

1 A benchmark laboratory calibration dataset for
2 tipping-bucket rain gauges: comparison of manual
3 burette and automated methods

4 Authors

5 Bokjin Jang*

6 Affiliations

7 Korea Institute of Hydrological Survey (KIHS), Gyeonggi-do, Republic of Korea

8 *Corresponding author: bj@kihs.re.kr

9

10 Abstract

11 Reliable calibration data are essential for ensuring the accuracy and traceability of
12 precipitation measurements obtained from tipping-bucket rain gauges (TBRGs), which
13 are widely used in hydrological and meteorological monitoring networks. Although
14 manual burette-based calibration remains the most commonly applied approach, its
15 reproducibility is often limited by operator dependency and changes in discharge
16 conditions during experiments. Automated calibration devices have been developed to
17 address these limitations, yet publicly available benchmark datasets that allow
18 transparent comparison between manual and automated calibration methods remain
19 scarce.

20 This paper presents a benchmark laboratory calibration dataset for tipping-bucket rain
21 gauges generated under controlled conditions using two calibration approaches: a
22 conventional manual burette method and an automated calibration device (PRC-20AP).
23 Calibration experiments were conducted at five target rainfall intensities (10, 20, 30, 50,
24 and 100 mm h⁻¹), with a target total rainfall of 20 mm and 15 repeated trials for each
25 intensity. For every trial, the dataset reports elapsed time, measured total rainfall,
26 measured rainfall intensity, and corresponding relative errors.

27 In addition to raw measurements, the dataset includes intensity-wise summary statistics
28 and a comprehensive uncertainty evaluation following the Guide to the Expression of
29 Uncertainty in Measurement (GUM). Type A, Type B, combined, and expanded
30 uncertainties at 95 % coverage are provided to support quantitative assessment of
31 measurement repeatability and reliability. All data are released in machine-readable
32 spreadsheet formats with detailed documentation of variables, units, and calculation
33 conventions to facilitate reuse.

34 The dataset is publicly available through a persistent DOI and is intended to serve as a
35 reference benchmark for laboratory calibration of tipping-bucket rain gauges. Potential
36 applications include calibration protocol validation, uncertainty budgeting,
37 intercomparison of calibration methods, and the development and evaluation of
38 automated calibration technologies for precipitation measurement.

39

40 1. Introduction

41 Precipitation data constitute a fundamental basis for hydrological and meteorological
42 applications, including flood forecasting and warning, water resources management,
43 and climate change impact assessment. The reliability of such data strongly depends on
44 the measurement accuracy of precipitation instruments and on robust calibration
45 frameworks. Among various precipitation sensors, tipping-bucket rain gauges (TBRGs)
46 are one of the most widely used instruments worldwide owing to their simple
47 mechanical structure, ease of automation, and relatively low maintenance requirements.
48 However, it has been well documented that TBRGs exhibit rainfall-intensity-dependent
49 measurement errors, with systematic biases occurring under light and intense rainfall
50 conditions (Marsalek, 1981; Duchon and Essenbergh, 2001; Habib et al., 2001; Tokay
51 and Bashor, 2010). Consequently, regular calibration and performance evaluation of
52 TBRGs are regarded as essential procedures for ensuring the quality of precipitation
53 observations (WMO, 2008).

54 The most commonly adopted approach for laboratory calibration of TBRGs is the
55 conventional manual burette-based method, in which a known water volume is
56 discharged by gravity and compared with the rainfall recorded by the gauge. This
57 method has long been used as a standard procedure because of its simple setup and
58 operational practicality (WMO, 2008). Nevertheless, it inherently suffers from structural
59 limitations, as the discharge rate gradually decreases with the lowering water level in
60 the burette during experiments. In addition, the calibration results are strongly
61 influenced by operator skill and procedural consistency, which can reduce repeatability
62 and reproducibility and ultimately increase measurement uncertainty (Marsalek, 1981;
63 Shedekar et al., 2009).

64 To overcome these limitations, automated calibration devices that actively control
65 discharge conditions using precision pumps and sensors have been increasingly
66 developed in recent years (Humphrey et al., 1997; Lanza and Stagi, 2009; Rohmah et
67 al., 2024). Automated calibrators are attracting attention as viable alternatives to manual
68 methods because they can minimize operator dependency and improve consistency
69 across repeated trials. At the same time, the need for standardized and reproducible
70 calibration procedures for rainfall intensity measurements has been continuously
71 emphasized at the international level (Lanza and Vuerich, 2005; Colli et al., 2018).

