 

SK-S-0005 Slovakia Sv. Jan 48.6538 20.9747 Alena Gessert 

SK-S-0006 Slovakia Kozia Studna 48.6438 20.8695 Alena Gessert 

SK-S-0007 Slovakia Skalisty 48.6226 20.8914 (Palcsu et al., 2021) 

UA-S-0001 Ukraine Skelsky Spring 44.4333 33.9000 (Dublyansky et al., 2018, 2019) 

UA-S-0002 Ukraine Ogni Grifona Spring 44.4500 33.8667 (Dublyansky et al., 2018, 2019) 

UA-S-0003 Ukraine Mikhailovsky Spring 45.3453 34.4997 (Dublyansky et al., 2019) 

UA-S-0004 Ukraine Panija Spring 45.3453 34.4997 (Dublyansky et al., 2019) 

UA-S-0005 Ukraine Boldyrevsky Spring 45.3453 34.4997 (Dublyansky et al., 2019) 

US-S-0001 USA Clover Spring 34.5059 -110.3627 (Donovan et al., 2021, 2022) 

US-S-0002 USA Hoxworth Spring 35.0403 -111.4750 (Donovan et al., 2021, 2022) 

US-S-0003 USA Robber's Roost Spring 36.2805 -112.0889 (Donovan et al., 2021, 2022) 

US-S-0004 USA North Canyon Spring 36.3975 -112.0846 (Donovan et al., 2021, 2022) 

US-S-0005 USA BS1 Spring 29.8294 -98.8644 (Tian et al., 2021a) 

US-S-0006 USA BS2 Spring 29.8344 -98.8614 (Tian et al., 2021a) 

US-S-0007 USA Blue Hole Spring 29.4689 -98.4675 (Tian et al., 2021a) 

US-S-0008 USA San Pedro Spring 29.4469 -98.5017 (Tian et al., 2021a) 

US-S-0009 USA Comal Spring 29.7089 -98.1353 (Tian et al., 2021a) 

(USGS Water Data for the 

Nation, 2025) 

US-S-0010 USA Sulphur Springs 28.0211 -82.4516 (Zengin, 2022) 

(USGS Water Data for the 

Nation, 2025) 

US-S-0011 USA Tippery Spring 40.5689 -78.1560 (Berglund, 2019) 

US-S-0012 USA Near Tippery Spring 40.5685 -78.1558 (Berglund, 2019) 

US-S-0013 USA Royal Spring 38.2094 -84.5619 (Husic et al., 2019) 

US-S-0014 USA Rockwoods Spring 38.5683 -90.6664 (Criss et al., 2001) 

US-S-0015 USA Weldon Spring 37.71319 -90.68759 (Criss et al., 2001) 

US-S-0016 USA Natural Bridge Spring 30.2851 -84.1473 (Ahmed et al., 2021) 

US-S-0017 USA Orangeville Rise Spring 38.6303 -86.5572 (Burgess et al., 2021) 
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Table S2: Cave sites included in the WoKaS-Iso database 

ID Country Name Latitude Longitude References 

US-S-0018 USA Trout Farm Spring 33.5925 -105.5836 (Hoy, 1982; Mcada, 1993) 

US-S-0019 USA Cleve's Spring 32.9494 -105.2822 (Hoy, 1982; Mcada, 1993) 

US-S-0020 USA Paul Spring 32.9325 -105.2800 (Hoy, 1982; Mcada, 1993) 

US-S-0021 USA Boiling Spring 32.5592 -104.3903 (Hoy, 1982; Mcada, 1993) 

US-S-0022 USA Macho Spring 33.7081 -105.4031 (Hoy, 1982; Mcada, 1993) 

ID Country Name Latitude Longitude References 

AT-C-0001 Austria Obir Cave 46.5094 14.5483 (Spötl et al., 2005) 

AT-C-0002 Austria Katerloch Cave 47.0833 15.5500 (Boch et al., 2008) 

(Boch et al., 2011) 

AT-C-0003 Austria HGH Cave 47.6016 15.0930 NaN 

      

AU-C-0001 Australia Cathedral Cave                   -32.6215 148.9400 (Cuthbert et al., 2014) 

