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Abstract. The Statistical Uncertainty analysis-based Precipitation mERging (SUPER) methodology can optimally merge 

different precipitation datasets with minimal use of ground-based information and is therefore better suited for data-sparse 

regions. Although a proof-of-concept SUPER framework has already been introduced previously, it contains substantial 

uncertainties and is only available at a daily timescale, which is inadequate for land surface modeling. In response, we present 15 

here a new 3-hourly, 0.1-degree, global SUPER version 2 (v2) dataset, spanning 2000–2023. SUPER v2 is unique in three key 

aspects: i) it optimizes the number of input precipitation datasets, which reduces data redundancy and mitigates negative biases 

in extreme precipitation events; ii) it optimally evaluates its internal merging weights and filters out false-alarmed events 

without reliance on extensive gauge networks; and iii) it employs a multi -scale (i.e., monthly–daily–3-hourly) temporal 

correction/merging procedure that enhances the robustness of precipitation estimates. The SUPER v2 product is 20 

comprehensively evaluated using 5,972 independent gauges. Results show that it has a root-mean-squared-error of 3.64 mm 

d−1 and correlation coefficient of 0.68 [-] for daily precipitation estimates. These error metrics outperform traditional 

approaches over 81% to 86% of the validation gauges. The superiority of SUPER v2 with regards to rain/no-rain classification 

skill is even more evident, with Heidke’s Skill Score 22% higher than commonly used datasets. Similar findings are also 

demonstrated in the 3-hourly SUPER v2 precipitation dataset. As such, SUPER v2 provides a unique opportunity for enhancing 25 

global-scale hydrology and land surface modeling — particularly for data sparse regions.  

1 Introduction 

Precipitation is the primary driver of the terrestrial hydrological cycle (Hu et al., 2025; Tang et al., 2025; Tian et al., 2013; Wu 

et al., 2023). While remote sensing (RS) and reanalysis techniques provide global precipitation estimates (Ma et al., 2025; 

Maggioni et al., 2016; Maina & Kumar, 2025), they often contain substantial errors due to uncertainties in their ancillary data 30 

and retrieval algorithms (Maggioni & Massari, 2018; Maggioni et al., 2016; L. Y. Wei et al., 2023). Data merging methods 

can improve large-scale precipitation estimates by integrating multiple datasets (Baez-Villanueva et al., 2020; Chao et al., 
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2018; Gavahi et al., 2023; Shen, 2010). Numerous merging techniques have been developed, e.g., optimal interpolation (Shen 

et al., 2022; Shen et al., 2014), Bayesian estimation (Ma et al., 2018), geographically weighted regression (Chao et al., 2018; 

Chen et al., 2020; Shen et al., 2022), and neural network approaches (Jiao et al., 2025; Wu et al., 2020; You et al., 2025). 35 

However, these merging frameworks typically require high-quality gauge networks. As such, their reliability is undermined in 

data-sparse or ungauged regions where high-quality observations are unavailable (Baez-Villanueva et al., 2020; Dong, Lei, et 

al., 2020). 

 In light of these limitations, statistical approaches for uncertainty analysis have been introduced for precipitation error 

estimation without using gauge data. A prominent example is triple collocation (TC), which  applies a linear model to three 40 

independent datasets to resolve their individual error variances (Stoffelen, 1998). TC has been successfully employed for 

precipitation error estimation (Li et al., 2018; Paul & Alemohammad, 2025; Tang et al., 2020; L. Wei et al., 2023) and 

precipitation data merging (Chen et al., 2022; Lyu et al., 2021; L. Wei et al., 2023; L. Y. Wei et al., 2024). Since TC-based 

approaches do not require gauge observations for calculating precipitation merging weights, they are theoretically better suited 

for data-sparse regions (Ding et al., 2024; Dong et al., 2022; Duan et al., 2021).  45 

However, these TC-based merging frameworks typically neglect the interdependence of different precipitation datasets (Gu et 

al., 2025; Lyu et al., 2021; Park et al., 2023). As a result, the merging results may overfit the noise from a particular data source. 

Additionally, traditional merging studies also fail to address rain/no-rain classification errors, leading to substantial false-alarm 

events (Dong, Lei, et al., 2020; Yang et al., 2017). 

