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Abstract. Excess riverine phosphorus represents a preeminent catalyst for water quality degradation. Spatial mapping and 13 

characterization of the net gain and loss of riverine phosphorus help discern the critical source areas. Here, we developed a 14 

dataset encompassing phosphate (PO43-) and total phosphorus (TP) gain and loss across catchments in the conterminous United 15 

States (CONUS). We compiled 51,394 PO43- and 285,675 TP concentration data points and estimated PO43- and TP loads at 16 

963 and 2,317 stations, respectively. Next, we leveraged the upstream-downstream topology information from the National 17 

Hydrography Dataset Plus (NHDPlus) catchment map at the Hydrologic Unit Catalogue-12 (HUC12) level to derive the net 18 

gain and loss of riverine phosphorus across catchments in the CONUS. Such maps can be used to estimate potential 19 

contributions of point and non-point sources to riverine phosphorus pollution at refined spatial scales, identify different major 20 

factors controlling local riverine P gain and loss compared to P loads, and evaluate watershed model’s fidelity for representing 21 

riverine P cycling. The resultant dataset is provided in Excel (.xlsx) format, accessible at Figshare 22 

(https://doi.org/10.6084/m9.figshare.28509317, Wang et al., 2025). Leveraging the HUC12 information for spatialization, the 23 

new datasets aim to address the existing gap in regional characterization of riverine phosphorus and support effective 24 

management practices across the CONUS.  25 
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1 Introduction 26 

Eutrophication is a widespread water quality challenge across the globe, with significant economic cost (e.g., $1 billion in 27 

Europe and $2.2 billion annually in the United States (U.S.)) (Wurtsbaugh et al., 2019). Excess phosphorus (P) is a primary 28 

contributor to eutrophication in streams and rivers, especially in intensive agricultural regions (Brownlie et al., 2022; Royer et 29 

al., 2006a). Riverine export of P is also a major contributor to oxygen-depleted dead zones in coastal waters, causing damage 30 

to underwater life (Diaz and Rosenberg, 2008). There is an urgent need for global actions to reduce P pollution for the 31 

environment and human health (UNEP, 2025).  32 

Nonpoint or diffuse sources, particularly nutrients applied to agroecosystems, are often recognized as the primary source of 33 

water pollution (Carpenter et al., 1998). P surplus in agricultural soils due to excessive fertilization and manure application 34 

can be transported to water bodies through surface runoff and groundwater pathways, and cause persistent water pollution 35 

(Stackpoole et al., 2019). The diffuse nature of nonpoint source pollution poses challenges for directly identifying and 36 

regulating critical source areas. Existing riverine P pollution databases mainly focus on certain agricultural areas (Ringeval et 37 

al., 2024). Given the considerable spatial variation in P inputs to rivers (Arheimer and Lidén, 2000; Stackpoole et al., 2019; 38 

Zhang et al., 2017), there is a lack of large-scale riverine P datasets at sufficient spatial scales across the conterminous United 39 

States (CONUS) to quantify and analyze riverine P gain and loss. Such datasets, in conjunction with other observed and 40 

modelled P data (e.g., point source discharge) help identify regions with high non-point source P inputs, thereby supporting 41 

more effective targeting of measures for P pollution control. In addition, the datasets can also be used to assess fidelity of 42 

distributed watershed models and understand key factors influencing local riverine P cycling. 43 

In this study, we aim to develop new datasets for spatial characterization of riverine P gain and loss across the CONUS, to 44 

help identify critical source areas and improve prioritization and implementation of nutrient management activities. The 45 

subsequent sections of this paper include the method used to generate spatial riverine P gain and loss (Section 2), results 46 

detailing the P dataset (Section 3), discussion of influencing factors and potential uncertainties (Section 4), codes and data 47 

availability (Section 5), and conclusions (Section 6). 48 
 49 

2 Materials and Methods 50 

2.1 Overview 51 

To estimate riverine P gain and loss data across the CONUS, we compiled streamflow and P concentration data (i.e., unfiltered 52 

phosphate (PO43-)) and total phosphorus (TP) at over 1,000 hydrological stations in the CONUS and calculated P loads at those 53 

