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Abstract. This article presents the next-generation of the Advanced Scatterometer (ASCAT) surface soil moisture (SSM)

dataset, bringing the operational near real-time (NRT) product up to date with the historical offline data record. For years,

the offline data record has benefited from successive algorithmic improvements while the NRT product has only received mi-

nor updates. This release now applies the latest soil moisture retrieval algorithm and consistent fixed-Earth grid to both data

streams, creating a unified dataset and representing a major advancement for the ASCAT SSM NRT product. Furthermore, the5

standard 12.5 km sampling ASCAT SSM dataset is now complemented by a new high-resolution 6.25 km sampling ASCAT

SSM product. This is achieved by customising the spatial resampling process of the ASCAT Level 1B full-resolution backscat-

ter data. A new key development in the change detection algorithm for ASCAT SSM concerns the estimation of the dry and

wet backscatter references. Specifically, a moving-window approach is now applied instead of the full time series to mitigate

artificial trends caused by long-term land cover changes. Additionally, a new monthly subsurface scattering flag has been added10

to filter out unreliable SSM measurements where backscatter and soil moisture indicate an inverted relationship.

Quality control of the ASCAT SSM datasets is performed by using soil moisture estimates from Noah GLDAS-2.1 and

the ESA CCI Passive Soil Moisture (SM) v09.1 product, as well as in-situ observations provided by the International Soil

Moisture Network (ISMN). The validation results show that both ASCAT SSM datasets have a comparable performance in

terms of the Pearson correlation coefficient (ASCAT SSM 6.25 km vs ESA CCI Passive SM: 17.9 % > 0.75 and 57.8 % > 0.5;15

ASCAT SSM 12.5 km vs ESA CCI Passiv SM: 19.6 % > 0.75 and 59.2 % > 0.5) and signal-to-noise ratio (SNR) derived using

triple collocation analysis (ASCAT SSM 6.25 km SNR: 56.0% > 0 dB, 35.6 % > 3 dB, ASCAT SSM 12.5 km SNR: 58.1 %

> 0 dB, 38.6 % > 3 dB,). The best performance can be found in regions with strong seasonal variability, including monsoonal,

savanna, Mediterranean, and tropical wet-and-dry zones. A lower performance can be found in areas characterised by limited

soil moisture variability (such as deserts), dense vegetation, pronounced topographic complexity, wetland areas, or higher20

latitudes (> 60◦

H SAF (2025a, c), while ASCAT SSM NRT products are additionally distributed via the broadcasting system EUMETCast.

1 Introduction

Soil moisture information derived from C-band (5.255 GHz) backscatter measurements acquired by the Advanced Scatterome-25

ter (ASCAT) has found widespread use in geoscientific applications such as numerical weather prediction, rainfall estimation,
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N) experiencing longer periods of frozen soil and snow cover.

The ASCAT SSM datasets are publicly available online https://doi.org/10.15770/EUM_SAF_H_0011 and

https://doi.org/10.15770/EUM_SAF_H_0012
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flood forecasting and drought monitoring (Dharssi et al., 2011; Draper et al., 2011; Gómez et al., 2020; Aires et al., 2021;

Wanders et al., 2014; Brocca et al., 2012, 2014, 2017; Gaona et al., 2025). From the standpoint of the end-user, key advantages

of ASCAT surface soil moisture (SSM) data include its operational availability, near-global daily coverage, and the provision

of a long-term data record (Wagner et al., 2013). The latter is particularly crucial for studies related to climate change and30

applications that require consistent historical time series, either for enhancing process understanding or for the calibration of

geophysical models. A prominent example is the ESA Climate Change Initiative (CCI) for soil moisture, which incorporates

ASCAT SSM data as a core component within its active microwave soil moisture product (Dorigo et al., 2017; Gruber et al.,

2019). Furthermore, ASCAT SSM data plays a key role in the operational product suites of both the Copernicus Climate

Change Service (C3S) (Copernicus Climate Change Service, 2018) and Copernicus Land Monitoring Service (CLMS) (Bauer-35

Marschallinger et al., 2018).

In recent years, research on ASCAT soil moisture retrieval has made significant advances focusing on several key areas.

These include the dynamic characterisation of the backscatter-incidence angle relationship (Melzer, 2013; Hahn et al., 2017;

Vreugdenhil et al., 2017; Steele-Dunne et al., 2019, 2021), spatially-variable vegetation correction (Hahn et al., 2021), and the

investigation and modelling of subsurface scattering effects (Morrison and Wagner, 2020; Wagner et al., 2022, 2024). Despite40

the progress in the dynamic characterisation of the incidence angle dependency of backscatter, a multi-year climatology is still

being used in the operational processing chain. This is primarily due to the robustness and near real-time (NRT) suitability. In

contrast, the spatially-variable vegetation correction has been successfully integrated and is now used on a regular basis. The

study of subsurface scattering effects has provided insights into regions exhibiting an inverse relationship between backscatter

and soil moisture. Various statistical and physically-based indicators have been developed to identify these regions, although45

a global implementation of the newly developed backscatter model remains to be realised. As an interim measure, a monthly

subsurface scattering probability flag is now provided as a quality indicator to mask data from affected time periods (Lindorfer

et al., 2023).

Table 1. Coarse resolution soil moisture datasets based on a single instrument.

Name Sampling Resolution Availability Reference

ASCAT SSM NRT 6.25 km 6.25 km 15 km June 2025 - present H SAF (2025b)

ASCAT SSM CDR + ICDR v1 6.25 km 6.25 km 15 km Jan 2007 - present H SAF (2025a)

ASCAT SSM NRT v2 12.5 km 12.5 km 25 km June 2025 - present H SAF (2025d)

ASCAT SSM CDR + ICDR v8 12.5 km 12.5 km 25 km Jan 2007 - present H SAF (2025c)

SMOS L2 SM V700 15 km 35-50 km Jan 2010 - present European Space Agency (2021)

SMOS NRT L2 15 km 35-50 km Jan 2015 - present Rodríguez-Fernández et al. (2017)

SMAP L2 SM, Version 9 36 km 36 km Mar 2015 - present ONeill et al. (2023a); Chan et al. (2016)

SMAP Enhanced L2 SM, Version 6 9 km 36 km Mar 2015 - present ONeill et al. (2023b); Chan et al. (2018)

LPRM AMSR-E 25 km 44-70 km Jul 2002 - Oct 2011 Owe et al. (2008)
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Relative to other (single sensor) remote sensing soil moisture products (see Table 1), ASCAT SSM strikes with a solid

balance between retrieval accuracy and robustness across diverse environmental conditions. While NASA’s Soil Moisture50

Active Passive (SMAP) mission usually performs best overall in validation studies, ESA’s Soil Moisture and Ocean Salinity

(SMOS) mission and ASCAT SSM are more closely matched, with either holding a slight edge depending on the regional

environment or validation methodology (Al-Yaari et al., 2019; Beck et al., 2021; Fan et al., 2022; Kim et al., 2023; Xie

et al., 2024). ASCAT SSM excels by providing a stable long-term record, capturing short-term dynamics effectively and its

operational availability. Unlike SMAP and SMOS, which offer absolute soil moisture, ASCAT delivers relative values. This55

gives users the advantage of applying their own scaling or using their own soil maps to fit their specific needs. Consequently,

it is important to understand that reported metrics such as root mean square difference (RMSD) and bias are linked to the

selected conversion approach. Therefore, ASCAT’s performance is often evaluated by its dynamic consistency, using scaling-

insensitive metrics like temporal correlation and triple collocation analysis (TCA). A more comprehensive assessment of its

value, however, comes from indirect applications such as generating rainfall estimates (SM2Rain) (Brocca et al., 2013, 2019;60

Kim et al., 2025) or quantifying the improvement in forecast skill achieved through data assimilation (Brocca et al., 2010;

Draper et al., 2012; Seo et al., 2021).

In this article we present the latest ASCAT SSM data release, which for the first time includes a new high-resolution (6.25 km

spatial sampling) dataset alongside the standard 12.5 km spatial sampling version. The theoretical spatial resolution for the new

high-resolution dataset is 15 km, defined by the full width at half maximum (FWHM) of the spatial filter. However, the actual65

effective resolution varies depending on factors such as the number and size of the full-resolution backscatter observations used

in the spatial resampling process. Furthermore, both ASCAT SSM datasets cover the period from January 2007 to December

2024. Over this time, long-term land cover changes have begun to noticeably affect the underlying backscatter observations,

requiring correction to avoid artificial trends in the soil moisture retrievals. For this reason, a new moving-window calibration

approach has been introduced to dynamically correct the backscatter signal and prevent non-hydrological long-term trends. In70

addition, the lower and upper bounds of the backscatter signal are now defined using percentile estimates to improve robustness

and better represent local signal variability. As a consequence, the scaling range has been reduced from 0–100 % to 5–95 % to

minimise the likelihood of observations saturating at the dry or wet (percentile) backscatter limits. The performance of both

ASCAT SSM datasets is evaluated using in-situ observations from the International Soil Moisture Network (ISMN), satellite-

based reference data from the ESA CCI Passive Soil Moisture product, and model-based soil moisture from NASA’s Global75

Land Data Assimilation System (GLDAS).