To address this limitation, recent studies further leverage multiple uncertainty analysis tools suitable for interdependent 50 

datasets (e.g., quadruple collocation, or QC, Gruber et al., 2016b) and binary variables (e.g., categorical triple collocation, 

CTC, McColl et al., 2016). Based on these advances, the statistical uncertainty analysis-based precipitation merging framework, 

SUPER v1, was developed (Dong et al., 2022). Comprehensive evaluations have shown that SUPER v1 outperforms leading 

satellite-based and reanalysis products across multiple dimensions in both precipitation intensity and rain/no-rain classification 

performance (Dong et al., 2022; Kang et al., 2024; Songyan et al., 2024). Due to its demonstrated effectiveness, similar merging 55 

strategies have been adopted in recent data-merging studies (Li et al., 2024; L. Wei et al., 2024; L. Wei et al., 2023). 

Although SUPER v1 can enhance precipitation estimation accuracy with reduced reliance on gauge observations, several key 

concerns remain. First, like most data-merging approaches, SUPER v1 ingests nearly all publicly available precipitation 

datasets. While this may, in theory, increase the amount of precipitation information available for its merged estimates, it can 

also introduce numerical instability problems — particularly when the parent datasets are noisy or strongly cross-correlated 60 

(Alvarez-Garreton et al., 2016). More importantly, increasing the number of parent precipitation datasets may also intensify 

the negative biases in extreme precipitation events (EP) (Kang et al., 2024; Xia & Wang, 2025). Likewise, SUPER v1 implicitly 

assumes that the rain/no-rain time series of the parent precipitation datasets are unbiased. This assumption can be violated in 

practice and yield substantially increased false-alarmed events (Dong, Crow, et al., 2020). Finally, SUPER v1, and other 

statistical analysis-based merging approaches are generally limited to daily timescales. This is because applying statistical 65 

uncertainty analysis at finer temporal resolutions suffers from numerical instability problems, largely due to the reduced signal-
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to-noise ratio of sub-daily precipitation inputs (Hirpa et al., 2010; Xu et al., 2023; Zhang et al., 2024). As a result, these datasets 

remain inadequate for land surface and hydrological modeling applications that require a higher temporal resolution.  

In response, this study develops an enhanced precipitation merging framework and produces a corresponding global 

precipitation dataset at 0.1-degree spatial and 3-hourly temporal resolutions. Specifically, we identify the optimal set of parent 70 

datasets that balances precipitation information content and EP accuracy. We then introduce strategies to reduce rain/no-rain 

classification errors and further disaggregate daily precipitation estimates into 3-hourly datasets. This new version, SUPER v2, 

is evaluated using 5,972 independent gauge observations and demonstrates substantial improvements over the SUPER v1 

datasets and other similar state-of-the-art precipitation products. 

2 Data 75 

In this study, commonly used RS and reanalysis precipitation datasets are systematically compiled and summarized in Table 

1. These datasets are used to illustrate the SUPER v2 strategy for selecting optimal inputs. All the precipitation datasets are 

spatially aligned to a 0.1° grid using nearest-neighbor resampling. Detailed descriptions of these datasets are available in Sect. 

S1 of the Supplement. 

Table 1.  Datasets involved in the construction and verification of SUPER v2. 80 

Name Purpose 
Spatiotemporal 

Resolution 

Spatial 

Coverage 
Type Reference 

ERA5 
Input/ 

comparison 
0.25° / 1h 90° N–90° N Reanalysis 

(Hersbach et al., 

2020) 

CPC Input 0.5° / 1 day  90° N–90° N Gauge-based 
(Chen et al., 2008; 

Xie et al., 2007) 

IMERG V07 

Final Run 

Input/ 

comparison 
0.1° / 30 min  60° N–60° N RS: MW+IR 

(Huffman, 2023; 

Yong et al., 2015) 

CMORPH 

CDR 

Input/ 

comparison 
8 km / 30 min 60° N–60° N RS: MW+IR 

(Joyce et al., 2004; 

Xie et al., 2017) 
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PERSIANN 

CDR 
Auxiliary 0.25° / 1 day 60° N–60° N RS: IR 

(Ashouri et al., 

2015) 

CHIRPS-2.0 Auxiliary 0.05° / 1 day 50° N–50° N RS: IR (Funk et al., 2015) 

