Table S1 Proxies used in palaecoecological peatland studies in Western Siberia Lowland (WSL) included in the Western

Siberian Peat Cores Database (WSPC)

Examples of studies in the

Proxy type Proxy Information provided / interpretation WSPC database
Pollen and spores provide information on past vegetation
Pollen composition, allowing reconstruction of historical Blyakharchuk, 2003; Novenko et
vegetation dynamics and the climatic conditions (Mander al., 2023; Peteet et al., 1998
and Punyasena, 2018)
NPP assemblages reflect local ecological conditions,
Non-pollen including hydrology, fire, erosion, and grazing activities, ,
A . . Feurdean et al., 2022; Halas$ et al.,
palynomorphs providing complementary information to pollen for 2025
(NPPs) reconstructing past environments (Shumilovskikh et al.,
2021; Van Geel, 2001)
Provide information on local vegetation and flora with
Plant macrofossils high taxonomic precision, allowing reconstruction of site- | Preis, 2015; Tarasov et al., 1998;
scale vegetation dynamics, paleoclimatic conditions Tikhonravova et al., 2023
(Birks and Birks, 2000)
Testate amoebace Mainly used for reconstruction of pas‘t changes in peatland Halas et al., 2025: Kurina et al.,
(TA) hydrology and as a proxy for hydroclimate (Charman, 2020 Willis et al.. 2015
* 2001; Mitchell and Payne, 2018) ? v
[+
Q
® I Good bioindicators of microhabitat and moisture .
=)
'L‘% Oribatid mites conditions in peatlands (Seniczak et al., 2022) Kurina et al,, 2017, 2023
Useful for reconstruction of water chemistry, hydrology
Molluscs and paleoclimate, like precipitation and temperature Kurina et al., 2017, 2023
(Horsék, 2011)
Arthropods serve as bioindicators, used to assess
Arthropods biodiversity, restoration success, habitat alteration, and Panova et al., 2010
potential impacts of climate change (Batzer et al., 2016)
Diatoms are mostly used in minerotrophic peatlands,
Diatoms indicate past water level, chemical conditions or human Paradossky et al., 2019
disturbances (Carballeira and Pontevedra-Pombal, 2020)
Microcharcoal Provide information on past fire history, based on the size | Halas et al., 2025; Lamentowicz
of charcoal particles the distance to the source can be etal., 2015; Shefer et al., 2024
determined. Microcharcoal is used to recontract regional
M h | fire history, while macrocharcoal is used for local-scale Feurdean et al., 2019; Novenko et
acrocharcoa fire reconstructions (Conedera et al., 2009). al., 2023; Ryabogina et al., 2024
) Provide 1nf0rmat10n on p_e‘at compaction, peat (Preis et al., 2024; Smith et al.,
Bulk density accumulation, decomposition and carbon content 2012)
(Chambers and Charman, 2004)
Moisture content Moisture controls decomposition, microbial activity and Preis, 2024; Tikhonravova et al.,
nutrient mobility (Rydin et al., 2006) 2023
= Degree of Is a measure of peat decomposition, useful as proxy to Syso and Peregon, 2009;
= decomposition / reconstruct past hydrological and climatic conditions Tsyganov et al., 2021; Turunen et
é‘ Peat humification (Biester et al., 2014) al., 2001
Peat accumulation Gives information about past climate variability, peatland | Borren et al., 2004; Malyasova et
u development and productivity (Swindles et al., 2025) al., 1991; Swindles et al., 2025
dBasall depth fro:;uges 1:1_f0r‘mat14(sr.1 on1 peatlami.nil;latlon, Kremenetski et al., 2003:
Basal depth cvelopment and tunctioning, 1t 1s a:so essential tor MacDonald et al., 2006; Smith et
carbon accumulation calculation and in climate change al. 2004
models (Parry et al., 2014) ”
Ash content Informs about mineral input, dust or pollution deposition, Kurina et al., 2023;
erosion, or fire signal (Tolonen, 1984) Veretennikova et al., 2021
= S . .
é Paleo pH provides 1nf0rmat10n about trophic st‘atu-s, Stepanova and Volkova, 2017;
E pH carbon/methane cycling and can be used as an indirect Syso and Perceon. 2009
5 proxy for paleoclimate (Schaaff et al., 2024) ¥ £on,