stations using the Load Estimator (LOADEST) program (Runkel et al., 2004) (Fig. 1). Next, we estimated P gain and loss 54 

across the catchments measured by one downstream station and its immediate upstream stations using the upstream-55 

downstream connectivity information contained in the National Hydrography Dataset Plus (NHDPlus) catchments 56 
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(https://nhdplus.com/NHDPlus/NHDPlusV2_data.php), resulting in 547 and 1,225 unique Hydrologic Unit Catalogue (HUC) 57 

groups for PO43- and TP, respectively. Each HUC group has a unique pair of downstream and upstream stations that allows us 58 

to calculate the gain and loss of riverine P (as illustrated in Fig. S1 in the Supplemental Information). Note that headwater 59 

HUC groups only have one downstream station without upstream stations draining to them. Due to differences in data 60 

availability, the riverine PO43- and TP gain and loss data cover 52,020 and 65,735 Hydrologic Unit Catalogue-12 (HUC12) 61 

catchments, respectively. Then we estimated potential contribution to P pollution from nonpoint sources by subtracting 62 

upstream P inputs and point source P inputs from the riverine P gain and loss in each catchment. Finally, we used land cover 63 

and climate data to evaluate major controls of riverine P gain and loss.   64 

 65 
Figure 1: Overview of the generation of TP and PO4

3- gain and loss data across the CONUS A more detailed description and higher 66 
resolution figure about HUC group generation can be found in Text S2 and Fig. S1. 67 
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2.2 Study area 68 

The CONUS (i.e., the lower 48 states of the U.S.) is located in North America from 98° 34' to 46° 20' W longitude and from 69 

39° 49' to 41° 43' N latitude, covering an area of 8,080,464.3 km² with a north-to-south distance of approximately 2,660 km. 70 

The terrain features higher elevations in the west and flatter areas in the east. Based on the Watershed Boundary Dataset (WBD; 71 

https://water.usgs.gov/GIS/huc.html), the CONUS includes 18 major watersheds, encompassing several large rivers such as 72 

the Mississippi and Colorado Rivers.  73 

2.3 Data compilation 74 

We compiled 51,394 PO43- (USGS parameter code 00650) concentration data from 963 hydrological stations (spanning from 75 

1952 to 2022) and 285,675 TP (USGS parameter code 00665) observations from 2,317 hydrological stations (spanning from 76 

1958 to 2023) across the CONUS from the Water Quality Portal (Read et al., 2017). For each P observation, we identified co-77 

located hydrological stations (Wang, Zhang, Zhao, et al., 2024) and downloaded and processed daily streamflow data from the 78 

U.S. Geological Survey (USGS) National Water Information System. We calculated an average P concentration where there 79 

were multiple P concentration observations on the same day. Before calculating the P load at a hydrological station with the 80 

LOADEST model, we excluded stations with less than 12 data points. Thus, we finally selected 547 stations for PO43- and 81 

1,225 stations for TP. For TP, the "Point-Source Nutrient Loads to Streams of the Conterminous United States" dataset provides 82 

estimated point-source inputs at the HUC12 level (Skinner and Maupin, 2019). This allowed us to aggregate the total TP input 83 

to rivers for the catchments used to calculate riverine TP gain and loss. Note that the point source dataset does not contain 84 

PO43-. 85 

Land cover and climatic controls of riverine P gain and loss were also assessed. Land cover data were derived from the National 86 

Land Cover Database (NLCD; https://doi.org/10.5066/P94UXNTS), which provided long-term average information on 87 

various land cover types: barren land, crops, forest, hay, herbs, impervious surfaces, scrub, water, herbaceous wetlands, and 88 

woody wetlands (Homer et al., 2012). Climate data were sourced from the PRISM dataset 89 

(https://www.prism.oregonstate.edu/), including annual average temperature and total precipitation (Page et al., 2021). Using 90 

upstream-downstream topology information, we calculated the total area of each land cover type from the headwater to the 91 

current catchment at the HUC12 scale, representing their cumulative impact. For climate data, the local climate within each 92 

HUC12 was used. The P surplus was accessed from the National Inventory of Phosphorus (NIP), which provides major inputs 93 

and outputs of reactive P at the HUC8 scale across the CONUS (Sabo et al., 2021).  94 

