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Abstract 

Global glacier mass loss is accelerating the formation and expansion of glacial lakes. These lakes store meltwater, contribute 15 

to enhanced glacier mass loss through positive feedback mechanisms, and in some cases can pose a risk to downstream 

populations, infrastructure, and ecosystems through glacial lake outburst floods (GLOFs). Although satellite-derived 

inventories of glacial lakes exist at both global and regional scales, they vary in spatial and temporal resolution. Critically, 

fully automated and systematic monitoring of lake area changes is lacking, yet such monitoring is essential for detecting 

anomalous changes, estimating water storage, and understanding lake-glacier feedbacks. Here, we present a foundational 20 

dataset to support lake monitoring for the Glacial Lake Observatory (GLO), with an initial focus on lakes in Nepal and 

transboundary catchments. We trained a deep learning model to extract water bodies from Sentinel-1 and Sentinel-2 image 

mosaics from 2017 to 2024, subsequently classifying them as glacier-fed or non-glacier-fed based on their hydrological 

connectivity. In total, 18,389 and 22,419 individual lake outlines (≥ 0.001 km2) were mapped respectively from Sentinel-1 and 

Sentinel-2 imagery (2017-2024), resulting in 2,966 and 4,150 uniquely identified lakes (respectively). The number and total 25 

area of lakes increased over the eight-year period, driven largely by sustained expansion in the Koshi basin, which hosts about 

61% of all mapped lakes and nine out of ten of the fastest expanding. On average, glacial lakes covered an average annual area 

of 169 km², with growth concentrated in high-elevation, glacier-fed systems. Validation against existing inventories and 

manually digitised outlines demonstrated good accuracy of our deep learning datasets (F1 scores = 0.80–0.92), with Sentinel-

2 most reliably capturing smaller lakes. Datasets, as well as deep learning models, are openly available 30 

(https://doi.org/10.5281/zenodo.17802334).  
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1 Introduction 

High Mountain Asia (HMA) also known as the ‘Third Pole’, is home to the largest concentration of glaciers outside the polar 

regions (Maharjan et al., 2018; Yao et al., 2022), making it a critical component of the global cryosphere. These glaciers are 

not only sensitive indicators of climate change but serve as vital freshwater reservoirs for billions of people across High 35 

Mountain Asia (HMA; (Immerzeel et al., 2020; Jones et al., 2021; Mir et al., 2021). Atmospheric warming across HMA has 

occurred at a rate twice as fast as the global average (World Meteorological Organization, 2025), leading to accelerated glacier 

mass loss and, consequently, the development and dramatic expansion of glacial lakes (Shugar et al., 2020; Wang et al., 2020; 

Zhang et al., 2023). Studies consistently report an increase in the number, area and volume of glacier lakes worldwide, with 

HMA experiencing some of the highest rates of glacial lake growth annually (both in terms of area and volume; (Shugar et al., 40 

2020; Zhang et al., 2024a). Glacial lakes store and regulate meltwater runoff (Irvine-Fynn et al., 2017; Shugar et al., 2020) and 

also provide hydropower potential in high mountain catchments (Farinotti et al., 2019). However, in some cases, glacial lakes 

can pose risks to downstream communities and infrastructure due to the potential for glacier lake outburst floods (GLOFs): 

the rapid release of water from glacial lakes following a triggering factor, such as mass movement into the lake (Niggli et al., 

2024; Schwanghart et al., 2016; Taylor et al., 2023; Veh et al., 2019). These floods can occur from proglacial, supraglacial, 45 

subglacial, or ice-dammed lakes. The potential for GLOF frequency to increase with climate warming and deglaciation 

(Harrison et al., 2018; Haeberli et al., 2017; Zheng et al., 2021), coupled with the high socio-economic impacts in countries 

such as Nepal, India and Bhutan (Carrivick and Tweed, 2016), highlights the importance of monitoring lake evolution. 

Additionally, the presence of glacial lakes initiates a positive feedback mechanism, where small ponds forming on the glacier 

surface absorb solar radiation, accelerating the melting of subaqueous glacier ice (Benn et al., 2001; Rohl, 2008; Sakai et al., 50 

2000b). These ponds can then coalesce into larger lakes where calving process accelerates glacier retreat and in turn forms a 

space for upward pro-glacial lake expansion (Haritashya et al., 2018; King et al., 2019; Shukla et al., 2018). 

 

Glacial lake mapping techniques can be typically categorised into three key groups, (1) manual digitisation (e.g. Zhang et al., 

2015, 2024a), (2) semi-automated classification via segmentation, spectral indices and/or thresholding (e.g. Chand and 55 

Watanabe, 2019; Chen et al., 2021; Gardelle et al., 2011; Khadka et al., 2018; Kumar et al., 2025; Nie et al., 2013; Shugar et 

al., 2020; Watson et al., 2018), and (3) automatic classification using machine and deep learning techniques (e.g. Sharma and 

Prakash, 2024; Tang et al., 2024a; Xu et al., 2024). Classifications in each of these groups may also include ancillary datasets 

to improve map accuracy, such as digital elevation models (DEMs), and typically include a manual data refinement stage to 

remove erroneous classifications or improve lake polygon outlines. Advancements in remote sensing technologies, semi-60 

automatic and, increasingly, automatic techniques for glacial lake boundary vectorisation are being used for the development 

of glacial lake inventories. In particular, automatic deep learning techniques can provide reliable and transferable classification 

schema, with the caveat that the effectiveness of such models is dependent on the quantity and quality of often manually 

derived training data (Ma et al., 2025; Sahu and Singh, 2025). Recent advances in satellite data availability and processing 
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have led to a rapid expansion of glacial lake inventories, ranging from local to global scales (Table 1; (Kumar et al., 2025; 65 

Shugar et al., 2020; Wang et al., 2020; Zhang et al., 2024a). For example, Sentinel-1 (Synthetic Aperture Radar, or SAR) 

provides all-weather, day-and-night imaging capabilities, which can enable consistent data acquisition even under cloudy 

conditions that are common in high-mountain areas, where optical sensors are obscured by atmospheric interference (Tom et 

al., 2025). Whereas Sentinel-2 offers high spatial resolution (10-20 m) and multispectral bands that capture detailed surface 

water changes, making it ideal for detecting subtle variations in lake extent and supporting regional analyses (Wangchuk & 70 

Bolch, 2020). Methodologies including both optical and SAR datasets can overcome common classification challenges owing 

to variable lake turbidity, seasonal freezing and ice calving, and cloud cover obscuring the lakes (Wangchuk and Bolch, 2020). 