MSWEP V2 Comparison 0.1° / 3 h 90° N–90° N merged 

(Beck, van Dijk, et 

al., 2017; Beck, 

Wood, et al., 2019) 

Gauge Validation 
Point/  

1 day, 1 h 
- Gauge - 

 

3 Methods 

3.1 SUPER v2 framework 

SUPER v2 is an updated global precipitation merging system designed to minimize reliance on ground-based gauge 

observations. It integrates false-alarmed precipitation filtering, bias correction, uncertainty-based merging, and temporal 85 

downscaling. Specifically, the precipitation merging procedure consists of four key steps:   

1) Rain/no-rain correction  

In this step, we first filter out false-alarmed events within the input precipitation datasets using a categorical triple collocation 

merging (CTC-M) algorithm (Dong, Crow, et al., 2020). This algorithm integrates precipitation estimates from three 

independent categories, i.e., ERA5 (reanalysis), CPC (gauge-interpolated), and IMERG (remote sensing). For each grid cell, 90 

CTC-M constructs an optimized rain/no-rain classification time series based on pixel-level agreement. This optimized time 

series is then used to filter out false-alarm events across all input datasets in SUPER v2. Notably, compared to SUPER v1, 

SUPER v2 replaces the soil-moisture-derived precipitation dataset with CPC, which leads to a significantly reduced false 

alarms (see Table 3 and Appendix A). 

2) Monthly correction  95 

After rain/no-rain filtering, all input datasets are adjusted to match a pre-selected, reference monthly precipitation climatology. 

Specifically, for each grid and month, daily values are proportionally scaled to match the monthly totals from the pre-selected 

reference dataset. We selected the monthly IMERG dataset as the reference standard for this step owing to its superior accuracy 
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and consistency (see Appendix B for further details). Such adjustment corrects systematic bias while maintaining the original 

daily variability. The correction follows: 100 

𝑃𝑖
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑖 ×

𝑃𝑟𝑒𝑓
𝑚𝑜𝑛𝑡ℎ

𝑃𝑖
𝑚𝑜𝑛𝑡ℎ

(1) 

where 𝑃𝑟𝑒𝑓
𝑚𝑜𝑛𝑡ℎ is the monthly precipitation from the reference datasets (i.e., IMERG); 𝑃𝑖

𝑚𝑜𝑛𝑡ℎ is the total monthly precipitation 

estimated by product 𝑖 ; 𝑃𝑖   and  𝑃𝑖
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 refer to the original and bias-corrected time series of daily precipitation from 

product 𝑖. No correction is applied when 𝑃𝑖
𝑚𝑜𝑛𝑡ℎ is less than 5 mm to avoid numerical instability  problems. 

3) Daily Merging Based on Statistical Uncertainty 105 

The monthly-corrected datasets are then merged into daily precipitation estimates using a least -squares framework, with 

weights determined by error variances estimated via quadruple collocation (QC) (Gruber et al., 2016a). Note that QC estimates 

both the error variance and inter-product error covariance across all input datasets using four datasets . If fewer than four 

datasets are available for a given grid cell, such as in high-latitude regions, the TC method is used instead. Details of the QC 

and CTC algorithms are provided in Sect. S2 of the Supplement. Unlike SUPER v1, SUPER v2 does not merge all available 110 

datasets, as many of them are interdependent and can degrade merging accuracy. Instead, it selects an optimal subset to reduce 

redundancy and enhance precipitation estimation accuracy (see Sect. 4.1.) 

4) Downscaling Daily Precipitation to 3-Hourly Resolution 

Due to the limited availability and generally lower accuracy of sub-daily precipitation products, directly merging 3-hourly 

datasets may be affected by numerical instability problems. Therefore, we adopt a simple yet robust approach to enhance the 115 

temporal resolution of SUPER v2. Specifically, we select IMERG as the primary reference for disaggregating the daily SUPER 

v2 precipitation estimates due to its superior ability in capturing sub-daily precipitation variability (see Appendix C for further 

details). The daily precipitation totals from SUPER v2 are then redistributed into 3 -hourly intervals based on the temporal 

distribution provided by IMERG. On days when IMERG reports zero precipitation, ERA5 is used as an alternative reference. 

