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Abstract. The Statistical Uncertainty analysis-based Precipitation mERging (SUPER) methodology can optimally merge
different precipitation datasets with minimal use of ground-based information and is therefore better suited for data-sparse
regions. Although a proof-of-concept SUPER framework has already been introduced previously, it contains substantial
uncertainties and is only available at a daily timescale, which is inadequate for land surface modeling. In response, we present
here a new 3-hourly, 0.1-degree, global SUPER version 2 (v2) dataset, spanning 2000-2023. SUPER v2 is unique in three key
aspects: i) it optimizes the number of input precipitation datasets, whichreduces data redundancy and mitigates negative biases
in extreme precipitation events; ii) it optimally evaluates its internal merging weights and filters out false-alarmed events
without reliance on extensive gauge networks; and iii) it employs a multi-scale (i.e., monthly—daily—3-hourly) temporal
correction/merging procedure that enhances the robustness of precipitation estimates. The SUPER v2 product is
comprehensively evaluated using 5,972 independent gauges. Results show that it has a root-mean-squared-error of 3.64 mm
d™!' and correlation coefficient of 0.68 [-] for daily precipitation estimates. These error metrics outperform traditional
approaches over 81% to 86% ofthe validation gauges. The superiority of SUPER v2 with regards to rain/no-rain classification
skill is even more evident, with Heidke’s Skill Score 22% higher than commonly used datasets. Similar findings are also
demonstrated in the 3-hourly SUPER v2 precipitation dataset. As such, SUPER v2 provides a unique opportunity forenhancing

global-scale hydrology and land surface modeling — particularly for data sparse regions.

1 Introduction

Precipitation is the primary driver of the terrestrial hydrological cycle (Huet al.,2025; Tanget al., 2025; Tianet al.,2013; Wu
et al., 2023). While remote sensing (RS) and reanalysis techniques provide global precipitation estimates (Ma et al., 2025;
Maggioni et al.,2016; Maina & Kumar, 2025), they often contain substantial errors due to uncertainties in their ancillary data
and retrieval algorithms (Maggioni & Massari, 2018; Maggionietal.,2016; L. Y. Wei et al., 2023). Data merging methods

can improve large-scale precipitation estimates by integrating multiple datasets (Baez-Villanueva et al., 2020; Chao et al.,
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2018; Gavahi et al., 2023; Shen, 2010). Numerous merging techniques have been developed, e.g., optimal interpolation (Shen
etal., 2022; Shen etal.,2014), Bayesian estimation (Ma et al.,2018), geographically weighted regression (Chao et al., 2018;
Chen et al., 2020; Shen et al., 2022), and neural network approaches (Jiao etal., 2025; Wu et al., 2020; You et al., 2025).
However, these merging frameworks typically require high-quality gauge networks. As such, their reliability is undermined in
data-sparse or ungauged regions where high-quality observations are unavailable (Baez-Villanuevaet al.,2020; Dong, Lei, et
al., 2020).

In light of these limitations, statistical approaches for uncertainty analysis have been introduced for precipitation error
estimation withoutusing gauge data. A prominent example is triple collocation (TC), which appliesa linear model to three
independent datasets to resolve their individual error variances (Stoffelen, 1998). TC has been successfully employed for
precipitation error estimation (Li et al., 2018; Paul & Alemohammad, 2025; Tang et al., 2020; L. Wei et al., 2023) and
precipitation data merging (Chen etal., 2022; Lyuetal., 2021; L. Weiet al., 2023; L. Y. Weiet al., 2024). Since TC-based
approaches do notrequire gauge observations for calculating precipitation merging weights, they are theoretically better suited
for data-sparse regions (Ding et al., 2024; Dong et al., 2022; Duan et al., 2021).

However, these TC-based merging frameworks typically neglect the interdependence of different precipitation datasets (Gu et
al.,2025;Lyuetal.,2021; Parketal.,2023). As a result, the mergingresultsmay overfit the noise froma particular datasource.
Additionally, traditional merging studies also fail to address rain/no-rain classification errors, leading to substantial false-alarm
events (Dong, Lei, et al., 2020; Yang et al., 2017).

