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Abstract. Sea ice albedo is a critical parameter for quantifying the energy budget in the Antarctic region. High 

spatiotemporal resolution sea ice albedo product is essential for Antarctic climate and environmental research. In 

this study, based on Visible Infrared Imaging Radiometer Suite (VIIRS) reflectance data, we use the Multiband 

Reflectance Iteration (MBRI) algorithm to calculate sea ice albedo. This algorithm fully utilizes multi-band 

observations from single-angle/date observed information to correct the anisotropy of the sea ice surface. 20 

Additionally, spatiotemporal information is utilized to reconstruct albedo under cloudy-sky conditions, while 

correcting for cloud radiative forcing effects. A new daily seamless Antarctic sea ice albedo product with a 1 km 

resolution is then generated for the period 2012 to 2021. Monte Carlo simulations show that the average retrieval 

uncertainty of this product is 0.022, with higher uncertainty in backward observations. MBRI albedo product was 

validated using in situ measurements from Automatic Weather Stations (AWS). The results show that the bias is 25 

0.02, with a root mean square error (RMSE) of 0.071. After upscaling to 25 km resolution and applying a 5-day 

temporal aggregation, the RMSE decreased to below 0.055. Compared to existing albedo products, the MBRI 

product exhibits improved spatial continuity due to the reconstruction of cloudy-sky pixels. Statistical analysis 

shows that albedo under cloudy-sky conditions is higher than under clear-sky conditions (mean difference: 0.035–

0.064). The MBRI albedo product can be used to estimate sea ice albedo feedback, energy balance analysis and 30 

sea ice monitoring. The latest version of our albedo (version 2) and uncertainty datasets are available at 

https://doi.org/10.5281/zenodo.11216156 (Ma et al., 2024) and https://doi.org/10.5281/zenodo.15067607 (Ma et 
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al., 2025), respectively. 

1. Introduction 

Antarctic sea ice plays an important role in the context of climate change, and its physical parameters are 35 

crucial factors for precise climate simulations (Brandt et al., 2005). Snow and ice have the highest albedo of all 

surface types (Xiong et al., 2002). Changes in the properties and coverage of sea ice, and weather events such as 

snowfall or sea ice melting, can result in significant changes of the sea ice albedo (Laine, 2008). The melting of 

ice leads to a decrease in its surface albedo, which in turn promotes more ice melting and a further reduction in 

albedo, a phenomenon known as the sea ice albedo feedback mechanism (Holland and Bitz, 2003). This feedback 40 

mechanism makes the albedo of Antarctic sea ice a crucial factor in polar environmental evolution and global 

climate modeling (Riihelä et al., 2021). Previous studies have indicated that, despite global warming and Arctic 

sea ice loss, the Antarctic sea ice extent showed a slightly increasing trend from 1979 to 2016, and a subsequent 

decline since the end of 2016 (Comiso et al., 2017; Eayrs et al., 2021; Yuan et al., 2017; Zhang et al., 2022). 

However, the trend in Antarctic sea ice albedo in recent years remains to be fully understood.  45 

Early research estimated sea ice albedo through parameterization schemes. These schemes established 

empirical functions relating sea ice albedo to environmental parameters such as ice surface temperature, snow 

depth, and ice thickness, thus providing albedo values for different states of ice melt (Lynch et al., 1995; Parkinson 

and Washington, 1979; Ross and Walsh, 1987; Schramm et al., 1997). At present, satellite remote sensing is widely 

used for capturing key sea ice parameters on a large scale. Numerous studies utilize satellite data to calculate the 50 

sea ice albedo in the Arctic region and have published several products (Cheng et al., 2023; Key et al., 2001; Liang 

et al., 2013; Lindsay and Rothrock, 1994; Qu et al., 2016; Riihelä et al., 2013; Stroeve et al., 2005). However, 

products related to the Antarctic sea ice albedo are limited. The currently available long-time Antarctic sea ice 

albedo products are developed based on Advanced Very High-resolution Radiometer (AVHRR) data (Table 1), 

including the AVHRR Polar Pathfinder (APP) albedo product (Key et al., 2001), the APP-extended (APP-x) albedo 55 

product (Key et al., 2016; Wang and Key, 2005), and the Satellite Application Facility on Climate Monitoring 

(CM-SAF) cLouds, Albedo and RAdiation (CLARA) surface albedo (SAL) product (Karlsson et al., 2023b).  

Table 1. Currently available broadband albedo products for Antarctic sea ice. 

Product Spatial resolution Temporal resolution Available period Sensor 

APP 5 km Twice-daily 1981-2005 AVHRR 
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APP-x 25 km Twice-daily 1982-present AVHRR 

CLARA SAL 25 km Pentad/monthly 1979-present AVHRR 

Although these products have been widely employed in Antarctic climate models and made significant 

progress, they require further improvements. First, they rely on narrow-to-broadband conversion of reflectance 60 

under a Lambertian surface assumption, which ignores the anisotropy of the sea ice surface (Karlsson et al., 2023a; 

Key et al., 2016; Zhou et al., 2023). However, the sea ice surface cannot be simply considered as Lambertian, as 

dry snow and ice surfaces have strong forward-scattering effects of direction reflectance. Second, they only use 

the AVHRR channel 1 (0.55–0.90 µm) and channel 2 (0.725–1.10 µm) reflectance data in the process of narrow-

to-broadband conversion, not covering the full shortwave range (Stroeve et al., 2005). Finally, the majority of 65 

Antarctic sea ice is seasonal ice and experiences frequent snowfall (Campagne et al., 2016; Winkelmann et al., 

2012). As a result, these products may not be able to accurately depict the sea ice anisotropy and dynamic changes 

due to their relatively coarse spatiotemporal resolutions. 

The Multiband Reflectance Iteration (MBRI) algorithm was proposed by our previous work (Cheng et al., 

2023) to generate a daily 500 m Arctic sea ice albedo product. This algorithm takes full consideration of the 70 

inherent heterogeneity and anisotropy of the sea-ice physical and optical properties for the accurate calculations 

of Arctic sea-ice albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS). However, the 

MODIS level-2 surface reflectance data does not cover the Antarctic marine regions. Then, this study used muti-

band Visible Infrared Imaging Radiometer Suite (VIIRS) reflectance data with high quality and global coverage 

to generate Antarctic sea ice albedo product. We improve the MBRI algorithm, facilitating its applicability for 75 

VIIRS reflectance bands for sea ice albedo retrieval. The cloud-induced impacts on sea ice albedo are also 

corrected. Then we generate the first 1 km, seamless, daily Antarctic sea ice albedo product from 2012 to 2021 

(hereafter referred to as the MBRI albedo product). Additionally, we performed an uncertainty analysis and a 

comprehensive accuracy assessment using in situ measurements and existing products. 

The rest of this paper is organized as follows. Section 2 introduces the datasets used for the generation and 80 

validation of the proposed MBRI albedo product. Section 3 describes the methodology and processing steps. 

Section 4 presents the uncertainty analysis and validation results. Last, Sections 5, 6 and 7 provide the discussion, 

data availability and key conclusions of this work, respectively.  

2. Data 
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In the proposed MBRI albedo product generation process, multiple remote sensing satellite products and 85 

reanalysis product are used as input data. In addition, the MBRI albedo product was comprehensively assessed 

based on in situ measurements collected from several Antarctic automatic weather stations (AWSs), alongside 

existing products APP-x and CLARA Edition 3 (CLARA-A3). 