Organic matter
(LOI)

It helps to identify non-organic input and reconstruct land-
use history (Chambers and Charman, 2004)

Lapshina and Zarov, 2023;
Minayeva et al., 2006; Peteet et
al., 1998




Carbon
accumulation

Provides information about carbon sequestration over
time, indicates past changes in peatland productivity,
decomposition and indirectly climate conditions
(Charman et al., 2015)

Sheng et al., 2004; Turunen et al.,
2001; Yu et al., 2009

Stable isotopes

Stable isotopes combined with other analysis are valuable

Feurdean et al., 2019; Startsev et

88C, 8N, 8D, tools to reconstruct past temperature, humidity, and water

5'%0) table conditions (McClymont et al., 2010) al., 2022, Novenko et al. 2024
To determine chemical composition of peat, natural and

Geochemistry* anthropogenic fluxes of metals, secondary sources of Fialkiewicz-Koziet et al., 2016;

mineral matter e.g. sea spray, fires or industrial emissions
(Shotyk, 1988)

Veretennikova et al., 2021

X-ray fluorescence
(XRF) / X-ray

XRF determines elemental composition of the sediment,
interpretation depends on the elements/element ratios
used, e.g. used to infer anthropogenic impact,
hydrological shifts or dust input. Measurements can be of
uncertain reliability (Longman et al., 2019). XRD

Feurdean et al., 2022; Leonova et
al. 2022; Shvartseva et al., 2024

diffraction (XRD) identifies crystalline minerals in a sample, allowing direct,
non-destructive mineral characterization, though
amorphous or poorly crystalline materials may not be
detected (Sjostrom et al., 2019).

. FTIR spectra can indicate peat decomposition, organic
FTIR (Fourier pectt cate p P g
. matter quality, peat mineral matter and assessment of .

transform infrared X . Kurina et al., 2023
peatland restoration success (Artz et al., 2008; Martinez

spectroscopy)

Cortizas et al., 2021)

Chronological

Dating (e.g., "“C,
ZIOPb’ 137CS)

Used to determine peat components age, for age—depth
model calculations, accumulation rate and sedimentation
chronology (Chambers and Charman, 2004)

Borisova et al., 2011; Glebov et
al., 2002; Kremenetski et al.,
2003

* Among the biological proxies, a category termed “zoogenic remains” was also distinguished, which was used in the context of the study by
Paradossky et al. (2019). In that study, the authors identified general groups of zoogenic remains rather than specific taxa.
* General group of analysis applied on peat core excluding stable isotopes, XRF and FTIR.

Table S2 Results of calibration of uncalibrated radiocarbon ages (yr BP) for peat cores in Western Siberian Peat Cores
Database (WSPC) with reference to the source of original (uncalibrated) ages.

