Supplementary Material for "SUPER v2: A 3-Hourly Global

Precipitation Dataset Optimized for Sparse Data Challenges"

S1. Datasets involved in the construction and verification of SUPER v2.

IMERG V07 Final Run: The Integrated Multi-satellitE Retrievals for GPM (IMERG V07 Final Run) is a NASA product
delivering high-resolution precipitation estimates (0.1°, 30-min) from 2000 to the present. Operating under the joint NASA-
JAXA Global Precipitation Measurement (GPM) framework, the algorithm utilizes the GPM Core Observatory as a calibration
anchor to harmonize precipitation retrievals from a diverse international satellite constellation. IMERG Early, Late and Final
Run data are made available, with the Final Run incorporating all available data, including adjusted gauge information, to
provide the most refined precipitation estimates (Huffman, 2023). The IMERG dataset is available at:
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF 07.

CMORPH CDR: The NOAA Climate Data Record (CDR) of CMORPH (CPC Morphing Technique) generates daily, high-
resolution precipitation fields (8 km x 8 km) covering the latitude band 60° S—60° N from 1998 to the present. It is generated
by integrating passive microwave (PMW) measurements to construct satellite-based global precipitation fields. To mitigate
biases, the raw estimates are rigorously corrected against CPC daily gauge analysis over land and the GPCP pentad product
over the ocean (Joyce et al, 2004, Xie et al, 2017). The CMORPH dataset is available at:
https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/.

PERSIANN CDR: NOAA Climate Data Record of Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN-CDR) is a daily precipitation dataset developed by NOAA, offering a spatial
resolution of 0.25° across 60° S—60° N from 1983 to the present. The algorithm applies artificial neural networks to GridSat-
B1 infrared data to estimate rainfall. Crucially, the dataset is adjusted using the Global Precipitation Climatology Project

(GPCP) monthly product to maintain consistency at the monthly scale, making it highly suitable for long-term hydro-climatic
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studies (Ashouri et al., 2015). The PERSIANN dataset is available at: https://www.ncei.noaa.gov/data/precipitation-
persiann/access/.

CHIRPS-2.0: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS-2.0) is a quasi-global (50° S—50° N)
high-resolution precipitation dataset spanning from 1981 to the present. It employs a unique fusion approach that integrates
satellite-based Cold Cloud Duration imagery with 0.05° climatology (CHPclim) and in-situ station data (Funk et al., 2015).
The CHIRPS dataset is available at: https://data.chc.ucsb.edu/products/CHIRPS-2.0/.

CPC: The CPC Unified Gauge-Based Analysis of Global Daily Precipitation dataset, developed by NOAA's Climate
Prediction Center, offers daily land-surface precipitation fields at a 0.5° resolution, covering the period from 1979 to the present.
CPC utilizes the optimal interpolation (OI) technique, which integrates multiple data sources to produce reliable gridded
precipitation fields (Chen et al, 2008; Xie et al, 2007). The CPC dataset 1is available at:
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html.

ERAS: The global reanalyzed precipitation product from the fifth generation European Centre for Medium-Range Weather
Forecasts atmospheric reanalysis system (ERAS5) provides hourly global precipitation estimates at a spatial resolution of 0.25°.
Based on the [FS Cy41r2 system, ERAS employs an advanced data assimilation framework along with improved model physics
and dynamics, leading to significantly enhanced precipitation estimates with higher temporal and spatial resolution (Hersbach
et al., 2020). The ERAS5 dataset is available at: https://cds.climate.copernicus.eu/datasets/reanalysis-eraS-single-
levels?tab=overview.

MSWEP V2: Multi-Source Weighted-Ensemble Precipitation (MSWEP V2) is included in this study as a representative
gauge-corrected merged product for comparative analysis. It offers global daily precipitation estimates at 0.1° resolution by
integrating nine remote sensing and reanalysis datasets. The merging weights are calibrated using gauge observations with
intelligent interpolation applied to ungauged regions to ensure global consistency (Beck et al., 2017; Beck et al., 2019). The
MSWEP V2 dataset is available at: https://www.gloh2o0.org/mswep/.

Gauge data: Note that the majority of RS, reanalysis, and merged precipitation products are heavily calibrated/validated using
US and European gauge networks (Kang et al., 2024). Therefore, we focus on gauge data collected from mainland China and

Africa, where precipitation observations are less commonly incorporated into existing precipitation products. A total of 5,972
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independent gauges are collected from multiple sources to support validation at both daily and sub-daily scales across diverse
climatic zones. Among them, 3,298 are daily gauges, including 814 from the National Meteorological Information Center of
the China Meteorological Administration (CMA), 235 from the Hydrological Yearbook of China, 168 from the Haihe River
Basin (2018-2023), 1,884 from northwestern China (2020-2021), and 197 from Africa (2015-2022) (van de Giesen et al.,
2014). Additionally, hourly observations from 2,674 national stations, provided by the Hubei Provincial Meteorological

Observatory, are used for validation at a 3-hourly resolution.