2.1 Input data 

The VIIRS/NPP Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid (VNP09GA) product is 90 

the primary source data for calculating Antarctic sea ice albedo under clear-sky conditions. Provided by the Level-

1 and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC), the 

VNP09GA product is available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-

measurements/products/VNP09GA (last access: March 21, 2025). Its M-band data provides daily 1 km surface 

reflectance in the shortwave spectrum. The product spans from January 19, 2012, to the present, and it adopts the 95 

Sinusoidal projection, gridded according the MODIS Sinusoidal Tile Grid.  

The 10 m u-component (eastward) and v-component (northward) wind products from the European Centre 

for Medium-Range Weather Forecasts (ECMWF) Reanalysis v.5 (ERA5) dataset are used for the clear-sky albedo 

calculations. Compared to previous versions, ERA5 exhibits significant improvements in both spatial and temporal 

resolution, as well as overall accuracy (Dee et al., 2011; Hersbach et al., 2020). Hourly ERA5 data is available at 100 

https://doi.org/10.24381/cds.adbb2d47 (last access: March 21, 2025). 

The Global Ocean Colour (GlobColour) project, initiated by the European Space Agency (ESA) and available 

at https://hermes.acri.fr/ (last access: March 21, 2025), provides a continuous dataset of merged L3 Ocean Colour 

products (Maritorena et al., 2010). We used the GlobColour chlorophyll concentration to participate in the 

calculation of clear-sky albedo. 105 

To reconstruct the sea ice albedo for pixels missing due to cloud coverage, the Pathfinder Atmospheres–

Extended (PATMOS-x) cloud optical depth data was used. The PATMOS-x is provided by the National Oceanic 

and Atmospheric Administration (NOAA) and available at 

https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/gov.noaa.ncdc:C00926/html (last access: 

March 21, 2025). Compared to previous versions, PATMOS-x version 6.0 (Pv6.0) is more stable, with less inter-110 

satellite variability, and provides a more consistent polar cloud detection, phase distribution, and cloud-top height 

distribution (Foster et al., 2023; Heidinger et al., 2014).  

To identify the sea ice pixels, the daily Advanced Microwave Scanning Radiometer 2 (AMSR2) sea ice 
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concentration (SIC) dataset (3.125 km resolution, provided by the University of Bremen) was used (Melsheimer, 

2019). Additionally, a 25 km resolution Special Sensor Microwave Imager/Sounder (SSMIS) SIC product was 115 

selected to fill gaps in the AMSR2 SIC data (DiGirolamo et al., 2022). The two SIC products are available at 

https://seaice.uni-bremen.de/sea-ice-concentration/amsre-amsr2/ and https://nsidc.org/data/nsidc-0051/versions/2, 

respectively (last access: March 21, 2025). Sea ice extent (SIE) data from the National Snow and Ice Data Center 

(NSIDC) (Fetterer et al., 2017), available at https://doi.org/10.7265/N5K072F8 (last access: March 21, 2025), was 

also employed to conduct a temporal analysis of the proposed albedo dataset.  120 

The information on the input data sets used is summarized in Table 2. 

Table 2. Basic information of input datasets in the study. 

Input dataset Parameter Spatial resolution Temporal resolution Application 

VNP09GA Surface reflectance, quality flags, 

solar/view geometries 

1 km Daily Clear-sky albedo calculation 

ERA5 Wind speed, wind direction 0.25° Hourly Clear-sky albedo calculation 

GlobColour Chlorophyll concentration 4 km Daily Clear-sky albedo calculation 

PATMOS-x Cloud optical depth 0.1° Daily Cloudy-sky pixel reconstruction 

AMSR2 SIC SIC 3.125 km Daily Sea ice mask, temporal analysis 

SSMIS SIC SIC 25 km Daily Sea ice mask 

NSIDC SIE SIE / Monthly Temporal analysis 

2.2 Existing Antarctic sea ice albedo products 

This study uses two Antarctic sea ice albedo datasets as comparative data. One is APP-x, a thematic climate 

data record that contains 19 variables of the surface, cloud properties, and radiative fluxes (Key et al., 2016), based 125 

on AVHRR data. Under a Lambertian surface assumption, Key et al. (2001) retrieved surface albedo from AVHRR 

channels 1 and 2 reflectance data through four steps, including narrow-to-broadband conversion, top-of-

atmosphere (TOA) broadband reflectance anisotropy correction, TOA albedo to surface albedo conversion, and 

cloudy pixels adjustment. APP-x albedo data are mapped to a 25 km EASE grid at 02:00 and 14:00 (local solar 

time) for the Antarctic region. The APP-x product is available at https://www.ncei.noaa.gov/products/climate-data-130 

records/extended-avhrr-polar-pathfinder (last access: March 21, 2025). 

The other dataset is the CLARA-A3 SAL product, which provides radiation parameters and cloud properties, 

also based on AVHRR data. It includes black-sky, white-sky, and blue-sky surface albedos, presented as monthly 
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and pentad (5-day) averages. It is provided on a 25 km resolution equal-area grid, covering the polar regions. The 

product accounts for anisotropic effects by averaging the directional sea ice reflectance over a specified period (5 135 

days or more) (Karlsson et al., 2023a). The CLARA-A3 SAL product is available at 

https://wui.cmsaf.eu/safira/action/viewProduktDetails?eid=22564&fid=40 (last access: March 21, 2025). 

2.3. In situ measurements 

This study also collected several in situ measurement datasets to evaluate the accuracy of the MBRI albedo 

product.  140 

The World Climate Research Programme Baseline Surface Radiation Network (BSRN) provides high-quality 

ground-based radiation measurements every minute since 1992. This study selects measurements from the SYO 

and GVN stations of the BSRN. The SYO station is located on East Ongul Island in East Antarctica, about 4 km 

from the continent, with sea ice as the observed surface type (Tanaka, 2022). The GVN station is located on the 

Ekström Ice Shelf, in the Atka Bay area of the northeastern Weddell Sea (König-Langlo and Loose, 2007). The 145 

measurements of GVN and SYO stations is available at https://bsrn.awi.de/data/data-retrieval-via-pangaea/ (last 

access: March 21, 2025).  

Since 1995, the Institute for Marine and Atmospheric Research Utrecht (IMAU) at Utrecht University has 

deployed 19 AWSs in Antarctica, measuring a range of meteorological and atmospheric parameters. Considering 

the measured parameters and locations of the AWSs, this study selected data from AWS5 (two-hourly) and AWS17 150 

(hourly) for validation. AWS5 is located on the Riiser-Larsen Ice Shelf, while AWS17 is situated on the remnants 

of the Larsen B Ice Shelf at Scar Inlet (Jakobs et al., 2020). Further data details can be found at 

https://doi.pangaea.de/10.1594/PANGAEA.974080 (last access: March 21, 2025). 