2 Data

2.1 ASCAT Level 1B Sigma Zero Full-Resolution (SZF)

The Advanced Scatterometer (ASCAT) is a C-band (5.255 GHz) radar instrument designed to measure the Earth’s surface

backscatter coefficient, known as the Normalized Radar Cross Section (NRCS) or σ0 expressed in m2 m−2 or dB (Gelsthorpe80

et al., 2000; Figa-Saldana et al., 2002). At present, ASCAT backscatter measurements are currently acquired operational on-
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board the Metop-B and Metop-C satellites. The first satellite in the Metop series (Metop-A) also carried an ASCAT instrument

and operated for 15 years before completing its mission in November 2021. The data collected by ASCAT are processed and

distributed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) in several product

formats.85

EUMETSAT provides three types of ASCAT Level 1B backscatter products: Sigma Zero Full-Resolution (SZF), Sigma

Zero Research (SZR) and Sigma Zero Operational (SZO). The ASCAT Level 1B SZR and SZO products represent spatially

averaged backscatter values provided on orbit grid nodes with a sampling of 12.5 km (SZR) and 25 km (SZO). The ASCAT

Level 1B SZF product corresponds to geo-located backscatter values along the six ASCAT beams, which are not collocated

and spatially averaged on regular orbit grid nodes. Instead, 192 backscatter observations along every antenna beam projection90

on the ground are provided. The resolution of each backscatter “echo” varies slightly along the beam, measuring approximately

10 km in the along-beam direction and 25 km in the across-beam direction (Anderson et al., 2012).

The ASCAT Level 1B SZF backscatter product serves as the primary input for generating the ASCAT surface soil moisture

(SSM) datasets. The backscatter measurements are first spatially resampled onto a fixed Earth grid (see Sect. 3.1), after which

time series are constructed (see Sect. 3.2). As part of the change detection algorithm, model parameters are empirically esti-95

mated and applied to derive the ASCAT SSM datasets at two different spatial resolutions (see Sect. 3.3). Table 2 summarizes

the observation periods of the ASCAT Level 1B SZF backscatter products for each Metop satellite.

Table 2. Observation periods of ASCAT Level 1B SZF data for each Metop satellite.

Satellite Time period

Metop-A 2007-01-01 – 2021-11-15

Metop-B 2013-06-01 – 2024-12-31

Metop-C 2019-04-01 – 2024-12-31

2.2 ERA5

ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset

available from 1940 onward. The reanalysis combines model data with observations from across the world, providing a high-100

resolution, globally consistent representation of land, ocean, and atmospheric conditions. In this study, we used hourly soil

temperature level 1 (stl1) and snow depth (sd) data to identify and exclude periods with frozen soil or snow cover when

estimating dry and wet backscatter references (see Sect. 3.3.5). Additionally, these variables were used to generate a frozen

soil and snow cover probability flag based on 40 years of data (see Sect.s 3.4.3 and 3.4.4). Finally, the same ERA5 variables

were also utilized during validation to identify ASCAT SSM observations affected by frozen soil or snow cover (see Sect. 3.5).105
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2.3 Noah GLDAS-2.1

The Global Land Data Assimilation System Version 2.1 (GLDAS-2.1) is a state-of-the-art land surface modeling system de-

signed to provide high-resolution global land surface states, including soil moisture, soil temperature, and energy fluxes (Rodell

et al., 2004; Beaudoing et al., 2020). One of the primary models used in GLDAS-2.1 is the Noah Land Surface Model (Noah

LSM), which provides a physically based representation of soil moisture dynamics by simulating four soil layers at depths of110

0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm. The soil moisture data are provided in kg m−2, three-hourly (00:00, 03:00,

06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC) and monthly averages at a spatial sampling of 0.25◦ (~25 km), making it

suitable for global and regional hydrological assessments. In this study, we used soil moisture information from the first layer

(0–10 cm) of the three-hourly GLDAS-2.1 product as an independent reference dataset for validating the ASCAT SSM datasets

(see Sect. 3.5).115

2.4 ESA CCI Passive Soil Moisture

The ESA CCI Passive Soil Moisture (SM) v09.1 product is a global dataset developed by the European Space Agency’s Climate

Change Initiative (ESA CCI), designed to provide consistent long-term soil moisture information based on passive microwave

remote sensing observations from Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSR-E, Coriolis WindSat, GCOM-

W1 AMSR2, SMOS and SMAP (Dorigo et al., 2017; Gruber et al., 2019). The ESA CCI Passive SM v09.1 product covers the120

period from 1978 to 2023, with a spatial sampling of 0.25◦ (~25 km) and a daily temporal resolution, expressed in volumetric

soil moisture units (m3 m−3). The ESA CCI Passive SM v09.1 product is used as an independent reference for validating the

ASCAT SSM datasets (see Sect. 3.5).

2.5 ESA CCI Land Cover

The ESA CCI Land Cover (LC) dataset provides global land cover maps from 1992 to 2022 at a spatial resolution of125

300 m (ESA, 2017). Version 2.0.7 covers the period 1992–2015, while version 2.1.1 extends the record from 2016 onwards.

Both versions are produced using the same processing chain to ensure temporal consistency across the entire dataset. Each an-

nual map is generated by detecting land cover changes relative to a unique baseline LC map, which is derived from the Medium

Resolution Imaging Spectrometer (MERIS) Full Resolution (FR) and Reduced Resolution (RR) archive covering 2003–2012.

The ESA CCI LC map for 2018 is used to generate a fractional LC dataset, spatially aligned with the resolution of ASCAT130

backscatter measurements. This dataset is used to identify and exclude unwanted backscatter signals originating from lakes,

urban areas, and open water (see Sect. 3.1).

2.6 Global Lakes and Wetlands Database (GLWD)

The Global Lakes and Wetlands Database (GLWD) represents a combination of existing data sources for lakes and wetlands

on a global scale (Lehner and Döll, 2004). The database focuses on three level: (i) large lakes and reservoirs, (ii) smaller water135

bodies and (iii) wetlands. In this study, the GLWD dataset is used to calculate the wetland fraction flag (see Sect. 3.4.1).

5

https://doi.org/10.5194/essd-2025-746
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



2.7 Copernicus DEM

The Copernicus Digital Elevation Model (Copernicus DEM) is a global Digital Surface Model (DSM) that represents the

elevation of the Earth’s surface, including natural terrain features and built structures (Copernicus, 2021). It is derived from

data acquired by the TanDEM-X satellite mission between 2011 and 2015. In this study, the 90 m spatial resolution version of140

the Copernicus DEM (GLO-90) is used for the calculation of the topographic complexity flag (see Sect. 3.4.2).

2.8 Global Subsurface Scattering Maps

Wagner et al. (2024) developed global maps that identify areas influenced by subsurface scattering, using both statistical

analyses and physically-based indicators (Lindorfer et al., 2023). Subsurface scattering can induce an inverse relationship

between backscatter and soil moisture, thereby compromising the interpretation of backscatter variations in the ASCAT soil145

moisture change detection algorithm. Although a recently developed backscatter model, which includes a subsurface scattering

term, successfully explained backscatter anomalies in arid environments (Wagner et al., 2022), its implementation at the global

scale is still pending. Consequently, the ASCAT SSM datasets must be masked for spatial and temporal subsurface scattering

effects. A monthly probability of backscatter anomalies from Wagner et al. (2024) is provided as part of the ASCAT SSM

datasets and applied during validation (see Sect. 3.5).150

2.9 In-situ data

The International Soil Moisture Network (ISMN) serves as a data portal that maintains global in-situ soil moisture observations

(Dorigo et al., 2011, 2021). A collaborative effort among various network operators helps to collect and maintain in-situ data

worldwide. The primary objective of the ISMN soil moisture database is to provide ground reference data for the validation

of satellite soil moisture products. In this study, we selected a total number of 44 in-situ networks containing sensors with155

a depth range of 0–10 cm. The list of ISMN networks can be found in Table A1. The spatial and temporal extent of these

networks is variable, as well as their land cover and climate characteristics. Smaller networks with less stations represent very

local conditions (e.g. DAHRA„ IIT_KANPUR, LAB-net, LABLUX, SKKU, VAS), while larger networks cover a number of

different climate zones and land cover classes (e.g. SCAN, SNOTEL, USCRN).

3 Methodology160

The ASCAT Surface Soil Moisture (SSM) datasets are generated using a physically-based change detection approach, which

was initially developed for backscatter observations from ERS-1/-2 (Wagner et al., 1999a, b, c; Scipal et al., 2002). This method

takes advantage of the strong dependency of the radar backscatter intensity to variations in soil moisture content. As soil

moisture increases, the dielectric constant at the air-soil interface also rises, resulting in a stronger backscatter signal (Wagner

et al., 2013). However, recent research has also shown that under special circumstances subsurface scattering can induce an165
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inverse relationship, most notably in arid environments with strong scatters beneath shallow soil (Wagner et al., 2022, 2024).

Therefore, an accurate quantification and mitigation of such subsurface scattering effects has become a major focus of research.

The change detection algorithm relies on calibrated model parameters, which are independently estimated for each loca-

tion using historical backscatter observations. Therefore, as part of the pre-processing procedure, a time series of backscatter

observations is generated from spatially resampled ASCAT Level 1B Sigma0 Zero Full-Resolution (SZF) swath data. The170

semi-empirical model parameters are needed to model and correct azimuth and incidence angle effects and to scale normalised

backscatter observations between dry and wet backscatter references. The resulting soil moisture estimates are expressed in

degree of saturation, ranging from 0 % (dry) to 100 % (saturated soil) representing the topsoil layer (< 5 cm).