2.4 Riverine P gain and loss across catchments in the CONUS 95 

Riverine P gain and loss was estimated by calculating the difference between P loads at a downstream hydrological station and 96 

the sum of P loads from its neighbouring upstream stations. For multiple USGS stations located in the same HUC12 catchment, 97 

we kept only one station on the mainstem of the river that is closest to the outlet of the HUC12 catchment, by comparing the 98 
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drainage area of the gaging station and the HUC12 catchment in which it is located. For headwaters, since there are no upstream 99 

gages, the P load was used as the net riverine gain. The upstream-downstream topology relationship between the hydrological 100 

stations was derived from the HUC12 catchments from the watershed boundary dataset (WBD; 101 

https://water.usgs.gov/GIS/huc.html). Such a method has been outlined and tested by Qiu et al. (2023) (Text S2). As explained 102 

above, we identified 547 and 1,225 unique HUC groups for PO43- and TP, respectively. Note that each HUC group includes 103 

multiple HUC12 polygons and these HUC12 catchments share the same gain and loss data. 104 

For each HUC group, the balance of riverine P can be expressed as follows: 105 

𝑃	𝑙𝑜𝑎𝑑	𝑎𝑡	𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚	𝑜𝑢𝑡𝑙𝑒𝑡	 = (𝑃	𝑙𝑜𝑎𝑑𝑠	𝑓𝑟𝑜𝑚	𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚	𝑖𝑛𝑝𝑢𝑡𝑠	) + (𝑃	𝑓𝑟𝑜𝑚	𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) −106 

(𝑅𝑖𝑣𝑒𝑟𝑖𝑛𝑒	𝑟𝑒𝑚𝑜𝑣𝑎𝑙	𝑜𝑓		𝑃	𝑓𝑟𝑜𝑚	𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) + (𝑃	𝑓𝑟𝑜𝑚	𝑛𝑜𝑛˗𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) −107 

(𝑅𝑖𝑣𝑒𝑟𝑖𝑛𝑒	𝑟𝑒𝑚𝑜𝑣𝑎𝑙	𝑜𝑓	𝑃	𝑓𝑟𝑜𝑚	𝑛𝑜𝑛˗𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠)		108 

Rearranging the above equation leads to:  109 

(𝑃	𝑓𝑟𝑜𝑚	𝑛𝑜𝑛𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) = 	𝑃	𝑔𝑎𝑖𝑛	𝑎𝑛𝑑	𝑙𝑜𝑠𝑠 − (𝑃	𝑓𝑟𝑜𝑚	𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) +110 

(𝑅𝑖𝑣𝑒𝑟𝑖𝑛𝑒	𝑟𝑒𝑚𝑜𝑣𝑎𝑙	𝑜𝑓		𝑃	𝑓𝑟𝑜𝑚	𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) + (𝑅𝑖𝑣𝑒𝑟𝑖𝑛𝑒	𝑟𝑒𝑚𝑜𝑣𝑎𝑙	𝑜𝑓	𝑃	𝑓𝑟𝑜𝑚	𝑛𝑜𝑛˗𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠)		111 

where 𝑃	𝑔𝑎𝑖𝑛	𝑎𝑛𝑑	𝑙𝑜𝑠𝑠	 = (𝑃	𝑙𝑜𝑎𝑑	𝑎𝑡	𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚	𝑜𝑢𝑡𝑙𝑒𝑡) 	−		 (𝑃	𝑙𝑜𝑎𝑑𝑠	𝑓𝑟𝑜𝑚	𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚	𝑖𝑛𝑝𝑢𝑡𝑠).  112 

Given that rivers often remove a small portion of P load (e.g., 12%) (Maavara et al., 2015), we assumed that 113 

(𝑃	𝑓𝑟𝑜𝑚	𝑛𝑜𝑛𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠) = 	𝑃	𝑔𝑎𝑖𝑛	𝑎𝑛𝑑	𝑙𝑜𝑠𝑠 − (𝑃	𝑓𝑟𝑜𝑚	𝑝𝑜𝑖𝑛𝑡	𝑠𝑜𝑢𝑟𝑐𝑒𝑠)  is a lower-end estimate of the nonpoint 114 

source contribution to riverine P for each HUC group. Since only TP from point sources is available, we derived nonpoint-115 

source TP loads but not for PO43-. 116 

2.5 Evaluation of estimated riverine load 117 

We evaluated the consistency of the PO43- and TP loads against another independent dataset derived with the Weighted 118 