This integration can facilitate multi-temporal monitoring for a Glacial Lake Observatory allowing for the tracking of lake 

evolution, early detection of hazardous expansions, and improved GLOF risk assessments. This is important, as existing 

inventories often lack the temporal resolution and scalability needed for ongoing monitoring. 75 

 

Our overarching aim was to establish a foundation for systematic glacial lake monitoring that does not require manual 

intervention. Therefore, in this study, we aimed to (1) develop an automated workflow to map lakes using Sentinel-1 and 

Sentinel-2 data, (2) produce an annual time series of glacier-fed and non-glacier-fed lake areas (2017–2024), (3) validate the 

results against existing regional inventories to establish a framework for ongoing automated lake monitoring. The data are 80 

available open access at https://doi.org/10.5281/zenodo.17802334 (Rawlins et al., 2025), and will be accessible through the 

GLO data and analytics portal that is under development. 

2 Study region 

Our study region covered the glaciated areas of Nepal and its transboundary catchments in India and China, including the 

Karnali, Gandaki and Koshi river basins (Fig. 1). The study area spans Global Terrestrial Network for Glaciers (GTN-G) 85 

regions 15-01 and 15-02, with a 200 m overlap into 13-08 (GTN-G, 2023; Fig. S1). This region of the Central Himalaya is an 

area of high glacier mass loss (Bolch et al., 2012; Brun et al., 2017; Rounce et al., 2020), and subsequent glacial lake 

development (Chen et al., 2021; Shugar et al., 2020; Zhang et al., 2024a). Our analysis focussed on a 59,602 km2 area that 

formed a 10 km buffer around RGI v7.0 South Asia East glaciers (RGI Consortium, 2023) within the boundary of Nepal and 

transboundary catchments. The climate is dominated by the Indian Summer Monsoon, where the majority of precipitation falls 90 

between June and September (Bookhagen and Burbank, 2006; Hrudya et al., 2021) and glacier melting increases in response 

to warmer temperatures and rainfall in ablation zone (Fugger et al., 2022; Fujita et al., 1998). The temperature of glacial lakes 

is also observed to peak in the monsoonal period, following spring thaw of the lake surface ice that persists over winter (Sakai 

et al., 2000a; Watson et al., 2020). 
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Figure 1: (a) An overview of the lakes mapped for the Nepal-transboundary region from Sentinel-2 imagery (2017-2024), split into 95 
glacier-fed and non-glacier-fed lakes per drainage basin (basins defined by ICIMOD, 2021 and transboundary catchments were 

derived from HydroSHEDs basins (Lehner et al., 2008)). The top 10 highest expanding glacial lakes are represented by a star symbol, 

with 9 out of 10 located in the Koshi basin. Graphs below represent the total lake area (km2) per year for glacier and non-glacier-

fed lakes in each basin. (b) Inset map showing the Nepal-transboundary location within High Mountain Asia (Bolch et al., 2019) 

 100 

Glacial lakes in the study region are typically supraglacial, proglacial, or ice marginal lakes. Across different studies (Table 

1), there is a utilisation of different thresholds, distance of glacial lake from glaciers and size thresholds. For example, some 

studies classify all water bodies within a set distance from the nearest glaciers (e.g. 10 km) and refer to all lakes within this 

area as glacial lakes. A distinction between supraglacial and proglacial lakes can also be made using glacier outlines (Gardelle 

et al., 2011). Others make a distinction for lakes that are both in close proximity to the glacial environment, and hydrologically 105 
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connected (glacier-fed; Zhang et al., 2024a), which is the approach we adopt here due to a lack of up-to-date glacier outlines. 

Additionally, a glacial lake area threshold of ≥0.001 km2 was applied, which is a common lower threshold used in numerous 

lake inventories (Khadka et al., 2024a; Zhang et al., 2024a) and captures both large and small lakes, meaning that our dataset 

is directly comparable to others.  

 110 

Table 1: Examples of existing glacial lake inventories with full or partial coverage of our study area.  

Reference Coverage date 

range 

Coverage and 

overlap with this 

study (complete or 

partial) 

Minimum 

lake size 

mapped 

(km2) 

Mapping 

imagery 

resolution 

Method 

Kumar et al. (2025) 1990, 2000, 2010, 

and 2020 

Regional. Complete 0.0036 30 m NDWI and manual digitisation 

using Landsat imagery 

Zhang et al. (2024a) 1990 and 2020 Global. Complete 0.002*  10–30 m Manual digitisation using Sentinel-

2 and Landsat imagery 

Khadka et al. 

(2024a) 

1992–2022 Catchment scale. 

Partial 

0.001 10–30 m NDWI and manual digitisation 

using Sentinel-2 and Landsat 

imagery 

Shugar et al. (2020) 1990–2018 Global. Complete 0.05 30 m NDWI and NDSI using Landsat 

imagery 

Khadka et al. (2018) 1977–2017 Nepal. Partial 0.0036 30 m NDWI and semi-automated using 

Landsat imagery 

ICIMOD (2011) 2005/2006 Nepal. Partial 0.001 30 m  NDWI and manual digitisation 

using Landsat imagery 

*Zhang et al. (2024) lake dataset includes lakes with a minimum lake size of 0.001 km2 (Zhang et al., 2024b) 

 

3 Datasets and Methods 

Our processing pipeline (Fig. 2) was designed to produce two deep learning models based on the DeepLabV3 semantic 

segmentation architecture (Chen et al., 2017) for classifying water bodies in Sentinel-1 and -2 imagery, respectively. The 

processing steps are detailed in the following sections, which include image processing in Google Earth Engine (GEE), model 115 

training in ArcGIS Pro, application of the models to Sentinel-1 and -2 imagery spanning 2017–2024, and validation of the 

deep learning lake outlines against both published glacial lake datasets (reference data) and manually digitised outlines. 
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Figure 2: Data processing pipeline for the deep learning-generated GLO glacial lakes. (a) The workflow used in GEE for Sentinel-1 

and Sentinel-2 image processing, with composite median images exported from GEE per GTN-G O2-region; (b) The deep learning 120 

workflow performed in ArcGIS Pro, including the use of training samples, model training and exporting; (c) the post-processing 

phase of the deep learning glacial lakes before validation; (d) the validation process, whereby the final deep learning dataset was 

validated against reference datasets and manually digitised lakes.  

 

3.1 Data acquisition via Google Earth Engine 125 

Sentinel-1 and -2 data for the year 2020 were processed as outlined below for all High-Mountain Asia (GTN-G regions 13-01 

to 13-09, 14-01 to 14-03, and 15-01 to 15-03) to train the deep learning models (Sect. 3.2). The models were then applied to 

GTN-G regions 15-01 and 15-02, with a 200 m overlap into the transboundary O2-region 13-08.  
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3.1.1 Sentinel-1 

Sentinel-1 Ground Range Detected (GRD) images (2017–2024) were processed to analysis ready data format following the 130 

framework of Mullissa et al. (2021) in GEE, which included speckle filtering, radiometric terrain normalisation, and border 

noise correction. The vertical-vertical (VV) polarisation band, which displays good contrast between water and land 

(Wangchuk et al., 2019), from all ascending and descending orbit tracks were processed and used to create annual median 

mosaics covering 1st July to 30th August each year. Median compositing improves the signal-to-noise ratio and minimises the 

potential presence of lake surface ice in the output composite. A smaller date range was used compared to Sentinel-2 processing 135 

(Sect. 3.1.2), as the Sentinel-1 backscatter is not affected by cloud cover, allowing for more images to be available for 

compositing. Images were exported on the dB scale at 10 m resolution. A total of 10,899 Sentinel-1 images were used across 

the eight year study period (Table S1). 