To address this limitation, recent studies further leverage multiple uncertainty analysis tools suitable for interdependent
datasets (e.g., quadruple collocation, or QC, Gruber et al., 2016b) and binary variables (e.g., categorical triple collocation,
CTC, McColletal.,2016). Based on theseadvances, the statistical uncertainty analysis-based precipitation merging framework,
SUPER v1, was developed (Donget al.,2022). Comprehensive evaluations have shown that SUPER v1 outperforms leading
satellite-based and reanalysis products across multiple dimensions in both precipitation intensity and rain/no-rain classification
performance (Dongetal.,2022; Kangetal.,2024; Songyanetal.,2024). Due to its demonstrated effectiveness, similarmerging
strategies have been adopted in recent data-merging studies (Li et al., 2024; L. Wei et al., 2024; L. Wei et al., 2023).
Although SUPER v1 can enhance precipitation estimation accuracy with reduced reliance on gauge observations, several key
concerns remain. First, like most data-merging approaches, SUPER v1 ingests nearly all publicly available precipitation
datasets. While this may, in theory, increase the amount of precipitation information available for its merged estimates, it can
also introduce numerical instability problems — particularly when the parent datasets are noisy or strongly cross-correlated
(Alvarez-Garretonet al., 2016). More importantly, increasing the number of parent precipitation datasets may also intensify
the negativebiases in extreme precipitationevents (EP) (Kangetal.,2024; Xia & Wang, 2025). Likewise, SUPER v1 implicitly
assumes that the rain/no-rain time series of the parent precipitation datasets are unbiased. This assumption can be violated in
practice and yield substantially increased false-alarmed events (Dong, Crow, et al., 2020). Finally, SUPER v1, and other
statistical analysis-based merging approaches are generally limited to daily timescales. This is because applying statistical

uncertainty analysis at finer temporal resolutions suffers fromnumerical instability problems, largely due to the reduced signal-
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to-noise ratio of sub-daily precipitation inputs (Hirpaetal.,2010; Xuetal.,2023; Zhangetal.,2024). As aresult, these datasets
remain inadequate for land surface and hydrological modeling applications that require a higher temporal resolution.

In response, this study develops an enhanced precipitation merging framework and produces a corresponding global
precipitation datasetat 0.1-degree spatial and 3-hourly temporal resolutions. Specifically, we identify the optimal set of parent
datasets that balances precipitation information content and EP accuracy. We then introduce strategies to reduce rain/no-rain
classificationerrors and further disaggregate daily precipitation estimates into 3 -hourly datasets. This new version, SUPER v2,
is evaluated using 5,972 independent gauge observations and demonstrates substantial improvements over the SUPER v1

datasets and other similar state-of-the-art precipitation products.

2 Data

In this study, commonly used RS and reanalysis precipitation datasets are systematically compiled and summarized in Table
1. These datasets are used to illustrate the SUPER v2 strategy for selecting optimal inputs. All the precipitation datasets are
spatially aligned to a 0.1° grid using nearest-neighbor resampling. Detailed descriptions of these datasets are available in Sect.
S1 of the Supplement.

Table 1. Datasets involved in the construction and verification of SUPER v2.

Spatiotemporal Spatial
Name Purpose Type Reference
Resolution Coverage
Input/ (Hersbach et al.,
ERAS ) 0.25°/1h 90° N-90° N Reanalysis
comparison 2020)
(Chen et al., 2008;
CPC Input 0.5°/1 day 90° N-90° N Gauge-based )
Xie et al., 2007)
IMERG V07 Input/ ) (Huffman, 2023;
0.1°/30 min 60° N-60° N RS: MW+IR
Final Run comparison Yongetal.,2015)
CMORPH Input/ (Joyce et al., 2004;
) 8 km /30 min 60° N-60° N RS: MW+IR )
CDR comparison Xie etal.,2017)
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PERSIANN . (Ashouri et al,
Auxiliary 0.25°/1 day 60° N-60° N RS: IR
CDR 2015)
CHIRPS-2.0 Auxiliary 0.05°/1 day 50° N-50°N RS: IR (Funk et al., 2015)