Regressions on Time, Discharge, and Season (WRTDS) model (Hirsch et al., 2010; Zhang and Hirsch, 2019). First, we 119 

compared multi-year average TP loads from 151 hydrological stations. We also evaluated the estimated unfiltered PO43- loads, 120 

which assess the mass of reactive P susceptible to being released in the water column under various redox conditions. 121 

Furthermore, the reliability of the upstream-downstream connectivity information is important for deriving the drainage area 122 

of HUC groups that are controlled by pairs of upstream and downstream hydrological stations. Here we used a quality-checked 123 

and corrected NHDPlus HUC12 catchment map (Wang, Zhang, & Zhao, 2024) that has been verified for reliably deriving the 124 

drainage area of each USGS hydrologic station as compared to the USGS GAGES-II reported values (Falcone and Survey, 125 

2011). These efforts helped ensure the quality of the riverine P gain and loss data developed in this study.  126 

2.6 Analysis of environmental controls 127 

Recent studies reveal that shifts in land use, agricultural practices, and climatic conditions have introduced a pervasive increase 128 

in soluble P concentrations across many different watersheds (Houser and Richardson, 2010; Singh et al., 2023). To assess the 129 

(1) 

(2) 
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spatial factors influencing riverine P gain and loss, we employed random forest modelling to evaluate the relative importance 130 

of multiple environmental variables (Breiman, 2001). These factors were categorized into three groups: climatic factors, land 131 

cover types, and additional influences such as cumulative agricultural inputs and upstream loads. Given that the NIP dataset is 132 

only available at the HUC8 scale and some HUC groups are larger than the HUC8 catchment areas, we calculated the 133 

cumulative agricultural inputs at the HUC4 scale. In more detail, we used the ranger package, optimizing the model structure 134 

with the caret package in R. Key tuning parameters included the number of variables to use in each split (mtry), the number of 135 

trees (n_trees) and the minimum size of data points before splitting a tree (min_n). The tuning process was performed by doing 136 

a grid search for mtry (2-6) and min_n (10-20), then a second search was performed to find the optimal n_trees parameter 137 

(500-3000). To minimize random effects, the model was run 10 times, and we calculated the average importance value and 138 

harmonic mean p-value (Wilson, 2019).  139 

3 Results 140 

3.1 Riverine phosphorus data 141 

We created two datasets, "Riverine PO43-" and "Riverine TP," that encapsulate estimated multi-year average riverine gain and 142 

loss and loads, as well as point source and nonpoint source contributions for each HUC group for PO43- and TP, respectively 143 

(Table 1). Complementing this information, the datasets encompass the location (i.e., longitude and latitude) of the outlet of 144 

the HUC group, the area of the HUC group, the count of observations used to calculate P loads, and commencement and 145 

termination years of observed data, to facilitate user-defined subsetting of the datasets. Additional information regarding the 146 

regression model is also included, such as the form of the regression model selected by LOADEST and the associated 147 

coefficient of determination (r2) values. 148 

Across the board, the average r2 values for the best-fit model (Table S1) across all sites are 0.76 for PO43- loads and 0.83 for 149 

TP loads. It is noteworthy, however, that certain hydrologic stations exhibited low r2 values due to the limited availability of 150 

paired P concentration with streamflow data for regression. 151 

 152 
Table 1. Data records in the "Riverine PO4

3-" and "Riverine TP" datasets. 153 

Field name Description 

Station ID U.S. Geological Survey designated ID; Note that this ID is also used to denote a unique HUC group 

Lat Latitude of the hydrologic station at the outlet of a HUC group 

Long Longitude of the hydrologic station at the outlet of a HUC group 

Area Area of the HUC group 

Load The amount of PO43- or TP loads at the outlet hydrologic station of a HUC group (kgP yr-1) 
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P gain and loss 
The difference between P loads at the outlet of a HUC group and all its immediate upstream stations 

(kgP km-2 yr-1) 