S2. Implementation details of QC and CTC-M algorithms

Quadruple collocation (QC)

To simultaneously estimate the error variances o2 and the inter-product error covariances required for precipitation
merging, we utilizes the Quadruple collocation (QC) technique (Gruber et al., 2016). Following the standard QC framework,
the relationship between the precipitation estimate from the i-th product (x;) and the unknown truth (p) is expressed via a
linear additive error model:

xi = Bip + & (S.1)

Here, B; represents the additive systematic bias while &; denotes the time-varying random error.

The QC analysis involves four precipitation datasets ( x; through x,), The method relies on the fundamental assumption
that the error terms (g;) are statistically independent across different products (€;&, = 0 for i # j) and are uncorrelated with
the true precipitation signal (i.e., €p = 0). Whiles standard Triple Collocation (TC) assumes zero error cross-correlation
between all products, QC accommodates the existence of cross-correlated errors between a specific pair of products, such as
xz and x, (i.e., &€, # 0). Under these conditions, the system of equations involving the true precipitation variance and error

variances can be solved linearly.



Cll

C22

C33

71000010000 C.r

B2C, | 0100001000 Con

L 0010010100 c.C
B2 Cop 0001010010 12

B2C,, 0000100001 B
B2C,p 1000000000 12723

a=|, A=]|0100000000(b= Ci3 (5.2)

o 0010000000 Cy3Ci3

o 1000000000 Ciz
o 0100000000 C12C1a/ Con
Cf““ 0001000000 C12Cra/Cia
S esed 0000100000 C1aCra/Cus
0000100000 CiaCon/Cus

C14Ca3

Ciz

where C,, denote the covariance matrix of the input datasets. where individual elements such as C;, represent the

covariance between x; and x,. The coefficient vector a is estimated via a least-squares solution, denoted as a:
a=(ATA)'ATh (5.3)

By designating x; as the reference dataset for scaling purposes, we can derive the error variance of the rescaled products

directly from the statistics within the @ vector:
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Similarly, the error covariance between the rescaled x; and x, is given by:
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Furthermore, the correlation coefficient between the product and the truth (R?C) is calculated as:
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Prior to applying QC, a monthly climatological correction (see Sect. 2.1) is applied to all products to mitigate the impact

of systematic biases (5;).



Categorical Triple Collocation-based Merging (CTC-M)

CTC-M provides a superior binary (rain/no-rain) time series by utilizing three mutually independent precipitation
products to quantify their relative detection skills and optimally merge their categorical information. This process first employs
Categorical Triple Collocation (CTC, McColl et al., 2016) to quantify the relative detection skills of the input products.
Subsequently, a probabilistic merging scheme combines the collocated binary series to maximize the likelihood of correct

classification at each time step.

In this framework, the binary detection status d; from product i relates to the ground truth event P through the

following model:
di =P+ e; (S 7)

where P represents the unknown true binary state (with +1 indicating rain and -1 indicating no-rain), d; is the estimated
state, and e; signifies the classification error. The detection capability of d; is quantified using the balanced accuracy metric,
T;:

m; = 0.5(4; + D;) (5.8)

Here, A; and D; correspond to the probability of d; being correct when P is +1 and -1, respectively (McColl et al.,
2016). Assuming that the classification errors are independent among the three products, the inter-product covariance (Q) of

of the binary time series is formulated as:

Q12 = Cov(xy,x;) = f(N) 2y — D(2m, — 1) (5.9
Q13 = Cov(xy,x3) = f(D)(2my — 1)(2m5 — 1) (S.10)
Q23 = Cov(xy,x3) = f(D(2m, — 1273 — 1) (8.11)

where f(P) relates to the statistical properties of P and is typically unknown. However, by leveraging the inter-product

covariances, the relative detection skill (v;) for each product can be isolated:
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where v; = \/f(P)(2m; — 1). Using the v; values derived above, the merged binary time series (d,,) with optimal

detection skill is obtained via the following weighted combination:
dm = Sign(Wl d]_ + Wzdz + W3d3) (S 15)

The weight w; for each contributing product is calculated as:
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where n serves as a tuning parameter that adjusts the weights according to the relative skill differences among products.
Previous analytical derivations (Dong et al., 2020) indicate that setting n = 1.5 is a robust choice, generally ensuring that the
classification skill of the merged output meets or exceeds that of the best individual parent product (i.e., m, =

max (1, T,, T3)).
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