(Beck, van Dijk, et
MSWEP V2 Comparison 0.1°/3h 90° N-90° N merged al., 2017; Beck,
Wood, et al., 2019)

] Point/
Gauge Validation - Gauge -
lday,1h

3 Methods
3.1 SUPER v2 framework

SUPER v2 is an updated global precipitation merging system designed to minimize reliance on ground-based gauge
observations. It integrates false-alarmed precipitation filtering, bias correction, uncertainty -based merging, and temporal
downscaling. Specifically, the precipitation merging procedure consists of four key steps:

1) Rain/no-rain correction

In this step, we first filter out false-alarmed events within the input precipitation datasets using a categorical triple collocation
merging (CTC-M) algorithm (Dong, Crow, et al., 2020). This algorithm integrates precipitation estimates from three
independent categories, i.e., ERAS (reanalysis), CPC (gauge-interpolated), and IMERG (remote sensing). For each grid cell,
CTC-M constructs an optimized rain/no-rain classification time series based on pixel-level agreement. This optimized time
series is then used to filter out false-alarm events across all input datasets in SUPER v2. Notably, compared to SUPER v1,
SUPER v2 replaces the soil-moisture-derived precipitation dataset with CPC, which leads to a significantly reduced false
alarms (see Table 3 and Appendix A).

2) Monthly correction

Afterrain/no-rain filtering, all input datasets are adjusted to match a pre-selected, reference monthly precipitation climatology.
Specifically, for each grid and month, daily values are proportionally scaled to match the monthly totals from the pre-selected

referencedataset. We selected themonthly IMERG dataset as the reference standard for this step owingto its superior accuracy
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and consistency (see Appendix B for further details). Such adjustment corrects systematic bias while maintaining the original

daily variability. The correction follows:

month

ted _ ref
pgorrected — p. x Dmonth €))
i

where P;g;z"th is the monthly precipitation fromthe reference datasets (i.e., IMERG); P°™" is the total monthly precipitation
estimated by producti; P; and PfeT¢¢t®d refer to the original and bias-corrected time series of daily precipitation from
product i. No correction is applied when P/"°"t" is ]ess than 5 mm to avoid numerical instability problems.

3) Daily Merging Based on Statistical Uncertainty

The monthly-corrected datasets are then merged into daily precipitation estimates using a least-squares framework, with
weights determined by error variances estimated via quadruple collocation (QC) (Gruberetal.,2016a). Note that QC estimates
both the error variance and inter-product error covariance across all input datasets using four datasets. If fewer than four
datasets are available for a given grid cell, such as in high-latitude regions, the TC method is used instead. Details of the QC
and CTC algorithms are provided in Sect. S2 of the Supplement. Unlike SUPER v1, SUPER v2 does not merge all available
datasets, as many of them are interdependent and can degrade merging accuracy. Instead, it selects an optimal subset to reduce
redundancy and enhance precipitation estimation accuracy (see Sect. 4.1.)

4) Downscaling Daily Precipitation to 3-Hourly Resolution

Due to the limited availability and generally lower accuracy of sub-daily precipitation products, directly merging 3 -hourly
datasets may be affected by numerical instability problems. Therefore, we adopt a simple yet robust approach to enhance the
temporal resolution of SUPER v2. Specifically, we select IMERG as the primary reference for disaggregatingthe daily SUPER
v2 precipitation estimates due to its superior ability in capturing sub-daily precipitation variability (see Appendix C for further
details). The daily precipitation totals from SUPER v2 are then redistributed into 3 -hourly intervals based on the temporal
distribution provided by IMERG. On days when IMERG reports zero precipitation, ERAS is used as an alternative reference.
This procedure produces the final global 3-hourly SUPER v2 precipitation dataset.