3.1.2 Sentinel-2 

All available Sentinel-2 images (L1C) were used within the date range of May to November for years 2017 to 2024. This date 140 

range was used to coincide with the Monsoon season, when the surface of glacial lakes is typically unfrozen. There was 

insufficient imagery to create composite images in 2016 and so these data were excluded. The Harmonised Sentinel-2 Level-

1C top of atmosphere (TOA) data were used to create median pixel composite mosaics in GEE. TOA data were chosen over 

the Level 2 surface reflectance product due to the presence of processing artefacts over glacial lakes, particularly those that 

were rapidly expanding. To create the median composites, the archive was initially searched for low-cloud imagery in the 145 

collection, followed by cloud masking using Google Cloud Score Plus and a detection threshold of 0.6 (Pasquarella et al., 

2023) (Fig. 2). Additional bands were added to the image composites before export, including the Normalised difference water 

index (NDWI) using the near infrared (NIR) and green bands (McFeeters, 1996), and the enhanced normalised difference 

water index (ENDWI) using the green, NIR and SWIR bands (Cheng et al., 2025). These bands were then exported at 10 m 

resolution along with the red, green, and blue bands. A total of 98,500 Sentinel-2 images were used across the eight year study 150 

period across HMA (2017–2024; Table S1).  

3.2 Deep learning  

Deep learning models such as UNet, originally designed for biomedical image segmentation (Ronneberger et al., 2015), or 

DeepLabV3 (Chen et al., 2017), are increasingly used for a broad range of geoscience classification tasks. In this study, 

DeepLabV3 was selected since its combination of atrous (dilated) convolution and atrous spatial pyramid pooling (ASPP) 155 

makes it capable of classifying features across a range of scales and with complex backgrounds (Chen et al., 2017). 

Additionally, previous studies have demonstrated DeepLabV3’s accuracy for glacial lake classification across heterogeneous 

mountain environments (Siddique et al., 2023; Tang et al., 2024; Xu et al., 2024). Manually digitised lake outlines for 2020 

from Zhang et al. (2024a) and Kumar et al. (2025) were used to generate training data. These data were merged,  incorporating 
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all lakes from Zhang et al. (2024a), and then  supplemented with any additional lakes from Kumar et al. (2025), which were 160 

typically smaller supraglacial lakes that were not present in the Zhang et al. (2024a) data. The lake outlines were used to 

generate training data (512-pixel image chips) with the corresponding 2020 Sentinel-1 and -2 image composites. A total of 

52,567 chips and lake labels were generated for Sentinel-1 and 53,414 for Sentinel-2. The image chips and labels were used 

to train DeepLabV3 models for the Sentinel-1 and Sentinel-2 datasets, using the ResNet-50 backbone model, with training 

conducted over 50 epochs, an automatically derived learning rate, a batch size of 16, and a validation sample size of 10%. The 165 

models were then applied across the full timeseries of Sentinel-1 and -2 images for GTN-G regions 15-01 and 15-02 only to 

classify lakes in Nepal and associated transboundary catchments. 

3.3 Lake post-processing 

First, lake area, area uncertainty, and perimeter indices were calculated, with lakes that did not meet the minimum threshold 

criteria (≥ 0.001 km2) subsequently removed. Area uncertainty was calculated using a power-law model (Eq. 1) derived from 170 

our manual validation dataset (section 3.4.2), that relates percentage error to lake size, which is further scaled by actual lake 

area to yield the absolute uncertainty in km². 

 

𝑒𝑟𝑟𝑜𝑟% = 4.88 × 𝐴−0.463 

            Equation (1) 175 

  

Unique lake IDs were generated by creating a centroid (point on lake surface) latitude and longitude point from lake outlines 

dissolved from the full timeseries of classifications, which would represent the lake’s maximum extent. These IDs were then 

joined to each outline in the timeseries. Following Zhang et al. (2024a), lakes were classified based on their hydrological 

connectivity to a glacier within the original 10 km glacier buffer. The ALOS Global Digital Surface Model V4.1 (AW3D30 180 

DSM) (Tadono et al., 2014) covering the study area was smoothed with a 3×3 median filter, hydrologically corrected by filling 

sinks, and then used to derive D-Infinity flow accumulation downstream of RGI glacier outlines, with a minimum stream 

definition threshold of 10 accumulation cells. Any lakes intersecting with this network were classed as glacier-fed. Additional 

attributes were added to the lake database (Table 2) including areas derived in an ESRI:102025 - WGS 1984 Albers for 

Northern Asia projection, minimum and median elevations derived from the AW3D30 DSM V4.1 (Tadono et al., 2014), and 185 

the corresponding river basin location (Koshi, Gandaki, and Karnali) using basin outlines from ICIMOD (ICIMOD, 2021). No 

manual editing of the lake outlines was undertaken; however, we removed (i) erroneous classifications at the overlapping edges 

of composite imagery; (ii) the Shey Phoksundo landslide dammed lake (82°56'58"E, 29°11'33"N) and; (iii) lakes with 

anomalously high elevation standard deviations (e.g., > 50 m) indicative of false positives (e.g., increased error on steep slopes, 

obscureness by shadows) or DSM artefacts. A total of 856 lake classifications, or 4% of the dataset, were removed from the 190 

final dataset across the eight-year study period.  
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Table 2. A summary of key metadata included for each glacial lake in the inventory    

 195 

Variable Name Description Format 

GLO_ID Lake identification, which contains the inventory name (GLO), longitude and latitude 

coordinates to five decimal places (‘GLO_longitude_latitude’) 

String 

COUNTRY The country names the lake polygon falls within: Nepal, China or India  

BASIN The basin names the lake polygon falls within: Karnali, Gandaki or Koshi String 

AREA_YEAR Year of imagery used for lake classification Double 

AREA Area extent of a lake polygon (in square kilometers) Double 

AREA_UNCERTAINTY Area uncertainty of a lake polygon (in square kilometers) Double 

PERIMETER Perimeter of a lake polygon (in kilometers) Double 

CONNECTIVITY Flag to show whether the lake is glacier-fed or non-glacier-fed String 

ELEVATION_MEAN Mean elevation of each lake calculated between 2017 and 2024 (in meters) Double 

ELEVATION_MIN Minimum elevation of each lake calculated between 2017 and 2024 (in meters) Double 