It is important to note that, the generation of the backscatter time series and the estimation of semi-empirical model param-

eters are carried out offline. By computing all necessary parameters in advance, the soil moisture retrieval can be efficiently175

performed on the original ASCAT Level 1B Sigma0 Zero Full-Resolution (SZF) swath data. This setup also allows a near

real-time (NRT) application of the change detection method. Figure 1 provides an overview of the entire workflow, with each

step described in more detail in the following subsections.

Figure 1. Processing workflow showing (i) the estimation of the semi-empirical model parameter, (ii) the retrieval of surface soil moisture

using the TU Wien change detection algorithm, and (iii) validation as part of the post-processing.

3.1 Spatial resampling

3.1.1 Aggregation and filtering180

The ASCAT Level 1B Sigma Zero Full-resolution (SZF) dataset contains backscatter observations σ0 (also called “echos”) at

very high spatial resolution for each antenna beam (Fore, Mid, Aft), which are spatially not perfectly collocated. The spatial

extent, shape, and orientation of an individual echo is determined by the observation geometry, on-board processing in range

and Doppler frequency. The spatial response function (SRF) is used to describe how the backscatter signal is weighted across

the surface footprint (Lindsley et al., 2016; Vogelzang et al., 2017).185
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The spatial resampling process aims to generate consistent backscatter triplets at a coarser spatial resolution by filtering and

aggregating echos from individual beams, thereby also reducing inherent observational noise. The spatial extent and resolution

is given by its cumulative spatial response function (CSRF) determined by the window function and its associated spatial radius

applied during the aggregation of the echos. Backscatter is first converted from the decibel scale to the linear domain, where a

weighted average is computed. The averaged backscatter is then converted back to the decibel scale. A weighted average is also190

applied to the incidence and azimuth angles, providing a consistent representation of the observation geometry. In addition, the

normalized noise variance (known as kp-value) is also derived for the averaged backscatter, representing the relative standard

deviation of the noise within the averaging area (see Equation 1). The kp-value not only reflects natural surface heterogeneity

but also noise contributions, such as those affected by radiometric resolution.

kp =
StdDev

[
σ0

]

Mean[σ0]
(1)195

A Hamming window (see Equation 2) with a spatial radius (X) of approximately 14 km is applied to generate backscatter

triplets sampled at a grid spacing of 6.25 km, yielding a theoretical spatial resolution of 15 km. This theoretical resolution is

defined by the full width at half maximum (FWHM) of the spatial filter (Figa-Saldana et al., 2002). The actual spatial resolution,

however, cannot be determined precisely since it varies depending on factors such as the number and size of the full-resolution

backscatter observations used in the spatial resampling process. Unlike the ASCAT Level 1B SZR and SZO datasets provided200

by EUMETSAT, which are sampled on orbit-specific grid nodes, the backscatter triplets are located on a fixed Earth grid. This

approach allows the resampled ASCAT Level 1B SZF backscatter data to be easily stacked, enabling the construction of a time

series during subsequent processing.

w (x) = 0.54− 0.46cos
(
2π

x

X

)
,0≤ x≤X (2)

Additionally, a second backscatter triplet dataset is also generated at a coarser grid spacing of 12.5 km, using a spatial205

radius of 24 km, resulting in a theoretical spatial resolution of 25 km. Both backscatter triplet datasets are independently used

to produce two ASCAT surface soil moisture (SSM) datasets, sampled at 6.25 km and 12.5 km, respectively. The 12.5 km

sampling corresponds to the standard spatial sampling distance also used by the ASCAT Level 1B SZR product, whereas the

6.25 km dataset is designed to maximise spatial detail while retaining an acceptable noise level.

Not all backscatter echos are included in the aggregation process. Echos located over areas not sensitive to soil moisture210

changes (open water, coastal regions, urban areas) are excluded. The identification of these echos is achieved using the ESA

CCI Land Cover dataset (v2.1.1), which is pre-processed to represent a fractional land cover dataset, aligned with the spatial

resolution of the backscatter echos. This way, unwanted backscatter observation are determined and filtered. In addition, an

outlier detection method based on the Median Absolute Deviation (MAD) is applied to further refine the spatially resampled

dataset by removing echos that deviate significantly from the expected behaviour (σ0 > 3×MAD), ensuring the reliability of215

the aggregated backscatter data.
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MAD = median
(∣∣σ0

i −median(σ0)
∣∣) (3)

It should be emphasised that the ASCAT Level 1B SZF dataset is spatially resampled into 60-minute segments to avoid any

ambiguity caused by a spatial overlap. To ensure complete sampling of the swath edges, a temporal buffer is added at both the

beginning and end of each segment (± 5 minutes), allowing all relevant echos to be included. In a near real-time processing220

scenario, the segments are much smaller (≈ 3 minutes), but a temporal buffer is still needed to include all relevant backscatter

observations.

3.1.2 Fibonacci grid

The Fibonacci grid was selected as the fixed Earth reference grid. It is designed to uniformly distribute points across the surface

of a sphere. Inspired by the Fibonacci sequence and the golden ratio (ϕ = 1+ϕ−1 =
(
1 +

√
5
)
/2≈ 1.618), it ensures a nearly225

equal-area distribution of points. Constructing the grid involves distributing points along the vertical axis of the sphere (latitude)

and rotating them around the sphere’s horizontal axis (longitude) based on the complementary golden angle (360◦ϕ−1 ≈
222.5◦). This deterministic approach is computationally efficient and scales easily by adjusting the number of points. Unlike

traditional latitude-longitude grids (e.g. 1◦× 1◦), the Fibonacci grid systematically spaces points to avoid clustering at the

poles. The Fibonacci grid points, initially calculated on a sphere, are transformed into ellipsoidal coordinates to align with230

the coordinate reference system used to geo-locate ASCAT backscatter data (WGS84). However, this transformation alters

distances between points on a larger scale due to differences in curvature between the sphere and the ellipsoid. Fortunately,

only short distances (< 25 km) are relevant for the resampling process, minimising the impact of the coordinate transformation.

The Fibonacci grid is generated using the following formulas (Álvaro González, 2009). The absolute number of points P is

defined by a natural number N , which is the only parameter to be determined to generate a Fibonacci grid.235

P = 2N + 1 (4)

The spherical coordinates (expressed in radians) of the ith point are

lati = arcsin
(

2i

2N + 1

)
, i =−N,. . . ,N (5)

loni = 2πiϕ−1, i =−N,. . . ,N (6)

The Fibonacci grid representing an approximate sampling of 6.25 km is composed of 13,200,001 points (N=6,600,000),240

whereas the approximate sampling of 12.5 km is realised by 3,300,001 points (N=1,650,000). In both cases, only one-third of

the grid points are situated over land surfaces. An example of the 12.5 km Fibonacci grid is shown in Figure 2.
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(a) (b) (c) (d)

Figure 2. Fibonacci grid with 12.5 km sampling is shown for (a) Southern Italy, (b) the Equator, (c) the North Pole, and (d) the 180◦ meridian.

3.2 Backscatter time series generation

The resampled backscatter swath segments are stored according to the Climate and Forecast (CF) point data model (Eaton

et al., 2024), which standardises the representation of individual geo-referenced observations. In the next step, the point data245

are systematically transformed into the CF index ragged array format, a data structure tailored for time series representation. In

this new format, all point observations are consolidated into a single array, while an index variable links each observation to its

corresponding location on the fixed Earth grid. This approach facilitates a flexible and scalable storage of time series data for

each grid location. Furthermore, the data format supports integrating any future observations, allowing a seamless extension of

the time series. Optionally, the final time series can be converted into the CF contiguous ragged array format, which optimises250

data access performance by ensuring a chronological sorting for each grid location. However, this format compromises the

ease of future data extension due its strict sorting structure.

3.3 TU Wien change detection algorithm and model parameter estimation

The semi-empirical change detection method has been developed by the Vienna University of Technology (TU Wien) and was

initially applied to backscatter observations acquired by the Advanced Microwave Instrument (AMI) on-board the ERS-1 and255

ERS-2 satellites (Wagner et al., 1999a, b, c; Scipal et al., 2002). Thanks to a similar instrument design, the same methodology

was later successfully adapted for the Advanced Scatterometer (ASCAT) on-board the series of Metop satellites (Bartalis et al.,

2006b, 2007; Naeimi et al., 2009a, b). The change detection method eliminates the need for explicit surface roughness param-

eterisation and leverages multi-incidence angle backscatter observations to simultaneously model soil moisture and vegetation

dynamics (Wagner et al., 2013). From a mathematical perspective, the change detection method is simpler than a radiative260

transfer model and can be solved directly without the need for a non-linear iterative optimisation.

The backscatter triplet dataset in time series format serves as input for the model parameter estimation procedure. Backscat-

ter varies primarily due to surface dielectric properties, roughness, and vegetation, which are the most influential factors.

Additionally, its overall magnitude is strongly affected by the measurement geometry, i.e. the incidence angle (θ) and the az-
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imuth angle (ϕ). To accurately attribute backscatter variations to changes in soil moisture, both the azimuth and incidence angle265

dependencies of backscatter must be addressed.

3.3.1 Azimuth angle dependency of backscatter

Azimuth angle dependency of backscatter is very common over land and can be particularly pronounced in mountainous areas

or sandy deserts (Stephen and Long, 2002). The anisotropic nature of a target is closely related to the satellite’s orbit and

the instrument’s geometry. A backscatter signal bias caused by azimuthal modulation can significantly affect the retrieval of270

geophysical parameters, such as soil moisture.