In summary, SUPER v2 incorporates several key improvements: 1) a refined selection of the monthly reference dataset to
minimize systematic precipitation biases; ii) incorporation of CPC into the CTC-M framework for improved global rain/no-
rain classification performance; iii) an optimized input dataset strategy that reduces data redundancy while improving
precipitation estimation accuracy; and iv) temporal downscaling from daily to 3-hourly resolution — thus providing higher-

frequency precipitation estimates suitable for hydrological and land surface modeling.
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Figure 1. Overview of the SUPER v2 processing framework: (i) Rain/no-rain correction using the CTCM-M algorithm; (ii) Monthly
precipitation bias correction; (iii) Daily precipitation merging via least-squares optimization; and (iv) Downscaling the merged daily
130 precipitation to 3-hourly intervals using IMERG/ERAS as the reference dataset.
6



135

140

145

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-792
Preprint. Discussion started: 23 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

3.1 Validation

Weemployed seven evaluation metrics to assessthe general accuracy of precipitation products, along with an additional metric
for evaluating extreme precipitation (EP) performance.

For daily precipitation intensity, we used the Pearson correlation coefficient (CC), the root-mean-square-error (RMSE), and
mean error (ME) — see Table 2. Regarding rain/no-rain detection skills, we calculated binary classification metrics derived
from the contingency table components — see Table 3. Specifically, the probability of detection (POD) quantifies a product's
ability to correctly identify precipitation events, while the false alarm ratio (FAR) assesses its tendency to falsely report them
(Tanget al., 2020). The overall classification performance was assessed using the Heidke’s Skill Score (HSS) (Munchak &
Skofronick-Jackson, 2013).

We also assess how well each dataset captures EP events. Here, we use R95p for demonstration, which defines EP as events
with daily precipitation intensity exceeding the 95th percentile threshold of all wet days (Duan et al., 2022). This study only

focuses on R95p for brevity, but our findings remain robust when a different percentile threshold is used.

Table 2. Error metrics for precipitation assessment. N denotes the total sample size; M; and G; refer to the precipitation estimates from the
merged productand the gauge observations,respectively; o; and g, correspondto the standard deviations ofthe gauge and merged datasets;
P; stands for the precipitation value (either merged or observed). P95 indicates daily precipitation exceeding the 95th percentile threshold

of the wet days; W is the total number of observed wet days. A wet day is defined as daily precipitation >= 0.5 mm.

Statistic metrics Equation Perfect value
. . 1 _ _
Correlation Coefficient Nzévzl(Mi - MG, - G) .
(CO) CcC =
Om0g
Root Mean Square Error 1N 0
RMSE = —Z M, - G,)?
(RMSE) N i=1( 1= G
Mean Error ME 1 ZN Mo—G 0
Probability Of Detection h
POD = —— 1
(POD) h+m
False Alarm Ratio f
FAR = —— 0
(FAR) h+f
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Heidke’s Skill Score 4SS 2(hc — fm) !
(HSS) C(h+tm)(m+o)+ G+ N +0)
1 —Ww
R95p R95p = —Z P95, Same as OBS
W w=1

Table 3. Contingency table for daily precipitation classification assessment based on a 0.5 mm d™! rain/no-rain threshold.

OBS: rain OBS: no-rain
Product: rain hits (h) false alarms (f)
Product: no-rain misses (m) correct negatives (c)

4 Results
4.1 Optimal number and combination of datasets for precipitation merging

RS precipitation datasets often rely on similar ancillary inputs and retrieval algorithms, leading to strong error cross-
correlations (ECC, Fig. 2). For example, the ECC between IMERG and CMORPH exceed 0.5 [-] for most land pixels (Fig.
2b). Similarly, CHIRPS and PERSIANN exhibit strong mutual error correlations (Fig. 2¢). As a result, merging all RS inputs,
asdone in SUPER v1 and many other datamergingstudies, can introduce dataredundancy and degrade precipitation estimation
accuracy.

