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Abstract. Coastal wetland vegetation plays a vital role in shoreline protection and ecosystem management, highlighting the
need for accurate and high-resolution mapping of these unique and vulnerable habitats. Here, we present CCAV-10m, the first
publicly available annual species-level coastal wetland dataset for China at 10 m resolution (2016-2023). This dataset was gen-
erated using a novel phenology-guided coastal wetland vegetation classification network (P_SVCN), which integrates Sentinel-
1/2 satellite imagery with extensive in situ observations. Validation based on 4,668 in situ samples confirms that P_SVCN deliv-
ers strong classification performance, achieving an overall accuracy of 0.916 and a Kappa coefficient of 0.898. Spatiotemporal
analysis of CCAV-10m reveals that Suaeda spp. is the dominant vegetation type, followed by S. alterniflora, whose coverage
nearly equals the combined extent of P. australis, mangroves, S. mariqueter, and T. chinensis. Notably, this work fills critical
gaps in both spatial detail and temporal consistency across existing coastal wetland datasets, demonstrating the effectiveness
of deep-learning-based fusion of optical and SAR data for high-resolution vegetation mapping. Regular updates to CCAV-10m
will support long-term coastal wetland research, enhance invasive species monitoring, and inform wetland restoration and pre-
cision management efforts. The CCAV-10m dataset is openly accessible at https://doi.org/10.57760/sciencedb.31077 (Li et al.,
2025).

1 Introduction

Coastal wetlands are complex ecosystems distributed along the land—sea transition zone, influenced jointly by tidal dynamics
and salinity gradients, and mainly comprise salt marshes, mangroves, tidal flats, and brackish wetland forests (Day et al., 2024;
Bernhardt, 2022; Moreno-Mateos et al., 2012). Tropical mangroves cover approximately 150,000 km?, while temperate tidal
marshes exceed 45,000 km? (Webb et al., 2013; Luther and Greenberg, 2009), together forming one of the most productive
and carbon-rich ecosystems on earth (Macreadie et al., 2019; Bertram et al., 2021). Coastal wetlands function not only as
geochemical “sinks” but also as highly effective “green filters” that intercept and remove land-derived pollutants (Sun et al.,
2015; Zhang et al., 2022c). Their ecosystem service value can reach up to US$194,000 per hectare per year, encompassing

carbon sequestration and greenhouse gas regulation, coastal protection, fisheries support, water purification, and biodiversity
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maintenance (Gabler et al., 2017; Schuerch et al., 2018; Costanza et al., 2014; Duarte et al., 2013; Aburto-Oropeza et al., 2008).
China’s coastal wetlands represent a key component of its national blue carbon ecosystems, spanning tropical, subtropical, and
temperate climate zones (Cao and Wong, 2007; Sun et al., 2015; Wang et al., 2021). Their broad distribution and substantial
carbon sequestration capacity place them at the core of China’s blue carbon strategy (Gu et al., 2025). Dominant vegetation
types in Chinese coastal wetlands include S. alterniflora, P. australis, T. chinensis, Suaeda spp., S. mariqueter, and mangroves
(Gu et al., 2021). Among these, S. alterniflora, introduced in the 1990s, has rapidly expanded across Jiangsu, Shanghai, Zhe-
jiang, and Fujian, with scattered occurrences in Liaoning, Tianjin, Hebei, and Shandong (Min et al., 2025; Chen et al., 2025).
In many East Asian countries, biological invasions, tidal flat reclamation, and wetland restoration occur simultaneously; thus,
timely and fine-scale species-level monitoring is crucial for tracking invasion dynamics, evaluating restoration outcomes, and
supporting biodiversity conservation and sustainable coastal management (Tian et al., 2020; Sun et al., 2023).

Coastal wetlands are composed of herbaceous plants, grasses, and low-stature shrubs that are adapted to regular or occasional
tidal inundation (Kumar and Sinha, 2014). Due to the inherent complexity of vegetation, tidal dynamics, and anthropogenic
disturbances, mapping of coastal wetlands remains challenging (Zhao et al., 2023). To date, a variety of remote sensing data
sources have been widely applied to monitor coastal wetland vegetation. In multispectral optical imagery, medium- to low-
resolution datasets such as MODIS and AVHRR offer high temporal resolution (Gallo et al., 2005; Zhang et al., 2023a), which
makes them suitable for wetland information extraction; however, their spatial resolution is insufficient for vegetation species-
level classification (Takeuchi et al., 2003; Zhang et al., 2019). High-resolution optical imagery also plays an important role in
wetland vegetation classification, but it is limited by cloud cover and atmospheric effects (Kang et al., 2023; O’Connell et al.,
2017). Moreover, traditional remote sensing methods based on vegetation indices and phenological features are still widely
applied. For example, the enhanced phenology-based vegetation index algorithm proposed by Zeng et al. (2022) achieved an
overall accuracy of 86.67% for coastal salt marshes along the Bohai Sea, while Sun et al. (2023) applied a time-series model
and phenological parameters to classify Jiangsu coastal salt marshes with an average overall accuracy of 84.8% (£5.5%).
Although these approaches are effective for short-term monitoring, they often struggle to capture complex spatial structures
and inter-annual dynamics fully.