This study also collected measurement datasets from several AWSs deployed by the Alfred Wegener Institute 

(AWI), Helmholtz Centre for Polar and Marine Research. One dataset is from AWSs installed by Hoppmann et al. 155 

in 2012 and 2013, located nearly at the same site on the Atka Bay land-fast sea ice (named Atka Bay AWS2 2012 

and Atka Bay AWS 2013, 1-minute interval). These stations recorded the transformation of a first-year fast ice in 

Atka Bay into thick second-year sea ice, which eventually disintegrated into small floes (Hoppmann et al., 2015a, 

b). Another dataset comes from the radiation station (named Buoy 2018R1, hourly) installed by Nicolaus et al. in 

2018 on a first-year ice in the Weddell Sea, which drifted with the coastal currents (Nicolaus et al., 2024). These 160 

datasets are available at https://doi.pangaea.de/10.1594/PANGAEA.824527, 

https://doi.pangaea.de/10.1594/PANGAEA.833975 and https://doi.org/10.1594/PANGAEA.949507, respectively 
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(last access: March 21, 2025).  

The station locations are shown in Fig. 1, with further details provided in Table 3. 

 165 

Figure 1. Distribution map of the in situ stations. 

Table 3. Basic information of the in situ stations. 

Station Latitude (°) Longitude (°) Elevation (m) Surface type Period of Data Usage 

BSRN SYO −69.0053 39.5811 18.0 Sea ice 2012-01-19 to 2021-12-31 

BSRN GVN −70.6500 −8.2500 42.0 Ice shelf 2012-01-19 to 2021-12-31 

IMAU AWS5 −73.1053 −13.1647 366.0 Ice shelf 2012-01-19 to 2014-02-07 

IMAU AWS17 −65.9333 −61.8500 73.0 Ice shelf 2012-01-19 to 2016-03-10 

Atka Bay AWS2 2012 −70.57533 −8.04945 2.4 Sea ice 2012-10-02 to 2012-12-27 

Atka Bay AWS 2013 −70.57522 −8.04935 2.0 Sea ice 2013-05-31 to 2014-01-03 

Buoy 2018R1 Start: −74.5482 

End: −73.5042 

Start: −37.0340 

End: −41.2350 

1.0 Sea ice 2018-02-26 to 2018-11-16 

3. Methodology 

3.1 Framework 

The accurate inversion of surface albedo relies on the construction of the Bidirectional Reflectance 170 
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Distribution Function (BRDF). The MBRI algorithm assumes the sea ice BRDF is a linear combination of the 

BRDFs associated with ocean water and snow/ice. Building upon the assumption, the sea ice BRDF is retrieved 

by an iterative process with single-angular/date multiband reflectance data. The sea ice broadband albedo is 

subsequently estimated from multi-band satellite observations (Cheng et al., 2023). In contrast to conventional 

algorithms relying on multi-date/angular data, the MBRI algorithm enables the acquisition of albedo with finer 175 

temporal resolution and enhances the representation of rapid changes occurring on the sea ice surface.  

Figure 2 presents the flowchart for the generation of the MBRI albedo product. This method involves three 

key steps: (1) BRDF model establishment: The sea ice BRDF is constructed based on radiative transfer models 

and derived through an iterative process to express it explicitly. (2) Broadband albedo estimation: The narrowband 

albedo is estimated by integrating the derived sea ice BRDF over the angles of incidence and reflection, and the 180 

broadband albedo is then calculated by the narrowband to broadband (NTB) conversion. (3) Reconstruction of 

cloudy-sky albedo: The sea ice albedo of cloudy pixels is reconstructed by integrating spatiotemporal information 

and physical models. These steps are elaborated upon in the following subsections. 
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Figure 2. Flowchart for the generation of the proposed Antarctic sea ice albedo product. 185 

3.2 Establishment and calculation of the sea ice BRDF model 

3.2.1 Sea ice BRDF establishment 

In polar regions, the sea ice cover is typically considered to comprise snow-covered ice, bare ice, melt ponds, 

and open water. At the scale of remote sensing satellite pixels, the reflectance of sea ice and melt ponds can be 

jointly determined by the reflectance of snow, ice, and ocean water. Consequently, its value can be approximated 190 

as a linear summation of these three components (Qu et al., 2016). Note that the determining factors for the optical 

parameters of bare ice closely are similar to those of snow (Kokhanovsky and Zege, 2004; Zege et al., 2015). 

Therefore, the MBRI algorithm considers ice and snow as a unified entity and employs a single model to describe 

their reflectance properties. Based on the above, the sea ice BRDF model can be expressed as (Cheng et al., 2023): 

 / (1 )sea ice s snow ice s oceanB f B f B− =  + −  , (1) 195 
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Where sea iceB −
 , 

/snow iceB  , and 
oceanB  are the BRDF over the surfaces of sea ice, snow/ice, and ocean water, 

respectively; and 
sf  represents the fraction of snow/ice in a mixture of snow, ice, and seawater, where these 

components are blended in varying proportions. 

Asymptotic Radiative Transfer (ART) model has been demonstrated to accurately characterize the reflectance 

properties over snow/ice surfaces (Zege et al., 2011). We employed this model for the BRDF of snow/ice surface 200 

as follows: 

 ( ) ( )
( )/ 0

0

( ) ( )
, , , , exp

, ,

s v

snow ice s v s v

s v

g g
B B t

B

 
     

  

 
= − 

  
, (2) 

where s , v , and   are the solar zenith angle (SZA), view zenith angle (VZA) and relative azimuth angle 

(RAA), respectively. ( )0 , ,s vB     is the BRDF of the semi-infinite non-absorbing layer, which can be expressed 

as (Kokhanovsky et al., 2005):  205 

 ( )
( ) ( )

( )0

cos cos cos cos
, ,

4 cos cos

s v s v

s v

s v

a b c p
B

   
  

 

+ + + + 
=

+
, (3) 

where a = 1.247, b = 1.186, and c = 5.157; ( )p   is the phase function; and   is the scattering angle (measured 

in degrees). The latter two can be parameterized as: 

 ( ) ( ) ( )11.1exp 0.087 1.1exp 0.014p  = −  + −  , (4) 

 ( )arccos cos cos sin sin cosv s v s     = − + . (5) 210 

Zege et al. (2011) defined the escape function at zenith angle   ( ( )g  ) and the fraction of the absorbed 

energy from a semi-infinite medium under diffuse illumination ( t ) in (2), as follows: 

 ( ) ( )
3

1 2cos
7

g  = + , (6) 

 ( )
4

eft A a C





= + , (7) 

where   represents wavelength; efa  is the snow/ice effective grain size; C  is a parameter representing the 215 

absorption capacity at wavelength   of soot pollutants in snow, determined by its relative concentration; A  is 

a parameter representing the particle's shape, taking a value of 5.8 in this study; and   is the imaginary part of 

the complex refractive index of snow/ice, with values for different wavelengths obtained online at 

http://www.atmos.washington.edu/ice_optical_constants (Warren and Brandt, 2008). 
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If the values of the wavelength-independent unknown variables efa   and C   are determined, then the 220 

reflectance of snow/ice surfaces in any incident and reflection direction at a specified wavelength can be 

represented by Eq. (2). 

In addition, the BRDF over the ocean water surface is derived using the three-component ocean water albedo 

(TCOWA) model proposed by Feng et al. (2016), as follows: 

 ( ) ( )1ocean w wc w g wlB f B f B B=  + −  + , (8) 225 

where wcB , gB , and wlB  are the BRDFs of whitecaps, sun glint, and water-leaving, respectively; wf  is the 

coverage of whitecaps. According to previous studies, the four components can be explicitly expressed as functions 

of chlorophyll concentration, wind speed/direction, wavelength, and solar/view geometries (Callaghan et al., 2008; 

Cox and Munk, 1954; Feng et al., 2016; Morel et al., 2002; Wang et al., 2023). 