AU-C-0002 Australia Golgotha Cave -34.0830 115.0500 (Treble et al., 2013, 2015, 2022) 

(Griffiths et al., 2022) 

AU-C-0003 Australia Harrie Wood Cave -35.7000 148.5000 (Tadros et al., 2016, 2022) 

AU-C-0004 Australia Little Trimmer Cave           -41.5667 146.2500 (Geode and Harmon, 1982) 

AU-C-0005 Australia Frankcombe Cave                 -42.5333 146.4500 (Geode and Harmon, 1982) 

AU-C-0006 Australia Wombeyan Caves -34.3086 149.9667 (Bian et al., 2019) 

AU-C-0007 Australia South Glory Cave -35.7248 148.4875 (Coleborn et al., 2016, 2018, 2019) 

(Tadros et al., 2016) 

AU-C-0008 Australia Yonderup Cave -31.5470 115.6900 (Nagra et al., 2016) 

BR-C-0001 Brazil Santana Cave -24.5308 -48.7267 (Cruz et al., 2005) 

BZ-C-0001 Belize Yok Balum Cave 16.2086 -89.0735 (Ridley et al., n.d.) 

CN-C-0001 China Xianren Cave  24.1310 104.1333 (Duan et al., 2016) 

CN-C-0002 China Baojinggong Cave 24.1200 113.3500 (Duan et al., 2016)  

CN-C-0003 China Liangfeng Cave 26.2670 108.0500 (Duan et al., 2016) 

CN-C-0004 China Furong Cave 29.2289 107.9036 (Duan et al., 2016) 

CN-C-0005 China Penglaixian Cave 30.2333 117.5333 (Duan et al., 2016) 

CN-C-0006 China Heshang Cave 30.4500 110.4167 (Duan et al., 2016) 

CN-C-0007 China Wanxiang Cave  33.3200 105.0000 (Duan et al., 2016) 

CN-C-0008 China Shihua Cave 39.7833 115.9333 (Duan et al., 2016) 

CN-C-0009 China Yongxing Cave 31.5833 111.2333 (Wang et al., 2018) 
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CN-C-0010 China Maomaotuo Big Cave 25.3000 110.2667 (Yin et al., 2020) 

CN-C-0011 China Jiguan Cave 33.7667 111.5667 (Chen et al., 2023) 

CN-C-0012 China Yuhua Cave 26.8333 117.4333 (Qiu et al., 2023) 

CN-C-0013 China Zhenzhu cave 38.2500 113.7000 (Li et al., 2019) 

CN-C-0014 China Shenong Cave  28.7000 117.2500 (Tian et al., 2021b) 

CN-C-0015 China Shenqi Cave 28.9333 103.1000 (Zhao et al., 2022) 

CN-C-0016 China Yangkou Cave 29.0300 107.1800 (Chen and Li, 2018) 

CZ-C-0001 Czech 

Republic 

Byci Skala Cave 49.3087 16.6985 NaN 

CZ-C-0002 Czech 

Republic 

Punkva Caves 49.3722 16.7271 NaN 

CZ-C-0003 Czech 

Republic 

Katerinska Cave 49.3617 16.7125 NaN 

CZ-C-0004 Czech 

Republic 

Amaterska Cave 49.3842 16.7379 NaN 

DE-C-0001 Germany Bunker Cave 51.3675 7.6647 (Riechelmann et al., 2011, 2013, 

2017) 

ES-C-0001 Spain Molinos Cave 40.7925 -0.4492 (Moreno et al., 2014) 

ES-C-0002 Spain La Vina cave 42.1793 -2.7010 (Osácar et al., 2014) 

ES-C-0003 Spain La Paz cave 42.1793 -2.7010 (Osácar et al., 2014) 

ES-C-0004 Spain Ejulve Cave 40.7600 -0.5900 (Pérez-Mejías et al., 2018) 

ES-C-0005 Spain Cueva de Asiul 43.3200 -3.5900 (Smith et al., 2015) 

ES-C-0006 Spain La Garma Cave 43.4306 -3.6658 (Baldini et al., 2015) 