To address this, we first assess how precipitation merging accuracy varies across different combinations of RS datasets (Fig,
3). In all experiments, ERAS5 (reanalysis-based) and CPC (gauge-interpolated) are consistently included, as they rely on
fundamentally different data sources and estimation strategies and are credibly independent of RS datasets (Dong, Crow, et
al., 2020; Dong, Lei, et al., 2020; Dong, Wei, et al., 2020). Precipitation merging accuracy is then evaluated using daily
independent gauge observations listed in Sect. S1 of the Supplement.

When only three datasets are used, merging performance is relatively low and highly sensitive to the inclusion of specific
datasets (Fig. 3a). Incorporating four datasets improves precipitation estimation accuracy by approximately 10% and
significantly stabilizes the merging performance. However, adding a fifth or sixth dataset offers only marginal benefits.
Moreover, increasing the number of input datasets tends to amplify biases in EP, as measured by R95p (Fig. 3b). This is
because excessively increasing datasets during merging tend to dampen precipitation variability (Kanget al., 2024). Although
overall accuracy is similar across our different four-dataset combinations, the set using ERAS, CPC, IMERG, and CMORPH
performs best in capturing EP events (Fig. 3c). Accordingly, these four datasets are selected as the final inputs for SUPER v2.
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(b) IME-CMO _(c)IME-PER

Figure 2. Global distribution of QC-based error cross-correlation (ECC) among the four satellite precipitation products used in SUPER v1.

Grey regions in (d) to (f) indicate areas where QC analysis was not feasible due to insufficient data coverage.

(a) 54 A7 (b) 47 (c) ERA5+CPC+IMERG+RS
08 ——CC
’ —e—RMSE 18
52 - <175
0.78 <2 ]
© E 19 £
o £ E £
o £
Q 5 £ ] @ -18
G 0.76 o S s
(2] o 20 =%
= O )
= g &’-18 5
0.74 4.8 21 .
0.72 4.6 -22 -19
3 4 5 6 3 4 5 3] CMORPH PERSIANN CHIRPS
number of input datasets number of input datasets

Figure 3. (a) Sensitivity of precipitation merging accuracy to the number of input data sources. Error bars represent the variability across
dataset combinations when the total number of inputs is fixed. (b) The impact of input dataset count on merged R95p, with error bars
indicating standard deviation across combinations. (¢) The effect of substituting the fourth dataset (RS) with CMORPH, PERSIANN, or
CHIRPS on merged R95p, while keeping ERAS, CPC, and IMERG fixed. The y-axis (AR95p) indicates deviation from gauge-based R95p;

values closer to zero reflect better performance.

4.2 Merging weights of the four parent datasets in SUPER v2

Figure 4 illustratesthe weights assignedto eachinput dataset mergedin SUPER v2 (i.e., ERAS, CPC, IMERG, and CMORPH).
These weights are estimated using QC/TC-based uncertainty estimates (Gruber et al., 2016a; Stoffelen, 1998) and the least-
squares merging approach (Avery, 1991). ERAS receives the highest weights globally due to its superior performance (Fig.
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4¢).IMERG also contributessubstantially to the merging process, particularly over regions such as eastern CONUS and China,
where its weights exceed 0.3 (Fig. 4a). In contrast, CMORPH and CPC receive relatively low weights, with values generally
below 0.3 for most land pixels (Fig. 4b and d).

(a) IMERG ‘ ' . . ‘ l (b) CMORPHI

T
B2y = . T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Merging weight [-]

Figure 4. Precipitation merging weights of the four parent RS/Reanalysis precipitation datasets used in SUPER v2. The merging weights
are calculated based on error statistics evaluated using QC/TC and a least-square algorithm. Grey regions in (b) indicate describes areas

where CMORPH is not available.

4.3 Comparison of SUPER v2 with RS/reanalysis datasets

Based on the refined merging procedure, SUPER v2 reduces the RMSE of precipitation estimates by approximately 10%, and
increases HSS by 16%, compared to SUPER v1 (Table 4). These results highlight the effectiveness and added value of the
SUPER v2 approach. Therefore, subsequent analyses focus primarily on SUPER v2 and other widely used datasets for brevity.
As shown in Fig. 5, SUPER v2 outperforms conventional RS and reanalysis datasets at approximately 86% and 81% of the
validation gauges in terms of CC and RMSE, respectively (Fig. 5, columns 2 and 3; Table 4). Likewise, the mean error (i.e.,
bias) of SUPER v2 is 0.344+0.43 mm d™!, which is substantially lower than that of ERA5 (0.54+0.42 mm d!). Notably, the
superiority of SUPER v2 to IMERG and CMORPH is even more evident (Fig. 5, columns 2 and 3 and Table 4).