3.2.2 Sea ice BRDF model calculation 230 

Eqs. (2)–(8) indicate that three unknown parameters still exist in the established sea ice BRDF model: soot 

pollutant relative concentration C ; fraction of snow/ice sf ; and snow/ice effective grain size efa . To simplify 

the representation, we define vector ( ), ,ef sa C f=X . These three parameters are inherent properties of sea ice 

and are wavelength-independent. Therefore, if there are three or more observational values at different wavelengths, 

an inversion method can be employed to calculate them.  235 

In this paper, considering that the absorption spectrums of soot pollutants and snow/ice grain are mainly in 

the visible and near-infrared bands, respectively (Zege et al., 2011), we utilized the reflectance data from VIIRS 

channels 3 (490 nm), 7 (865 nm), and 8 (1240 nm), and solar/view geometries as the observational values. As Eq. 

(1) is nonlinear, the Newton–Raphson iteration method (Winkler, 1993) is employed to calculate the three unknown 

parameters for each pixel. In the iteration procedure, we take the natural logarithm of the three unknown parameters 240 

to reduce the impact of significant differences in their magnitudes on the calculation. Matrix M , representing the 

derivatives of sea iceB −  with respect to each component of vector X , is then computed as: 
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3 7 8
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i
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k
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B B B B
M
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B B B

f f f

− − −
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 = = = 
     
 
  

 
   
 

Μ , (9) 

where 
kX  is the k-th component of X . According to studies on snow/ice physical parameters (Dang et al., 2015; 

Yang et al., 2017; Zege et al., 2015), X  can be initialized with the values 300efa m= , 
62 10C −=   and 245 

0.5sf =  , representing the initial state. 
i

sea iceB −  is the BRDF in the i-th channel (i = 3, 7, 8), which can be 

interpreted as the reflectance in the i-th channel, calculated using Eq. (1) at specific viewing and solar angles.  

Following this, vector X  is updated using the correction kX  as follows: 

 ( ) 1n

kX − = −B B M , (10) 

 ( )1 expn n

k k kX X X+ =  , (11) 250 

where n is the n-th iteration; ( )= iBB  is the vector composed of the observed reflectance of the VIIRS i-th 

channel; and 
n

B  is the vector of 
i

sea iceB −  on the n-th iteration step. The nonlinearity of Eq. (9) ensures that 

matrix M  does not exhibit linear dependence. Therefore, the result obtained from the iterative procedure is a 

non-singular solution. The iteration loop breaks when: 

 max( ) 0.001kX  , (12) 255 

and typically converges after three to four iterations.  

3.3 Broadband albedo estimation 

The black-sky albedo, also denoted as directional-hemispherical reflectance, is defined as the albedo of a 

surface under radiation from a single direction and without atmospheric scattering. It can be expressed as the 

integration of the BRDF over the viewing semi-hemisphere as follows (Schaepman-Strub et al., 2006): 260 

 ( )
2 2

0 0
, , , cos sinbsa sea ice s v s v v v v vB d d

 

        −=   , (13) 

where bsa  is the black-sky albedo for each band; s  and v  is the solar and view azimuth angles, respectively.  

Under ideal isotropic diffuse radiation, the surface albedo is referred to as white-sky albedo or bi-
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hemispherical albedo (Qu et al., 2015). The white-sky albedo (
wsa ) is obtained through further integration over 

all solar incident angles: 265 

 
2 2

0 0
cos sinwsa bsa s s s sd d

 

     =   . (14) 

Natural daylight irradiation lies between complete direct illumination and complete scattering. Consequently, 

the blue-sky albedo, representing the true surface albedo, can be obtained by combining the black-sky albedo and 

white-sky albedo with appropriate weighting (Pinty et al., 2005; Qu et al., 2015): 

 ( )1blue bsa wsa    = −  +  , (15) 270 

where blue  is the blue-sky albedo; and   is the diffuse skylight fraction. Under clear-sky conditions,   can 

be empirically calculated as follows (Qu et al., 2016): 

 ( )( )0.122 0.85exp 4.8cos s = + − , (16) 

where s  is SZA. 

The broadband surface albedo is obtained through linearly weighted calculations of narrowband albedo. 275 

(Liang, 2000). In this study, we adopt the narrow-to-broadband conversion coefficients as follows (Liu et al., 2017): 

 1 2 3 7 8 100.2892 0.4141 0.6996 0.2738 0.1463 0.0309      = − + + + − , (17) 

where   is the broadband albedo covering the shortwave spectral range; and i  is the narrowband blue-sky 

albedo for the selected VIIRS spectral channel (1, 2, 3, 7, 8, and 10). 

3.4 Reconstruction of sea ice albedo under cloudy-sky 280 

In the Antarctic sea ice regions, where continuous cloud coverage reaches 60–90%, substantial missing data 

exists in the albedo product estimated from VIIRS. Cloud radiative forcing has a notable impact on the albedo of 

snow/ice surfaces (Key et al., 2001; Stapf et al., 2020). To accurately express the cloudy-sky sea ice albedo, and 

to enhance the spatiotemporal continuity, this study combines spatiotemporal and physical modeling to reconstruct 

sea ice albedo under cloudy-sky conditions 285 

First, a spatiotemporal averaging interpolation method is used to obtain the initial reference albedo for cloudy 

pixels as follows: 

 ( )

( )
( ),

,

, i i

j

i i
j x y

x y

x y
m






=


, (18) 
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where ( ),x y  is the initial reference albedo for the target pixel ( ),x y ;   is the neighborhood 3 × 3 × 3 

window of the target pixel; ( ),i ix y  and m  are the albedo and total number of other valid pixels in   , 290 

respectively; This calculation is iterated 10 times to ensure the filling of nearly all cloud pixels. j  is the number 

of iterations in the loop. 

Assuming a cloudy pixel’s initial reference albedo annual time series is denoted as 
ty  , we employ the 

Whittaker smoother (Eilers, 2003) to denoise and fit series z , which is regarded as the hypothetical clear-sky 

albedo, as follows:  295 

 ( )
1

tz I D D Iy
−

= + , (19) 

where I  is a diagonal weight matrix , with 0 assigned for missing data and 1 otherwise; D  is the first-order 

difference matrix of the identity matrix; and   is the smoothing parameter and controls the smoothness of z . 

Ye et al. (2023) determined 5 =  yielded the optimal overall performance in reconstructing the albedo of the 

Greenland Ice Sheet. 300 

Following this, we estimate the cloudy-sky albedo based on the hypothetical clear-sky albedo as follows (Key 

et al., 2001): 

 ( )1 2 3 4ln 1 cosrec hyp s       = + + + + , (20) 

where rec  and 
hyp  represent the reconstructed cloudy-sky albedo and hypothetical clear-sky albedo, 

respectively;   is the cloud optical depth; s  is SZA; and i  are empirical coefficients with values of -305 

0.0491243, 1.06756, 0.0217075, and 0.0179505 respectively. 

The steps outlined above encompass the comprehensive process of generating the daily 1 km seamless 

Antarctic sea ice albedo product.  