This procedure produces the final global 3-hourly SUPER v2 precipitation dataset. 120 

In summary, SUPER v2 incorporates several key improvements: i) a refined selection of the monthly reference dataset to 

minimize systematic precipitation biases; ii) incorporation of CPC into the CTC-M framework for improved global rain/no-

rain classification performance; iii) an optimized input dataset strategy that reduces data redundancy while improving 

precipitation estimation accuracy; and iv) temporal downscaling from daily to 3-hourly resolution — thus providing higher-

frequency precipitation estimates suitable for hydrological and land surface modeling.  125 
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Figure 1. Overview of the SUPER v2 processing framework: (i) Rain/no‐rain correction using the CTCM-M algorithm; (ii) Monthly 

precipitation bias correction; (iii) Daily precipitation merging via least-squares optimization; and (iv) Downscaling the merged daily 

precipitation to 3‐hourly intervals using IMERG/ERA5 as the reference dataset. 130 

Datasets preparation

Input datasets (ERA5, CPC, IMERG, CMORPH) resampled to 0.1°, 1 d

(i) Rain / no-rain correction

(ii) Monthly correction

(iii) Daily merge

(iv) Downscale

SUPER global 3-hourly 0.1° precipitation dataset

ERA5 CPC

IMERG

ref: monthly 

reference

error map

SUPER daily ref: IMERG/ERA5

3-hourly

For the grid cell 

centered at 
36.15° N and 

112.15° E, the 

impact of CTC-M 

for the ERA5.

For the same grid

cell, the error in 

ERA5 monthly 

precipitation (before 

and after monthly

correction).

For the grid cell
centered at 25.85° N

and 101.45° E, time

series of errors for six 

datasets, including 

the merged series.

Least-

squares 

merge

CTC-M

TC/QC

Monthly correction
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3.1 Validation 

We employed seven evaluation metrics to assess the general accuracy of precipitation products, along with an additional metric 

for evaluating extreme precipitation (EP) performance.  

For daily precipitation intensity, we used the Pearson correlation coefficient (CC), the root-mean-square-error (RMSE), and 

mean error (ME) — see Table 2.  Regarding rain/no-rain detection skills, we calculated binary classification metrics derived 135 

from the contingency table components — see Table 3. Specifically, the probability of detection (POD) quantifies a product's 

ability to correctly identify precipitation events, while the false alarm ratio (FAR) assesses its tendency to falsely report them 

(Tang et al., 2020). The overall classification performance was assessed using the Heidke’s Skill Score (HSS) (Munchak & 

Skofronick-Jackson, 2013).  

We also assess how well each dataset captures EP events. Here, we use R95p for demonstration, which defines EP as events 140 

with daily precipitation intensity exceeding the 95th percentile threshold of all wet days (Duan et al., 2022). This study only 

focuses on R95p for brevity, but our findings remain robust when a different percentile threshold is used.  

  

Table 2. Error metrics for precipitation assessment. N denotes the total sample size; 𝑀𝑖  and 𝐺𝑖  refer to the precipitation estimates from the 

merged product and the gauge observations, respectively; 𝜎𝐺 and 𝜎𝑀 correspond to the standard deviations of the gauge and merged datasets;  145 

𝑃𝑖 stands for the precipitation value (either merged or observed). 𝑃95 indicates daily precipitation exceeding the 95th percentile threshold 

of the wet days; W is the total number of observed wet days. A wet day is defined as daily precipitation >= 0.5 mm. 

Statistic metrics Equation Perfect value 

Correlation Coefficient 

(CC) 
𝐶𝐶 =

1
𝑁
∑ (𝑀𝑖− 𝑀̅)(𝐺𝑖− 𝐺̅)
𝑁
𝑖=1

𝜎𝑀𝜎𝐺
 1 

Root Mean Square Error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑ (𝑀𝑖−𝐺𝑖)

2
𝑁

𝑖=1
 0 

Mean Error 

(ME) 
𝑀𝐸 =

1

𝑁
∑ (𝑀𝑖−𝐺𝑖)

𝑁

𝑖=1
 0 

Probability Of Detection 

(POD) 
𝑃𝑂𝐷 =

ℎ

ℎ +𝑚
 1 

False Alarm Ratio 

(FAR) 
𝐹𝐴𝑅 =

𝑓

ℎ + 𝑓
 0 
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Heidke’s Skill Score 