NonPts TP 

contribution* 
Nonpoint-source contribution to riverine phosphorus from a HUC group (kgP km-2 yr-1) 

Pts TP load Point-source TP loads (kg yr-1) from a HUC group 

obsNum The number of phosphorus concentration data with paired streamflow data 

startYr The starting year of the observed data 

endYr The ending year of the observed data 

modelID The ID of regression model used for load estimation 

r2 R-Squared (%) for the selected LOADEST regression model used to estimate the P load 

Note: * only for TP as only point source TP inputs are available. 154 
 155 

Our TP load estimates are highly consistent with the WRTDS model with high r2 and low root mean square error (RMSE) 156 

(Fig. 2). The minor disparities observed between these two datasets are likely attributable to variations in temporal coverage. 157 

For PO43-, we found that only 11 stations with WRTDS estimates matched the stations used here, and all 11 stations are 158 

located in small watersheds. Therefore, we leveraged filtered PO43- loads estimated by WRTDS to assess if the LOADEST 159 

estimated unfiltered PO43- loads. Unfiltered PO43- measures both the dissolved PO43- as well as PO43- compounds bound to 160 

suspended sediments and organic materials, and thus will have higher load compared to filtered PO43- measurements (Fig. 161 

S2). Nonetheless, the high correlation indicates our estimates of unfiltered PO43- are reasonable. 162 

 163 
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Figure 2: Comparison of riverine TP loads between our estimates and previous WRTDS estimated values at 151 hydrological 164 
stations. Note that the riverine TP loads vary greatly at different locations and over time, with most sites being below 10,000 MgP 165 
year-1. 166 

Spatial patterns of PO43- and TP loads from each HUC group across the CONUS are shown in Fig. 3. Additionally, the location 167 

of the hydrologic station at the outlet of each HUC group and the loads of streams in which it is located are shown in Fig. S3. 168 

The datasets encompass 547 hydrologic stations/HUC groups for PO43- and 1,225 stations/HUC groups for TP, covering 169 

4,894,464 and 6,118,360 km2 PO43- and TP, respectively. The difference in spatial coverage is mainly due to the abundance of 170 

TP compared to PO43-. Stations with high P loads are predominantly situated in the Midwest or proximate to megacities, with 171 

a general pattern of higher P loads observed in the eastern U.S.  PO43- loads range from 111 to 31,671,885 kgP yr-1 and TP 172 

loads range from 235 to 336,223,136 kgP yr-1. Median loads are 76,202 and 108,305 kgP yr-1 and average loads are 436,311 173 

and 1,012,363 kgP yr-1, for PO43- and TP, respectively.  174 
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Figure 3: Riverine (a) PO4
3- and (b) TP loads from HUC groups across the CONUS. The boundary lines show the Hydrologic Unit 176 

Catalogue 2-digit (HUC2) watersheds. Grey areas indicate regions with no data. For visualization purposes, the logarithm was used 177 
here. 178 

 179 

The spatial distribution of riverine P gain and loss is shown in Fig. 4. Both PO43- and TP gain and loss exhibit similar spatial 180 

patterns over the CONUS, with most areas exhibiting riverine P gains. The area-weighted average PO43- gain stands at 25.39 181 

kgP km-2 yr-1, and the TP gain is 33.68 kgP km-2 yr-1. Median PO43- and TP gains are lower than averages, standing at 16.75 182 

kgP km-2 yr-1 and 33.57 kgP km-2 yr-1, respectively. At the HUC group scale, the highest area-weighted PO43- gain was 183 

identified in the Upper Mississippi Region (UMR), amounting to about 113.96 kgP km-2 yr-1. The highest TP gain reached 184 

186.55 kgP km-2 yr-1 in the Tennessee Region (TN). Notably, widespread regions in the Midwest exhibit heightened P gains, 185 

particularly in terms of PO43-, suggesting a discernible impact of human activities (e.g., agricultural fertilization). At the HUC2 186 

level, the lowest area-weighted PO43- gain (1.72 kgP km-2 yr-1) was found in the Rio Grande Region (RG), and the lowest TP 187 

gain (0.62 kgP km-2 yr-1) was found in the Upper Colorado Region (UCR). Refined examination at the HUC group level 188 

showed that, over the CONUS, 392,778 km2 and 1,468,973 km2 areas exhibited riverine PO43- and TP losses, respectively.   189 