ELEVATION_MEDIAN Median elevation of each lake calculated between 2017 and 2024 (in meters) Double 

DATA_SOURCE Image source of the lake classification (e.g., S2 for Sentinel-2) String 

START_DATE Start date for image filtering  Date 

END_DATE End date for image filtering Date 

REF_MSTAT Flag to show whether the lake in the GLO dataset is new (dl_new) or, if blank, exists in the 

validation (reference) dataset/s (TZhang et al. (2024a) and Kumar et al. (2025)) 

String 

LONGITUDE Longitude coordinates for the centroid of the lake polygon, given to five decimal places 

(equivalent to ~10 m) 

Double 

LATITUDE  Latitude coordinates for the centroid of the lake polygon, given to five decimal places 

(equivalent to ~10 m) 

Double 

GTNG_REGION_O2 The Global Terrestrial Network of Glaciers (GTN-G) O2 region that the lake falls within String 

TS_OUTLIERS Lakes flagged as outliers in the time-series  String 
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3.4 Data evaluation 

To quantify annual lake area change rates and identify time series outliers, a robust linear regression (RLM) model was applied 

to the timeseries data of lake surface area. Lakes with fewer than five unique years of data were excluded. For each lake, 

residuals from the fitted model were standardised, and years with absolute standardised residuals greater than two standard 200 

deviations from the mean were flagged as outliers and excluded from further analysis. Bootstrap resampling (1,000 iterations) 

was applied to the cleaned dataset to estimate the rate of area change and a 95% confidence interval (Canty and Ripley, 1999; 

Davison and Hinkley, 1997; Venables and Ripley, 2013). For each lake outline per year, an outlier flag was recorded and the 

area change was deemed significant if the 95% confidence interval of the annual change rate excluded zero. 

 205 

3.4.1 Evaluation against existing datasets  

Lake classifications were evaluated against the Zhang et al. (2024a) (derived from Sentinel-2 and Landsat data) and Kumar et 

al. (2025) (derived from Landsat data) glacial lake inventories for 2020 after clipping to the same geographic extent and 

reprojecting to the coordinate system ESRI:102025. These inventories used similar resolution data, so the classifications should 

be comparable, though smaller lakes may be missed due to the mapping resolution. For example, supraglacial lakes can be 210 

missed or mapped with greater uncertainty when using 10–30 m resolution imagery, compared to smaller scale lake inventories 

that use high-resolution imagery (<1–3 m) (Chand and Watanabe, 2019; Taylor et al., 2022; Watson et al., 2016, 2018). Lakes 

could also have expanded or drained, making it difficult to draw a definitive comparison with the existing inventories, although 

any changes are constrained to a single year (2020). Accuracy assessment metrics were calculated, including precision, recall, 

and F1 score. These output a 0-1 score, where 1 represents a perfect match between the two compared datasets. 215 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
         

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
         

         220 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
            

 

3.4.2 Evaluation against manually digitised datasets 

A sample of ~10% of the lakes classified in 2020 were selected through stratified random sampling and manually digitised by 

a single author at 1:3,000 to 1:5,000 scale using the Sentinel-2 imagery composites from 2017, 2020, and 2024. This was 225 

repeated for 2020 data by a second author for cross-comparison. The validation dataset corresponded to 895 lake outlines from 
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239 individual lakes. Four class strata were defined from the data quartiles to ensure a representative sample of lake sizes were 

selected: Class 1: area (m2) ≤ 6,843 m2, Class 2: area > 6,843 and ≤ 15,212, Class 3: area > 15,212 and ≤ 367,056, and Class 

4: area > 36,706. Accuracy assessment metrics (Sect. 3.4.1) were derived by comparing the lake classifications with the manual 

validation data. 230 

4 Results 

4.1 Comparison with other inventories and accuracy assessment 

4.1.1 Deep learning classifications and existing inventories   

As outlined in Sect. 3.4.1, our GLO deep learning classified lakes from Sentinel-1 and -2 datasets were compared against the 

existing glacier lake inventories of Zhang et al. (2024a) and Kumar et al. (2025) (e.g. Fig. 3a, b) to evaluate the accuracy and 235 

spatial consistency relative to established regional inventories. First, comparisons with Zhang et al. (2024a) found good 

agreement between the datasets, resulting in F1 scores of 0.82 for Sentinel-1 and 0.87 for Sentinel-2 (Table S2). When 

compared against the combined Zhang et al. (2024a) and Kumar et al. (2025) inventories the F1 scores were slightly lower, 

with 0.79 and 0.85 for Sentinel-1 and -2 respectively, again demonstrating good spatial agreement across datasets of differing 

sensors. The timeseries change of each lake was used to derive lake expansion rates and identify outliers (e.g. Fig. 3c-f). An 240 

example of an outlier (2021) in the Sentinel-2 timeseries is shown in Fig. 3d, where lake delineation was affected by the 

presence of large icebergs and/or surface sheet ice (see inset image). The Sentinel-1 outline shown on the same inset image 

captured the lake in its entirety. 
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Figure 3: Example of lake classification outlines and timeseries for two lakes (a) GLO_86.92845_27.89838 (Imja lake) and (b) 

GLO_86.50218_28.03313. (a-b) 2020 Sentinel-2 inference from this study compared to the 2020 outlines of Zhang et al. (2024 and 

Kumar et al. (2025). Background imagery is the 2020 Sentinel-2 composites used for inferencing. (c-d) The Sentinel-2 inference 270 
timeseries for each lake. (e-f) Lake area expansion rates derived from Sentinel-1 and Sentinel-2 timeseries. Outliers and non-

significant change rates are coloured red. Dashed lines indicate robust regression fits to each series, excluding statistical outliers (red 

points). Shaded ribbons represent bootstrapped 95% prediction intervals, with pastel blue for Sentinel-1 and pastel green for 

Sentinel-2, reflecting model uncertainty in annual area estimates. 
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 275 

4.1.2 Deep learning classifications and manual reference dataset 

A 10% stratified sample of classified lakes from both Sentinel-1 and -2 datasets were validated against manually digitised lake 

outlines, as well as compared directly against one another to further assess the consistency and accuracy of the deep learning 

classifications (as per Sect. 3.4.2). First, to establish the reliability of the manually digitised lakes as a reference dataset, the 

independently digitised outlines from two authors were compared, producing a high F1 score of 0.95 (Fig. 4, Table S3) and 280 

confirming the internal consistency of this reference dataset for use in comparison to the automated classifications.  