With the advancement of remote sensing technology, research on wetland vegetation classification has gradually shifted from
traditional optical image-based methods to multi-source data fusion techniques. Synthetic Aperture Radar (SAR), with its all-
weather and all-time imaging capabilities, has become a key complement to optical imagery (Van Beijma et al., 2014; Veloso
et al., 2017). In recent years, researchers have attempted to integrate SAR and optical imagery to improve the accuracy of salt
marsh vegetation classification. For instance, Xu et al. (2025) integrated Sentinel-1 SAR and Sentinel-2 optical imagery to
classify wetland vegetation in the Yellow River Delta, China, achieving an overall accuracy of 93.51% and a Kappa coefficient
of 0.917. Similarly, Slagter et al. (2020) combined Sentinel-1 SAR and Sentinel-2 for multi-level wetland classification in the
St. Lucia Wetlands, South Africa, with an overall accuracy of 90.7%. At the same time, with the development of deep learning,
convolutional neural networks and attention mechanisms have been increasingly applied to wetland vegetation classification,
significantly improving spatial detail representation and cross-temporal feature extraction. For example, Sun et al. (2025)

employed a hybrid 2D-3D CNN to achieve an annual average classification accuracy exceeding 97% for Jiangsu coastal
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wetlands, and Li et al. (2021a) used a U-Net model to classify wetlands in South Carolina, USA, achieving a maximum
accuracy of 90%. Although these regional studies have achieved promising results, they mostly focus on single-date or short-
term analyses. Therefore, long-term, species-level wetland monitoring at a national scale remains limited, which is crucial for
coastal ecosystem management and wetland conservation.

In this study, we developed a novel phenology-guided coastal wetland vegetation classification network integrating Sentinel-
1/2 (P_SVCN) based on deep learning and employed it to generate the CCAV-10m dataset (https://doi.org/10.57760/sciencedb.
31077, Li et al., 2025), an annual spatiotemporal China’s coastal wetland vegetation dataset, 2016-2023. The P_SVCN model
integrates Sentinel-1 and Sentinel-2 imagery with in situ data, maintaining the sensitivity of SAR data to vegetation structure
and moisture while adaptively incorporating the spectral and phenological information from optical imagery. P_SVCN signif-
icantly improves classification accuracy, enabling species-level mapping of coastal wetland vegetation. CCAV-10m provides
a valuable spatiotemporal resource for long-term monitoring, ecological research, and sustainable management of China’s

coastal wetlands.

2 Study area

The Chinese coastline extends approximately 32,000 km, including 14,000 km of island coastlines, ranging from the Yalu
River estuary in northern Liaoning Province to the Beilun River estuary in southern Guangxi and Hainan Island (Gu et al.,
2021, 2025). This study focuses on eight coastal provinces and municipalities: Liaoning, Hebei, Tianjin, Shandong, Jiangsu,
Shanghai, Zhejiang, and Fujian, spanning 23°30'- 40°03’ N latitude and 115°50'— 124°22’ E longitude (Fig. 1). The study
area covers both temperate and subtropical climatic zones, supporting a diverse range of wetland vegetation types (Hu et al.,
2021). Wetland boundaries were delineated using the GLC_FCS30D dataset (Zhang et al., 2023b), with a 10 km buffer inland
and seaward from the coastline applied for analysis. Common wetland species include S. alterniflora, P. australis, T. chinensis,
Suaeda spp., S. mariqueter, and mangroves (Chen et al., 2022). S. alterniflora, native to the Americas, was introduced to China
in the 1990s and is now widespread in Jiangsu, Shanghai, Zhejiang, and Fujian, with scattered occurrences in Liaoning, Tianjin,
Hebei, and Shandong (Min et al., 2025; Chen et al., 2025). S. mariqueter occurs mainly in Shanghai, Jiangsu, and the Hangzhou
Bay area (Sun et al., 2025; Zheng et al., 2023), while T. chinensis and Suaeda spp. are concentrated in northern provinces (Sun
et al., 2021), and mangroves are restricted to the southern coast, reaching their northern limit in Yueqing, Zhejiang (Wei et al.,