(HSS) 
𝐻𝑆𝑆 =

2(ℎ𝑐 − 𝑓𝑚)

(ℎ +𝑚)(𝑚 + 𝑐)+ (ℎ + 𝑓)(𝑓 + 𝑐)
 1 

R95p 𝑅95𝑝 =
1

𝑊
∑ 𝑃95𝑤

𝑊

𝑤=1
 Same as OBS 

 

 

Table 3. Contingency table for daily precipitation classification assessment based on a 0.5 mm d−1 rain/no-rain threshold. 150 

 OBS: rain OBS: no-rain 

Product: rain hits (h) false alarms (f) 

Product: no-rain  misses (m) correct negatives (c) 

4 Results 

4.1 Optimal number and combination of datasets for precipitation merging 

RS precipitation datasets often rely on similar ancillary inputs and retrieval algorithms, leading to strong error cross -

correlations (ECC, Fig. 2). For example, the ECC between IMERG and CMORPH exceed 0.5 [-] for most land pixels (Fig. 

2b). Similarly, CHIRPS and PERSIANN exhibit strong mutual error correlations (Fig. 2e). As a result, merging all RS inputs, 155 

as done in SUPER v1 and many other data merging studies, can introduce data redundancy and degrade precipitation estimation 

accuracy.  

To address this, we first assess how precipitation merging accuracy varies across different combinations of RS datasets (Fig. 

3). In all experiments, ERA5 (reanalysis-based) and CPC (gauge-interpolated) are consistently included, as they rely on 

fundamentally different data sources and estimation strategies and are credibly independent of RS datasets (Dong, Crow, et 160 

al., 2020; Dong, Lei, et al., 2020; Dong, Wei, et al., 2020). Precipitation merging accuracy is then evaluated using daily 

independent gauge observations listed in Sect. S1 of the Supplement. 

When only three datasets are used, merging performance is relatively low and highly sensitive to the inclusion of specific 

datasets (Fig. 3a). Incorporating four datasets improves precipitation estimation accuracy by approximately 10% and 

significantly stabilizes the merging performance. However, adding a fifth or sixth dataset offers only marginal benefits. 165 

Moreover, increasing the number of input datasets tends to amplify biases in EP, as measured by R95p (Fig. 3b). This is 

because excessively increasing datasets during merging tend to dampen precipitation variability (Kang et al., 2024). Although 

overall accuracy is similar across our different four-dataset combinations, the set using ERA5, CPC, IMERG, and CMORPH 

performs best in capturing EP events (Fig. 3c). Accordingly, these four datasets are selected as the final inputs for SUPER v2. 

https://doi.org/10.5194/essd-2025-792
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



9 
 

 170 

Figure 2. Global distribution of QC-based error cross-correlation (ECC) among the four satellite precipitation products used in SUPER v1. 

Grey regions in (d) to (f) indicate areas where QC analysis was not feasible due to insufficient data coverage.  

 

Figure 3. (a) Sensitivity of precipitation merging accuracy to the number of input data sources. Error bars represent the variability across 

dataset combinations when the total number of inputs is fixed. (b) The impact of input dataset count on merged R95p, with error bars 175 

indicating standard deviation across combinations. (c) The effect of substituting the fourth dataset (RS) with CMORPH, PERSIANN, or 

CHIRPS on merged R95p, while keeping ERA5, CPC, and IMERG fixed. The y-axis (ΔR95p) indicates deviation from gauge-based R95p; 

values closer to zero reflect better performance. 

4.2 Merging weights of the four parent datasets in SUPER v2 

Figure 4 illustrates the weights assigned to each input dataset merged in SUPER v2 (i.e., ERA5, CPC, IMERG, and CMORPH). 180 

These weights are estimated using QC/TC-based uncertainty estimates (Gruber et al., 2016a; Stoffelen, 1998) and the least-

squares merging approach (Avery, 1991). ERA5 receives the highest weights globally due to its superior performance (Fig. 
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4c). IMERG also contributes substantially to the merging process, particularly over regions such as eastern CONUS and China, 

where its weights exceed 0.3 (Fig. 4a). In contrast, CMORPH and CPC receive relatively low weights, with values generally 

below 0.3 for most land pixels (Fig. 4b and d).  185 

 

Figure 4. Precipitation merging weights of the four parent RS/Reanalysis precipitation datasets used in SUPER v2. The merging weights 

are calculated based on error statistics evaluated using QC/TC and a least-square algorithm. Grey regions in (b) indicate describes areas 

where CMORPH is not available.  