 

Validation of the sampled deep learning classification lakes against the manual reference dataset for 2020 showed that the 

deep learning model performed well for both sensors (0.82 and 0.92, respectively), with Sentinel-2 overall demonstrating 

stronger agreement (Table S3). This validation for Sentinel-2 against 2017 and 2024 produced similarly high results, with 285 

consistent F1 scores of 0.91. When comparing the Sentinel-1 and -2 datasets directly, fewer lakes and a smaller total mapped 

lake area were present in Sentinel-1 (Fig. S2a). However, where lakes were present in both inventories, the mapped areas 

generally corresponded well (R2 = 0.95) (Fig. S2a, b), yielding an F1 score of 0.85. Comparing manually digitised lake outlines 

with the Sentinel-2 deep learning classification showed greater uncertainty for smaller lakes and highlights the variation in 

lake colour and shape (Fig. 4 and 5). The median area error for the largest class of lakes was 14.3% compared to 61.5% for 290 

the smallest lakes (Fig. 5a). For lake area (Fig. 5), the error is shown to decrease with increasing lake size, following a log-log 

linear power law (R2 = 0.54; Fig. 5b), with smaller lakes more likely to become misclassified or omitted. The corresponding 

F1 scores are shown in Fig. 5c, coloured by year of the validation data. 
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 295 

Figure 4: Example lake outline comparisons from the manual digitisation (validation - green outlines) and Sentinel-2 inference 

(inference - blue outline) for the year 2020. For each lake class of increasing size (rows showing classes 1 to 4), the figure columns 

show an example of a low, middle, and high F1 score. Two validation outlines are shown for each lake, representing the manual 

digitisation from two study authors and the highest F1 score is annotated. The background image is the 2020 Sentinel-2 composite 

used for inferencing. 300 
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Figure 5: Lake area errors derived by comparing Sentinel-2 lake inferences with manual lake digitisation (n = 895) from two study 

authors. (a) Percentage lake area error for each lake strata (see methods). (b) Percentage lake area error for each manually validated 

lake. A log-log linear power law model was fitted to the data (blue line), indicating a decreasing trend in relative error with increasing 

lake size. The shaded grey ribbon represents an alternative modelled fit (R2 = 0.88) from a +/- 0.5 pixel (lower bound), or 1 pixel 305 
(upper bound) uncertainty around the lake perimeters. (c) Accuracy assessment F1 scores for the lake validation coloured by year. 

 

4.2 Lake abundance 

Based on Sentinel-1 imagery, 18,389 lake polygons (≥0.001 km²), including all annual detections and repeat observations, 

were delineated across the Nepal-transboundary region between 2017 and 2024 (Table S4). Of these, 2,966 lakes were uniquely 310 

identified. Over the timeseries, on average 2,299 lakes were mapped per year across the eight-year period, with a maximum 

of 2,385 lakes mapped in 2017 (Table 3). The mean annual total area of lakes across the eight-year study period was 156.05 ± 

3.23 km2, with an average individual lake size of 0.067 ± 0.23 km2. Glacially-fed lakes accounted for 56% (n = 10,283) of all 

lakes identified in the Sentinel-1 dataset. 

 315 

From Sentinel-2 imagery, a total of 22,419 individual lake polygons (≥0.001 km²) were mapped across the Nepal-

transboundary region over the same period, corresponding to 4,150 unique lakes (Table S4). The number of lakes ranged from 

2,771 (2017) to 3,169 lakes (2024), indicating a gradual increase in lake abundance overtime, with some annual variability 

(Table 3). The mean annual total lake area was 169.5 ± 5.19 km2, with an average individual lake size of 0.06 ± 0.22 km2. The 

largest lake named Galongco (Allen et al., 2022) (GLO_85.84205_28.32067), with an area of 5.44 km2 in 2024, was recorded 320 

in 2017 and consistently detected in both Sentinel-1 and -2 datasets. Glacially-fed lakes represented 64% (n = 14,398) of the 

Sentinel-2 derived dataset.  

 

Collectively the two lake datasets derived from SAR and optical Sentinel sensors (respectively) show broadly comparable 

spatial patterns across the Nepal-transboundary but differ slightly in temporal trends likely due to sensor-specific 325 
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characteristics. Sentinel-2 captured 38.5% more lakes over the time period with a greater number of unique lakes, whilst 

Sentinel-1 provided more consistent annual detection lake counts.  

 

Table 3. Summary statistics of lakes extracted from Sentinel-1 and Sentinel-2 imagery in the GLO inventory. Sentinel-2 statistics 

are given in bold.  330 

 

 

4.3  Lake basin and country characteristics 

When examining the spatial distribution of mapped lakes across the three major basins of the Nepal-transboundary region, 

both Sentinel-1 and -2 derived lakes show that the Koshi basin hosts the largest number and total area of glacial lakes from 335 

2017 to 2024 (Fig. 6). The Karnali basin contains the second highest number and total cumulative area of lakes, while the 

Gandaki basin consistently exhibits the fewest.  

 

For Sentinel-1 (Fig. 6a-b), lake numbers remained relatively stable across the eight-year study period across all basins. For 

Koshi, 59% of all lakes mapped (n = 10,889) across the study period occurred within this basin, with yearly counts ranging 340 

between 1329 (2022) and 1410 (2017). The cumulative total area in Koshi increased gradually from 109.9 km2 in 2017 to 

116.9 km2 in 2024, with an average total area of 112.1 km2. Whereas Karnali and Gandaki basins averaged 28.3 km2 and 15.6 

km2 respectively, with only minor year-to-year variability. Across all basins, mean lake size ranged between 0.04 and 0.08 

km2, but the Koshi basin consistently contained the largest individual lakes (5.43 km2 in 2024).  

 345 

Year No.Glacial Lakes  

(>0.001 km2) 

Glacial Lake Total 

Area (km2) 

Mean Glacial Lake 

Area (km2) 

Max Glacial Lake 

Area (km2) 

Glacial Lake Mean 

Area Uncertainty 

(km2) 

Glacial Lake Total 

Area Uncertainty 

(km2) 

2017 2385 | 2771 153.44 | 167.03 0.064 | 0.059 5.14 | 5.48 0.008 | 0.008 19.4 | 18.6 

2018 2372 | 2640 156.08 | 165.38 0.066 | 0.061 5.32 | 5.46 0.008 | 0.008 19.4 | 18.1 

2019 2230 | 2735 151.77 | 166.69 0.069 | 0.059 4.19 | 5.44 0.008 | 0.008 18.6 | 18.4 

2020 2241 | 2962 155.39 | 174.55 0.069 | 0.057 5.01 | 5.46 0.008 | 0.007 18.8 | 19.8 

2021 2279 | 2778 154.95 | 168.06 0.068 | 0.059 4.58 | 5.43 0.008 | 0.008 18.9 | 18.5 

2022 2285 | 2607 156.96 | 164.64 0.069 | 0.062 5.22 | 5.46 0.008 | 0.008 19.1 | 17.6 

2023 2271 | 2757 157.1  | 170.15 0.07 | 0.06 5.23 | 5.43 0.008 | 0.008 19.1 | 18.6 