2024).
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Figure 1. Location of the study area along the Chinese coastline, showing the extent of the coastal zone and the distribution of in situ

wetland sampling sites.
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3 Data and methods
3.1 Sentinel-1

We used multisource remote sensing data, including Sentinel-1 and Sentinel-2 imagery, to improve coastal vegetation clas-
sification (Zhao et al., 2024). Sentinel-1 Level-1 Ground Range Detected (GRD) data (Potin et al., 2015) at 10 m resolution
were preprocessed in SNAP following orbital correction, thermal noise removal, radiometric calibration, speckle filtering, and
terrain correction, with reflectivity converted from linear scale to decibels (dB) (Li et al., 2024b). A total of 8,018 scenes span-
ning January 2016 to December 2023 in China were composited annually using a mean function. These composites captured

regional climatic patterns while reducing tidal and seasonal variability in salt marsh vegetation.
3.2 Sentinel-2

Sentinel-2 imagery was selected according to key phenological stages of coastal vegetation, namely green and senescence
(Zhao et al., 2023). Across the study period, 320 scenes were processed in SNAP and ENVI, including resampling and band
fusion (Wang et al., 2024). For each phenophase, four spectral bands with the highest vegetation contrast—B02 (blue), BO3
(green), BO4 (red), and BOS8 (near-infrared)—were extracted, yielding eight optical channels (Bao et al., 2025). Normalized
Difference Vegetation Index (NDVI) maps were derived from red and near-infrared bands of both phenophases to capture
differences in vegetation status. All SAR and optical images were co-registered and resampled to a consistent 10 m resolution

to ensure data alignment and comparability.
3.3 Insitu data

We conducted field surveys and vegetation sampling across wetlands along the coast of China, between 2017 and 2018. High-
precision GPS (Trimble Juno 3D) and a DJI Phantom-4 RTK unmanned aerial vehicle were combined to systematically record
site information. Following a stratified sampling design, plots were established for six representative salt marsh vegetation
types: P. australis, S. alterniflora, Suaeda spp., T. chinensis, mangroves, and S. mariqueter. Each plot measured 10 x 10 m,
with a minimum distance of 100 m between adjacent plots to ensure spatial independence and representativeness. Within each
plot, three 0.5 x 0.5 m quadrats were randomly located. GPS coordinates of each quadrat were recorded with £5 m accuracy to
guarantee even spatial coverage across vegetation types. Plot locations were further verified and corrected using high-resolution
imagery from Google Earth to ensure consistency with actual vegetation distribution. To complement the field data, we also
compiled additional wetland vegetation validation points from the literature (Zhao et al., 2023; Li et al., 2021b; Sun, 2023).
In total, 2,665 ground truth points were collected (Fig. 1), comprising 948 S. alterniflora, 678 P. australis, 432 Suaeda spp.,
226 S. mariqueter, 263 mangrove, and 118 T. chinensis points. Experienced researchers then conducted visual interpretation and
manual labeling of additional points using Google Earth imagery, resulting in 2,072 S. alterniflora, 2,435 P. australis, 2,632
Suaeda spp., 2,901 S. mariqueter, 1,803 mangrove, and 1,050 T. chinensis points. Collected samples underwent systematic

quality control, producing a reliable dataset for training and validating remote sensing classification models.
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3.4 A phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/2 (P_SVCN)

In this study, we developed a phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/2
(P_SVCN) with a dual-branch multi-source attention mechanism for the fine-scale classification of coastal wetland vegeta-
tion along the Chinese coast. The training dataset was based on Sentinel-1 imagery from 2017-2018, including VV and VH
polarizations, along with three derived SAR features (SAR-Diff, SAR-NDVI, and SAR-SUM). Simultaneously, dual-phase
Sentinel-2 optical imagery was incorporated, extracting eight spectral bands (B02, B03, B04, and BOS at two phenological
phases) and their corresponding NDVT indices as input features. Vegetation types recorded at the sampled locations corre-
sponding to the imagery periods were used as ground truth for supervised training. The dataset was strictly split into training
(70%, 10,890 samples) and validation (30%, 4,668 samples) subsets. The trained model was then applied to classify coastal
wetland vegetation from 2016 to 2023 along the Chinese coast.

3.4.1 SAR feature construction from Sentinel-1

Sentinel-1 SAR imagery offers significant advantages for monitoring wetland vegetation, being highly sensitive to key vari-
ables such as total vegetation water content, canopy structure dynamics, and vegetation cover (Vreugdenhil et al., 2018; Zhang
et al., 2022a). With its all-weather, all-time radar observation capability, Sentinel-1 can reliably acquire data under diverse me-
teorological conditions, providing robust support for temporal analyses of vegetation dynamics (Simioni et al., 2020; Mleczko
and Mréz, 2018). The C-band radar signals can penetrate the canopy and effectively capture interactions between vegetation
and soil (Mao et al., 2023), making Sentinel-1 particularly suitable for long-term monitoring and dynamic studies of wetland
ecosystems (Yang and Guo, 2019; Zhang et al., 2021).