In addition to precipitationintensity, SUPER v2 also demonstrates robustnessin detecting daily precipitationoccurrence (Fig6
and Table 4). Specifically, the RS and reanalysis datasets are prone to false alarm events, with FAR ranging from 0.45 to 0.50
(Table 4). Based on the CTC-M procedure, SUPER v2 reduces the FAR to 0.38. As such, the general performance in
identifyingprecipitation events (captured by HSS) of SUPER v2 is approximately 22% higher than that of the abovementioned

10
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datasets, with superior performance observed at more than 75% of the validation sites. The improvement can be largely
attributed to false alarm filtering using CTC-M with optimized precipitation inputs (see Appendix A for further details).
Likewise, the performance of SUPER v2 is also demonstrated at the 3-hourly time scale (Table 4 and Fig. 7).

SUPER v2-ERA5 SUPER v2-IMERG SUPER v2-CMORPH SUPER v2-MSWEP

CC[]

RMSE (mm d™")

ME (mm d™)

-0.2
-0.4

205
Figure 5. The relative performance of different error metrics for SUPER v2, ERAS, IMERG, CMORPH, and MSWEP at the daily scale
(first to third row, respectively). Note that the differences in ME are based on absolute values (e.g., ME differences are calculated as

IMEguper|-IMEyswep|)- Grey regions denotes areas lacking a sufficiently dense network of independent gauge observations..

SUPER v2-ERA5 i} SUPER v2-IMERG SUPER v2-CMORPH SUPER v2-MSWEP

cooo
=N W

POD

<E=X=)
WN =

FAR
LoooO

ood
WN =

HSS

210 Figure 6. Comparative assessment of daily precipitation occurrence detection capabilities among SUPER v2, ERAS5, IMERG, CMORPH
and MSWEP. Evaluation results for POD, FAR, and HSS are shown in the first to the third rows, respectively.

11
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Figure 7. Boxplots of CC (a), RMSE (b), and HSS (¢) of SUPER v2, ERAS, IMERG, and MSWEP precipitation estimates evaluated on a

3-hourly time scale. The error metrics are sampled across independent hourly gauge observations located in China mainland.

4.4 Comparison of SUPER v2 with gauge-merged datasets

In addition to comparisons with RS and reanalysis datasets, the performance of SUPER v2 is also evaluated against a widely
used gauge-based merging product, MSWEP. Although SUPER v2 and MSWEP rely on similar parent precipitation datasets,
SUPER v2 achieves a lower areal mean RMSE (3.98 mm d! vs. 4.27 mm d™') and a higher CC (0.67 vs. 0.61 [—]) than
MSWEP (Fig.5 column 4). This could be attributed to the overall benefitof SUPER v2 in the strategy of precipitation error
estimation. Specifically, SUPER v2 solves for the error statistics at the individual grid-cell level, while MSWEP applies
spatially interpolated weights derived from nearby gauge observations. Additionally, SUPER v2 accounts for inter-product
cross-correlated errors to avoid overfitting (Dong et al., 2022). These detailed considerations directly enhance the accuracy of
SUPER v2 precipitation intensity estimates. Moreover, SUPER v2 also exhibits stronger rain/no-rain detection skill than
MSWERP, as evidenced by its lower FAR and higher HSS — see the fourth column of Fig. 6. Similar advantages in SUPER v2

in precipitation estimates are also seen at the 3-hourly time scale (Table 4 and Fig. 7).

Table 4. Daily and 3-hourly performance of different error metrics forall evaluated datasets. The dataset with optimal performance is shown

in bold. Values are reported as mean + standard deviation based on a 95% confidence level.