2024 2326 | 3169 162.72 | 179.81 0.07 | 0.056 5.43 | 5.43 0.008 | 0.007 19.7 | 20.7 
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From Sentinel-2 mapped lakes per basin (Fig. 6c-d), a similar spatial pattern can be seen, but with a more pronounced upward 

trend in both the number of lakes and total lake area overtime. Koshi accounted for 61% of all lakes mapped across the eight-

year period (n=13,661) and 72% of the total cumulative lake area across the Nepal-transboundary region in the Sentinel-2 

dataset. Lake counts in Koshi increased from 1,547 in 2017 to 1,779 in 2024, with total cumulative lake area increasing by 

8%, from 117.4 km2 to 126.4 km2.  Linear regression confirmed a significant temporal increase in both lake number (R² = 0.73, 350 

p = 0.007) and total cumulative lake area (R² = 0.88, p = 0.001) for the Koshi basin, with an increase of ~33 lakes yr-1 and an 

area increase of ~1.14 km2 yr-1, indicating consistent expansion of glacial lake coverage over the study period. No detectable, 

significant temporal trends were found for lake counts or cumulative lake area overtime for the Karnali (n: R² = -0.16, p = 

0.84; area: R² = -0.15, p = 0.79) or Gandaki basins (n: R² = -0.02 , p = 0.38; area: R² = 0.21 , p = 0.15).  

 355 

Again, Koshi consistently contained the largest mean (0.07 km2) and maximum (5.48 km2) sized glacial lakes. Despite Karnali 

accounting for 26% of lakes in the dataset, lakes here generally have a lower mean (0.04 km2) and maximum size (0.74 km2) 

compared to Gandaki, which accounts for 13% of lakes but has a slightly higher mean (0.05 km2) and larger maximum size 

(3.6 km2). When broken down into hydrologically-connected status, 65% of all glacier-fed lakes were found in Koshi (Karnali: 

21%; Gandaki: 13%). Predictably, glacier-fed lakes were found to be at significantly higher mean elevations than non-glacier-360 

fed lakes (Fig. 7). Independent two-sample t-tests found that these differences were statistically significant (p<0.001) in each 

basin, with mean elevation differences of 126 m in Karnali, 354 m in Gandaki, and 406 m in Koshi.  
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Figure 6: Statistics for both Sentinel-1 and Sentinel-2 mapped lakes in the Nepal-transboundary region. (a) Number of lakes per 

year per basin mapped from Sentinel-1 imagery. Shaded bars represent total number of lakes over the timeseries. (b) Total lake 

area (km2) mapped per year per basin from Sentinel-1. (c) Number of lakes per year per basin mapped from Sentinel-2 imagery. 385 
Shaded bars represent total number of lakes over the timeseries. (d) Total lake area (km2) mapped per year per basin from Sentinel-

2.  
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 390 

Figure 7: Density distribution of glacier-fed and non-glacier-fed lakes across mean elevation (m) within the three major Nepal-

transboundary river basins: Karnali, Gandaki, and Koshi. Shaded areas represent the relative density of lakes by elevation, 

highlighting the elevational preferences of glacier-fed (blue) and non–glacier-fed (orange) lakes in each basin.  

 

 395 

In terms of glacial lakes and their country of origin across the Nepal-transboundary region, as expected, the largest percentage 

of lakes (54%) were found in Nepal, followed by 45% in transboundary China and the remainder (1%) in India.  

On an annual basis, China accounts for up to 58% of the total cumulative annual lake area across the Nepal-transboundary 

region, with a mean lake size of 0.08 km2 and a maximum lake size of 5.48 km2: the largest (and same) lake recorded in both 

the Sentinel-1 and -2 datasets. The majority (84%) of the Nepal-transboundary lakes within China occur within the Koshi 400 

basin, which as mentioned previously, has seen a significant increase in the both the number and cumulative area of glacial 

lakes across the eight-year period.   

 

Examination of the glacial lakes at a national scale, China exhibited a statistically significant increase in both the number of 

lakes (R2 = 0.57, p = 0.01) and cumulative area (R2 = 0.61, p = 0.01), indicating continued expansion of lake coverage, primarily 405 

through the formation of new lakes (~22 lakes yr-1). In contrast, Nepal showed no significant temporal trend in either lake 

number (R2 = -0.13, p = 0.62) or cumulative area (R2 = 0.003, p = 0.35), with mean lake size remaining relatively stable (R2 = 

-0.15, p = 0.84). These results suggest that much of the recent growth of glacial lakes has occurred within the Nepal-China 
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transboundary headwaters of the Koshi basin, highlighting the growing cross-border significance of glacial lake development 

and evolution.  410 

 

Table 4. Sentinel-1 and Sentinel-2 derived glacial lake counts in Nepal and the transboundary catchments of India and China in 

2024 

 

 415 

 

 

 

 

 420 

 

 

4.4 Lake area timeseries 

Using the Sentinel-2 lake area timeseries (2017-2024), ten of the fastest expanding lakes across the Nepal-transboundary were 

identified and ranked (Fig. 8, 9), with all lakes classified as glacial-fed and nine out of ten of the lakes occurring within the 425 

Koshi basin. All ten lakes exhibit statistically significant positive trends in area (R² > 0.93), with the highest rate of expansion 

observed at lake GLO_87.08864_27.79792 (commonly known as Lower Barun, located in Nepal), increasing by 0.0820 ± 

0.0132 km² yr⁻¹. This is followed by GLO_86.92845_27.89838 (commonly known as Imja Lake, located in Nepal), which 

increased by 0.0551 ± 0.0112 km2 yr-1. Overall, these ten lakes have a mean elevation of 4849 ± 330.47 m a.s.l, with a maximum 

elevation of 5219 m observed for lake GLO_86.86315_28.11165, which is supraglacial in origin (Fig. 9i).  430 

 

 

Country Number of glacier-fed 

lakes 

Total area of glacier 

fed lakes (km2) 

Number of non-glacier-fed 

lakes 

Total area of non-glacier-

fed lakes (km2) 

Nepal 670 | 1046 51.17 | 60.21 553 | 743 14.43 | 17.88 

India 20 | 34 1.16 | 1.13 6 | 7 0.07 | 0.08 

China 635 | 954 81.35 | 90.84 442 | 385 14.55 | 9.66 
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Figure 8: Lake area rates of change for the top ten fastest expanding lakes. Dashed lines indicate robust regression fits to each series, 

excluding statistical outliers (red points). Shaded ribbons represent bootstrapped 95% prediction intervals.  435 
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Figure 9: Lake area timeseries for the top ten fastest expanding lakes. Background images are the 2024 Sentinel-2 composites used 

for inferencing, shown with partial transparency. 