Backscatter coefficients in VV and VH polarization provide insight into vegetation—ground interactions (Vreugdenhil et al.,
2018; Mandal et al., 2020; Nikaein et al., 2021). Vegetated areas typically exhibit higher surface roughness than non-vegetated
regions, resulting in distinct backscatter differences, although VH polarization signals may be influenced by double-bounce
effects from soil surfaces (Veloso et al., 2017; Ferro et al., 2011). Based on these considerations, this study utilized VV and VH
single-polarization SAR data along with three derived indices—SAR_NDVI, SAR_SUM, and SAR_Diff—for the classification
of wetland vegetation types along China’s coastal.

SAR_NDVI quantifies normalized differences in backscatter coefficients between VV and VH polarization states, provid-
ing a reliable basis for distinguishing vegetation types (Veloso et al., 2017). SAR_Diff effectively suppresses double-bounce
effects from straw or surface structures, enhancing the ability to detect subtle differences between vegetation and soil, thereby
improving classification accuracy (Mahdianpari et al., 2020). SAR_SUM integrates the total backscatter intensity from both

VV and VH channels, offering a comprehensive representation of canopy and surface structure information (Li et al., 2024b).
3.4.2 Phenology-based spectral feature extraction from Sentinel-2

The dominant vegetation types in different climatic zones exhibit distinct phenological rhythms (Zhang et al., 2022b). In

temperate regions, vegetation growth is constrained by low temperatures and dormancy periods, resulting in a relatively con-



150

155

160

165

Earth System
Science

Data

https://doi.org/10.5194/essd-2025-741
Preprint. Discussion started: 4 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Open Access
suoIssnasIqg

centrated growing season (Luo et al., 2025), whereas in subtropical regions, the growing period is prolonged and phenological
transitions are relatively gradual. Using imagery acquired at a uniform time across the entire coastal zone would lead to
phenological mismatches among regions, thereby increasing spectral confusion and classification errors (Zeng et al., 2022).
Therefore, this study adopted a climate-zone—based strategy, selecting paired images corresponding to the green and senescence
stages within each zone to enhance the spectral separability among vegetation types. To fully leverage the spectral differences
of coastal wetland vegetation across phenological stages (Gao et al., 2023; Fu et al., 2025), dual-phase optical imagery was
selected based on the growth patterns of representative vegetation within each climatic zone.

The annual NDVI time series of dominant coastal vegetation types along the coast of China (Fig. 2) clearly reveal distinct
seasonal dynamics for each species. The temperate zone was defined as the area north of the Qinling—Huaihe line (approxi-
mately 33°N), where the mean January temperature is below 0 °C (Almond et al., 2009; Chen et al., 2013), primarily including
the coastal provinces of Liaoning, Tianjin, Hebei, Shandong, and northern Jiangsu. The North Subtropical zone extends from
the Qinling—Huaihe line southward to the northernmost mangrove distribution in Yueqing, Zhejiang (=28°21'N) (You et al.,
2022), covering southern Jiangsu, Shanghai, and northern Zhejiang. The Subtropical zone lies south of this boundary, encom-
passing southern Zhejiang and Fujian provinces. For the temperate, North Subtropical, and Subtropical regions, two key time
points (¢ and ¢3) corresponding to the peak growth and senescence stages were identified. Within each climatic zone, the
dual-phase selection was kept consistent to ensure uniform input features. For spectral feature construction, four key optical
bands—blue (B2), green (B3), red (B4), and near-infrared (B8)—were extracted for each pixel at both phenological stages,
and the Normalized Difference Vegetation Index (NDVI) was calculated from the red and near-infrared bands(Eq. 1). The

dual-phase optical bands and corresponding NDVI values were then combined into a spectral feature vector(Eq. 2).

NIR — Red
NDVI = —— ¢ (1)
NIR + Red

Fpeciral = [B2¢1,B341, B441,B841, NDV 111, B23, B33, B442, B8;2, NDV 5] 2
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Figure 2. Seasonal NDVI of dominant coastal wetland vegetation along the coast of China. (a) Temperate, (b) North Subtropical, and

(c) Subtropical zones. Distinct annual NDVI variations were observed among the main vegetation types (S. alterniflora, P. australis, Suaeda

spp., S. mariqueter, T. chinensis, and mangroves), which guided the dual-phase selection summarized in Tab 1.