4. Results 

4.1 Uncertainty analysis 310 

4.1.1 Uncertainty of clear-sky albedo retrieval 

The production process of the MBRI albedo product can be broadly divided into clear-sky albedo retrieval 

and cloudy-sky albedo reconstruction. In the retrieval process, the model used in this study is complex, involving 

processes such as derivation and integration, making it difficult to derive the Gaussian error propagation formula. 
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Therefore, the Monte Carlo method was used to assess the retrieval uncertainty (Mears et al., 2011; Zhou et al., 315 

2018). First, each input parameter for 2012-2021 was divided into four seasons (spring: October–December, 

summer: January–March, autumn: April–June, and winter: July–September), and the ten-year mean for each 

parameter was calculated. The uncertainty for each parameter was referenced from the settings in previous studies 

or the validation accuracy (Jourdier, 2020; León-Tavares et al., 2024; Saulquin et al., 2019), as shown in Table 4. 

Notably, some angular data did not provide uncertainty, so the standard deviation (STD) of the mean was used as 320 

a substitute. Next, for each pixel, samples were drawn from the range of 
i i  (where 

i  is the mean and 
i  

is the uncertainty for each parameter, with a sample size of 100 to balance computational efficiency and result 

stability). Finally, the albedo results for each pixel were obtained by inputting the samples into the model, with the 

standard deviation of the results representing the uncertainty for that pixel. 

Table 4. Uncertainties of input parameters. 325 

Parameter Uncertainty 

Surface reflectance 0.05 

Solar/view geometries (°) STD  

Wind speed (m/s) 1.5 

Wind direction (°) STD 

Chlorophyll concentration (mg/m3)  0.02 

Figure 3 shows the spatial distribution of clear-sky albedo retrieval uncertainty for the four seasons. The 

average uncertainties for spring and summer are approximately 0.030 and 0.029, respectively, higher than the 

0.015 and 0.016 observed in autumn and winter. In autumn and winter, over 90% of pixels have uncertainties less 

than 0.02. The annual average sea ice albedo uncertainty is 0.022. Spatially, uncertainty is relatively higher in the 

marginal ice zone and coastline, while it is lower in stable pack ice areas. This may due to the stronger influence 330 

of open water and ocean currents in these regions, leading to more significant changes in sea ice conditions, 

particularly in spring and summer, resulting in higher uncertainty in albedo retrieval. 
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Figure 3. Spatial distribution of clear-sky retrieval albedo uncertainty for the four seasons. The histogram in the lower-

left corner of each subplot shows the proportion of pixels with uncertainty less than 0.02 and greater than 0.02. 335 

In addition, the anisotropy of the sea ice surface means that satellite-observed surface radiation is not only 

related to the direction of solar incidence, but also to the direction of observation. As shown in Eq. (2), the BRDF 

is a function of the solar/view geometries. Qu et al. (2016) pointed out that the accuracy of sea ice albedo retrieval 

varies significantly with different solar/view geometries, with errors exceeding 0.3 in cases based on the 

Lambertian assumption. To analyze the relationship between uncertainty and solar/view geometries, we sampled 340 

the results for all pixels across the four seasons based on the angle distribution proportions (sample size = 50,000). 

Kernel Density Estimation (KDE) was then applied to obtain the distributions of sample uncertainty with respect 

to SZA and VZA, as well as their correlation. Fig. 4a shows the KDE distribution of albedo uncertainty with 

respect to SZA. Around 60° SZA, a relatively high uncertainty (up to approximately 0.045) is observed for more 

sample pixels, and decreases with increasing SZA (slope = -0.0005, p < 0.01). Fig. 4b shows that the uncertainty 345 

is less sensitive to changes in the VZA (slope = 0.0001, p < 0.01). It should be noted that some angles have a small 

proportion, which may not be well represented in the KDE distribution and correlation statistics. Therefore, based 

on the results in Fig. 4a, two SZA ranges were selected for further analysis: range 1 (55–65°), where uncertainty 

is relatively higher, and range 2 (75–85°), where the SZA is more concentrated. The VZA (0–71°) and RAA (0–

360°) were divided into angular bins with intervals of 2.5° and 5°, respectively. Then, the average uncertainty of 350 
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each angular bin for range 1 and range 2 was calculated, as shown in Fig. 5. In SZA range1 (Fig. 5a), most angular 

bins exhibit uncertainties less than 0.02, with slightly higher uncertainty in the backward direction (RAA near 0°). 

The largest uncertainty, exceeding 0.1, is observed at higher VZAs in the backward directions. Similarly, in SZA 

range 2 (Fig. 5b), most angular bins maintain uncertainties below 0.02, with the largest values again appearing at 

higher VZAs in the backward directions. Additionally, a few larger uncertainties occur at higher VZAs across other 355 

RAA directions. The large uncertainties in the backward directions likely stem from the strong forward-scattering 

characteristics of the sea ice surface, making the model more sensitive to changes in the backward azimuth angle. 

However, according to the histogram in Fig. 3, these anomalous angles account for only a small fraction of the 

total albedo retrieval.  

 360 

Figure 4. Kernel Density Estimation (KDE) plots of the uncertainty in sea ice albedo retrieval as a function of (a) solar 

zenith angle (SZA) and (b) satellite zenith angle (VZA). The histograms in the upper-right corners of each subplot 

represent the angular distributions. The black solid line denotes the fit line, while the red boxes in (a) indicate the two 

selected SZA ranges. 

 365 

Figure 5. Angular distribution of the mean uncertainty in sea ice albedo retrieval. (a) Solar zenith angle from 55° to 

65°; (b) Solar zenith angle from 75° to 85°. In the polar coordinate system, the radial direction represents the view zenith 

angle (from 0° to 71°), the angle direction represents the relative azimuth angle (from 0° to 360°). Blank areas indicate 

the absence of data for those angular bins in the sample. 

4.1.2 Uncertainty of cloudy-sky albedo reconstruction 370 
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As described in Section 3.4, the cloudy-sky albedo is reconstructed based on the albedo of adjacent clear-sky 

pixels. Therefore, the cloudy-sky albedo uncertainty originates from the propagation of clear-sky albedo 

uncertainty (retrieval uncertainty) through the reconstruction process. According to Gaussian error propagation, 

the relationship can be expressed as: 

 
2 2 2

cld clr rec  = + , (21) 375 

where cld  represents the uncertainty of cloudy-sky albedo; clr  is the retrieval uncertainty of clear-sky albedo; 

rec  denotes the uncertainty introduced by the reconstruction process. 

Equations (18)–(20) correspond to the key steps in the reconstruction of cloudy-sky albedo: interpolation of 

adjacent clear-sky pixels, temporal smoothing, and cloud radiative forcing correction. To simplify the uncertainty 

estimation, we treat interpolation and smoothing as a whole process and assume that errors from satellite angles 380 

are negligible. Based on Equation (20), we derive the following relationship: 

 ( )
2 2 2

2
2 3

2
1

rec rec

rec hyp hyp

hyp

 



  
     

  

      
=  +  =  +         +   

, (22) 

where 
hyp   is the uncertainty from the interpolation and smoothing process;    is the cloud optical depth 

uncertainty. Based on previous studies (Walther, et al., 2012), the error in PATMOS-x cloud optical thickness can 

reach 20%, so 0.2 =  . 385 

To estimate 
hyp , we randomly masked some clear-sky pixels (over 400,000) and then reconstructed their 

albedo using interpolation and smoothing following Eq. (18) and Eq. (19). Fig. 6a presents a scatter plot comparing 

the hypothetical albedo with the original clear-sky albedo, showing a correlation (R=0.85) and an RMSE of 0.065. 