 190 
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Figure 4: The spatial distribution of the gain and loss in riverine (a) PO4
3- and (b) TP over the CONUS. The boundary lines show 192 

the Hydrologic Unit Catalogue 2-digit (HUC2) watersheds. Grey areas indicate regions with no data. 193 

 194 

3.2 Point and nonpoint source contributions 195 

We also mapped the spatial point source and nonpoint source inputs of TP, as shown in Fig. 5. The nonpoint source 196 

contributions are estimated based on Equation (2), which provides a lower-end estimate given that the riverine removal of 197 

point and nonpoint source P as shown in Equation (2) was not considered. Point and nonpoint source contributions to riverine 198 

TP pollution exhibited large differences in both the magnitude and spatial distribution. Over the CONUS, the area-averaged 199 

point source input of TP is 5.44 kgP km-2 yr-1. By subtracting point source inputs from the calculated TP gain and loss, we 200 

obtained an area-averaged nonpoint source TP contribution of 28.24 kgP km-2 yr-1. Regions characterized by high TP gain with 201 

minimal point source pollution were observed in the Midwest. Notably, in most of the agriculturally intensive Missouri and 202 

Tennessee-Ohio river basins, total nonpoint source discharge significantly surpassed point source contributions. Upon the 203 

exclusion of point source contributions (Fig. 5b), there is a substantial change, with the areas with riverine TP losses expanding 204 

to 1,603,258 km2, most of them in the Missouri and Arkansas-White-Red River Basins. In general, most watersheds with 205 

negative nonpoint sources are concentrated in the western U.S. This does not mean that the nonpoint source P inputs are 206 

negative, but indicates that riverine processes likely removed a large fraction of point and nonpoint source P.   207 
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Figure 5: The spatial distribution of (a) nonpoint source and (b) point source contributions to riverine P pollution over the CONUS. 209 
The boundary lines show the Hydrologic Unit Catalogue 2-digit (HUC2) watersheds. Grey areas indicate regions with no data. 210 

 211 

3.3 Factors influencing TP 212 

We employed a random forest model to assess the influence of climate, land use, human activities, and catchment 213 

characteristics on riverine TP gain and loss and TP loads (Fig. 6). Note that the calculated P loads represent the outcome of 214 

the entire upstream catchment processes, while the riverine P gain and loss data represent both upstream catchment processes 215 

(e.g., P inputs from upstream) and local catchment properties (e.g., climate and land use in a HUC group). Such differences 216 

lead to the use of different sets of influencing factors (Fig. 6). The land use, climate and point source factors were calculated 217 

for the entire upstream area draining to a hydrological station for TP load analysis. In contrast, those factors were averaged 218 

over a HUC group for riverine gain and loss analysis. Additionally, for the analysis of riverine P gain and loss data, we included 219 

upstream P inputs. Analysis results indicate that upstream input is the sole statistically significant factor affecting TP gain and 220 

loss, with climate and land cover showing no notable impact. Conversely, TP loads are predominantly influenced by climatic 221 

factors, alongside significant contributions from point source discharges and urban land use.  222 
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 223 
Figure 6: The importance of factors influencing (a) TP gain and loss and (b) TP loads. Asterisks indicate significance at a level of 224 
0.05.  225 

4 Discussion 226 

4.1 Important contributions from nonpoint sources to riverine P pollution 227 

The estimated area-averaged nonpoint source TP contribution (28.24 kgP km-2 yr-1) represents a reduction of 16.2% from the 228 

calculated TP gain and loss that includes contributions from both point and nonpoint sources (33.68 kgP km-2 yr-1). Given that 229 

the TP inputs from point and nonpoint sources are often subject to riverine removal (Maavara et al., 2015), the estimated 230 

nonpoint source TP based on Equation (1) should be augmented by the amount of total TP inputs (including both nonpoint and 231 

point source) removed through riverine processes. Therefore, the calculated nonpoint source inputs of TP represent an 232 
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underestimate of the contributions from nonpoint sources. If we assume a 12% removal rate for TP inputs (Maavara et al., 233 

