
Supplementary Material for "SUPER v2: A 3-Hourly Global 

Precipitation Dataset Optimized for Sparse Data Challenges" 

S1. Datasets involved in the construction and verification of SUPER v2. 
IMERG V07 Final Run: The Integrated Multi-satellitE Retrievals for GPM (IMERG V07 Final Run) is a NASA product 

delivering high-resolution precipitation estimates (0.1°, 30-min) from 2000 to the present. Operating under the joint NASA-

JAXA Global Precipitation Measurement (GPM) framework, the algorithm utilizes the GPM Core Observatory as a calibration 

anchor to harmonize precipitation retrievals from a diverse international satellite constellation. IMERG Early, Late and Final 

Run data are made available, with the Final Run incorporating all available data, including adjusted gauge information, to 

provide the most refined precipitation estimates (Huffman, 2023). The IMERG dataset is available at: 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07. 

CMORPH CDR: The NOAA Climate Data Record (CDR) of CMORPH (CPC Morphing Technique) generates daily, high-

resolution precipitation fields (8 km × 8 km) covering the latitude band 60° S–60° N from 1998 to the present. It is generated 

by integrating passive microwave (PMW) measurements to construct satellite-based global precipitation fields. To mitigate 

biases, the raw estimates are rigorously corrected  against CPC daily gauge analysis over land and the GPCP pentad product 

over the ocean (Joyce et al., 2004; Xie et al., 2017). The CMORPH dataset is available at: 

https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/. 

PERSIANN CDR: NOAA Climate Data Record of Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN-CDR) is a daily precipitation dataset developed by NOAA, offering a spatial 

resolution of 0.25° across 60° S–60° N from 1983 to the present. The algorithm applies artificial neural networks to GridSat-

B1 infrared data to estimate rainfall. Crucially, the dataset is adjusted using the Global Precipitation Climatology Project 

(GPCP) monthly product to maintain consistency at the monthly scale, making it highly suitable for long-term hydro-climatic 
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studies (Ashouri et al., 2015). The PERSIANN dataset is available at: https://www.ncei.noaa.gov/data/precipitation-

persiann/access/. 

CHIRPS-2.0: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS-2.0) is a quasi-global (50° S–50° N) 

high-resolution precipitation dataset spanning from 1981 to the present. It employs a unique fusion approach that integrates 

satellite-based Cold Cloud Duration imagery with 0.05° climatology (CHPclim) and in-situ station data (Funk et al., 2015). 

The CHIRPS dataset is available at: https://data.chc.ucsb.edu/products/CHIRPS-2.0/. 

CPC: The CPC Unified Gauge-Based Analysis of Global Daily Precipitation dataset, developed by NOAA's Climate 

Prediction Center, offers daily land-surface precipitation fields at a 0.5° resolution, covering the period from 1979 to the present. 

CPC utilizes the optimal interpolation (OI) technique, which integrates multiple data sources to produce reliable gridded 

precipitation fields (Chen et al., 2008; Xie et al., 2007). The CPC dataset is available at: 

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. 

ERA5: The global reanalyzed precipitation product from the fifth generation European Centre for Medium-Range Weather 

Forecasts atmospheric reanalysis system (ERA5) provides hourly global precipitation estimates at a spatial resolution of 0.25°. 

Based on the IFS Cy41r2 system, ERA5 employs an advanced data assimilation framework along with improved model physics 

and dynamics, leading to significantly enhanced precipitation estimates with higher temporal and spatial resolution (Hersbach 

et al., 2020). The ERA5 dataset is available at: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-

levels?tab=overview.  

MSWEP V2: Multi-Source Weighted-Ensemble Precipitation (MSWEP V2) is included in this study as a representative 

gauge-corrected merged product for comparative analysis. It offers global daily precipitation estimates at 0.1° resolution by 

integrating nine remote sensing and reanalysis datasets. The merging weights are calibrated using gauge observations with 

intelligent interpolation applied to ungauged regions to ensure global consistency (Beck et al., 2017; Beck et al., 2019). The 

MSWEP V2 dataset is available at: https://www.gloh2o.org/mswep/. 

Gauge data: Note that the majority of RS, reanalysis, and merged precipitation products are heavily calibrated/validated using 

US and European gauge networks (Kang et al., 2024). Therefore, we focus on gauge data collected from mainland China and 

Africa, where precipitation observations are less commonly incorporated into existing precipitation products. A total of 5,972 
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independent gauges are collected from multiple sources to support validation at both daily and sub-daily scales across diverse 

climatic zones. Among them, 3,298 are daily gauges, including 814 from the National Meteorological Information Center of 

the China Meteorological Administration (CMA), 235 from the Hydrological Yearbook of China, 168 from the Haihe River 

Basin (2018–2023), 1,884 from northwestern China (2020–2021), and 197 from Africa (2015–2022) (van de Giesen et al., 

2014). Additionally, hourly observations from 2,674 national stations, provided by the Hubei Provincial Meteorological 

Observatory, are used for validation at a 3-hourly resolution. 

 

S2. Implementation details of QC and CTC-M algorithms 
Quadruple collocation (QC) 

 To simultaneously estimate the error variances 𝜎2 and the inter-product error covariances required for precipitation 

merging, we utilizes the Quadruple collocation (QC) technique (Gruber et al., 2016). Following the standard QC framework, 

the relationship between the precipitation estimate from the 𝑖-th product (𝑥𝑖) and the unknown truth (𝑝) is expressed via a 

linear additive error model: 

𝑥𝑖 = 𝛽𝑖𝑝 + 𝜀𝑖 (𝑆. 1) 

Here, 𝛽𝑖 represents the additive systematic bias while 𝜀𝑖 denotes the time-varying random error. 