72 Despite these developments, existing studies have largely focused on characterizing
73 measurement errors of individual rain gauges or evaluating the performance of specific

74 calibration devices. Publicly available datasets that provide raw experimental data
75 together with uncertainty information derived from repeated experiments under identical
76 and controlled conditions remain limited. In practice, rainfall gauge calibration often
77 benefits more from well-controlled experimental datasets than from large-scale
78 observational databases, particularly in the context of calibration protocol verification
79 and standardization. However, such experimental benchmark datasets are rarely
80 released in a reusable and well-documented form.

81 In this context, the present paper releases a laboratory calibration dataset for tipping-
82 bucket rain gauges generated under controlled conditions using both a conventional
83 manual burette-based method and an automated calibration device (PRC-20AP). The
84 dataset consists of repeated calibration experiments conducted under multiple rainfall
85 intensity conditions and includes measurement results together with uncertainty
86 estimates evaluated following the Guide to the Expression of Uncertainty in
87 Measurement (GUM) framework (JCGM, 2008). Although the dataset size is limited, it
88 represents a practical and reusable reference dataset that can directly support
89 calibration protocol validation, uncertainty assessment, comparison between manual
90 and automated calibration approaches, and discussions on standardization of rainfall
91 gauge calibration. Detailed performance analyses and interpretations based on this
92 dataset are presented in Jang et al. (2026), while the primary objective of this paper is
93 to systematically document the structure, generation process, and quality characteristics
94 of the dataset itself.

95

96 2. Data description

97 2.1 Dataset overview

98 This dataset is an experimental, reference calibration dataset for tipping-bucket rain
99 gauges (TBRGs), generated to support the comparison of a conventional manual
100 burette-based calibration method and an automated calibration device (PRC-20AP)
101 under identical and controlled conditions. The dataset was produced in a laboratory
102 environment and consists of raw measurement data obtained from repeated calibration
103 experiments together with derived statistical and uncertainty-related variables.

104 Unlike large-scale long-term observational databases, the present dataset is specifically
105 designed for rainfall gauge calibration purposes. Although the overall data volume is
106 limited, the dataset is based on repeated measurements conducted under strictly
107 controlled conditions, which makes it particularly suitable for calibration protocol
108 verification, uncertainty evaluation, and comparative studies between manual and
109 automated calibration approaches. Performance analyses and interpretations derived
110 from this dataset are reported in Jang et al. (2026), while the primary objective of this
111 paper is to document the dataset itself in a transparent and reusable manner.



112 2.2 Experimental setup and instruments

113 The calibration experiments were conducted using both a conventional manual burette-
114 based calibration system and an automated calibration device (PRC-20AP). The
115 manual system follows the traditional gravity-driven discharge approach, in which a
116 known volume of water is released through a burette and directed into the collecting
117 funnel of the rain gauge under test.

118 The automated calibration device (PRC-20AP) is designed to actively control the
119 discharge rate using a roller pump and a laser-based water level sensor. By
120 continuously adjusting the pumping rate according to predefined rainfall intensity
121 settings, the system maintains a stable discharge condition throughout each
122 experiment. Additional technical details of the system design are provided in Jang et al.
123 (2026).

124 The present dataset includes the results of repeated calibration experiments conducted
125 using this system. Figure 1 presents conceptual schematics of the manual burette-
126 based calibration system and the automated calibration system (PRC-20AP),
127 highlighting the key components and flow paths relevant to data generation.

130 **Figure 1** illustrates schematic diagrams of the manual and automated calibration
131 setups. (a) Manual burette-based calibration (schematic), (b) Automated calibration
132 system (PRC-20AP, schematic), (Adapted from Jang et al. (2026))

133

134 2.3 Calibration conditions and experimental design

135 Calibration experiments were performed under five rainfall intensity conditions: 10, 20,
136 30, 50, and 100 mm h⁻¹. For each rainfall intensity, the target total rainfall amount was
137 set to 20 mm. Under each condition, 15 repeated calibration trials were conducted to
138 enable the assessment of measurement variability and uncertainty.