ES-C-0007 Spain Mendukilo Cave 42.9736 -1.8958 (Bernal-Wormull et al., 2023) 

FR-C-0002 France Grotte de Villars 45.4300 0.7800 (Genty et al., 2014) 

FR-C-0003 France Chauvet Cave 44.3875 4.4165 (Genty et al., 2014) 

GB-C-0001 UK Uamh an Tartair 58.1400 -4.9300 (Fuller et al., 2007, 2008) 

GT-C-0001 Guatemala Gruta del Rey Marcos  15.4244 -90.3283 (Bernal et al., 2023) 

GU-C-0001 Guam Jinapsan Cave 13.6333 144.8833 (Partin et al., 2012) 

HR-C-0001 Croatia Nova Grgosova Cave 45.8188 15.6783 (Surić et al., 2018) 

HR-C-0002 Croatia Lokvarka Cave 45.8167 15.6667 (Surić et al., 2018) 

HR-C-0003 Croatia Lower Barac Cave 44.9833 15.7167 (Czuppon et al., 2017) 

HR-C-0004 Croatia Upper Barac Cave 44.9844 15.7217 (Czuppon et al., 2017) 

HR-C-0005 Croatia Modric Cave 44.2568 15.5372 (Surić et al., 2018) 

HR-C-0006 Croatia Strasna Pec Cave 44.0000 15.0333 (Surić et al., 2017) 

HR-C-0007 Croatia Manita Pec Cave 44.3000 15.4667 (Surić et al., 2017) 
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HR-C-0008 Croatia Spilja U Zubu Buljme 

Cave 

44.3656 15.4661 (Surić et al., 2017) 

HU-C-0001 Hungary Beke Cave 48.4833 20.5167 (Czuppon et al., 2017) 

IN-C-0001 India Dharamjali Cave 29.5247 80.2078 (Giesche, A et al. 2023) 

IN-C-0002 India Mawmluh Cave India 25.2622 91.8817 (Breitenbach et al., 2015) 

IN-C-0003 India Akalagavi cave 14.9833 74.5167 (Kaushal, 2017) 

MX-C-0001 Mexico Rio Secreto Cave  20.5900 -87.1300 (Lases-Hernández et al., 2020) 

MY-C-0001 Malaysia Wind Cave  4.0333 114.8000 (Moerman et al., 2013) 

(Ellis et al., 2020) 

NZ-C-0001 New 

Zealand 

Aranui Cave -38.2662 175.0767 (Williams and Fowler, 2002) 

NZ-C-0002 New 

Zealand 

Waipuna Cave -38.3115 175.0206 (Nava-Fernandez et al., 2020) 

PR-C-0001 Puerto Rico Larga Cave 18.3200 -66.8000 (Vieten et al., 2018b, a) 

(Warken et al., 2022) 

RO-C-0001 Romania Ascunsa Cave 45.0000 22.6000 (Dragusin et al., 2017) 

(IAEA, 2025) 

RO-C-0002 Romania Closani Cave 45.1000 22.8000 (Warken et al., 2018) 

SI-C-0001 Slovenia Postojna Cave 45.7700 14.2000 (Domínguez-Villar et al., 2018) 

US-C-0001 USA West Cave 30.3394 -98.1408 (Feng et al., 2014) 

US-C-0002 USA Inner Space Cavern 30.6080 -97.6881 (Pape et al., 2010) 

US-C-0003 USA Caverns of Sonora 30.5500 -100.8167 (Pape et al., 2010) 

US-C-0004 USA Natural Bridge Cavern 29.6900 -98.3400 (Pape et al., 2010) 

US-C-0005 USA DeSoto Caverns 33.3072 -86.2767 (Joe Lambert and Aharon, 2010) 

US-C-0006 USA Indian Oven Cave 41.9000 -73.5000 (van Beynen and Febbroriello, 2006) 

US-C-0007 USA Carlsbad Caverns 32.1479 -104.5667 (Chapman et al., 1986, 1992) 

(Hoy et al., 1982) 

(Turin et al., 2022) 

US-C-0008 USA Cave Without A Name 29.8852 -98.6208 (Miller et al., 2021) 

(Pape et al., 2010) 
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