Similar to Bartalis et al. (2006a), an empirical approach is used to derive statistically expected values for a combination of

observation geometries, which in the end normalises σ0 observations with respect to the azimuth angle. The azimuth angle is

determined by the beam (Fore, Mid, or Aft), the swath position (left or right), and the orbit direction (ascending or descending),

resulting in twelve distinct azimuth configurations (ϕi, where i ∈ [1,12]) for ASCAT. For each azimuth configuration, the275

dependency of backscatter on the incidence angle is modelled using a second-order polynomial estimating the coefficients

ai, bi, ci.

σ0
i (θ) = ai (θ− 40)2 + bi (θ− 40) + ci (7)

Additionally, a reference model (i = 13) is fitted to all observations combined. This results in a total of 3 × 13 = 39 coeffi-

cients. The differences between the polynomial coefficients of the twelve individual acquisition geometries and the reference280

model (i = 13) are used to derive new polynomial coefficients, which are then used to compute corrections applied to the

backscatter observation. In this way, the individual observation configuration are adjusted to a common reference, effectively

eliminating static azimuth angle effects.

σ̂0
i (θ) = σ0

i (θ)− ((a13− ai)(θ− 40)2

+ (b13− bi)(θ− 40) + (c13− ci)) (8)285

where σ̂0
i represents the corrected backscatter for each configuration i.

3.3.2 Estimated standard deviation of backscatter

The Estimated Standard Deviation (ESD) quantifies the standard deviation of backscatter (expressed in dB) and serves as a

measure of noise. Computing the ESD represents the initial step in error propagation. It is derived from the Fore and Aft beam

measurements (σ0
f , σ0

a) based on the following assumption: all three beams observe the same target, and the Fore and Aft290

beams share identical incidence angles due to the instrument observation geometry. Consequently, in the absence of azimuth

angle dependency of backscatter, the measurements from the Fore and Aft beams should be comparable, meaning they are

statistically instances of the same distribution. Therefore, the expected value of their difference
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δ := E
[
σ0

f −σ0
a

]
= 0 (9)

should be zero, and its variance should be twice the variance of one of the beams (i.e Var[δ] = 2Var
[
σ0

]
). This can be295

derived using error propagation and neglecting higher order terms. Hence, the ESD is defined as

ESD
[
σ0

]
≈

√
Var[δ]

2
(10)

3.3.3 Incidence angle dependency of backscatter

Over land surfaces, backscatter generally decreases with increasing incidence angle, a relationship that is often approximated

by a linear function in the decibel (dB) domain. However, at larger incidence angles, significant contributions from volume300

scattering can cause the backscatter signal to increase, leading to deviations from the linear relationship (see Figure 3) (Wagner

et al., 2013). To account for these higher-order variations, a second-order function provides a more accurate representation of

the incidence angle dependence. A well-calibrated model of the incidence angle dependence of backscatter has two key objec-

tives. First, it allows interpolating backscatter observations across different incidence angles, e.g. interpolating all observations

to a common reference incidence angle. Second, changes of the incidence angle behaviour can reveal valuable information305

about surface characteristics and underlying geophysical parameters.

Figure 3. Backscatter variation with incidence angle over agricultural land in northwest Iowa, USA.

In this case, a second-order Taylor polynomial is used to model the incidence angle dependence of backscatter. The model

represents a finite sum of the function’s first and second derivative with the incidence angle of 40◦ serving as the expansion

point.

σ0 (θ) = σ0 (40) +σ′(θ− 40) +
1
2
σ′′(θ− 40)2 (11)310
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The first derivative, σ′ (dB degree−1), and the second derivative, σ′′ (dB degree−2), are referred to as the slope and curvature,

respectively. Once these parameters are estimated, the Taylor polynomial expansion can be used to approximate the backscatter

in the vicinity of the chosen expansion point. This approach allows for the interpolation of backscatter observations from their

original incidence angles to a common reference incidence angle. At the reference incidence angle, backscatter observations

can be directly compared, as the dependency on incidence angle has been effectively eliminated.315

σ′fm =
σ0

m−σ0
f

θm− θf
, σ′am =

σ0
m−σ0

a

θm− θa
(12)

The estimation of σ′ and σ′′ is based on the computation of the local slope (see Equation 12), which provides an instantaneous

characterisation of the incidence angle dependence of the backscatter signal. Since the Mid beam incidence angle is separated

by approximately 9◦ compared to the Fore and Aft beam incidence angle, two local slope values can be obtained from a

backscatter triplet. Typically a larger number of Fore-Mid and Aft-Mid beam observations are required to capture a sufficiently320

wide range of incidence angles. Ultimately, σ′ and σ′′ are estimated through a weighted local linear regression performed for

each day of the year (Melzer, 2013). A detailed description of the methodology can be found in Hahn et al. (2017). It is based

on a Kernel Smoother (KS) approach using the Epanechnikov kernel to weigh observations based on their temporal distance

from the target day. A kernel bandwidth of λ = 21 days is used, which corresponds to a symmetric smoothing window of

42 days.325

Depending on the number of years included in the computation, the estimates of σ′ and σ′′ may represent either a multi-

year climatology or a year-specific time series. Although a year-specific time series would allow for the assessment of inter-

annual variability, a multi-year climatology is currently used to ensure greater robustness and suitability for near real-time

applications (Steele-Dunne et al., 2019, 2021).

3.3.4 Interpolation to reference incidence angle330

The slope and curvature parameters are calculated for each day of the year (d) and used in the Taylor polynomial to interpolate

backscatter observations to a common reference incidence angle of 40◦. This angle is selected to be close to the centre of

the observed incidence angle range to minimise interpolation errors. The interpolation is performed independently for each

beam (b) (see Equation 13), and the resulting values are averaged across all three beams at 40◦ to further reduce noise (see

Equation 14).335

σ0
b (40, t) = σ0

b (θb, t)−σ′ (d(t)) ·∆θb−
1
2
·σ′′ (d(t)) ·∆θ2

b (13)

σ̄0 (40, t) =
1
3
·

∑

b∈{f,m,a}
σ0

b (40, t) (14)
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3.3.5 Estimation of dry and wet backscatter reference

The dry and wet backscatter references represent the lower and upper bounds of backscatter associated with dry and wet soil

conditions, respectively. These references are essential because they compensate for static (e.g. surface roughness) and dynamic340

influences (e.g. vegetation phenology) on the backscatter signal. By scaling backscatter observations to these bounds, signal

variations should primarily reflect relative changes in soil moisture, minimising the impact of other effects. Furthermore,

observations taken during periods of frozen soil and snow cover are excluded from the computation. Although frozen soil

and dry soil have similarly low dielectric constants, in practice, backscatter values can decrease substantially under frozen

conditions, making them unsuitable for defining the dry reference.345

Traditionally, the dry and wet backscatter references have been estimated from the entire backscatter time series, which has

proven effective over periods of 3 to 8 years. However, as the record now spans more than 15 years, long-term land cover

changes have become a significant source of trends in backscatter, such as deforestation or urbanisation. Therefore, a monthly

estimation approach using a moving window of ± 42 months (i.e. ± 3.5 years) has been implemented. This way, the dry and

wet backscatter reference are able to gradually adapt to non-soil moisture related changes over time.350

The lowest and highest backscatter values corresponding to dry and wet soil conditions are derived by interpolating the

observed backscatter to specific incidence angles (see Equation 15 and 16). These angles, known as the dry and wet cross-over

angles (θd, θw), are selected to minimise the influence of vegetation. The initial values were empirically set to θd = 25◦ and

θw = 40◦ and applied globally (Wagner et al., 1999b, c, a). More recently, these parameters have been spatially parameterised

to better account for seasonal vegetation effects (Hahn et al., 2021), and this updated approach has been applied.355

σ0 (θd, t) = σ0 (40, t) +σ′ (d(t)) ·∆θd +
1
2
·σ′′ (d(t)) ·∆θ2

d (15)

σ0 (θw, t) = σ0 (40, t) +σ′ (d(t)) ·∆θw +
1
2
·σ′′ (d(t)) ·∆θ2

w (16)

with ∆θd = (θd− 40) and ∆θw = (θw − 40).

The selection of these specific angles is motivated by the so-called cross-over angle concept (Wagner et al., 1999a), ac-

cording to which the backscatter-incidence angle curves for constant soil moisture and different vegetation states intersect at360

a characteristic angle where the effect of vegetation on the backscatter is minimised. By using these cross-over angles, it is

possible to isolate soil moisture signals from vegetation influences and obtain reliable dry and wet references. At these angles,

the lower (dry) and upper (wet) bounds of the backscatter distribution are derived using the 2nd and 98th percentiles computed

within a± 42-month moving window centred on each calendar month (see Equation 17 and 18). These values are subsequently

converted back to the reference incidence angle, which also changes the temporal resolution from monthly to daily due to slope365

and curvature parameters (see Equation 19 and 20).

σ0
d(θd,mj) = P2

({
σ0

i

∣∣ mj − 21≤month(ti)≤mj + 20
})

(17)
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Figure 4. Cross over angle concept.

σ0
w(θw,mj) = P98

({
σ0

i

∣∣ mj − 21≤month(ti)≤mj + 20
})

(18)

with mj being the month of interest, month(ti) the month of the observation time stamp, σ0
i measurements within the current

time window and σ0
d(θd) the dry reference at the dry cross-over angle. Similarly, the wet reference, σ0

w(θw), is computed as370

the 98th percentile. The selection of these specific percentiles was empirically determined to provide stable and representative

reference bounds.