139 Both the manual and automated calibration experiments were carried out using identical
140 rainfall intensity and total rainfall settings. Environmental conditions other than the
141 calibration method were kept as consistent as possible throughout the experiments.
142 This experimental design allows differences between the two calibration approaches to
143 be attributed primarily to the calibration method itself rather than to external factors.
144 Table 1 summarizes the rainfall intensity levels, target total rainfall amounts, and the
145 number of repeated trials applied in the calibration experiments.

146

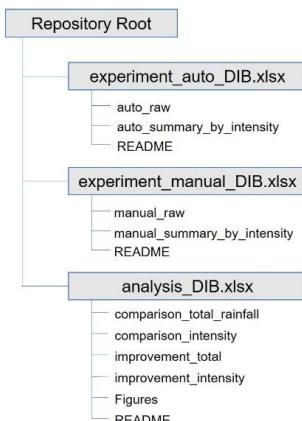
147 Table 1. Summary of calibration conditions and experimental design applied to generate
148 the dataset.

Parameter	Value
Calibration method	Manual burette-based / Automated (PRC-20AP)
Target rainfall intensities (mm h ⁻¹)	10, 20, 30, 50, 100
Target total rainfall (mm)	20
Number of repeated trials per intensity	15
Experimental environment	Controlled laboratory conditions

149

150 2.4 Data files and structure

151 The dataset is organized to clearly distinguish data generated using the manual burette-
152 based calibration method from those obtained using the automated calibration device
153 (PRC-20AP). Data are provided in separate files according to the calibration method,
154 allowing users to easily identify and utilize the datasets without ambiguity.


155 Manual calibration data are stored in the file experiment_manual_DIB.xlsx, while
156 automated calibration data are stored in experiment_auto_DIB.xlsx. Each file contains
157 both raw data obtained from individual calibration trials and summary data aggregated
158 by rainfall intensity. The internal structure of the files follows a consistent worksheet
159 layout, enabling identical analytical procedures to be applied to both manual and
160 automated calibration datasets.

161 Within each calibration file, raw measurement data are stored in worksheets labeled
162 manual_raw or auto_raw, and rainfall-intensity-based summary statistics are provided in
163 worksheets labeled manual_summary_by_intensity or auto_summary_by_intensity. The
164 raw data worksheets include time information for each trial, cumulative rainfall recorded
165 by the tipping-bucket rain gauge, and calculated rainfall intensity values. The summary
166 worksheets contain descriptive statistics derived from repeated trials, including mean
167 values, standard deviations, and uncertainty-related metrics. In addition, each file
168 includes a README worksheet that documents the data structure, variable definitions,
169 and calculation conventions to facilitate correct interpretation and reuse of the data.

170 In addition to the calibration datasets, the file analysis_DIB.xlsx provides organized
171 comparison and analysis results derived from both calibration methods. This file
172 includes comparative results for total rainfall and rainfall intensity, estimates of relative
173 error and uncertainty-based improvement metrics, and datasets prepared for figure
174 generation. The detailed interpretation and discussion of these analysis results are
175 reported in Jang et al. (2026) and are not repeated in the present data paper.

176 Figure 2 provides an overview of the repository structure of the dataset, illustrating the
177 relationships between the manual and automated calibration data files and the
178 organization of worksheets within each file. This repository structure was designed to
179 allow users to intuitively understand the roles and contents of the data files and to
180 efficiently access the information required for reuse.

181

182

183 Figure 2. Overview of the repository structure of the dataset, showing the organization
184 of data files and worksheets for manual and automated calibration experiments.

185

186 2.5 Variables and units

187 The dataset includes raw experimental variables recorded during individual calibration
188 trials and derived variables computed for statistical analysis and uncertainty evaluation.
189 All variables are defined to be consistent with the worksheet structure and README
190 descriptions provided in the distributed spreadsheet files (experiment_manual_DIB.xlsx,
191 experiment_auto_DIB.xlsx, and analysis_DIB.xlsx).

192 Raw experimental data are stored on a per-trial basis, with one row corresponding to
193 one calibration trial. These data include target setpoints, measured values obtained
194 from the tipping-bucket rain gauge, and derived relative errors. Time-related information
195 represents the elapsed time from the start of each calibration trial and is expressed in
196 seconds (s).