Table 1. Dual-phase phenological information of wetland vegetation across different climatic zones along the coast of China.This table

summarizes the representative vegetation types, selected phenological phases, and the rationale for determining optimal dual-phase optical

imagery in temperate, north subtropical, and subtropical regions.

Climatic Zone Vegetation Types

Phase 1 (Green)

Phase 2 (Senescence)

Selection Rationale

Temperate (Liaoning,
S. alterniflora, P. australis,
Tianjin, Hebei,
Suaeda spp., T. chinensis
Shandong, Jiangsu)

North Subtropical
(Jiangsu, Shanghai, S. alterniflora, P. australis, S.
north of Yueqing, mariqueter, Suaeda spp.

Zhejiang)

Subtropical (Zhejiang,
. S. alterniflora, mangroves
Fujian)

Late May Early September
Early May Late September
Late July Late February

Late May: P. australis greening advanced
while S. alterniflora has not peaked; Early
September: S. alterniflora near peak and P.
australis declining. Maximizes phenological
contrast between P. australis and S.
alterniflora, and distinguishes T. chinensis (low
NDVI) from consistently low NDVI Suaeda
spp..

Early May: growth differences among S.
mariqueter, P. australis, and S. alterniflora are
pronounced; Late September: senescence
differentiates P. australis and S. alterniflora
Late July: S. alterniflora at peak,
distinguishable from evergreen mangroves;
Late February: S. alterniflora NDVI lowest,

clearly distinguishable from mangroves.
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3.4.3 Network framework of the P_SVCN

Coastal wetland vegetation often exhibits high spectral similarity, further complicated by tidal fluctuations, salinity gradients,
and seasonal phenology, which challenge accurate classification (Gao et al., 2023; Fu et al., 2025). To address this, we devel-
oped a phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/ (P_SVCN), which employs
a dual-branch multi-source attention fusion design to enhance feature representation (Fig. 3). One branch processes Sentinel-1
SAR bands and their derived indices, while the other handles Sentinel-2 optical bands and phenological features. Features from
both branches interact through the SAR-Optical Cross-Source (SOCS) Block. Let the output features of the SAR branch be
Fsar and those of the optical branch be Fopical, projected into query (@), key (K), and value (V) spaces as in Eq. (3):

Q=WqoFsar, K =WgFopica, V =Wy Foptica 3)

where Wq, Wi, Wy are learnable parameters. Scaled dot-product attention is then used to compute inter-source correlation
weights (Eq. (4)):

-
A = Softmax (Qj% ) “4)

These weights are applied to reweight the optical features, producing fused multi-source features (Eq. (5)):

Fcross:FSAR+A'V (5)

This mechanism retains the sensitivity of SAR to vegetation structure and water content, while adaptively incorporating
optical spectral and phenological information, thereby enhancing feature discriminability. By applying the attention fusion at
multiple hierarchical levels, P_SVCN dynamically adjusts the contribution of each source, effectively distinguishing vegetation
types with similar spectral properties but differing temporal and salinity—hydrology conditions.

To fully exploit the advantages of multiple attention mechanisms, the SAR-Optical Cross-Source (SOCS) block employs
three parallel attention operations along the channel dimension: window attention (WA), shifted window attention (SWA),

and long-range attention (LRA) (Song and Zhong, 2022). For an input feature map T; € RF*WxC

, the channels are evenly
split into K = 3 groups, each processed by one of the three attention mechanisms. Let the group feature dimensions be
W 2@ 20 satistying () + 2(2) 4 2() = C. Each group is input to its respective attention module, and the outputs are

concatenated along the channel dimension, forming the SOCS block output:

SOCS(T) = Convyx; (CAT(WA(;U(U), SWA(:E(Q)),LRA(QJ(B)))) ©6)

where WA(+), SWA(+), and LRA(-) denote window attention, shifted window attention, and long-range attention, respectively,

and CAT(-) represents channel-wise concatenation.
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Figure 3. Architecture of our proposed model, P_SVCN. The network has dual branches for Sentinel-1 SAR and dual-phase Sentinel-2
optical imagery. Each branch begins with a Head Block producing 72-channel features. Features pass through six SOCS blocks with window
attention, shifted window attention, and long-range attention, residual connections, and feature fusion. Fused features are pooled globally

and fed to a fully connected layer for classification, producing coastal wetland vegetation maps (2016-2023).
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3.4.4 Accuracy evaluation of P_SVCN

To evaluate the classification performance of the proposed P_SVCN, an independent accuracy assessment was conducted. All
samples were randomly divided into training and validation subsets in a strict 7:3 ratio to ensure a balanced representation of
vegetation classes, with 4,668 in situ data points used for model validation.