σ0
d (40,d) = σ0

d (θd,m(d))−σ′ (d) ·∆θd−
1
2
·σ′′ (d) ·∆θ2

d (19)

σ0
w (40,d) = σ0

w (θw,m(d))−σ′ (d) ·∆θw −
1
2
·σ′′ (d) ·∆θ2

w (20)

It should be noted that the dry and wet backscatter references, as well as the slope and curvature parameters, are provided with375

daily time stamps and are converted to backscatter observation time stamps when required. If multiple backscatter observations

occur on the same day, the corresponding reference values are assigned identically to each observation.

3.3.6 Wet correction

In some regions, truly saturated soil conditions are rarely or never observed due to prevailing climatic factors. Therefore, a

correction must be applied to simulate wet conditions and obtain a more realistic wet reference. This wet correction relies on380

an external climate dataset (Peel et al., 2007), as scatterometer measurements alone are insufficient to reliably identify such

regions. The correction is implemented in two steps: (i) first the lower limit of the wet reference is set to at least -10 dB and

(ii) regions where saturated soil moisture conditions are rarely encountered (Köppen Geiger climate class B), σ0
w(40) values

are raised until the sensitivity (defined as σ0
w(40)−σ0

d(40)) reaches a minimum of 5 dB (Naeimi et al., 2009b).
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3.3.7 Soil moisture computation385

Backscatter observations are scaled between the dry and wet references to yield relative soil moisture, expressed as degree of

saturation from 0 % (dry soil) to 100 % (saturated soil). Notably, the dry and wet backscatter reference values reflect extreme

conditions based on historical observations, and are derived using percentile estimation. To account for the associated uncer-

tainty and variability, backscatter observations are scaled between 5 and 95 % saturation (i.e., a = 5, b = 95), as defined in

Equation 21. This approach also aims to minimise the risk of mapping sequences of either low or high backscatter values to390

extreme soil moisture levels, as this can negatively impact e.g. drought indicators. Furthermore, mild outliers identified by soil

moisture values in the intervals -20–0 % and 100–120 %, are set to 0 % and 100 %, respectively. Strong outliers, defined as less

than -20 % or more than 120 are assigned a value of NaN.

ms (t) = a +
σ0 (40, t)−σ0

d (40,d(t))
σ0

w (40,d(t))−σ0
d (40,d(t))

· (b− a) (21)

3.3.8 Error propagation395

The Estimated Standard Deviation of backscatter (ESD[σ0]) serves as the basis for error propagation. These backscatter un-

certainties are carried forward to the variances of the estimated slope and curvature parameters (Var[σ′], Var[σ′′]), which are

derived under the assumption that all local slope values exhibit identical, uncorrelated variances, as described by Hahn et al.

(2017). The variance of the local slopes is estimated from the residuals of the weighted local linear regression, which is per-

formed using the Epanechnikov kernel. All of these error estimates are subsequently propagated to quantify the uncertainty of400

the backscatter values interpolated to the reference incidence angle of 40◦:

Var
[
σ0

b (40, t)
]
= ESD

[
σ0

]2
+ Var[σ′ (d(t))] ·∆θ2

b +
1
4
·Var[σ′′ (d(t))] ·∆θ4

b (22)

Upon averaging for each beam, the noise variance becomes:

Var
[
σ̄0 (40, t)

]
=

1
9
·

∑

b∈{f,m,a}
Var

[
σ0

b (40, t)
]

(23)

Although error propagation is applied when converting backscatter observations to the dry and wet cross-over angles, the405

resulting propagated errors are not directly used. This is because the dry and wet backscatter references are derived from

percentiles of the backscatter distributions rather than from individual measurements. As a result, the associated variances

(Var[σ0
d], Var[σ0

w]) cannot be explicitly calculated through standard error propagation and are therefore not accounted for in

this step. However, error propagation formulas are explicitly applied during the conversion of the dry and wet backscatter

references to the common reference incidence angle of 40◦. In this case, the total noise is computed using the following410

expressions:
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Var
[
σ0

d (40,d)
]
= Var

[
σ0

d (θd,d(t))
]
+ Var[σ′ (d(t))] ·∆θ2

d +
1
4
·Var[σ′′ (d(t))] ·∆θ4

d (24)

Var
[
σ0

w (40,d)
]
= Var

[
σ0

w (θw,d(t))
]
+ Var[σ′ (d(t))] ·∆θ2

d +
1
4
·Var[σ′′ (d(t))] ·∆θ4

w (25)

where the terms Var[σ0
d(θd,d(t))] and Var[σ0

w(θw,d(t))] are unknown and set to zero. Hence, the total error is governed

solely by the uncertainties in the slope and curvature parameters when interpolating the dry and wet reference to 40◦.415

By proceeding with the error propagation, the resulting uncertainty in soil moisture can be expressed as follows:

Var[ms(t)] = Var
[
σ0 (40, t)

]
·x2 + Var

[
σ0

d (40,d(t))
]
· (y−x)2 + Var

[
σ0

w (40,d(t))
]
· y2 (26)

with

x =
b− a

σ0
w (40,d(t))−σ0

d (40,d(t))
(27)

y = (b− a) · σ0 (40, t)−σ0
d (40,d(t))

(σ0
w (40,d(t))−σ0

d (40,d(t)))2
(28)420

It is worth noting that the error model employed is not designed to capture error sources arising under conditions such

as frozen soil, snow cover, subsurface scattering, or wetlands. In these environments, the backscatter signal is influenced by

factors other than soil moisture, and as such, both noise estimation and soil moisture retrieval may be compromised.

3.4 Advisory flags

Along with the ASCAT SSM datasets, advisory flags are provided to give context on soil conditions, land cover, and scattering425

behaviour. As previously mentioned, the error model does not account for all potential error sources. These flags complement

the error model by helping to identify and filter spatial and temporal situations where soil moisture retrieval may be unreliable.

3.4.1 Wetland fraction flag

As the C-band pulses do not penetrate into water, backscatter characteristics are primarily controlled by the roughness of

the water. A calm water surface behaves as a specular reflector, directing almost the entire signal away from the sensor.430

In contrast, wind-induced waves increase backscatter in both upwind and downwind directions while reducing the signal

observed perpendicular to the wind. Consequently, extensive open water within the sensor footprint can significantly interfere

with the retrieval of soil moisture. Areas with (temporary) standing water therefore require careful consideration. To address
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this, information on the extent of lakes, reservoirs, and large rivers is incorporated by aggregating pixel counts within a defined

spatial window, thereby quantifying the maximum water body coverage for each area on a scale from 0 to 100 %.435

The wetland fraction flag only indicates the presence of surface water and does not quantify the specific degree of influence a

water body may have on the backscatter signal, as this effect can vary depending on factors such as water body size, orientation,

or local wind conditions.

Figure 5. Wetland fraction flag on the Fibonacci Grid 12.5 km.

3.4.2 Topographic complexity flag

Land surfaces characterized by rough terrain and mountainous regions are particularly vulnerable to distortions in backscatter440

signals arising from varying viewing geometries. Such variability in backscatter adversely affects the accurate retrieval of soil

moisture dynamics. To address this limitation, a topographic complexity flag has been introduced. This flag is derived from

the Copernicus Digital Elevation Model (COP-DEM) at a spatial resolution of 90 m and provides a quantitative measure of

topographic variability. Specifically, it is calculated as the standard deviation of elevation and normalised to a scale from 0 to

100 %. While in these regions observation noise is typically higher, the topographic complexity flag offers users an additional445

criterion to identify and mask such areas.

3.4.3 Frozen soil probability

When the soil is frozen, microwave backscatter drops significantly due to restricted mobility of soil water molecules, which lim-

its their dielectric response (Hallikainen et al., 1985; Ulaby et al., 1982). In vegetated areas, the interpretation of the backscatter

signal becomes more complex because the water content and physical structure of the vegetation further influence the mi-450

crowave response. Handling backscatter from soil freezing periods is not covered by the soil moisture retrieval algorithm and

affected time periods need to be masked based on auxiliary information.

To quantify the likelihood of soil freezing, we derived the frozen soil probability from ERA5 soil temperature (1980–2020).

For each grid point and day of year, the probability is defined as the fraction of years with soil temperatures below 0◦C.
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Figure 6. Topographic complexity flag on the Fibonacci Grid 12.5 km.

(a) (b)

Figure 7. Frozen soil probability flag for (a) day of year (DOY) 1, corresponding to January 1, and (b) DOY 183, corresponding to July 1 on

the Fibonacci Grid 12.5 km.

3.4.4 Snow cover probability455

The interaction of microwave backscatter with snow is governed by various physical properties of the snow layer, including

liquid water content, roughness of the air-snow interface, depth and layering of the snow pack, grain size and shape (Hal-

likainen et al., 1986; Ulaby et al., 1986). These properties influence the overall backscatter signal through distinct scattering

mechanisms (Wismann, 2000). Snow-related scattering effects are not treated in the soil moisture retrieval algorithm and snow

covered periods need to be masked based on auxiliary information, e.g. using snow cover information from a land surface460

model.

Similar to the frozen soil probability, we computed a daily snow probability using ERA5 snow depth data over a 40-year

period (1980–2020). For each grid point and day of year, the snow probability is defined as the fraction of years in which snow

depth exceeded zero.
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(a) (b)

Figure 8. Snow cover probability flag for (a) day of year (DOY) 1, corresponding to January 1, and (b) DOY 183, corresponding to July 1

on the Fibonacci Grid 12.5 km.