197 The primary measured quantity is the accumulated rainfall recorded by the rain gauge
198 during a calibration trial, expressed in millimeters (mm). Based on the accumulated
199 rainfall and the trial duration, the average rainfall intensity is calculated and reported in
200 millimeters per hour (mm h^{-1}). Relative error is defined as the difference between
201 measured and reference values normalized by the reference value and is expressed as
202 a percentage (%).

203 For each rainfall intensity condition, summary statistics are computed from repeated
204 trials. These include mean values and standard deviations, which form the basis for
205 uncertainty evaluation. Measurement uncertainty follows the Guide to the Expression of
206 Uncertainty in Measurement (GUM) framework. Type A uncertainty is derived from
207 repeated measurements as the standard deviation divided by the square root of the
208 number of trials. Type B uncertainty is based on specification or certificate information
209 for the calibration system. Combined standard uncertainty is calculated as the square
210 root of the sum of squared Type A and Type B uncertainties, and expanded uncertainty
211 is obtained by multiplying the combined uncertainty by a coverage factor corresponding
212 to approximately 95 % confidence confidence ($t \approx 2.145$ for $n = 15$).

213 For summary and uncertainty variables, the applicable unit depends on whether the
214 statistic is computed for accumulated rainfall or rainfall intensity, as specified in Table 2.

215

216 Table 2. Variables included in the dataset, their definitions and units.

217 *For summary and uncertainty variables, the unit is mm when computed for accumulated
218 rainfall and mm h^{-1} when computed for rainfall intensity.*

219

Variable name	Description	Unit
trial_id	Unique identifier for each calibration trial	–
rainfall_intensity_target	Target rainfall intensity set for the calibration experiment	mm h ⁻¹
rainfall_total_target	Target total rainfall amount for the calibration experiment	mm
time_elapsed	Elapsed time from the start of a calibration trial	s
accumulated_rainfall	Accumulated rainfall recorded by the tipping-bucket rain gauge during a trial	mm
rainfall_intensity_measured	Average rainfall intensity calculated from accumulated rainfall and trial duration	mm h ⁻¹
relative_error	Relative difference between measured and reference values	%
mean_value	Mean value computed from repeated trials at the same rainfall intensity	mm or mm h ⁻¹
std_dev	Standard deviation of repeated measurements at the same rainfall intensity	mm or mm h ⁻¹
u_A	Type A standard uncertainty derived from repeated measurements (s/√n)	mm or mm h ⁻¹
u_B	Type B standard uncertainty based on specification or certificate information	mm or mm h ⁻¹
u_c	Combined standard uncertainty calculated as $\sqrt{u_A^2 + u_B^2}$	mm or mm h ⁻¹
U	Expanded uncertainty corresponding to approximately 95 % confidence (t ≈ 2.145, n = 15)	mm or mm h ⁻¹

220

221 3. Methods

222 3.1 Experimental design and workflow

223 Laboratory-based calibration experiments were conducted to generate a reproducible
224 dataset for comparing manual and automated calibration procedures for tipping-bucket
225 rain gauges. All experiments were performed at the calibration laboratory of the Korea
226 Institute of Hydrological Survey (KIHS) under controlled indoor conditions. The
227 experimental design focused on ensuring identical test conditions for both calibration
228 methods, with differences limited to the water supply and rainfall intensity control
229 mechanisms.

230 Calibration experiments were conducted at five target rainfall intensity levels (10, 20, 30,
231 50, and 100 mm h⁻¹). For all test conditions, the target total rainfall amount was fixed at
232 20 mm. Each rainfall intensity condition was repeated 15 times for both calibration
233 methods to support statistical evaluation based on repeated measurements.

234 Each calibration trial followed a consistent sequence of steps, as outlined below.

235 **1) Test condition setup**

236 The target rainfall intensity and the target total rainfall amount (20 mm) were set
237 for the calibration system. The tipping-bucket rain gauge was installed and
238 checked prior to each trial.