SUPER v1 SUPER v2 ERAS IMERG CMORPH MSWEP
CcC 0.64+0.14 0.68+0.18 0.56+0.17 0.61+0.16 0.53+0.18 0.62+0.17
RMSE (mm
daily &) 4.01+£2.33 3.64+2.83 5.00+£3.65 4.66+3.29 5.414£3.48 427+£3.07
ME
0.37+0.63 0.34+0.33 0.54+0.42 0.34+0.82 0.35+0.83 0.35+0.43
(mmd™T)
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POD 0.86+0.21 0.85+0.14 0.84+0.17 0.77+£0.12 0.70+0.15 0.87+0.13
FAR 0.45+0.17 0.38+0.18 0.50+0.17 0.46+0.19 0.46+0.21 0.45+0.16
HSS 0.50+0.19 0.58+0.17 0.44+0.18 0.48+0.14 0.44+0.15 0.51+0.16

RO5P

1521£14.11  16.19£13.90 13.95+11.59 16.50+14.34 16.01+£14.02  14.05£12.63
(mmd™)
CcC - 0.60+0.16 0.38+0.18 0.57+0.18 - 0.53+0.18
RMSE (mm

- 1.56+0.78 1.82+0.97 1.63£0.69 - 1.60+0.98

3h 1
3h POD - 0.68+0.14 0.84+0.11 0.63£0.16 - 0.86:+0.14
FAR - 0.49+0.17 0.64+0.18 0.53£0.16 - 0.62+0.17
HSS - 0.51+0.13 0.41£0.16 0.45+0.13 - 0.44+0.14

4.5 Bias in extreme precipitation (EP)

Datamergingtends to attenuate EP intensity (Abdelmoaty etal.,2021; Beck,Pan,etal.,2019; Kangetal.,2024). To determine
how well different datasets capture extreme events, we analyse theirrelative performance using R95p. Note that evaluations
based on other EPstatisticsyield similarresults (Kangetal.,2024) and are therefore not included here for brevity. Additionally,
although SUPER v2 isavailable atthe global scale, we restrict the presentation of R95p over regions where independent gauge
observations are available (Fig. 8). Generally, all the datasets can capture the large-scale variations in climate aridity, e.g.,
R95p shows a decreasing trend from the southeast to the northwest part of China. Across all the RS and reanalyzed datasets,
IMERG-based R95p is closerto gauge observations (16.54 mmd~" vs.27.16 mm d ™!, see Fig. 8¢). Such improvement is likely
facilitated by the adoption oflocalized CDF matching and the dual-frequency precipitation radar during precipitation retrieval
(Tan et al., 2021).

Interestingly, the R95p of MSWEP is only 14.43 mm d™!, with a negative bias up to —109.86 mm d™! in humid regions (Fig.
8c). Although SUPER v2 also employs a least-squares-based merging strategy, its R95p more closely aligns with IMERG and
significantly outperforms MSWEP (Fig. 8b). This is because nearly all RS and reanalyzed precipitation data are biased for EP,
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which cannotbe entirely corrected by monthly scaling or CDF matching. In addition, RS/reanalyzed datasets can also contain
substantial timing errors, and increasing the number of datasets tends to amplify EP biases (Kanget al., 2024). For instance, if

245  one dataset correctly captures EP while another entirely misses it, merging the two will underestimate the EP intensity. As
noted above, MSWEP and SUPER v2 are based on the merger of 7 and 4 different datasets, respectively. Therefore, by
reducing the number of parent inputs, SUPER v2 can mitigate R95p bias that is a by-product of merging.

(b) SUPER v2

R95p (mm d)

0 10 20 30 40 50 60 70

Figure 8. The spatial distribution of mean R95P for (a) SUPER v2, (b) MSWEDP, (c¢) and four RS/Reanalysis products (d—f). All values are

250 based on comparisons against daily rain-gauge data.