3.5 Validation procedure465

Quality control of the ASCAT SSM datasets follows standardised validation methodologies for satellite-based Earth observa-

tion products (Loew et al., 2017; Land Product Validation Subgroup (Working Group On Calibration And Validation Com-

mittee On Earth Observation Satellites), 2020). This process involves quality checking and harmonisation of the reference and

ancillary datasets, followed by their spatial and temporal collocation to allow consistent inter-comparison. Finally, relevant

quality metrics are calculated and systematically analysed.470

For the ASCAT SSM datasets, quality control is performed using soil moisture estimates from Noah GLDAS-2.1 and the

ESA CCI Passive Soil Moisture (SM) v09.1 product, as well as in-situ observations provided by the International Soil Moisture

Network (ISMN). Ancillary information provided by ERA5 is used to filter out ASCAT SSM observations influenced by frozen

soil (skin temperature < 0◦C) or snow cover (> 0 m). Additionally, internal quality flags from the ASCAT SSM datasets are

applied to mask observations affected by subsurface scattering (subsurface scattering probability > 5 %).475

In case of the global analysis against ESA CCI Passive SM and GLDAS-2.1, the fixed Earth grid of the ASCAT SSM datasets

served as the spatial reference, with all other datasets collocated using a nearest neighbour search. Temporal collocation is based

on the measurement times of the ASCAT SSM datasets. For each ASCAT SSM observation, the temporally closest reference

measurement within an 12-hour window is selected. The Pearson correlation coefficient (R) and Signal-to-Noise Ratio (SNR)

are used as the two main quality metrics. While Pearson R quantifies the strength and direction of a linear relationship between480

two datasets, SNR is derived from triple collocation analysis (TCA) (Stoffelen, 1998), which estimates error variance by

comparing three independent datasets. By relating the error variance to the signal variance, the SNR quantifies the relative

strength between the signal and noise. Expressed in decibel (dB), the SNR provides an intuitive interpretation (Gruber et al.,

2016).

The Quality Assurance Service for Satellite Soil Moisture Data (QA4SM) was used for the validation against ISMN obser-485

vations (AWST, TU Wien, CESBIO, 2025). ASCAT SSM time series were extracted from the grid points nearest to the ISMN
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station coordinates and uploaded to the QA4SM portal. ISMN networks with sensors overlapping in time with the ASCAT SSM

datasets and operating within the 0–10 cm depth range were selected. A 12-hour matching window was applied to identify the

nearest observation in time. The Pearson correlation coefficient (R) served as the primary performance metric.

4 Results and discussion490

4.1 ASCAT Surface Soil Moisture datasets

As described in Sect. 3, the ASCAT SSM datasets are generated with two spatial sampling distances: 6.25 km and 12.5 km.

These datasets are distributed as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology

and Water Management (H SAF) product suite. H SAF aims to provide remote sensing products of hydrological parameters

including instantaneous rain rate and accumulated rainfall, surface soil moisture and root zone soil moisture, as well as snow495

cover and snow water equivalent.

H SAF products are categorized based on their timeliness into three categories: near real-time (NRT), offline, and data

records (DR). NRT products offer the lowest latency, providing rapid access. Offline products are available on a daily, weekly,

or monthly basis, accommodating a range of application. DR products represent fixed datasets with well defined start and end

dates, suitable for climate analysis. If a DR product spans more than 15 years, it is referred to as a climate data record (CDR).500

Furthermore, if an offline product uses the same processing chain and input data as a (C)DR and serves to extend it beyond its

original time span, it is referred to as an interim data record (IDR) or interim climate data record (ICDR).

The ASCAT SSM datasets are provided as NRT, CDR, and ICDR products as outlined in Table 3. All datasets are avail-

able through the H SAF online archive, while NRT products are additionally distributed via EUMETCast, a satellite-based

broadcast system operated by EUMETSAT. The primary data format is netCDF, with BUFR (Binary Universal Form for the505

Representation of meteorological data) being also available for selected products.

Table 3. ASCAT Soil Surface Moisture (SSM) datasets provided by EUMETSAT H SAF. All datasets are classified as Level 2 products,

except for the Disaggregated (DIS) ASCAT SSM NRT v2 0.5 km product, which is Level 3 product since it represents a downscaled version

of the ASCAT SSM NRT 6.25 km product.

Product ID Acronym Category Spatial sampling Temporal coverage Data format

H121 ASCAT SSM CDR v8 12.5 km CDR 12.5 km 2007-01-01–2024-12-31 netCDF, BUFR

H139 ASCAT SSM CDR v8 EXT 12.5 km ICDR 12.5 km 2025-01-01–ongoing netCDF

H29 ASCAT SSM NRT v2 12.5 km NRT 12.5 km 2025-07–ongoing netCDF, BUFR

H129 ASCAT SSM CDR v1 6.25 km CDR 6.25 km 2007-01-01–2024-12-31 netCDF

H130 ASCAT SSM CDR v1 EXT 6.25 km ICDR 6.25 km 2025-01-01–ongoing netCDF

H122 ASCAT SSM NRT 6.25 km NRT 6.25 km 2025-07–ongoing netCDF

H28 DIS ASCAT SSM NRT v2 0.5 km NRT 0.5 km 2025-07–ongoing netCDF
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4.1.1 Data characteristics

The ASCAT SSM datasets are supplied in swath orbit geometry, with observations resampled onto a fixed Earth grid. For this

purpose, the Fibonacci grid has been selected (see Sect. 3.1.2), ensuring a homogeneous sampling of the Earth’s surface. The

ASCAT SSM CDR and ICDR consists of swath data covering 60-minute interval, whereas the ASCAT SSM NRT datasets are510

distributed in 3-minute product dissemination units (PDUs). Figure 9 shows an example for both swath intervals. All ASCAT

SSM datasets (CDR, ICDR, NRT) delivered in netCDF contain an identical set of variables, as listed in Table 4.

(a) (b)

Figure 9. Example ASCAT SSM swath for a 60-minute (a) and 3-minute (b) interval.

Surface soil moisture (SSM) and its associated noise are the primary variables provided in the ASCAT SSM datasets. Both,

SSM and SSM noise are expressed in degree of saturation representing the topmost soil layer (< 5 cm). The SSM sensitivity

is quantified in decibels (dB) and defined as the difference between the wet and dry backscatter references for a given day515

(see Sect. 3.3.6). It also serves as an indicator of retrieval uncertainty with values below 1 dB typically pointing to densely

vegetated areas with a low backscatter signal variation. Backscatter at 40◦ incidence angle, as well as the first and second

derivatives (slope and curvature) of the incidence angle dependency of backscatter, are included to provide additional in-

formation. Furthermore, flags inform about surface conditions or processing details (see Sect. 3.4). Time and geo-location

parameters are expressed as fractions of days since the reference date 1970-01-01 00:00:00 UTC and latitude/longitude co-520

ordinates (EPSG:4326) along with a unique location identifier. Moreover, satellite orbit direction (ascending/descending) and

swath identification (left/right) are included.

Since ASCAT SSM datasets are provided on a fixed Earth grid, time series can be readily generated by stacking individual

swath segments. As each observation is associated with a unique timestamp and the number of observations varies by location,

not all locations have the same number of measurements. Therefore, storing the time series data as an indexed ragged array525

is more storage-efficient than using an incomplete multidimensional array representation, which requires padding unused

elements with missing values. If all locations share the same number of observations, the latter is referred to as an orthogonal

multidimensional array representation. Space-time cubes derived from gridded raster data are a classical example. However,

it is not well suited for observations from polar-orbiting LEO satellites, where coverage varies due to the swath geometry and
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Table 4. Description of ASCAT SSM dataset variables and associated metadata.

Variable Unit Description

surface_soil_moisture % Surface soil moisture (< 5 cm)

surface_soil_moisture_noise % Uncertainty of surface soil moisture

surface_soil_moisture_sensitivity dB Sensitivity of backscatter to changes in soil moisture

backscatter40 dB Backscatter at 40◦ incidence angle

slope40 dBdeg−1 First derivative at 40◦ incidence angle, i.e. slope

curvature40 dBdeg−2 Second derivative at 40◦ incidence angle, i.e. curvature

frozen_soil_probability % Frozen soil probability (derived using ERA5 soil temperature)

snow_cover_probability % Snow cover probability (derived using ERA5 snow cover)

wetland_fraction % Wetland fraction (derived using GLWD)

topographic_complexity % Topographic complexity (derived using Copernicus DEM)

subsurface_scattering_probability % Probability of subsurface scattering

surface_flag flag table Encodes land/water, snow, and frozen soil conditions

processing_flag flag table Encodes why surface soil moisture is unavailable

correction_flag flag table Encodes corrections applied during data processing

location_id - Unique location identifier (starting at 0)

latitude degrees north Latitude coordinate (EPSG:4326)

longitude degrees east Longitude coordinate (EPSG:4326)

as_des_pass code table Orbit direction (0=ascending, 1=descending)

swath_indicator code table Swath indicator (0=left, 1=right)

orbital dynamics. Figure 10 illustrates the spatial coverage of ASCAT for a single and two Metop satellites over a 24-hour530

period.