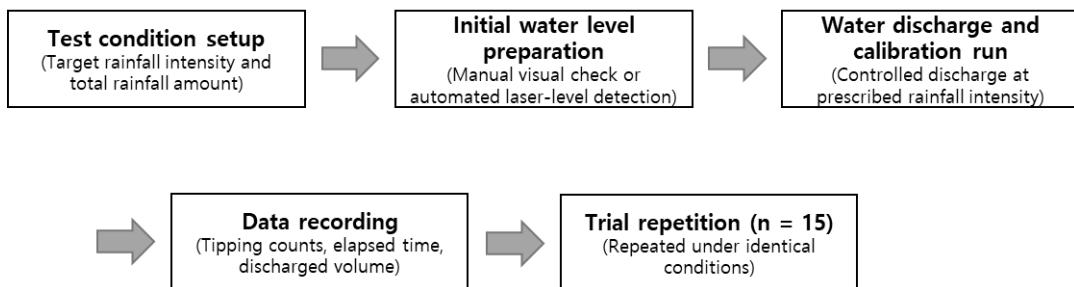
239 **2) Initial water level preparation**

240 Water was supplied to the calibration system to establish the reference volume.
241 For the manual system, water was injected manually while visually monitoring
242 the water level. For the automated system (PRC-20AP), water was initially
243 poured above the reference level and then automatically discharged until the
244 dual laser level sensors detected the exact target level.

245 **3) Water discharge and calibration run**

246 Water was discharged toward the rain gauge at the prescribed rainfall intensity.
247 Tipping signals from the rain gauge were recorded in real time. The duration of
248 each calibration run was adjusted according to the rainfall intensity to achieve
249 the target total rainfall amount (e.g., longer durations at lower intensities and
250 shorter durations at higher intensities).

251 **4) Data recording**


252 During each trial, the number of tipping events, elapsed time, and total
253 discharged volume were recorded automatically. These measurements
254 constitute the raw experimental data for each calibration run.

255 **5) Trial completion and repetition**

256 A single trial was defined as one complete calibration run ending when the
257 accumulated rainfall reached 20 mm. The same procedure was repeated 15
258 times under identical conditions for each rainfall intensity and calibration method.

259 The experimental workflow ensured consistent data generation across all test
260 conditions, enabling subsequent statistical analysis and uncertainty evaluation based on
261 repeated measurements. A schematic representation of the experimental workflow is
262 provided in Figure 3.

263

264
265 Figure 3. Experimental workflow for calibration data generation, illustrating the step-by-
266 step procedure applied to each rainfall intensity condition.

267

268 3.2 Instrumentation

269 Two calibration systems were used to generate the dataset: a manual calibration
270 system and an automated calibration system (PRC-20AP). Both systems were applied
271 to the same tipping-bucket rain gauge under identical experimental conditions, and the
272 differences between the systems were limited to the methods of water supply and
273 rainfall intensity control.

274 The manual calibration system is based on a burette-type gravity-driven discharge
275 setup and represents the most fundamental reference method for drop-based rainfall
276 calibration. In this approach, an operator manually injects water and visually monitors
277 the water level to establish a known reference volume. Once the reference volume is
278 secured, water is discharged solely by gravity, and the rainfall intensity is adjusted by
279 controlling the discharge rate. Owing to its simplicity and direct physical principle, this
280 method has long been used as a baseline procedure for rainfall gauge calibration.

281 The automated calibration system (PRC-20AP) is a portable system consisting of a
282 level sensor, a roller pump, and an electronic control unit. In this study, a laser-based
283 level sensor was used to detect the reference water level with high precision, while the
284 roller pump was employed to maintain a prescribed rainfall intensity by controlling the
285 discharge rate. During the preparation stage, water is initially poured manually to a level
286 above the reference volume, after which the system automatically regulates the outflow
287 to secure the exact reference volume before initiating the calibration run.

288 Although PRC-20AP was used as the automated calibration device in this study, the
289 experimental principle is not limited to a specific instrument configuration. The same
290 experimental design and procedure can be applied to other automated calibration
291 systems that establish a reference volume using level sensing and maintain rainfall
292 intensity through pump-controlled discharge. Accordingly, the dataset is applicable to
293 performance evaluation and comparative studies of a broad range of automated rainfall
294 gauge calibration devices.

295 The tipping-bucket rain gauge used in the experiments has a bucket resolution of 0.1
296 mm, consistent with specifications commonly adopted in international intercomparison
297 studies. Prior to testing, all calibration systems were pre-calibrated by accredited
298 national calibration institutes. The same rain gauge and installation conditions were
299 maintained throughout the experiments to minimize the influence of external factors on
300 the generated data.