Model performance was evaluated using a confusion matrix, from which several widely adopted statistical metrics were de-
rived, including Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy (UA), F1-score, and the Kappa coefficient
(Morales-Barquero et al., 2019). Specifically, the Overall Accuracy (OA), representing the proportion of correctly classified
samples among all validation samples, was computed as shown in Eq. (7). The Producer’s Accuracy (PA) and User’s Accuracy
(UA), which quantify omission and commission errors for each class, respectively, were calculated according to Eq. (8). The
Fl-score, providing a harmonic mean of precision and recall for each class, was computed as in Eq. (9). Finally, the Kappa
coefficient, which evaluates the agreement between the classified and reference data beyond random chance, was calculated

following Eq. (10).

N
OA = NZz:# (7
> izt Zj:lnij

PAj= — " A= — (8)
N ’ N
2 =1 M 2 =1 i
PAi X UAl
Fl,=2x 1222
AN PA Y UA, )

o PePe Y, (Zé\; mj) <Z]1'V=1 ”jz‘) (10)

1—pe’ N «N 2
P (Zz’:l Zj:l nij)

To further validate the effectiveness of the multi-source attention fusion design, P_SVCN was compared with the Salt marsh

Vegetation Classification Network (SVCN) (Li et al., 2024b), a baseline model built upon MobileNet V3. Both models were
trained and validated using the same dataset and experimental settings to ensure a fair and reliable comparison. All accuracy
metrics were computed in a Python environment using the scikit-learn library. This validation framework provides a systematic
and objective basis for quantitatively assessing the advantages of the P_SVCN over single-source approaches in salt marsh

vegetation classification.
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4 Results
4.1 CCAV-10m dataset

We present the annual spatiotemporal China’s coastal wetland vegetation dataset at 10 m resolution (CCAV-10m), which
accurately captures the spatiotemporal dynamics of coastal wetland vegetation types along the coast of China from 2016 to
2023. The dataset has a spatial resolution of 10 m and represents the first publicly released annual time series of coastal wetland
vegetation in China. CCAV-10m distinguishes six representative coastal wetland vegetation types—S. alterniflora, P. australis,
Suaeda spp., S. mariqueter, mangroves, and T. chinensis—achieving species-level classification. Model validation shows a
high overall accuracy (OA) of 0.916 and a Kappa coefficient of 0.898, indicating stable and reliable identification across all
vegetation types.

In 2023, coastal wetlands in China covered a total area of 617,976.38 ha, comprising six dominant vegetation types: S.
alterniflora, P. australis, Suaeda spp., S. mariqueter, T. chinensis, and mangroves (Fig. 4). From 2016 to 2023, coastal wetland
vegetation exhibited pronounced interannual dynamics across China (Tab. 2), with Suaeda spp. as the dominant type, followed
by S. alterniflora, whose coverage is nearly equivalent to the combined extent of P. australis, mangroves, S. mariqueter, and
T. chinensis. S. alterniflora, as an invasive saltmarsh species, maintained a relatively stable area, fluctuating between 20,202 ha
and 25,918 ha, with occasional declines. Suaeda spp. showed a notable increasing trend, expanding from 24,436 ha in 2018
to 35,452 ha in 2023. P. australis exhibited considerable interannual variability, reaching its maximum of 22,893 ha in 2020,
then decreasing to 10,614 ha in 2023. T. chinensis and S. mariqueter occupied relatively smaller areas, although 7. chinensis
experienced localized expansion in 2020 and 2022. As a key component of coastal protection, mangroves increased from 4,894

ha in 2017 to 7,648 ha in 2023, showing an overall upward trend.
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Figure 4. Spatial distribution of coastal wetland vegetation in China and representative regional changes from 2016 to 2023. The
main map shows the distribution of dominant coastal wetland species across China in 2023. Insets illustrate the temporal changes in species
distribution for key coastal regions: (al, 2016) and (a2, 2023) represent the Yellow River Estuary; (b1, 2016) and (b2, 2023) represent the
Jiangsu coast; (cl, 2016) and (c2, 2023) represent the Yangtze River Estuary; (d1, 2016) and (d2, 2023) represent the Zhejiang coast; and
(el, 2016) and (e2, 2023) represent the Fujian coast.
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Table 2. Area of coastal wetland vegetation types in China from 2016 to 2023 (ha). The table summarizes annual changes for six
representative vegetation types (S. alterniflora, Suaeda spp., P. australis, T. chinensis, S. mariqueter, and mangroves), highlighting temporal

dynamics and trends over the eight years.