Additionally, we analyzed the distribution of differences with respect to day of the year (DOY) and latitude (Fig. 

6b and 6c). The differences exhibit a generally uniform horizontal distribution, indicating that interpolation and 390 

smoothing errors have no significant dependency on time or latitude. Therefore, we set 0.065hyp = , while rec  

can be derived from the cloud optical depth data. 
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Figure 6. (a) Scatter plot of original albedo versus hypothetical albedo for the masked clear-sky pixels. Distribution of 

albedo differences with (b) DOY and (c) latitude. 395 

To obtain daily MBRI albedo uncertainty dataset, the uncertainty for clear-sky pixels was determined based 

on the seasonal mean retrieval uncertainties derived in Section 4.1.1 (spring: 0.03, summer: 0.029, autumn: 0.015, 

winter: 0.016). The cloudy-sky albedo uncertainty was calculated using Eq. (21).  

4.2 Validation with in situ measurements 

The estimation errors in the MBRI albedo product primarily arise from three sources: errors caused by 400 

estimation of the retrieved model, sensor noise in the input dataset, and errors related to different solar/view 

geometries (as discussed in Section 4.1). These errors can be quantitatively assessed using in situ measurements. 

The in situ measurement datasets collected in this study is listed in Table 3. 

The in situ measurement was first preprocessed. Except for Buoy 2018R1, which directly provides albedo 

values, the albedo values from other stations are derived from the ratio of shortwave upward (SWU) to shortwave 405 

downward (SWD) radiation. After filtering the data based on quality flags, daily albedo values are obtained by 

averaging the measurements taken near local solar noon. For the MBRI albedo product, in order to reduce 

geographic matching errors, the nearest pixel to each station is selected, and a 3x3 window average is used as the 

reference value for validation. Furthermore, when compared to APP-x product, the MBRI albedo product is 

resampled at a 25 km resolution, and when compared to CLARA-A3 product, the resampled MBRI albedo and in 410 

situ measurements are averaged over a 5-day period. 

Figure 7 shows scatter plots comparing in situ measurements with three estimated albedo products. The root 

mean square error (RMSE) for the original resolution MBRI albedo product and BSRN (including GVN and SYO 
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stations) measurements is 0.071, with a correlation coefficient of 0.67 (Fig. 7a). After resampling the MBRI 

product to a 25 km resolution, the RMSE decreases to 0.064, while the RMSE for the APP-x product is 0.134 (Fig. 415 

7b). The RMSE for the MBRI product further decreases to 0.054 after averaging over 5 days, while the 

corresponding RMSE for the CLARA-A3 product is 0.071 (Fig. 7c). Additionally, the MBRI product demonstrates 

the best correlation with the in situ measurements.  

When compared to IMAU AWS measurements (including AWS5 and AWS17) (Fig. 7d-f), the RMSE for the 

MBRI product is 0.071, unchanged after resampling to 25 km, and decreased to 0.055 after 5 days of averaging. 420 

The RMSE for the other two products is 0.136 and 0.048, respectively. Since AWS5 and AWS17 are located on 

more stable ice shelves, where albedo measurements exhibit smaller seasonal variations, the scatter plots show a 

more clustered distribution (Jakobs et al., 2020; Stroeve et al., 2005). Therefore, although the correlation 

coefficients are generally lower, the MBRI product still provides the best performance.  

Compared to the Atka Bay AWSs, the MBRI albedo product also shows the best accuracy (Fig. 7g-i), with 425 

RMSE values of 0.062, 0.059, and 0.055 for the original, 25 km resampled, and 5-day averaged albedo, 

respectively. The corresponding RMSE for the APP-x and CLARA-A3 products are 0.164 and 0.062, respectively. 

Although the number of measurements for Buoy 2018R1 is limited, the MBRI product still demonstrates the 

smallest RMSE: 0.076, 0.072, and 0.085 (Fig. 7j-l). In contrast, the other two products show relatively poorer 

performance. 430 
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Figure 7. Scatter plots comparing the estimated albedo products with in situ measurements. (a)-(c) compare with BSRN 

measurements; (d)-(f) compare with IMAU AWS measurements; (g)-(i) compare with Atka Bay AWS measurements; 

(j)-(l) compare with Buoy 2018R1 measurements. Blue dots represent the MBRI albedo product; green inverted 

triangles represent the APP-x product; yellow triangles represent the CLARA-A3 product. The black dashed line 435 

represents the 1:1 line, and the solid line represents the fitted line (p-value < 0.01). N represents the number of 

comparisons, R represents the correlation coefficient, bias represents the mean difference error, and RMSE is the root 

mean square error. 

This study summarizes the validation results between the MBRI albedo product and in situ measurements 
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from all stations, as shown in Fig. 8. Overall, the MBRI albedo product exhibits a good agreement with the ground 440 

truth values (R = 0.60), with an RMSE of 0.071 and a bias of -0.02. The slight underestimation of the MBRI albedo 

may be due to the broader spatial coverage of satellite observations compared to AWS. When sea ice further from 

the AWS begins to melt, AWS sensors only capture the albedo of ice and snow, while satellite pixels represent a 

mixture of snow/ice, melt ponds, and open water, leading to an underestimation of the albedo (Stroeve et al., 2005). 

Fig. 9 shows the distribution histogram of the bias (estimated albedo minus in situ measurements). Although the 445 

average bias for all three products is relatively small, their distributions differ. The bias distributions for the MBRI 

albedo product and CLARA-A3 product are similar, clustering around zero, indicating that both products have 

small differences and high stability. In contrast, the bias distribution for the APP-x product is more scattered, with 

larger errors. Additionally, all these products show a slight negative bias trend. Given the relatively poor accuracy 

of APP-x product, it did not participate in the following comparison. 450 

 

Figure 8. Probability density scatter plot of the MBRI albedo product compared to all in situ measurements. 

 

Figure 9. Bias distribution histograms of three albedo products compared to in situ measurements. Blue represents the 

MBRI albedo product, green represents the APP-x product, and yellow represents the CLARA-A3 product. 455 

Additionally, several albedo time series were randomly selected for comparison, as shown in Fig. 10. It is 
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evident that the MBRI albedo product shows continuous temporal variation, demonstrating the effectiveness of 

albedo reconstruction under cloudy-sky condition. Taking the BSRN SYO station as an example (Fig. 10a), the 

observed sea ice albedo varies between 0.6 and 0.95 during this period. Between days 20 and 40, the albedo 

increases and then decreases, while between days 70 and 100, two peaks are observed. The daily MBRI albedo 460 

time series effectively captures these changes and is consistent with the in situ measurement time series. In contrast, 

the CLARA-A3 product, with a 5-day resolution, is less effective at capturing the rapid changes in sea ice albedo 

and lacks temporal continuity.  

 

Figure 10. Randomly selected albedo time series at (a) BSRN SYO; (b) BSRN GVN; (c) IMAU AWS17; (d) Atka AWS2 465 

2012. The red line represents in situ measurements, the blue line represents the MBRI albedo product, and the yellow 

dots represent the CLARA-A3 albedo product. 

Overall, the MBRI albedo product proposed in this study shows good agreement with in situ measurements 

and demonstrates satisfactory accuracy. The accuracy of the APP-x albedo product is slightly lower, and its RMSE 

is basically consistent with the validation results of Key et al. (2016). Although the CLARA-A3 product also 470 

provides acceptable accuracy, its relatively coarse spatiotemporal resolution and cloud gaps make it less effective 

than the MBRI product in capturing detailed changes in sea ice. Therefore, it can be concluded that the performance 

of the MBRI albedo product is superior. 