2015), then the nonpoint source inputs of TP would increase from 28.24 kgP km-2 yr-1 to 32.28 kgP km-2 yr-1. Collectively, the 234 

results show that the nonpoint sources likely contribute more than 84% of riverine TP pollution.  235 

4.2 Implications for analysing environmental controls of riverine P 236 

Climatic factors were key drivers of TP loads at the outlet of a watershed, which in general aligns with findings from previous 237 

studies (Sabo et al., 2023) and underscores the role of climate in nutrient transport dynamics. Our environmental control 238 

analysis using the gain and loss data showed that upstream inputs are leading control of local riverine gain and loss (Fig. 6a), 239 

in addition to local inputs of P from point and nonpoint sources and local riverine processes, such as in-stream retention through 240 

mechanisms such as P absorption by periphyton via photosynthesis and hydrological processes like reduced streamflow and 241 

sedimentation (Dodds, 2003; Withers and Jarvie, 2008). Notably, although accumulated agricultural P inputs (i.e., livestock 242 

waste and agricultural fertilizer) positively influenced TP gain and loss (Fig. S4), they were not included in this analysis due 243 

to mismatch of spatial scales. In general, using TP loads and riverine P gain and loss can lead to pronounced differences in the 244 

analysis of importance of environmental controls. Although climate conditions (i.e., precipitation and temperature) are the 245 

major controls of TP loads, which represent the integration of the entire watershed conditions, while riverine P gain and loss 246 

indicate that the amount of upstream P inputs entering a local catchment is an important factor influencing the riverine 247 

processing of P. 248 

Both the differences and the analysis using TP loads and riverine gain and loss data revealed the importance of urban land and 249 

agricultural management. For example, both analyses show that irrigation can influence riverine TP, indicating that improving 250 

irrigation efficiency and technology holds potential to reduce TP inputs from cropland fertilization (Xia et al., 2020). Though 251 

we didn't assess factors influencing PO43- due to the lack of point source PO43- data, TP hotspots are expected to occur further 252 

downstream than PO43- hotspots (Fig. 3). This is probably because rivers typically can retain (e.g., periphyton assimilation, 253 

adsorption onto suspended or bed sediment) a considerable proportion of incoming soluble-reactive P (e.g., PO43-) within the 254 

upper network, whereas particulate P continue to transport to downstream (Jarvie et al., 2012; Robertson and Saad, 2019; 255 

Royer et al., 2006b). Overall, the intricate interplay between climate and land use factors underscores the complex nature of P 256 

dynamics in riverine systems. These newly developed riverine gain and loss datasets help improve understanding of local 257 

controls of riverine P dynamics and identify hotspots of changes in riverine P. 258 

4.3 Limitations and contribution 259 

While the newly developed datasets leverage upstream-downstream topology information at the HUC12 level to help increase 260 

the spatial resolution of riverine P gain and loss data, it is essential to acknowledge limitations relevant to understanding and 261 

quantifying P cycles and identifying sources of P inputs. First, the accuracy of load estimation via LOADEST is contingent 262 

upon the availability of paired P concentration data from hydrological stations. Stations with limited observations may 263 
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introduce higher uncertainties in load estimations. The robustness of our datasets is partially reflected in the number of 264 

observations available. The average and median numbers of PO43- observations per site is 54 and 29, respectively; for TP, the 265 

average and median numbers of observations per site is 134 and 90, respectively. In addition, the average center year of TP 266 

observations is 1992, with a median of 1991, while for PO43-, the overall observation time is relatively early, with an average 267 

of 1981 and a median of 1980. The use of AIC to choose the most parsimonious regression model (average r2 of 0.76 and 0.83 268 

for PO43- and TP, respectively) helped reduce uncertainties in load estimates.  269 