Vegetation Type 2016 2017 2018 2019 2020 2021 2022 2023

S. alterniflora 23218 25918 22855 20202 22952 20201 22970 22384

Suaeda spp. 30670 27149 24436 25819 28567 32087 27484 35452
P. australis 10711 11772 10171 16349 22893 15411 15233 10614
T. chinensis 1161 2063 1159 1320 3173 2502 3449 2085
S. mariqueter 3913 4046 3019 3551 2708 2923 2203 2270
mangroves 5320 4894 5293 6203 7898 7030 6630 7648

The transition matrices (Fig. 5) derived from the classification results of 2016, 2018, 2020, and 2023 indicate that the
dominant wetland vegetation types along the coast of China experienced substantial dynamics during this period. Overall,
transitions among S. alterniflora, Suaeda spp., and P. australis were the most frequent, whereas the distributions of 7. chinensis,
S. mariqueter, and mangroves remained relatively stable.

During 2016-2018, the primary transitions occurred from Suaeda spp. and P. australis to S. alterniflora, with transition
areas of approximately 830 ha (30.5%) and 2,800 ha (26.0%), respectively. The self-persistence of S. alterniflora was about
7,970 ha (56.6%), higher than that of other types, indicating that most patches maintained their type between the two periods.
In 2018-2020, these transitions intensified, with areas converting from Suaeda spp. and P. australis to S. alterniflora reaching
approximately 560 ha (17.0%) and 2,910 ha (23.5%), respectively, both higher than in the previous period. The net gain of
S. alterniflora during this interval was about 3,810 ha, representing the most pronounced expansion phase, consistent with its
large-scale colonization of the lower tidal flats. During 2020-2023, the overall transition rate decreased. The reverse transitions
from S. alterniflora to Suaeda spp. and P. australis were approximately 970 ha (8.2%) and 3,520 ha (29.6%), respectively,
while conversions from Suaeda spp. to S. alterniflora still accounted for 1,720 ha (25.1%), suggesting local replacement or
management interventions. The areas of change for mangroves and 7. chinensis were both less than 200 ha (<1%), remaining

concentrated in the southern estuarine regions.
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Figure 5. Sankey diagram showing the transitions among coastal wetland vegetation types in China from 2016 to 2023. The width of
each flow represents the area of vegetation conversion between consecutive years, highlighting dominant succession pathways and interannual

dynamics among S. alterniflora, Suaeda spp., P. australis, T. chinensis, S. mariqueter, and mangroves.

4.2 Performance evaluation of P_SVCN

We collected a total of 15,558 in situ data points across the China coastal wetlands, of which 4,668 were reserved for model
validation. To further evaluate the effectiveness of the proposed P_SVCN model, we compared its performance with the Salt
marsh Vegetation Classification Network (SVCN) (Li et al., 2024b) on the same validation dataset. As shown in Tab. 3,
P_SVCN outperformed SVCN across all vegetation classes. For S. alterniflora, P_SVCN achieved a producer’s accuracy
(PA) of 0.927, user’s accuracy (UA) of 0.882, and F1 score of 0.904, compared to 0.881, 0.820, and 0.849 for SVCN. For P.
australis, the corresponding values were 0.921, 0.880, and 0.900 for P_SVCN versus 0.876, 0.829, and 0.852 for SVCN. For
Suaeda spp., P_SVCN yielded a PA of 0.904, UA of 0.954, and F1 score of 0.928, higher than SVCN (PA = 0.851, UA =
0.920, F1 = 0.884). Similarly, S. mariqueter (P_SVCN: 0.937/0.953/0.945; SVCN: 0.902/0.927/0.914), mangroves (P_SVCN:
0.918/0.979/0.948; SVCN: 0.890/0.953/0.921), and T. chinensis (P_SVCN: 0.846/0.813/0.829; SVCN: 0.811/0.796/0.803) also
exhibited higher accuracy metrics under P_SVCN. The overall accuracy (OA) and Kappa coefficient for P_SVCN were 0.916
and 0.898, respectively, exceeding those of SVCN (OA = 0.874, Kappa = 0.845). These results indicate that the dual-branch

multi-source attention design of P_SVCN effectively enhances classification performance for coastal wetland vegetation types.
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Table 3. Comparison of classification accuracy between P_SVCN and SVCN for coastal wetland vegetation types. The upward arrow

(1) indicates that the P_SVCN’s metric values are comparatively higher, demonstrating the P_SVCN’s superior performance.