 

5 Discussion and future outlook  440 

5.1 Methodological performance and dataset accuracy  

The application of deep learning architecture, specifically DeepLabV3, to multi-sensor satellite imagery has demonstrated the 

strong capabilities of convolutional neural networks to efficiently and effectively map spatio-temporal glacial lakes and lake 

change in high mountain terrain. The model, overall, shows good performance across the Nepal-transboundary region, with 

strong agreement with delineated glacial lakes when compared to independent reference data (including manually digitised 445 

sample data), confirming its suitability for large-scale, automated mapping with no manual boundary editing. As shown in 

previous ‘proof of concept’ deep learning studies (Kaushik et al., 2022; Tang et al., 2024), the direct use of existing glacial 

lake inventories, in this case Zhang et al. (2024a), provides an efficient strategy for employing a reliable and labelled training 

dataset, removing the need for extensive manual annotations or data curation (Qayyum et al., 2020). The use of a pre-existing 

inventory also ensured the model was generally trained on a range of glacial lake shapes, sizes and surface conditions for the 450 

region, resulting in a consistent and transferable automatic classification framework.  

 

Across the multi-year record, our model achieved high levels of accuracy and reproducibility, with F1 scores of 0.79–0.82 for 

Sentinel-1 and 0.87–0.92 for Sentinel-2, in-line with comparable deep learning studies (Tang et al., 2024; Xu et al., 2024). 

Sentinel-2 generally achieved higher accuracies of lake boundaries, capturing various lake sizes and morphologies. However, 455 

as observed in other deep learning-based glacial lake inventories (e.g., Ma et al. (2025)), the persistence of snow, ice or icebergs 

on lake surfaces can reduce classification accuracy. This was observed in the Karnali basin in the west of our study region in 
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2022 (e.g. Fig. S3). In such cases, Sentinel-1 imagery improves the chances of observing the lake surface in a snow and ice-

free state. This complimentary multi-sensor approach of optical and SAR sources therefore forms a robust, multi-sensor 

framework for high mountain glacial lake monitoring that considers time periods affected by persistent atmospheric or seasonal 460 

interferences.  

 

Beyond the overall strong performance of both sensors for glacial lake delineation, known limitations persist in the reliable 

detection of very small or partially ice-covered lakes. These are primarily linked to the spatial resolution of input imagery and 

mixed pixels of ice, snow and water around the lake perimeter (Qayyum et al., 2020; Watson et al., 2018). Notably, when 465 

including the Kumar et al. (2025) inventory for our classification comparison, overall F1 scores slightly decreased for both 

sensors, including Sentinel-2, relative to comparisons using the Zhang et al. (2024a) inventory alone. This reduction is likely 

due to the Kumar inventory containing more smaller lakes near the minimum mapping threshold that were less accurately 

classified (e.g. Fig. 5). Additionally, these smaller supraglacial lakes are often ephemeral and may have drained in the imagery 

used for our classification. In this case, while it would appear as a false negative when compared to Kumar’s dataset, it is in 470 

fact a true negative, as the lakes were absent at the time of observation. Despite these limitations, the inter-sensor agreement 

and robust validation metrics observed here indicate that the Nepal-transboundary glacial lake datasets provide a reliable, 

reproducible, and scalable datasets for the monitoring of glacial lake evolution and for supporting further regional hydrological 

and hazard analyses. 

5.2 Spatial and temporal coverage, and characteristics of the Nepal-transboundary glacial lake inventories 475 

The Nepal-transboundary glacial lake inventory developed here provides comprehensive spatio-temporal coverage from 2017 

to 2024, covering the Karnali, Gandaki and Koshi basins that span Nepal and its bordering regions with India and China. From 

a water resource perspective, these lakes contribute to the Ganges–Brahmaputra river systems that supports hundreds of 

millions of people (Whitehead et al., 2015). The assessment of transboundary lakes is crucial for managing cross-border 

hazards and shared water resources, since GLOFs and meltwater flows do not obey political boundaries and affect all 480 

downstream populations (Carrivick and Tweed, 2016). Our dataset confirms the spatial completeness of existing regional 

inventories but improves the temporal coverage (e.g. Kumar et al., 2025; Zhang et al., 2024a) and provides the foundation for 

ongoing monitoring.  

 

Rapid glacier mass loss in the Himalaya leads to increased meltwater storage in the high-altitude lakes (Immerzeel et al., 2020). 485 

The rate of mass loss for Himalayan glaciers has almost doubled in the last few decades (Maurer et al., 2019), resulting in new 

proglacial moraine-dammed lakes coalescing from supraglacial ponds, which store meltwater and enhance glacier mass loss 

(Benn et al., 2001; King et al., 2019). In our inventory, glacier-fed lakes cover ~57–61% of the total detection and are primarily 

concentrated between ~4,500 and 5,500 m a.s.l., where they act as temporary reservoirs that control downstream runoff (e.g. 

Irvine-Fynn et al., 2017; Shugar et al., 2020). Model projections suggest that glacier mass loss could increase by 30–70% at 490 

https://doi.org/10.5194/essd-2025-751
Preprint. Discussion started: 12 January 2026
c© Author(s) 2026. CC BY 4.0 License.



24 

 

the end of the century (Kraaijenbrink et al., 2017; Rounce et al., 2020), which will create new glacial lakes and potentially 

increase the risk of GLOFs (Harrison et al., 2018). The more frequent occurrence of glacier-fed lakes at higher elevations 

compared to non-glacier-fed lakes further highlights the strong cryospheric control on lake development in the study area. 

 

Our dataset indicates a general increase in both the number and total area of glacial lakes between 2017 and 2024 (Fig. 6). 495 

Sentinel-2 data shows the number of lakes increases from 2,771 (2017) to 3,169 (2024) and the total lake area of the Koshi 

basin increased by 8%. Sentinel-1 data complement these findings to detect partially ice-covered lakes, which are often hidden 

in optical imagery (Wangchuk et al., 2019). Sentinel-2 detected 22,419 lake polygons corresponding to 4,150 unique lakes, 

while Sentinel-1 identified 18,389 polygons for 2,966 unique lakes, reflecting a 38.5% higher detection rate in optical data, 

likely due to better delineation of small features under clear conditions (Wangchuk and Bolch, 2020). The most substantial 500 

lake expansion occurred in the Koshi basin in the east of Nepal, which covered 72% of the total lake area in Sentinel-2 

observations. This distribution aligns with the east–west gradient of glacier coverage and monsoon influence (Bookhagen and 

Burbank, 2006; Hrudya et al., 2021).  