4.3 Comparison of SUPER v2 with RS/reanalysis datasets 190 

Based on the refined merging procedure, SUPER v2 reduces the RMSE of precipitation estimates by approximately 10%, and 

increases HSS by 16%, compared to SUPER v1 (Table 4). These results highlight the effectiveness and added value of the 

SUPER v2 approach. Therefore, subsequent analyses focus primarily on SUPER v2 and other widely used datasets for brevity. 

As shown in Fig. 5, SUPER v2 outperforms conventional RS and reanalysis datasets at approximately 86% and 81% of the 

validation gauges in terms of CC and RMSE, respectively (Fig. 5, columns 2 and 3; Table 4). Likewise, the mean error (i.e., 195 

bias) of SUPER v2 is 0.34±0.43 mm d−1, which is substantially lower than that of ERA5 (0.54±0.42 mm d−1). Notably, the 

superiority of SUPER v2 to IMERG and CMORPH is even more evident (Fig. 5, columns 2 and 3 and Table 4).  

In addition to precipitation intensity, SUPER v2 also demonstrates robustness in detecting daily precipitation occurrence  (Fig.6 

and Table 4). Specifically, the RS and reanalysis datasets are prone to false alarm events, with FAR ranging from 0.45 to 0.50 

(Table 4). Based on the CTC-M procedure, SUPER v2 reduces the FAR to 0.38. As such, the general performance in 200 

identifying precipitation events (captured by HSS) of SUPER v2 is approximately 22% higher than that of the abovementioned 
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datasets, with superior performance observed at more than 75% of the validation sites. The improvement can be largely 

attributed to false alarm filtering using CTC-M with optimized precipitation inputs (see Appendix A for further details). 

Likewise, the performance of SUPER v2 is also demonstrated at the 3-hourly time scale (Table 4 and Fig. 7).  

 205 

Figure 5. The relative performance of different error metrics for SUPER v2, ERA5, IMERG, CMORPH, and MSWEP at the daily scale 

(first to third row, respectively). Note that the differences in ME are based on absolute values (e.g., ME differences are calculated as 

|MESUPER|-|MEMSWEP|). Grey regions denotes areas lacking a sufficiently dense network of independent gauge observations. . 

 

Figure 6. Comparative assessment of daily precipitation occurrence detection capabilities among SUPER v2, ERA5, IMERG, CMORPH 210 

and MSWEP. Evaluation results for POD, FAR, and HSS are shown in the first to the third rows, respectively.  
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Figure 7. Boxplots of CC (a), RMSE (b), and HSS (c) of SUPER v2, ERA5, IMERG, and MSWEP precipitation estimates evaluated on a 

3-hourly time scale. The error metrics are sampled across independent hourly gauge observations located in China mainland.  

4.4 Comparison of SUPER v2 with gauge-merged datasets 215 

In addition to comparisons with RS and reanalysis datasets, the performance of SUPER v2 is also evaluated against a widely 

used gauge-based merging product, MSWEP. Although SUPER v2 and MSWEP rely on similar parent precipitation datasets, 

SUPER v2 achieves a lower areal mean RMSE (3.98 mm d−1 vs. 4.27 mm d−1) and a higher CC (0.67 vs. 0.61 [−]) than 

MSWEP (Fig.5 column 4). This could be attributed to the overall benefit of SUPER v2 in the strategy of precipitation error 

estimation. Specifically, SUPER v2 solves for the error statistics at the individual grid-cell level, while MSWEP applies 220 

spatially interpolated weights derived from nearby gauge observations. Additionally, SUPER v2 accounts for inter-product 

cross-correlated errors to avoid overfitting (Dong et al., 2022). These detailed considerations directly enhance the accuracy of 

SUPER v2 precipitation intensity estimates. Moreover, SUPER v2 also exhibits stronger rain/no-rain detection skill than 

MSWEP, as evidenced by its lower FAR and higher HSS — see the fourth column of Fig. 6. Similar advantages in SUPER v2 

in precipitation estimates are also seen at the 3-hourly time scale (Table 4 and Fig. 7). 225 

 

Table 4. Daily and 3-hourly performance of different error metrics for all evaluated datasets. The dataset with optimal performance is shown 

in bold. Values are reported as mean ± standard deviation based on a 95% confidence level.  