255
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5 Discussion and Conclusions

This study presents the SUPER v2, a 3-hourly, 0.1-degree global precipitation dataset spanning 2000—-2023, designed to
enhance large-scale precipitation estimation. The primary advantage of SUPER v2 is its use of statistical uncertainty-based
merging framework with optimized inputs. As such, it preserves sufficient precipitation information without excessively
attenuating extreme precipitation (EP) intensity. Critically, SUPER v2 suppresses random and rain/no-rain classification error
without requiring high-quality gauges — making it better suited for data-sparse regions. Validation using 5,972 independent
rain gauges demonstrates that SUPER v2 achieves a daily RMSE 0f 3.64 mmd~!, CC of 0.68 and HSS 0f 0.58. These metrics
outperform traditional RS, reanalysis, and gauge-merged products at 81%, 86%, and 75% of our independent validation sites,
respectively.

A key finding of our analysis is that indiscriminately increasing the number of input precipitation datasets, as done in many

previous studies, can inadvertently degrade merging accuracy. This counterintuitive outcome arises because typical merging
approaches prioritize the overall estimation accuracy (variance -minimized), which inadvertently suppress natural precipitation
variability, especially in extremes (Abdelmoaty et al., 2021; Beck, Vergopolan, et al., 2017). Furthermore, RS-based
precipitation productsoften exhibit substantial intensity and timingerrors, particularly for EPevents. The combinationofthese
factors leads to a systematic underestimation of EP intensity, a risk that escalates with the inclusion of additional, error-prone
datasets (Kangetal.,2024). Therefore, SUPER v2 employsa selective strategy, incorporating only fourrepresentative datasets.

This ensures a balance between overall precipitation accuracy and realistic EP estimates.

It is important to note that SUPER v2 also incorporates gauge-based information, such as the CPC product. However, it
fundamentally differs from traditional gauge-based frameworks, which often assume gauge observations to provide an error-
free reference. This assumption introduces significant uncertainties, particularly in data-sparse regions with limited gauge
coverage. In contrast, SUPER v2 integrates CPC as a standard gridded input, explicitly quantifying and incorporating its

uncertainties during the merging process. For example, the contribution of CPC is minimal in data-sparse regions, with an
assigned weight of less than 0.05, while greaterreliance is placed on RS and reanalysis datasets (Fig. 4) in these areas. This

allows SUPER v2 to implicitly account for observational errors and effectively leverage multi-source precipitation information,
resulting in a more balanced and robust performance across regions with varying gauge densities. As such, SUPER v2 will

provide valuable support for global-scale hydrological and land surface modeling.
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Appendix A: Selection of CTC-M input datasets
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295  Figure Al. Comparison of observed daily precipitation (OBS) with SM2Rain and CPC estimates for a selected site. The geolocation of this
illustrative grid cell is shown in the inset. SM2Rain falsely detects precipitation events for 19 out of 40 days, resulting in a higher false alarm

rate. In contrast, CPC shows better agreement with observations, with false alarms on only 4 out of 40 days.

Appendix B: Selection of reference precipitation climatology
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300 Figure B1. Pearson correlation coefficients (CC) of six precipitation datasets evaluated against daily gauge observations (based on monthly

total precipitation). Among the evaluated datasets, IMERG shows the highest consistency with gauge observations.
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Appendix C: Evaluation of IMERG 3-hourly precipitation accuracy

(a) IMERG 3-hourly (b) ERAS5 3-hourly
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Figure C1. Spatial distribution of correlation coefficients (CC) between hourly observations from 2,674 national stations in China and (a)
IMERG 3-hourly and (b) ERAS 3-hourly precipitation estimates. IMERG exhibits generally higher correlations across most regions,

particularly in southern and eastern China, indicating its superior capability in capturing sub-daily precipitation variability.

Data availability

The SUPER  v2  (3-hourly, 0.1°, global, 2000-2023) dataset is openly available at:
https://doi.org/10.6084/m9 figshare.30899792 (Zhang & Dong, 2025a). Daily precipitation data are also supplied to support
diverse user needs: https:/doi.org/10.6084/m9.figshare.29206313 (Zhang & Dong, 2025b). All data are provided in NetCDF

format.
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