(a) (b)

Figure 10. ASCAT observations recorded within a 24-hour period over land: (a) Metop-B only, (b) combined Metop-B and Metop-C data.
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The ascat Python package provides utility functions for converting a collection of swath files into time series format (Hahn

et al., 2025). During this process, a satellite identifier variable is added to each observation to preserve information about

the source platform. Figure 11 shows an example SSM and soil water index (SWI) time series over central Italy. SWI is

computed using an exponential filter of SSM, which mimics water infiltration into deeper soil layers (Wagner et al., 1999b;535

Albergel et al., 2008). The characteristic time length (T) represents the “memory” or depth response. SSM is highly sensitive to

atmospheric forcing, including precipitation, evaporation, wind, and solar radiation, and therefore exhibits pronounced short-

term variability. In contrast, SWI attenuates these rapid fluctuations and is commonly employed as a proxy for soil moisture

in deeper layers (Paulik et al., 2014). SSM and SWI anomalies, calculated as deviations from their long-term climatological

means, serve as valuable indicator of hydrological extremes or shifts in land surface conditions.540

(a)

(b)

Figure 11. Example ASCAT SSM time series for a grid point in central Italy. The top time series (a) shows soil water index (SWI) derived

from the original SSM, while the bottom time series (b) illustrates the anomalies of both SSM and SWI.

4.2 Comparison against ESA CCI Passive SM and Noah GLDAS-2.1

Quality assessment was performed as outlined in Sect. 3.5. The main performance metrics are the Pearson correlation coeffi-

cient (R) and Signal-to-Noise Ratio (SNR). The validation covered the time period from 2007-01-01 until 2023-12-31 in case

of both reference datasets.

4.2.1 Pearson correlation545

Figures 12 and 13 present global maps of the Pearson correlation coefficient (R) along with the corresponding number of

observation pairs. In case of Pearson R between ASCAT SSM 6.25 km and ESA CCI Passive SM, 17.9 % of grid points are

above 0.75 and 57.8 % are higher than 0.5 (see Figure 12a). Similar results can be seen for ASCAT SSM 12.5 km as well, with

19.6 % grid points above 0.75 and 59.2 % higher than 0.5 (see Figure 12c). In general, lower performance is observed in regions
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with limited soil moisture variability, such as deserts, as well as at higher latitudes where the soil remains frozen or covered550

by snow for extended periods and validation is consequently restricted to summer months. In contrast, the best performance is

found in areas with strong seasonal variability, including monsoonal, savanna, Mediterranean, and tropical wet-and-dry climate

zones.

(a) (b)

(c) (d)

Figure 12. Global maps of the Pearson correlation coefficient (a) and the number of observation pairs (b) between ASCAT SSM at 6.25 km

and ESA CCI Passive SM are shown in the top half, while corresponding maps for ASCAT SSM at 12.5 km (c, d) are presented in the bottom

half.

A similar pattern can be seen in the results of Pearson R between ASCAT SSM 6.25 km and Noah GLDAS-2.1 SM with

13.1 % grid points above 0.75 and 45.9 % higher than 0.5 (see Figure 13a) and 14.5 % grid points above 0.75 and 47.7 %555

higher than 0.5 looking at ASCAT SSM 12.5 km (see Figure 13c). In comparison to ESA CCI Passive SM, fewer regions have

been masked, allowing densely vegetated areas such as the Amazon, Congo, and Indonesian rainforests to be included in the

analysis. This reveals the lower performance of the ASCAT SSM datasets in these regions, where dense canopy cover reduces

the sensitivity of backscatter signals to soil moisture changes. Notably, these areas could be excluded by applying the soil

moisture sensitivity information (< 1 dB) available in the ASCAT SSM datasets (see Table 4).560

Figures 12a, c and 13a, c show no significant performance differences of Pearson R between ASCAT SSM 6.25 km and

12.5 km. However, there are consistent, albeit small, differences indicating slightly higher Pearson R values for ASCAT SSM

12.5 km. When comparing the Pearson R values (ASCAT SSM 6.25 km minus ASCAT SSM 12.5 km using nearest neighbour
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(a) (b)

(c) (d)

Figure 13. Global maps of the Pearson correlation coefficient (a) and the number of observation pairs (b) between ASCAT SSM at 6.25 km

and Noah GLDAS-2.1 are shown in the top half, while corresponding maps for ASCAT SSM at 12.5 km (c, d) are presented in the bottom

half.

grid points), the inter-quartile range (IQR) varies between 0.0 and -0.2 for both ESA CCI Passive SM and Noah GLDAS-

2.1. This observed behaviour can be expected since ASCAT SSM 6.25 km is anticipated to exhibit more spatio-temporal565

fluctuations and noise compared to ASCAT SSM 12.5 km. In fact, the new ASCAT SSM 6.25 km dataset demonstrated a

robust performance, even in the absence of globally comparable reference datasets for validation. While direct comparisons

against the reference data used for the 12.5 km product is not fully appropriate due to the scale mismatch, the ASCAT SSM

6.25 km product shows a strong agreement. This performance underscores its potential value for applications requiring SSM at

higher spatial resolution.570

4.2.2 Signal-to-Noise Ratio (SNR)

Figure 14a and c illustrate the Signal-to-Noise Ratio (SNR) computed between the ASCAT SSM datasets, ESA CCI Passive

SM and Noah GLDAS-2.1 SM. In case of ASCAT SSM 6.25 km, more than 35.6 % grid points show a SNR higher than

3 dB, while 56.0 % are above 0 dB. Comparing the results against ASCAT SSM 12.5 km shows minor improvements with

38.6 % (SNR > 3 dB) and 58.1 % (SNR > 0 dB), respectively. In contrast to the Pearson correlation coefficient (R), which may575
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remain high despite substantial noise, the SNR derived from triple collocation analysis (TCA) is a more fundamental metric. It

explicitly quantifies the relative contribution of signal and noise, thereby providing a more critical assessment of data quality.

This is evident in many regions with low soil moisture variability, where the SNR becomes negative indicating a higher noise

variance with respect to the signal component (e.g. desert areas of Africa, the Arabian Peninsula, central Australia, and North

America). Similarly, in high-latitude regions where the Pearson R is weakly positive, the SNR becomes negative. As previously580

mentioned, validation of the full seasonal cycle is not always feasible due to the presence of frozen soils or persistent snow

cover. This limitation poses a challenge for a comprehensive validation and interpretation. Therefore, a negative SNR should

not be interpreted as evidence that the ASCAT SSM datasets are unusable in these regions. Instead, it signals challenges arising

from environmental factors. Users are always advised to take local conditions into account when interpreting remote sensing

soil moisture datasets.585

(a) (b)

(c) (d)

Figure 14. Global maps of Signal-to-Noise Ratio (SNR) (a) and the number of triplets (b) between ASCAT SSM 6.25 km, Noah GLDAS-2.1

and ESA CCI Passive SM are shown in the top half, while corresponding maps for ASCAT SSM 12.5 km (c, d) are presented in the bottom

half.

Based on the SNR performance evaluation, there is no significant difference between ASCAT SSM 6.25 km and 12.5 km

datasets (see Figures 14a, c). However, a point-wise comparison of SNR (ASCAT SSM 6.25 km minus ASCAT SSM 12.5 km

using nearest neighbour grid points) reveals that the inter-quartile range (IQR) varies between 0.3 and -0.6 dB. As discussed

for Pearson R, a slightly better performance can be anticipated due to higher spatio-temporal frequencies in ASCAT SSM
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6.25 km compared to ASCAT SSM 12.5 km. Overall, these small SNR differences confirm that the higher-resolution ASCAT590

SSM 6.25 km dataset does not introduce substantial noise.

4.3 Comparison against ISMN

A total of 44 in-situ networks from the International Soil Moisture Network (ISMN) that temporally overlap with the ASCAT

SSM datasets were used for validation (Table A1). For each network, sensors measuring within the 0–10 cm depth range were

primarily selected. Figure 15 shows boxplots of the Pearson correlation coefficient (R) for each network, with the number of595

sensors next to the network name.

The inter-quartile range (IQR) of the boxplots lies between the interval 0.25 and 0.85, with over two-thirds of the networks

indicating a 25th percentile (lower bound of the IQR) above 0.5. The highest performance of the ASCAT SSM datasets is

observed for the networks CTP_SMTMN, NAQU, REMEDHUS, SASMAS, and THAMO. In contrast, 24 sensors from three

networks (SCAN, SNOTEL, and USCRN) yield negative Pearson R values. All of these sensors are located in the United States600

(California, Nevada, and Utah), with more than 90 % situated at elevations above 2000 m. The combination of arid climate,

limited signal variability, complex topography and the presence of subsurface scattering effects likely explains the reduced

performance in these regions.

While the overall distributions of Pearson R values remain similar for both ASCAT SSM datasets, their median values show

minor network-specific variations. Specifically, the ASCAT SSM 6.25 km dataset shows slightly higher medians for DAHRA,605

RISMA, and SNOTEL, whereas the 12.5 km dataset performs marginally better for HOAL, SCAN, USCRN, and WSMN.

Neither resolution consistently outperforms the other and the differences observed are small in magnitude.

A comparison of our Pearson R evaluation between the ASCAT SSM datasets and the ISMN networks with previous studies

based on earlier versions of ASCAT SSM datasets indicates generally consistent performance (e.g., Fascetti et al. (2016); Al-

Yaari et al. (2019); Beck et al. (2021); Mazzariello et al. (2023)). However, a direct comparison of results remains challenging610

due to differences in the input datasets, applied pre-processing steps and overall validation setup.

5 Conclusions

This article introduces the first ASCAT surface soil moisture (SSM) dataset generated at a nominal sampling of 6.25 km, along-

side the standard 12.5 km sampling commonly used in previous ASCAT SSM dataset versions (H SAF, 2017, 2020, 2021).