301

302 3.3 Data acquisition

303 For each calibration trial, water was supplied to the tipping-bucket rain gauge until the
304 accumulated rainfall recorded by the gauge reached the target total rainfall of 20 mm.
305 Throughout each trial, the elapsed time and the number of tipping events were recorded
306 in real time. The accumulated rainfall was obtained directly from the tipping counts and
307 the corresponding bucket resolution, and the average rainfall intensity was calculated
308 based on the accumulated rainfall and the elapsed time for each trial.
309 All measurements were recorded automatically by the data acquisition system
310 associated with the calibration setup. Raw data for each trial include tipping counts,
311 elapsed time, and discharged water volume, which together form the basis for
312 subsequent data processing and uncertainty evaluation.

313

314 3.4 Data processing and uncertainty evaluation

315 Data processing was performed in a structured manner to derive summary statistics and
316 uncertainty metrics from the raw experimental data. For each rainfall intensity condition
317 and calibration method, repeated trial results were aggregated to calculate mean values
318 and standard deviations for accumulated rainfall and rainfall intensity.

319 Relative errors were calculated by comparing measured values with the corresponding
320 reference values defined by the experimental conditions. Measurement uncertainty was
321 evaluated following the principles of the Guide to the Expression of Uncertainty in
322 Measurement (GUM). Type A uncertainty was estimated from the statistical dispersion
323 of repeated measurements, while Type B uncertainty was derived from instrument
324 specifications and calibration information. The combined standard uncertainty was
325 obtained by combining the Type A and Type B components, and the expanded
326 uncertainty was calculated using an appropriate coverage factor corresponding to a
327 confidence level of approximately 95 %.

328 Measurement uncertainty was evaluated following the principles of the Guide to the
329 Expression of Uncertainty in Measurement (GUM; JCGM, 2008). Detailed
330 implementation examples specific to rainfall gauge calibration are discussed in Jang et
331 al. (2026). In the present data paper, only the essential principles and implementation
332 overview are summarized to document the data generation and processing procedures.

333 Detailed variable definitions, calculation rules, and uncertainty estimation steps are
334 documented in the README worksheets included in the data repository.

335

336 4. Data quality and validation

337 The quality of the dataset is ensured through a controlled experimental design, repeated
338 measurements, and standardized uncertainty evaluation procedures. All calibration
339 experiments were conducted under predefined rainfall intensity and total rainfall
340 conditions, with strict control of environmental and operational settings to ensure
341 consistency and reproducibility.

342 For each rainfall intensity condition, 15 repeated calibration trials were performed for
343 both the manual burette-based calibration method and the automated calibration
344 method (PRC-20AP). The repeated-trial design enables a robust statistical
345 characterization of measurement variability and supports the evaluation of random
346 uncertainty components. Identical experimental conditions were maintained throughout
347 the trials to minimize the influence of external factors on the recorded measurements.

348 Raw measurement data were recorded directly during each calibration trial and
349 preserved without filtering, correction, or smoothing. This approach ensures full
350 traceability from the original observations to the derived summary statistics. For each
351 rainfall intensity condition, summary statistics, including mean values and standard
352 deviations, were calculated from the repeated measurements and used as the basis for
353 uncertainty evaluation and data quality assessment.

354 Measurement uncertainty was evaluated in accordance with the principles of the Guide
355 to the Expression of Uncertainty in Measurement (GUM). Random variability was
356 quantified based on repeated measurements, while systematic components were
357 estimated from instrument specifications and calibration information. These components
358 were combined to obtain standard and expanded uncertainty metrics corresponding to
359 an approximate 95 % confidence level.

360 The consistency between raw data, derived statistics, and uncertainty metrics was
361 verified through internal checks during data processing. In addition, the structured file
362 organization and documented calculation conventions provided in the README
363 worksheets support transparency, reproducibility, and independent reuse of the dataset.
364 Together, these measures ensure that the dataset provides a reliable and traceable
365 basis for rainfall gauge calibration studies, uncertainty analysis, and methodological
366 comparisons.