4.3 Temporal and spatial analysis 

To explore the potential use of albedo in studies of Antarctic sea ice changes, the monthly mean albedo 475 
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anomalies for Antarctic sea ice from 2012 to 2021 were calculated based on the MBRI and CLARA-A3 albedo 

products. To illustrate the consistency between changes in albedo and sea ice variations, anomalies in the monthly 

mean SIC and SIE were also calculated, as shown in Fig. 11. The SIC anomaly exhibits a strong correlation with 

albedo anomalies from both the MBRI (Fig. 11a) and CLARA-A3 (Fig. 11b) products, with correlation coefficients 

of 0.78 and 0.52, respectively. In terms of temporal variation, before August 2015, most monthly mean anomalies 480 

of all three parameters were positive (with only a few exceptions), indicating sea ice accumulation. After this 

period, SIE anomalies were predominantly negative, while albedo and SIC largely reflected this transition. 

However, during the summers of 2017–2020, albedo and SIC anomalies were opposite to those of SIE. The driving 

factors behind this phenomenon warrant further investigation. Additionally, the trends in the monthly mean 

anomaly sequences from both albedo products are generally consistent, showing an overall decline in sea ice 485 

albedo (−0.0002/month for MBRI and −0.0006/month for CLARA-A3). The slight difference in values may be 

attributed to differences in the algorithms used and the methods for handling cloud gaps. These results demonstrate 

that the MBRI albedo product can be applied to the study of Antarctic environmental change to some extent. 

 

Figure 11. Monthly anomalies of Antarctic sea ice albedo, SIC, and SIE from 2012 to 2021. Albedo anomalies are derived 490 

from (a) the MBRI albedo product and (b) the CLARA-A3 product. Blue bars indicate positive (+) albedo anomalies, 

while pink bars represent negative (-) albedo anomalies. Blue and pink shaded areas represent months with positive and 

negative SIE anomalies, respectively. The green solid line denotes monthly SIC anomalies, and the black dashed line 

represents the albedo trend. R represents the correlation coefficient between albedo and SIC. *** indicates the p-value 

less than 0.001. 495 

Spatially, three Antarctic sea ice albedo maps in the middle of the month were randomly selected for 

comparison with the CLARA-A3 product to validate the spatial continuity of the MBRI albedo product (Fig. 12). 

Although the CLARA-A3 albedo product uses a 5-day average, it still exhibits notable data gap due to the cloud 

cover. In contrast, the MBRI albedo provides spatially continuous daily albedo data for the sea ice region, with 

https://doi.org/10.5194/essd-2025-79
Preprint. Discussion started: 9 May 2025
c© Author(s) 2025. CC BY 4.0 License.



 

25 

 

only a few blank strips due to missing raw data. Furthermore, the MBRI albedo product has more sea ice features. 500 

It can be found that the albedo in the marginal ice zone and along the coastline is generally lower than in stable 

pack ice areas. Then, the maps of both products were zoomed in for a detailed comparison in four regions: King 

Haakon VII Sea (A) in Fig. 12a, the Weddell Sea (B) in Fig. 12b, the Ross Sea (C) and the Prydz Bay (D) in Fig. 

12c. 

 505 

Figure 12. Maps of shortwave albedo for the Antarctic sea ice region. (a)-(c) represent the MBRI albedo on December 

15, 2014, February 15, 2016, and October 15, 2021; (d)-(f) show the 5-day averaged CLARA-A3 albedo for the 

corresponding dates. The purple boxes A-D highlight four areas selected for detailed comparison. 

Figure 13 shows a comparison of the MBRI and CLARA-A3 products in selected regions. The albedo spatial 

distributions of MBRI and CLARA-A3 are highly similar. However, due to its higher spatial resolution, the MBRI 510 

albedo captures finer details. For example, in Fig. 13b1 and Fig. 13c1, the sea ice boundaries in the Weddell Sea 

and along the coastline of the Ross Sea are clearly and accurately defined, with rich texture features such as sea 

ice leads also being captured. In contrast, the CLARA-A3 product presents these features with relatively less clarity. 

On the other hand, the coarser resolution of CLARA-A3 may cause pixels to include more open water areas, 

leading to lower pixel values—especially noticeable at the marginal ice zone (e.g., Fig. 13a2, Fig. 13b2, Fig. 13d2). 515 

Therefore, the MBRI albedo product proposed in this study offers a significant spatial resolution advantage, 

providing more accurate data for research on the Antarctic or regional sea ice radiation budget. 
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Figure 13. Comparison of shortwave albedo maps in selected regions. (a1)-(d1) show MBRI albedo product maps for 

the King Haakon VII Sea, Weddell Sea, Ross Sea, and Prydz Bay; (a2)-(d2) show the corresponding CLARA-A3 product 520 

maps for these regions. 

5. Discussion 

In this study, we employed a comprehensive methodology to generate an Antarctic sea ice albedo product 

covering the period from 2012 to 2021. The retrieval process utilized multiple theoretical models and multi-source 

remote sensing datasets, which not only enabled the MBRI albedo product to achieve high spatiotemporal 525 

resolution and improved spatial continuity but also introduced uncertainties caused by various factors. In Section 

4.1, we discussed the impact of the uncertainties of the input parameters propagated through the model on the 

product. The analysis revealed that the retrieval model is particularly sensitive to high view zenith angles, 

especially in backward-scattering geometries, leading to increased uncertainty. Although such conditions are 

relatively rare in practical retrievals, the relationship between specific solar/view geometries and sea ice albedo 530 

warrants further investigation. Additionally, uncertainties may also be associated with the freeze-melt state of sea 

ice, with stable sea ice or multi-year ice regions exhibiting lower uncertainties compared to regions with rapidly 

changing sea ice. Overall, the retrieval process is relatively stable while the uncertainty of cloud reconstruction is 

greater. 

The comparison between the MBRI product and in situ measurements indicates that the product exhibits good 535 
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accuracy. The MBRI algorithm effectively utilizes multi-band information from single angle/date observations, 

achieving daily temporal resolution, which provides a significant advantage. This is important in polar regions 

where multi-angle observation data are limited. In comparison, the accuracy of APP-x is relatively lower. Given 

the increasing demands for higher precision in remote sensing products in current research, such accuracy may no 

longer be satisfactory. The CLARA-A3 product shows good accuracy and can be used for Antarctic sea ice research. 540 

To correct for the surface anisotropy of sea ice, it averages the results from different solar/view geometries over 

five days. However, the sampling directions are insufficient to fully represent the reflection anisotropy of sea ice, 

which may lead to underestimation (Ding et al., 2022; Qu et al., 2016). Additionally, the five-day averaging 

significantly reduces the temporal resolution of the product, potentially limiting its ability to capture rapid changes 

in sea ice surface conditions. This limitation is particularly evident when compared to the BUOY 2018R1 dataset, 545 

which has fewer observations (Fig. 7l), where the RMSE of CLARA-A3 is relatively large. Furthermore, the 

CLARA-A3 product does not account for cloud-induced data gaps, resulting in insufficient spatial continuity, 

which may affect long-term time series analyses. 