The ASCAT SSM datasets are available as near real-time (NRT), climate data record (CDR), and interim climate data record615

(ICDR) products and distributed through the H SAF online archive via FTP. The ICDR serves as an extension of the CDR,

generated using the same processing chain and input data, while the NRT product priorities timeliness over long-term con-

sistency. ASCAT NRT products are additionally distributed via EUMETCast, a satellite-based broadcast system operated by

EUMETSAT.

Both ASCAT SSM datasets presented in this article are generated from ASCAT Level 1B SZF backscatter data using the620

same semi-empirical change detection algorithm. They differ only in the spatial resampling radius. During the resampling
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Figure 15. Pearson correlation coefficient (R) computed between ASCAT SSM (6.25 km and 12.5 km) and 44 ISMN in-situ networks. The

boxplots depict the distribution of Pearson R for each network, with the number of sensors next to the network name. Whiskers extend to the

2nd and 98th percentiles of the Pearson R distribution per network.

process, backscatter echos over surfaces not sensitive to soil moisture changes (e.g., open water, urban areas) are masked. This

masking, combined with the smaller resampling radius of the ASCAT SSM 6.25 km dataset (14 km vs. 24 km), increases the

likelihood of reduced or insufficient echo counts, potentially leading to higher noise or, in extreme cases, discontinuities in

data coverage. At the same time, the finer spatial resolution of the 6.25 km dataset introduces greater spatio-temporal signal625
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variability. Despite all these effects, global validation against Noah GLDAS-2.1 and ESA CCI Passive v09.1, along with

comparisons to 44 ISMN in-situ networks, demonstrates that the ASCAT SSM 6.25 km dataset achieves a Pearson R and

SNR performance equivalent to that of the standard 12.5 km product. Minor, yet consistent, differences were observed in the

global validation, which are small and expected given that the reference datasets do not share the same spatial resolution as the

ASCAT SSM 6.25 km product.630

Overall, the validation results indicate best performance of ASCAT SSM in regions with strong seasonal variability, includ-

ing monsoonal, savanna, Mediterranean, and tropical wet-and-dry zones. In contrast, a lower performance can be found in

areas characterised by limited soil moisture variability (e.g., deserts), dense vegetation, pronounced topographic complexity,

wetlands, or higher latitudes (> 60◦ N). Degradation in these regions is driven by distinct mechanisms. Limited soil moisture

variability in arid regions reduces the signal dynamic range, undermining the statistical robustness. Dense vegetation atten-635

uates the microwave signal through canopy absorption and volume scattering, effectively masking soil surface conditions.

Pronounced topographic complexity introduces heterogeneous scattering patterns that overlay with soil moisture contribu-

tions. Large wetlands with standing water either generate strong specular reflection or further complicate the backscatter signal

response by emergent vegetation that creates more complex scattering effects. Finally, higher latitudes experience longer pe-

riods of frozen soil and snow cover, which disrupts the physical relationship between microwave backscatter and liquid soil640

moisture, making the signal insensitive or misleading. Thus, the change detection algorithm used to derived the ASCAT SSM

datasets performs optimally under conditions of: (i) low to moderate vegetation density, (ii) unfrozen and snow-free terrain,

(iii) negligible subsurface scattering, (iv) low to moderate topographic complexity, (v) absence of wetlands, and (vi) absence

of radio frequency interference (RFI).

The Metop-Second Generation (Metop-SG) B-series satellites (Metop-SG B1 scheduled for launch in 2026), will carry the645

next-generation scatterometer (SCA). Sharing an instrument design similar to ASCAT, SCA will enable a seamless continuity

of soil moisture datasets. Furthermore, SCA features key enhancements over ASCAT including an improved radiometric res-

olution and an additional VH- and HH-channel on both left and right Mid beams. These upgrades create new opportunities to

refine the soil moisture retrieval algorithm. Finally, and most importantly, operational continuity from ASCAT to SCA, com-

bined with cross-calibration against the ERS-1 and ERS-2 missions, will establish a unique, multi-decade dataset essential for650

global climate change research.

6 Data availability

The ASCAT Surface Soil Moisture (SSM) datasets are available in netCDF swath file format https://doi.org/10.15770/EUM_SAF_H_0011

and https://doi.org/10.15770/EUM_SAF_H_0012 (H SAF, 2025a, c). The ASCAT SSM climate data records (CDR) are pro-

vided globally (180◦ W 65◦ S - 180◦ E 80◦ N) and cover the time period 2007-01-01 until 2024-12-31. Soil moisture is ex-655

pressed in degree of saturation (0% dry soil, 100% saturated soil) representing the topmost soil layer (< 5 cm). Advisory flags

are included to give context on soil state, land cover, and scattering behaviour. Users are encouraged to apply these flags to
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exclude time periods or locations influenced by frozen soil or snow cover prior to data usage. When available, external datasets

on soil temperature and snow cover should also be used to refine this filtering.

Appendix A: In-situ660

Table A1: In situ soil moisture networks used for validation.

Network Country Period Reference

AMMA-CATCH Benin, Niger, Mali 2006-01-01 to 2018-12-31 Pellarin et al. (2009); Mougin et al. (2009);

Cappelaere et al. (2009); de Rosnay et al.

(2009); Lebel et al. (2009); Galle et al.

(2015)

ARM USA 1993-06-29 to 2025-09-07 Cook (2016a, b)

AWDN USA 1997-12-31 to 2010-12-30 -

BNZ-LTER USA 1988-06-01 to 2013-01-01 -

COSMOS-UK UK 2013-10-02 to 2023-01-01 Cooper et al. (2021)

CTP_SMTMN China 2010-08-01 to 2016-09-19 Yang et al. (2013)

DAHRA Senegal 2002-07-04 to 2016-01-01 Tagesson et al. (2014)

FLUXNET-

AMERIFLUX

USA 2000-01-01 to 2020-07-21 -

FMI Finland 2007-01-25 to 2025-09-06 Ikonen et al. (2016)

FR_Aqui France 2012-01-01 to 2025-01-01 Al-Yaari et al. (2018); Wigneron et al.

(2018)

HOAL Austria 2013-07-11 to 2021-12-31 Blöschl et al. (2016); Vreugdenhil et al.

(2013)

HOBE Denmark 2009-09-08 to 2019-03-13 Bircher et al. (2012); Jensen and Refsgaard

(2018)

IIT_KANPUR India 2011-06-16 to 2012-11-22 -

IPE Spain 2008-04-03 to 2020-03-25 Alday et al. (2020)

KIHS_CMC South Korea 2008-06-20 to 2019-12-10 -

KIHS_SMC South Korea 2007-06-06 to 2019-12-05 -

LAB-net Chile 2014-07-18 to 2020-07-14 Mattar et al. (2014, 2016)

LABFLUX Italy 2015-01-27 to 2025-04-14 -

MAQU China 2008-05-13 to 2019-06-01 Su et al. (2011); Dente et al. (2012)
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Network Country Period Reference

MOL-RAO Germany 2003-01-01 to 2020-06-30 Beyrich and Adam (2007)

NAQU China 2010-06-15 to 2019-09-12 Su et al. (2011); Dente et al. (2012)

OZNET Australia 2001-09-12 to 2021-09-01 Young et al. (2008); Smith et al. (2012)

REMEDHUS Spain 2005-03-15 to 2025-01-01 González-Zamora et al. (2019)

RISMA Canada 2013-04-24 to 2020-03-25 Ojo et al. (2015)

RSMN Romania 2014-04-09 to 2025-08-15 -

SASMAN Australia 2005-12-31 to 2007-12-31 Rüdiger et al. (2007)

SCAN USA 1996-08-15 to 2025-09-07 Schaefer et al. (2007)

SD_DEM Sweden 2002-02-08 to 2020-11-12 Ardö (2013)

SKKU South Korea 2014-05-08 to 2017-11-29 Nguyen et al. (2017)

SMN-SDR China 2018-07-25 to 2019-12-31 Zhao et al. (2020)

SMOSMANIA France 2007-01-01 to 2025-01-01 Calvet et al. (2007); Albergel et al. (2008);

Calvet et al. (2016)

SNOTEl USA 1996-09-10 to 2025-09-07 Leavesley et al. (2008)

SOILSCAPE USA 2011-08-03 to 2025-09-08 Shuman et al. (2010); Moghaddam et al.

(2010, 2016)

STEMS Italy 2015-12-04 to 2025-01-15 Capello et al. (2019); Darouich et al. (2022)

SWEX_POLAND Poland 2000-01-01 to 2013-05-06 Marczewski et al. (2010)

TAHMO Côte d’Ivoire,

Nigeria, Ghana,

Uganda, Rwanda,

Kenya

2015-06-17 to 2022-07-07

TERENO Germany 2009-12-31 to 2025-07-07 Zacharias et al. (2011); Bogena et al. (2012);

Bogena (2016); Bogena et al. (2018)

TWENTE Netherlands 2008-11-12 to 2020-12-31 van der Velde et al. (2023)

TxSON USA 2014-10-01 to 2022-11-08 Caldwell et al. (2019)

UMSUOL Italy 2009-06-12 to 2017-05-15 -

USCRN USA 2000-11-15 to 2025-09-08 Bell et al. (2013)

VAS Spain 2010-01-01 to 2012-01-01 -

VDS Myanmar 2017-06-01 to 2021-02-13 -

WSMN UK 2011-09-02 to 2016-02-29 Petropoulos and McCalmont (2017)

XMS-CAT Spain 2016-08-01 to 2025-09-08 -
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