367

368 5 Data availability and access

369 The dataset is publicly available at Mendeley Data (Jang, 2025,
370 <https://doi.org/10.17632/czzzth6z26.3>). The repository contains spreadsheet files with
371 raw experimental data, summary statistics, and analysis results, as well as README
372 worksheets describing the data structure, variable definitions, and uncertainty
373 conventions.

374 The repository contains three main data files: (1) raw and summarized calibration data
375 for the manual burette-based calibration method, (2) raw and summarized calibration
376 data for the automated calibration method (PRC-20AP), and (3) a separate file
377 containing comparative analysis results derived from both calibration approaches. The
378 overall repository structure and the relationships between data files and worksheets are
379 illustrated in Figure 2.

380 The dataset is intended to support reuse in rainfall gauge calibration studies, uncertainty
381 analysis, and methodological comparisons between manual and automated calibration
382 procedures. Users are encouraged to consult the README worksheets included in
383 each data file for detailed guidance on data interpretation, variable definitions, and
384 calculation conventions.

385

386 6. Potential applications

387 The dataset presented in this paper is intended to support a wide range of applications
388 related to rainfall gauge calibration and uncertainty analysis. Owing to its controlled
389 experimental design and repeated measurements under predefined rainfall intensity
390 conditions, the dataset provides a structured basis for evaluating calibration procedures
391 for tipping-bucket rain gauges.

392 First, the dataset can be used to assess and compare calibration results obtained using
393 different calibration approaches. Although the present dataset includes results from a
394 manual burette-based method and an automated calibration system, the experimental
395 design and data structure are applicable to other calibration devices that employ gravity-
396 driven discharge or pump-controlled water supply. As such, the dataset can serve as a
397 reference for methodological comparisons across different calibration systems.

398 Second, the dataset is suitable for studies focusing on measurement uncertainty and
399 repeatability in rainfall gauge calibration. The availability of repeated trials for each
400 rainfall intensity condition enables statistical analysis of random variability and supports
401 uncertainty evaluation following established frameworks. Researchers and practitioners
402 may use the dataset to test alternative uncertainty estimation methods or to benchmark
403 uncertainty levels under controlled laboratory conditions.

404 Third, the dataset may be used for the development, testing, and validation of data
405 processing algorithms related to rainfall measurement. The inclusion of raw

406 experimental data alongside summary statistics allows users to implement independent
407 data processing workflows and to examine the effects of different calculation
408 conventions on derived rainfall intensity and uncertainty metrics.

409 Finally, the dataset can support education and training activities in hydrologic
410 measurement and calibration. The clear organization of data files, accompanying
411 README documentation, and transparent experimental design make the dataset
412 suitable for instructional purposes, including demonstrations of calibration procedures,
413 uncertainty concepts, and data quality assessment in hydrological measurements..

414

415 7. Limitations

416 The dataset presented in this paper is based on calibration experiments conducted
417 under controlled laboratory conditions and does not capture the full range of variability
418 encountered under natural field conditions. Factors such as wind effects, spatial
419 variability of rainfall, and variations in raindrop size distribution were not considered in
420 the experimental design. Consequently, the dataset is intended to represent calibration
421 characteristics and measurement consistency under controlled conditions rather than
422 direct field performance.

423 The experiments were performed using a tipping-bucket rain gauge with a fixed bucket
424 resolution of 0.1 mm. Rain gauges with different resolutions or structural characteristics
425 may exhibit different measurement behavior and uncertainty characteristics. Additional
426 calibration experiments would therefore be required to extend the applicability of the
427 dataset to other rain gauge configurations.

428 Although the automated calibration approach was implemented using a specific device
429 (PRC-20AP) developed and applied in this study, the underlying experimental principle
430 is generalizable to other automated calibration systems based on level sensing and
431 pump-controlled discharge. Nevertheless, differences in hardware configuration, control
432 algorithms, or sensor performance may lead to variations in measurement
433 characteristics.

434 Finally, the uncertainty evaluation included in the dataset is based on repeated
435 laboratory trials and instrument specification information. Potential effects related to
436 long-term operation, instrument drift, maintenance conditions, and operator-related
437 variability were not addressed. Users of the dataset are therefore encouraged to
438 consider these limitations when interpreting and reusing the data.