The QC analysis involves four precipitation datasets ( 𝑥1 through 𝑥4), The method relies on the fundamental assumption 

that the error terms (𝜀𝑖) are statistically independent across different products (𝜀1𝜀2̅̅ ̅̅ ̅ = 0 for 𝑖 ≠  𝑗) and are uncorrelated with 

the true precipitation signal (i. e., 𝜀𝑖𝑝̅̅ ̅̅ = 0). Whiles standard Triple Collocation (TC) assumes zero error cross-correlation 

between all products, QC accommodates the existence of cross-correlated errors between a specific pair of products, such as 

𝑥3 and 𝑥4 (i.e., 𝜀3𝜀4̅̅ ̅̅ ̅̅ ≠ 0). Under these conditions, the system of equations involving the true precipitation variance and error 

variances can be solved linearly. 
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 (𝑆. 2) 

     where 𝐶𝑥𝑥  denote the covariance matrix of the input datasets. where individual elements such as 𝐶12  represent the 

covariance between 𝑥1 and 𝑥2. The coefficient vector 𝒂 is estimated via a least-squares solution, denoted as 𝒂̃: 

𝒂̃ = (𝐀T𝐀)−1𝐀T𝒃 (𝑆. 3) 

By designating  𝑥1 as the reference dataset for scaling purposes, we can derive the error variance of the rescaled products 

directly from the statistics within the  𝒂̃ vector: 
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(𝑆. 4) 

Similarly, the error covariance between the rescaled 𝑥3 and 𝑥4 is given by: 
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(𝑆. 5) 

Furthermore, the correlation coefficient between the product and the truth (𝑅𝑖
qc

) is calculated as: 
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(𝑆. 6) 

Prior to applying QC, a monthly climatological correction (see Sect. 2.1) is applied to all products to mitigate the impact 

of systematic biases (𝛽𝑖). 



 

Categorical Triple Collocation-based Merging (CTC-M) 

CTC-M provides a superior binary (rain/no-rain) time series by utilizing three mutually independent precipitation 

products to quantify their relative detection skills and optimally merge their categorical information. This process first employs 

Categorical Triple Collocation (CTC, McColl et al., 2016) to quantify the relative detection skills of the input products. 

Subsequently, a probabilistic merging scheme combines the collocated binary series to maximize the likelihood of correct 

classification at each time step.  

In this framework, the binary detection status 𝑑𝑖  from product 𝑖  relates to the ground truth event 𝑃  through the 

following model:  

𝑑𝑖 = 𝑃 + 𝑒𝑖  (𝑆. 7)   

where 𝑃 represents the unknown true binary state (with +1 indicating rain and -1 indicating no-rain), 𝑑𝑖 is the estimated 

state, and 𝑒𝑖 signifies the classification error. The detection capability of 𝑑𝑖 is quantified using the balanced accuracy metric, 

𝜋𝑖: 

𝜋𝑖 = 0.5(𝐴𝑖 + 𝐷𝑖)  (𝑆. 8) 

Here, 𝐴𝑖 and 𝐷𝑖  correspond to the probability of 𝑑𝑖 being correct when 𝑃 is +1 and -1, respectively (McColl et al., 

2016). Assuming that the classification errors are independent among the three products, the inter-product covariance (𝑄) of 

of the binary time series is formulated as: 

𝑄12 = 𝐶𝑜𝑣(𝑥1, 𝑥2) = 𝑓(𝐼)(2𝜋1 − 1)(2𝜋2 − 1) (𝑆. 9) 

𝑄13 = 𝐶𝑜𝑣(𝑥1, 𝑥3) = 𝑓(𝐼)(2𝜋1 − 1)(2𝜋3 − 1) (𝑆. 10) 

𝑄23 = 𝐶𝑜𝑣(𝑥2, 𝑥3) = 𝑓(𝐼)(2𝜋2 − 1)(2𝜋3 − 1) (𝑆. 11) 

where 𝑓(𝑃) relates to the statistical properties of 𝑃 and is typically unknown. However, by leveraging the inter-product 

covariances, the relative detection skill (𝑣𝑖) for each product can be isolated:  
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where 𝑣𝑖 = √𝑓(𝑃)(2𝜋𝑖 − 1). Using the 𝑣𝑖  values derived above, the merged binary time series (𝑑𝑚) with optimal 

detection skill is obtained via the following weighted combination: 

𝑑𝑚 = 𝑠𝑖𝑔𝑛(𝑤1 𝑑1 + 𝑤2𝑑2 + 𝑤3𝑑3) (𝑆. 15) 

The weight 𝑤𝑖  for each contributing product is calculated as: 

𝑤𝑖 =
𝑣𝑖

𝑛

𝑣1
𝑛 + 𝑣2

𝑛 + 𝑣3
𝑛  (𝑆. 16) 

where 𝑛 serves as a tuning parameter that adjusts the weights according to the relative skill differences among products. 

Previous analytical derivations (Dong et al., 2020) indicate that setting 𝑛 = 1.5 is a robust choice, generally ensuring that the 

classification skill of the merged output meets or exceeds that of the best individual parent product (i.e., 𝜋𝑚  ≥

 𝑚𝑎𝑥 (𝜋1, 𝜋2, 𝜋3)). 
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