Additionally, we calculated the P loads by averaging over different time periods with available data for each hydrological 270 

station. The mismatch between observational periods of upstream and downstream hydrological stations could introduce 271 

uncertainties, given that the available data cover various time periods for different hydrological stations. For example, 272 

streamflow discharge, which is important for calculating nutrient loads, can vary from year to year. Here, we assumed that 273 

multi-year average estimates of P loads are representative of the long-term pattern at a hydrological station. This may not hold 274 

for some upstream and downstream stations covering time periods that do not overlap with each other. Therefore, we provided 275 

the number and period of observations and model performance information in the datasets, which can help users to refine the 276 

calculation of riverine P gain and loss by further screening the P loads data at the hydrological stations. Note that available 277 

hydrologic stations with observed P concentration and streamflow data are relatively sparse in the western vs. eastern U.S., 278 

particularly for PO43-. This led to large gaps in the spatial coverage of the datasets (Fig. 4). Increasing the number of 279 

hydrological stations with P observations holds the potential to enhance the accuracy of riverine P estimates in the future. 280 

It is also worth noting that the calculated contribution of TP from nonpoint sources represents a conservative estimate, given 281 

the unknown rate of TP removal from point and nonpoint sources. Although previous studies showed that TP removal rates 282 

were generally small, they could vary substantially across regions, as evidenced by the areas with riverine P loss (Fig. 4). It is 283 

reasonable to assume that the estimated TP contribution from nonpoint sources is greater than 84% over the CONUS; however, 284 

the local TP contribution from nonpoint sources could be much lower, particularly in regions with high point source inputs. 285 

Also, the removal rates of P from point and nonpoint sources are likely different due to differences in the quality of P inputs 286 

(e.g., biodegradability and adsorption and desorption to sediments) and flow pathways (Wang et al., 2025). Therefore, caution 287 

should be taken when interpreting the local contribution to P pollution from nonpoint sources.  288 

Despite these challenges, our datasets make a unique contribution to the quantification and analysis of riverine P load, gain 289 

and loss, and sources across the CONUS. They can support the evaluation and diagnosis of large-scale watershed models, the 290 

examination of environmental controls on riverine P loads, and the estimation of contributions to P gain and loss. The insights 291 

derived from our datasets contribute to a more comprehensive understanding of P dynamics, providing a foundation for 292 

improved water quality management on local, regional, and national scales.  293 
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5 Code and data availability 294 

All codes for validating and visualizing PO43- and TP gain and loss from the load estimations were run in R version 4.3.1 and 295 

are archived at https://github.com/ymwang4924/gain-loss_P. The datasets presented in the paper are available at 296 

https://doi.org/10.6084/m9.figshare.28509317 (Wang et al., 2025). 297 

6 Conclusions 298 

In this study, we estimated riverine loads of PO43- and TP and derived their gain and loss across the CONUS, leveraging the 299 

upstream-downstream hydrological connectivity information contained in the NHDPlus catchment map. On average, rivers 300 

across the CONUS gain TP at a rate of 33.68 kgP km-2 yr-1, with notable hotspots in the Midwest. Due to the limitations of 301 

data availability, the precision of estimated P gain and loss data could be influenced by the number and periods of observations 302 

available at upstream and downstream stations. We provided additional information regarding the number of observations 303 

available, temporal coverage of data, the regression model used, and the model’s statistical performance, so that users can 304 

further subset the datasets to meet certain specific criteria.  305 

The riverine P gain and loss datasets allow the estimation of riverine P removal or accrual at a refined spatial resolution to 306 

better reflect the impacts of local controls. In contrast, riverine P loads at hydrological stations embody the integrated processes 307 

from the entire area upstream of a specific station. Also, by combining point source inputs with the riverine P gain and loss 308 

datasets, we derived conservative estimates of the contribution of nonpoint sources to riverine TP (28.24 kgP km-2 yr-1). The 309 

control factor analysis with a random forest model demonstrated that upstream inputs had the greatest influence on the local 310 

riverine P gain and loss, while climatic factors dominated riverine P loads at hydrological stations. This suggests that nutrient 311 

management practices that prioritize enhancing irrigation efficiency and integrating strategies such as targeted fertilizer 312 

application and wetland restoration may more effectively capture and reduce phosphorus mobilization from agricultural lands. 313 

The newly developed riverine P datasets in this study extend utility to diverse applications, encompassing, but not limited to, 314 

the evaluation of watershed models, identification of critical source areas, and optimization of agricultural management 315 

strategies. Future studies may concentrate on filling gaps in the spatial and temporal coverage of the datasets (particularly for 316 

PO43-).  317 
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