439

440 Author contributions

441 Jang, B. designed the study, conducted the experiments, curated and analyzed the
442 data, and wrote the manuscript.

443

444 Competing interests

445 The author declares that there are no competing interests.

446

447 Acknowledgements.

448 This study was conducted as part of an internal research program of the Korea Institute
449 of Hydrological Survey (KIHS). The author acknowledges the institutional support
450 provided by KIHS for laboratory facilities and experimental resources.

451

452 References

453 Marsalek, J.: Calibration of the tipping-bucket raingage, *Journal of Hydrology*, 53, 343–
454 354, 1981.

455 Sevruk, B. and Hamon, W. R.: International comparison of national precipitation gauges
456 with a reference pit gauge, *WMO Instruments and Observing Methods Report*, No. 31,
457 1984.

458 Duchon, C. E. and Essenber, G. J.: Comparative rainfall measurements by tipping
459 bucket and weighing gauges, *Journal of Applied Meteorology*, 40, 1687–1693, 2001.

460 Habib, E., Krajewski, W. F., and Kruger, A.: Sampling errors of tipping-bucket rain
461 gauge measurements, *Journal of Hydrologic Engineering*, 6, 159–166, 2001.

462 Tokay, A. and Bashor, P. G.: An experimental study of rainfall measurement by tipping
463 bucket rain gauges, *Journal of Atmospheric and Oceanic Technology*, 27, 793–807,
464 2010.

465 Colli, M., Lanza, L. G., La Barbera, P., and Chan, P. W.: Laboratory comparison of
466 rainfall intensity measurements from catching and non-catching type gauges,
467 *Atmospheric Research*, 144, 39–50, 2014.

468 Lanza, L. G. and Stagi, L.: Performance analysis of a rainfall intensity measurement
469 system, *Advances in Geosciences*, 20, 71–76, 2009.

470 Shedekar, V. S., Bales, S., Bhusal, N., and Zhou, M.: Design and evaluation of a low-
471 cost tipping bucket rain gauge calibrator, *Applied Engineering in Agriculture*, 25, 223–
472 228, 2009.

473 Humphrey, M. D., Istok, J. D., Lee, J. Y., Hevesi, J. A., and Flint, A. L.: A new method
474 for automated dynamic calibration of tipping-bucket rain gauges, *Journal of Atmospheric
475 and Oceanic Technology*, 14, 1513–1519, 1997.

476 Duchon, C. E. and Biddle, C. J.: Undercatch of tipping-bucket gauges in high rainfall
477 intensities, *Journal of Atmospheric and Oceanic Technology*, 28, 1005–1014, 2011.

478 Lanza, L. G. and Vuerich, E.: The WMO field intercomparison of rainfall intensity
479 gauges, *Atmospheric Research*, 77, 200–218, 2005.

480 Tokay, A., Bashor, P. G., Habib, E., and Kruger, A.: Raindrop size distribution
481 measurements by rain gauges, *Journal of Applied Meteorology and Climatology*, 45,
482 202–214, 2006.

483 Rohmah, D. Z., Jasruddin, S., and Utomo, B. S.: Development of an automatic portable
484 calibrator for tipping bucket rain gauge, *Journal of Physics: Conference Series*, 2024.

485 Colli, M., Lanza, L. G., and La Barbera, P.: Towards a reference procedure for rainfall
486 intensity measurements, *Meteorologische Zeitschrift*, 27, 215–226, 2018.

487 WMO: Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8),
488 World Meteorological Organization, Geneva, 2008, updated 2018.

489 JCGM: Evaluation of measurement data — Guide to the expression of uncertainty in
490 measurement (GUM), JCGM 100:2008.

491 Sevruk, B.: Precipitation Measurement, Swiss Federal Institute of Technology, Zurich,
492 1982.

493 Shedekar, V. S. and Tokay, A.: Uncertainty sources in laboratory calibration of rainfall
494 measurement devices, *Measurement*, 67, 250–260, 2015.

495 Jang, B., Kim, G., and Kim, S.: Automation and accuracy improvement of field
496 calibration for tipping-bucket rain gauges using laser sensors and roller pump, *Flow
497 Measurement and Instrumentation*, 107, 103063, 2026.

498 Jang, B.: Laboratory calibration dataset for tipping-bucket rain gauges: manual burette
499 vs automated device, Mendeley Data, V3, <https://doi.org/10.17632/czzth6z26.3>, 2025.