 

Out of the ten fastest-expanding lakes identified from the Sentinel-2 time series, nine are located within the Koshi basin. The 505 

most rapid expansion is observed at large moraine-dammed Lower Barun lake (GLO_87.08864_27.79792), which is growing 

at a rate of 0.0820 ± 0.0132 km² yr⁻1, followed by Imja Lake (GLO_86.92845_27.89838) at 0.0551 ± 0.0112 km² yr⁻1. Rongbuk 

lake (GLO_86.86315_28.11165, 5,219 m), located in Koshi basin, also shows a strong expansion trend (R² > 0.93). Three of 

these lakes (GLO_87.08864_27.79792 (Lower Barun), GLO_86.92845_27.89838 (Imja), and GLO_86.59886_27.77762 

(Lumding) were classified as potentially dangerous glacial lakes by ICIMOD (Bajracharya et al., 2020) due to their rapid 510 

volume increase and proximity to downstream communities (ICIMOD, 2011; Niggli et al., 2024; Veh et al., 2019). Each lake 

exceeds 1.0 km² in area and are located within the Koshi basin, with three in Nepal and two in China. However, recent GLOFs 

have demonstrated the importance of monitoring all lake types, as even small or interconnected pond systems can pose a flood 

risk (Byers et al., 2018, 2022; Miles et al., 2018; Sattar et al., 2022). 

 515 

5.3 Dataset applications and future GLO inventory  

Our dataset provides the foundation for systematic glacial lake monitoring, which can support research on lake development, 

implications for glacier dynamics, downstream ecosystems, water storage trends, water resource management, and potential 

hazards. Using Sentinel-1 data, lake outlines could be classified for every acquisition during the ablation season, whereas for 

Sentinel-2 there is a requirement for multi-image compositing to create cloud free mosaics. The planned integration of the data 520 

into a centralised open access platform will support open data analysis and monitoring capabilities. This is particularly 

important for effective hazard assessment, which requires multinational monitoring and coordination to reduce socio-economic 

losses. For example, the Koshi basin contains around 50–56% of the study area lakes and covers the Nepal–China border, and 
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lakes on both sides of Mount Everest pose a transboundary GLOF risk (Khadka et al., 2024b). This amplified by the 

vulnerability of communities and rapid infrastructure development in the China-Nepal border regions, including the expansion 525 

of transnational highways, trading ports, hydropower projects, and planned railway lines (Gouli et al., 2025; Khadka et al., 

2024b). Historical events in Himalaya have already confirmed their potential to affect transboundary countries simultaneously 

(Dubey et al., 2024; Khadka et al., 2024a; Sattar et al., 2022). Between India and Nepal, existing management efforts, such as 

the bilateral Koshi River Treaty of 1954 (Ministry of External Affairs, Government of India, 1966), support data sharing for 

flood forecasting, but still lack specific provisions to address GLOF hazards. More recent initiatives by ICIMOD’s regional 530 

cooperation programs, emphasize integrated basin management to improve resilience (ICIMOD, 2019). Collaboration between 

China and Nepal has also expanded under the Belt and Road Initiative (Government of Nepal. Ministry Of Foreign Affairs, 

2024), and a data sharing agreement to address GLOFs (OneWorld SouthAsia, 2025). The strengthening of transboundary 

frameworks based on real-time and open-access satellite monitoring systems is an important step to enhance collaborative risk 

reduction efforts. Additionally, recent damaging GLOFs in Nepal including from Birendra Lake in 2024 (Khadka et al., 2025; 535 

Poudel et al., 2025), Upper and Lower Ngole Cho in 2024 (Maharjan et al., 2025), and a transboundary supraglacial lake 

drainage in 2025 from Purepu Glacier, highlights the requirement for ongoing monitoring of glacial lakes. To date, more than 

26 such transboundary GLOF events have been recorded, concentrated during the monsoon season (April-October) (Shrestha 

et al., 2023). This seasonal pattern highlights a critical disconnect in current hazard assessment methodologies as existing 

regional glacial lake inventories predominantly rely on post-monsoon satellite imagery due to minimal cloud cover, thereby 540 

missing the dynamic and hydrologically critical conditions during the peak hazard period. High-frequency seasonal monitoring 

could be achieved with Sentinel-1 data, which is not affected by cloud cover during the monsoon when lakes are most dynamic.  

 

5.3.1 Beyond borders: a Glacial Lake Observatory (GLO) 

The establishment of a Glacial Lake Observatory (GLO) using the data generated here is proposed to address the gap in 545 

continuous lake monitoring. By leveraging optical and SAR data, the GLO would provide an open-access platform for the 

reliable and automated monitoring of all glacial lakes during the monsoon season and on an annual basis. This shift to 

temporally relevant data is a necessary foundation for proactive GLOF hazard and risk assessment to prevent disasters through 

shared knowledge and coordinated action. However, our accuracy assessment does demonstrate a need to further refine the 

classification models or integrate additional data sources to improve the detection of smaller lakes, and to evaluate high-550 

frequency classifications using SAR data. Nonetheless, the prevalence of open access data and cloud computing makes this 

approach scalable and suitable for broader application. 

7 Code and data availability 

The GLO database is distributed under the Creative Commons Attribution 4.0 License.  
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All image-processing scripts implemented in Google Earth Engine (GEE) are openly accessible, including for Sentinel-1 555 

(https://code.earthengine.google.com/c5f25b9006cf0755a6d22ab7de36ff30) and Sentinel-2 

(https://code.earthengine.google.com/75bcb7bac5481c382ce17c1bb1ada94f). Deep learning models and the GLO glacial 

lake dataset presented in this manuscript are hosted on the Zenodo data repository at 

https://doi.org/10.5281/zenodo.17802334 (Rawlins et al., 2025).  

8 Conclusion 560 

Here, we present a foundational dataset of glacial lakes within the Nepal and transboundary catchments of India and China to 

support ongoing lake monitoring for the Glacial Lake Observatory (GLO) inventory. Using a deep learning workflow applied 

to multi-year Sentinel-1 and Sentinel-2 image mosaics, annual glacial lake datasets spanning 2017 to 2024 were created and 

validated against existing lake inventories and manually digitised sampling. Overall, results reveal a sustained increase in the 

number and total area of glacial lakes across the Nepal-transboundary region, driven primarily by the growth of glacial lakes 565 

within the Koshi basin at headwaters shared by Nepal and China. This highlights the transboundary nature of glacial lake 

development, evolution, and downstream risk.  

 

The integration of both Sentinel-1 SAR and Sentinel-2 optical imagery provides complementary and promising capabilities 

for glacial lake mapping, enabling reliable detection across a range of challenging environmental conditions, including cloud 570 

cover, shadows and seasonal snow and ice coverage. This multi-sensor, deep learning framework establishes a robust, 

reproducible and scalable foundation for the systematic monitoring of glacial lakes across High Mountain Asia and beyond. 

Further refinements to these classification models will enhance ongoing glacial lake mapping, particularly for smaller and 

newly formed lakes.  

 575 

By capturing consistent, long-term trends in glacial lake evolution, the GLO provides a much-needed basis for continuous lake 

monitoring within high mountain regions, not only for improving understanding of regional water storage, but also enabling 

the identification of emerging GLOF hazards. The GLO inventory will be updated annually and made openly available at 

https://glacial-lake-observatory.org/.  
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