y + 1o Calibrated age Median
No. Core ID C age (yr BP) range calibrated age Reference
o) (cal. yr BP) (cal. yr BP)
1 WS _6 8710 105 9539-10127 9676 MacDonald et al., 2006
2 WS 8 4578 72 4992-5465 5310 Leonova et al., 2021; Preis et al., 2024
3 WS 15 5611 54 6304-6519 6398 Leonova et al., 2021; Preis et al., 2024
4 WS_67 5260 60 5921-6207 5997 Lapshina and Zarov, 2023
5 WS_68 1780 70 1534-1846 1644 Lapshina and Zarov, 2023
6 WS_71 5260 160 5666-6355 5997 Blyakharchuk, 2003
7 WS_134 8450 60 9308-9532 9479 Blyakharchuk, 2003
8 WS_158 4310 90 4601-5253 4856 Preis, 2024
9 WS_171 9780 210 10588-11912 11207 Khotinsky, 1984
10 WS_221 9000 100 9753-10395 10196 MacDonald et al., 2006
11 WS_228 8400 80 9149-9525 9454 Liss and Berezina, 1981
12 WS_251 10600 80 12236-12723 12627 Khotinsky, 1984
13 WS_549 4840 110 5329-5860 5587 Vasil’chuk et al., 2001
14 WS_567 7420 110 8019-8406 8280 Vasil’chuk et al., 2001
16 WS_584 8670 100 9504-10100 9553 Punning et al., 1974
15 WS_585 7960 100 8559-9083 8930 Punning et al., 1974
17 WS_589 6550 170 7054-7729 7429 MacDonald et al., 2006
18 WS_590 7640 220 8028-9008 8414 MacDonald et al., 2006
19 WS_591 7730 220 8089-9151 8524 MacDonald et al., 2006
20 WS_592 7800 170 8269-9083 8591 MacDonald et al., 2006
21 WS_593 7820 200 8233-9224 8595 MacDonald et al., 2006
22 WS_594 8000 50 8656-9000 8820 MacDonald et al., 2006
23 WS_595 8000 200 8436-9399 8820 MacDonald et al., 2006
24 WS_596 8180 40 9022-9274 9106 MacDonald et al., 2006
25 WS_597 8180 230 8538-9584 9106 MacDonald et al., 2006




26 WS_598 8400

240 8706-10069

9454

MacDonald et al., 2006

27 WS_645 8790

170 9512-10235

9774

Vasil’chuk et al., 2001

Table S3 Proxy groups and individual proxy weights used in the scoring framework

Proxy group Proxy Weight
Pollen 2.0
Non-pollen palynomorphs (NPPs) 1.2
Plant macrofossils 1.5
Testate amoebae 25
Microcharcoal 1.5
Biological Macrocharcoal 1.5
Oribatid mites 0.5
Molluscs 0.5
Diatoms 1.0
Arthropods 0.2
Zoogenic remains 0.2
Bulk density 2.0
Moisture content 0.5
. Degree of decomposition 1.0
Physical gPeat humiﬁcaI:ion 1.0
Peat accumulation 2.0
Basal depth 1.0
Ash content 1.5
pH 1.0
Organic matter (LOI) 2.0
Chemical Carbon ac-cumulation 25
Stable isotopes 2.5
Geochemistry 2.0
XRE/XRD 2.0
FTIR 2.0
Table S4 Components of scoring framework for peat cores in WSPC database
Component Description Scaling Weight
Chronology (chron) Presence of an independent age model Binary: 1 = present, 0 = absent 1
Scaled 0.05-1.0:
<200 yr =0.05
200-500 yr=0.2
Record length (record) Total temporal coverage of the core 500-2,000 yr = 0.4 1
2,000-5,000 yr = 0.6
5,000-10,000 yr = 0.8
>10,000 yr=1.0
Proxy count (count) Number of proxy available Linearly rescaled 0—1 (1-12 proxies) 1
Proxy group scores (proxies) Weighted sum of proxies within each group According to Table S3 4
All proxies combined (proxies) Weighted sum of all proxies across groups According to Table S3 5

Combined Score = Schron X Wchron + Srecord x Wrecord + Scount X Wcount + z X Wproxies

Where: S — score, W — weight

S proxies
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Figure S1. Spatial distribution of peat cores included in the Western Siberian Peat Core Database with records of proxies: (a) basal depth, (b) carbon accumulation, (c) radiocarbon dating, (d) bulk density, (e) ash content, (f) organic matter,
(g) plant macrofossils, (h) degree of decomposition, (i) moisture content, (j) pollen, (k) peat accumulation, (1) macrocharcoal, (m) testate amoebae, (n) geochemistry, (0) microcharcoal, (p) peat humification, (q) non-pollen palynomorphs, (r)
pH, (s) stable isotopes, (t) XRF/XRD, (u) diatoms, (v) FTIR, (w) arthropod, (x) mollusc, (y) zoogenic remains, (z) oribatid.
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