Based on clear-sky and cloudy-sky dates, we performed a statistical analysis of the albedo for the in situ 

measurement and the MBRI product. The boxplots in Fig. 14 show the distribution of albedo under different sky 550 

conditions. The results indicate that, whether for the in situ datasets or the MBRI product, the average albedo under 

cloudy-sky conditions is significantly higher than under clear-sky conditions (p-values are all less than 0.001). 

Table 5 quantifies the comparison results for each station. At the BSRN SYO station, the average albedo under 

cloudy-sky is 0.016 higher than under clear-sky. At other stations, the difference is even larger, ranging from 0.035 

to 0.064, and the significance of this difference is very high. This result aligns with the findings of Key et al. (2001), 555 

who concluded that the albedo of snow and ice under cloudy-sky is on average 0.04 to 0.06 higher than under 

clear-sky. Therefore, when filling cloud-induced data gaps, the cloud forcing effect on sea ice albedo cannot be 

ignored. Simple interpolation methods may fail to accurately represent the true sea ice albedo under cloudy-sky. 

This issue may require further improvements in the CLARA-A3 product. 
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 560 

Figure 14. Boxplots of the in situ measurements and MBRI albedo under cloudy-sky and clear-sky conditions. *** 

indicates that the difference between clear-sky albedo and cloudy-sky albedo is significant with a p-value less than 0.001. 

Table 5. Mean values of in situ measurements and the corresponding MBRI mean albedo at different stations, along 

with the differences under clear-sky and cloudy-sky conditions. 

 BSRN SYO MBRI Albedo BSRN GVN MBRI Albedo 

Clear-sky mean 0.786 0.720 0.831 0.807 

Cloudy-sky mean 0.802 0.784 0.875 0.853 

Difference 0.016 0.064 0.044 0.046 

p-value 4.34×10−5 4.52×10−70 2.76×10−109 7.38×10−65 

 IMAU AWS5 MBRI Albedo IMAU AWS17 MBRI Albedo 

Clear-sky mean 0.811 0.848 0.794 0.799 

Cloudy-sky mean 0.862 0.883 0.848 0.840 

Difference 0.051 0.035 0.054 0.041 

p-value 1.88×10−25 1.77×10−11 8.71×10−30 5.20×10−22 

 Atka Bay AWS2 2012 MBRI Albedo Atka Bay AWS 2013 MBRI Albedo 

Clear-sky mean 0.750 0.778 0.800 0.807 

Cloudy-sky mean 0.797 0.817 0.850 0.854 

Difference 0.047 0.039 0.050 0.047 

p-value 4.69×10−6 1.67×10−4 7.61×10−6 1.60×10−4 

6. Data availability 565 

The daily 1 km seamless Antarctic sea ice albedo product (Version v2) and the corresponding pixel by pixel 
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uncertainty can be downloaded at https://doi.org/10.5281/zenodo.11216156 (Ma et al., 2024) and 

https://doi.org/10.5281/zenodo.15067607 (Ma et al., 2025), respectively. These datasets are available from 19 

January 2012 to 31 December 2021. These datasets adopt Sinusoidal projection and is gridded using the MODIS 

Sinusoidal Tile Grid, covering a total of 53 tiles (v14: h06–h29; v15: h09–h26; v16: h11–h17, h21–h24). These 570 

datasets are archived in 16-bit integer values GeoTIFF format. The albedo GeoTIFF file contains a single band 

representing the shortwave clear-sky sea ice albedo, while the uncertainty GeoTIFF file includes a band 

corresponding to the albedo uncertainty. The data values range from 0 to 10000, with a scaling factor of 0.0001 

applied to convert the integer values to their physical representations. Ocean water and land are set to a filling 

value of -1.  575 

The sea ice albedo files are named “Antarctic_Sea_Ice_Albedo_yyyyddd_hv.tif”, with “yyyyddd” denoting 

the date, “hv” representing the number of the tile. For example, “Antarctic_Sea_Ice_Albedo_2014270_h18v15.tif” 

represents the sea ice albedo data of the h18v15 area on the 270th day of 2014. 

The processing codes can be made available upon request to the corresponding author. 

7. Conclusions 580 

Sea ice albedo is a key factor influencing the polar radiation budget. Currently, commonly used sea ice albedo 

products are derived from AVHRR data. These products have relatively low spatiotemporal resolution and large 

data gaps caused by cloud cover. These disadvantages may limit their application in studies of Antarctic sea ice 

changes. High spatiotemporal resolution and continuity in Antarctic sea ice albedo products are crucial for 

investigating the mechanisms behind recent anomalies in Antarctic sea ice. Based on the VIIRS reflectance dataset, 585 

we generated a daily 1 km Antarctic sea ice albedo product for the period from 2012 to 2021, with reconstruction 

of cloudy-sky albedo. 

The MBRI algorithm has several advantages compared with traditional methods. First, by considering the 

heterogeneity and anisotropy of sea ice surface and abandoning the Lambertian assumption, it offers a more 

accurate reflection of the true surface properties. Second, the MBRI algorithm fully utilizes the sensor's single-590 

angle/date observations, allowing inversion at a 1 km resolution, enhancing the spatial and temporal resolution of 

the product. Last, when filling cloudy pixels, the algorithm considers the cloud forcing effect on sea ice albedo 

and corrects it using a physical model, rather than relying on simple spatiotemporal interpolation. These 

improvements are evident from the comprehensive evaluation carried out in comparison with in situ measurements 
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and existing products. 595 

The validation results with in situ datasets indicate that the MBRI albedo product has an overall RMSE of 

0.071, a bias of -0.02, and a correlation coefficient of 0.60. Comparisons at different stations show that MBRI 

consistently outperforms the APP-x and CLARA-A3 products in terms of accuracy. After spatial and temporal 

aggregation, the RMSE of MBRI product further decreases (below 0.055). Additionally, time series comparisons 

at four stations demonstrate that MBRI product provides robust temporal continuity, with daily-scale data basically 600 

consistent with in situ measurements. Spatial analysis also reveals that the MBRI product offers spatial continuity 

and rich spatial details. Therefore, the MBRI albedo product has relatively good overall performance. 

Uncertainty analysis indicates that the retrieval process of the MBRI clear-sky albedo remains stable across 

most geographical locations and observation geometries. The annual average sea ice albedo retrieved uncertainty 

is 0.022. However, for certain specific observation geometries, such as backward observations at high view zenith 605 

angle, the model is more sensitive to parameter variations, which could lead to decreased estimation accuracy 

(with uncertainties exceeding 0.1). Although such situation is rare, it still requires attention in future research, and 

improvements in the physical model could potentially enhance the computational robustness under this condition. 

Additionally, by analyzing albedo values under different sky conditions, it was found that sea ice albedo under 

cloudy-sky is significantly higher than under clear sky (ranging from 0.035 to 0.064), which highlights the 610 

necessity of correcting for cloud radiative forcing effects. 

In summary, the MBRI albedo product represents the first daily 1 km seamless Antarctic sea ice albedo dataset. 

Its demonstrated accuracy and spatiotemporal consistency support its application in quantifying the Antarctic 

radiative budget, evaluating sea ice albedo feedback, and monitoring sea ice spatiotemporal variations. Future 

improvements are aimed to refining cloudy-sky albedo reconstruction methods, particularly through improved 615 

identification of cloudy pixels and the adoption of advanced remote sensing image reconstruction techniques, to 

further enhance retrieval reliability under cloudy conditions. 
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