  SUPER v1 SUPER v2 ERA5 IMERG CMORPH MSWEP 

daily 

CC 0.64±0.14 0.68±0.18 0.56±0.17 0.61±0.16 0.53±0.18 0.62±0.17 

RMSE (mm 

d−1) 
4.01±2.33 3.64±2.83 5.00±3.65 4.66±3.29 5.41±3.48 4.27±3.07 

ME  

(mm d−1) 
0.37±0.63 0.34±0.33 0.54±0.42 0.34±0.82 0.35±0.83 0.35±0.43 
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POD 0.86±0.21 0.85±0.14 0.84±0.17 0.77±0.12 0.70±0.15 0.87±0.13 

FAR 0.45±0.17 0.38±0.18 0.50±0.17 0.46±0.19 0.46±0.21 0.45±0.16 

HSS 0.50±0.19 0.58±0.17 0.44±0.18 0.48±0.14 0.44±0.15 0.51±0.16 

R95P 

 (mm d−1) 
15.21±14.11 16.19±13.90 13.95±11.59 16.50±14.34 16.01±14.02 14.05±12.63 

3h 

CC - 0.60±0.16 0.38±0.18 0.57±0.18 - 0.53±0.18 

RMSE (mm 

3h −1) 
- 1.56±0.78 1.82±0.97 1.63±0.69 - 1.60±0.98 

POD - 0.68±0.14 0.84±0.11 0.63±0.16 - 0.86±0.14 

FAR - 0.49±0.17 0.64±0.18 0.53±0.16 - 0.62±0.17 

HSS - 0.51±0.13 0.41±0.16 0.45±0.13 - 0.44±0.14 

 

4.5 Bias in extreme precipitation (EP) 230 

Data merging tends to attenuate EP intensity (Abdelmoaty et al., 2021; Beck, Pan, et al., 2019; Kang et al., 2024). To determine 

how well different datasets capture extreme events, we analyse their relative performance using R95p. Note that evaluations 

based on other EP statistics yield similar results (Kang et al., 2024) and are therefore not included here for brevity. Additionally, 

although SUPER v2 is available at the global scale, we restrict the presentation of R95p over regions where independent gauge  

observations are available (Fig. 8). Generally, all the datasets can capture the large-scale variations in climate aridity, e.g., 235 

R95p shows a decreasing trend from the southeast to the northwest part of China. Across all the RS and reanalyzed datasets, 

IMERG-based R95p is closer to gauge observations (16.54 mm d−1 vs. 27.16 mm d−1, see Fig. 8e). Such improvement is likely 

facilitated by the adoption of localized CDF matching and the dual-frequency precipitation radar during precipitation retrieval 

(Tan et al., 2021). 

Interestingly, the R95p of MSWEP is only 14.43 mm d−1, with a negative bias up to −109.86 mm d−1 in humid regions (Fig. 240 

8c). Although SUPER v2 also employs a least-squares-based merging strategy, its R95p more closely aligns with IMERG and 

significantly outperforms MSWEP (Fig. 8b). This is because nearly all RS and reanalyzed precipitation data are biased for EP, 
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which cannot be entirely corrected by monthly scaling or CDF matching. In addition, RS/reanalyzed datasets can also contain 

substantial timing errors, and increasing the number of datasets tends to amplify EP biases (Kang et al., 2024). For instance, if 

one dataset correctly captures EP while another entirely misses it, merging the two will underestimate the EP intensity. As 245 

noted above, MSWEP and SUPER v2 are based on the merger of 7 and 4 different datasets, respectively. Therefore, by 

reducing the number of parent inputs, SUPER v2 can mitigate R95p bias that is a by-product of merging. 

 

Figure 8. The spatial distribution of mean R95P for (a) SUPER v2, (b) MSWEP, (c) and four RS/Reanalysis products (d–f). All values are 

based on comparisons against daily rain-gauge data.  250 

 

 

 

 

 255 
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5 Discussion and Conclusions 260 

This study presents the SUPER v2, a 3-hourly, 0.1-degree global precipitation dataset spanning 2000–2023, designed to 

enhance large-scale precipitation estimation. The primary advantage of SUPER v2 is its use of statistical uncertainty-based 

merging framework with optimized inputs. As such, it preserves sufficient precipitation information without excessively 

attenuating extreme precipitation (EP) intensity. Critically, SUPER v2 suppresses random and rain/no-rain classification error 

without requiring high-quality gauges — making it better suited for data-sparse regions. Validation using 5,972 independent 265 

rain gauges demonstrates that SUPER v2 achieves a daily RMSE of 3.64 mm d−1, CC of 0.68 and HSS of 0.58. These metrics 

outperform traditional RS, reanalysis, and gauge-merged products at 81%, 86%, and 75% of our independent validation sites, 

respectively.  

A key finding of our analysis is that indiscriminately increasing the number of input precipitation datasets, as done in many  

previous studies, can inadvertently degrade merging accuracy. This counterintuitive outcome arises because typical merging 270 

approaches prioritize the overall estimation accuracy (variance-minimized), which inadvertently suppress natural precipitation 

variability, especially in extremes (Abdelmoaty et al., 2021; Beck, Vergopolan, et al., 2017). Furthermore, RS-based 

precipitation products often exhibit substantial intensity and timing errors, particularly for EP events. The combination of these 

factors leads to a systematic underestimation of EP intensity, a risk that escalates with the inclusion of additional, error-prone 

datasets (Kang et al., 2024). Therefore, SUPER v2 employs a selective strategy, incorporating only four representative datasets. 275 

This ensures a balance between overall precipitation accuracy and realistic EP estimates.   

It is important to note that SUPER v2 also incorporates gauge-based information, such as the CPC product. However, it 

fundamentally differs from traditional gauge-based frameworks, which often assume gauge observations to provide an error-

free reference. This assumption introduces significant uncertainties, particularly in data-sparse regions with limited gauge 

coverage. In contrast, SUPER v2 integrates CPC as a standard gridded input, explicitly quantifying and incorporating its 280 

uncertainties during the merging process. For example, the contribution of CPC is minimal in data -sparse regions, with an 

assigned weight of less than 0.05, while greater reliance is placed on RS and reanalysis datasets (Fig. 4) in these areas. This 

allows SUPER v2 to implicitly account for observational errors and effectively leverage multi-source precipitation information, 

resulting in a more balanced and robust performance across regions with varying gauge densities. As such,  SUPER v2 will 

provide valuable support for global-scale hydrological and land surface modeling.  285 

 

 

 

 

 290 
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Appendix A: Selection of CTC-M input datasets 

 

Figure A1. Comparison of observed daily precipitation (OBS) with SM2Rain and CPC estimates for a selected  site. The geolocation of this 295 

illustrative grid cell is shown in the inset. SM2Rain falsely detects precipitation events for 19 out of 40 days, resulting in a higher false alarm 

rate. In contrast, CPC shows better agreement with observations, with false alarms on only 4 out of 40 days.   

Appendix B: Selection of reference precipitation climatology 

 

Figure B1. Pearson correlation coefficients (CC) of six precipitation datasets evaluated against daily gauge observations (based on monthly 300 

total precipitation). Among the evaluated datasets, IMERG shows the highest consistency with gauge observations.  
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Appendix C: Evaluation of IMERG 3-hourly precipitation accuracy 

 

Figure C1. Spatial distribution of correlation coefficients (CC) between hourly observations from 2,674 national stations in China and (a) 305 

IMERG 3-hourly and (b) ERA5 3-hourly precipitation estimates. IMERG exhibits generally higher correlations across most regions, 

particularly in southern and eastern China, indicating its superior capability in capturing sub -daily precipitation variability. 

Data availability 

The SUPER v2 (3-hourly, 0.1°, global, 2000–2023) dataset is openly available at: 

https://doi.org/10.6084/m9.figshare.30899792 (Zhang & Dong, 2025a). Daily precipitation data are also supplied to support 310 

diverse user needs: https://doi.org/10.6084/m9.figshare.29206313 (Zhang & Dong, 2025b). All data are provided in NetCDF 

format. 
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