Vegetation Type P_SVCN (this study)T SVCN (Li et al., 2024b)
PAT UAT F17 PA UA F1

S. alterniflora 0.927 0.882 0.904 0.881 0.820 0.849
P. australis 0.921 0.880 0.900 0.876 0.829 0.852
Suaeda spp. 0.904 0.954 0.928 0.851 0.920 0.884
S. mariqueter 0.937 0.953 0.945 0.902 0.927 0.914
mangroves 0.918 0.979 0.948 0.890 0.953 0.921
T. chinensis 0.846 0.813 0.829 0.811 0.796 0.803
Overall Accuracy (OA) 0.916 0.874

Kappa 0.898 0.845

The detailed confusion matrices for the P_SVCN and SVCN models are presented in Fig. 6. Rows correspond to the ground

truth classes, and columns represent predicted classes. Diagonal entries indicate the number of correctly classified samples,

while off-diagonal elements reflect misclassifications. P_SVCN shows consistently higher per-class accuracy compared with

SVCN. The largest improvements are observed in Suaeda spp. and T. chinensis, which are often confused with neighboring

species in SVCN predictions. Misclassifications in both models mainly occur between spectrally or structurally similar vegeta-

tion types, such as S. alterniflora vs. P. australis. This highlights the advantage of P_SVCN’s multi-source feature integration,

which effectively captures both SAR structural information and optical phenology for improved discriminability.
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Figure 6. Comparison of confusion matrices for P_SVCN and SVCN on coastal wetland vegetation classification. The diagonal el-
ements indicate the percentage of correctly classified samples, while the off-diagonal elements represent the percentage of misclassified

samples.

S Discussion
5.1 The CCAV-10m dataset: Filling a critical gap in coastal wetland vegetation mapping

We introduce CCAV-10m, an annual 10m coastal wetland vegetation dataset generated using the P-SVCN model, which cap-
tures the spatial and temporal dynamics of China’s coastal wetland vegetation from 2016 to 2023. As the first publicly avail-
able national-scale, species-level coastal wetland dataset, CCAV-10m provides fine-resolution mapping of six representative
vegetation types—S. alterniflora, P. australis, Suaeda spp., S. mariqueter, mangroves, and T. chinensis. Model evaluation
demonstrates robust performance, with an overall accuracy of 0.916 and a Kappa coefficient of 0.898.

Compared with existing coastal wetland datasets (Table 4), CCAV-10m demonstrates significant advantages in terms of
spatial coverage, functional composition, and temporal continuity. First, regarding spatial coverage, CCAV-10m spans the
entire coastal zone of China, and its 10 m resolution enables precise delineation of complex intertidal vegetation mosaics. In
contrast, SaltMarshVegYRD (Zhang et al., 2021) is limited to the Yellow River Delta with a 30 m resolution, and CMSA (Li
et al., 2024a), although also at 10 m resolution, focuses solely on a single invasive species, failing to systematically represent
coastal vegetation patterns at the national scale. Second, in terms of functional composition, CCAV-10m provides species-level

refinement, differentiating six representative vegetation types along the Chinese coast: S. alterniflora, P. australis, Suaeda
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spp., S. mariqueter, mangroves, and T. chinensis. By comparison, CCSV(Zhao et al., 2023) classifies only broad salt marsh
categories, and CMSA focuses exclusively on the invasive species S. alterniflora, both lacking intra-community functional
differentiation. Finally, in the temporal dimension, CCAV-10m offers a continuous annual time series from 2016 to 2023,
enabling long-term and systematic monitoring of coastal wetland dynamics. In contrast, CCSV contains only a single epoch in
2020, and CMSA provides annual sequences but only for a single species.

CCAV-10m achieves multidimensional improvements in spatial coverage, functional composition, and temporal continuity.
It represents the first high-resolution coastal vegetation dataset in China with multi-species recognition and annual consistency,
providing unified and high-quality baseline data for studies on coastal ecosystem succession, invasive species spread, and blue

carbon assessment.

Table 4. Comparison of CCAV-10m with existing coastal wetland datasets.

) Spatial ) . Temporal
Dataset Spatial Coverage ) Functional Composition ) )
Resolution Dimension

S. alterniflora, P. australis,

CCAV-10m China’s Coastal Wetland 10 m Suaeda spp., S. mariqueter, 2016-2023

Ours

(Ours) mangroves, 1. chinensis
SaltMarshVegYRD Yellow River Delta 30m S. alterniflora, P. australis, 1999-2020
(Zhang et al., 2021) wetland Suaeda spp.

CcCesv China’s Coastal Wetland 10 m Salt marsh 2020
(Zhao et al., 2023)

CMSA China’s Coastal Wetland 10m S. alterniflora 2017-2021

(Li et al., 2024a)

5.2 Provincial-scale dynamics of China’s coastal wetland vegetation (2016—2023)

Coastal wetland vegetation exhibited clear provincial-scale differences in China from 2016 to 2023. In Liaoning Province,
the dominant vegetation types included S. alterniflora, Suaeda spp., and P. australis. Hebei, Shandong, and Tianjin showed
similar compositions, characterized mainly by S. alterniflora, Suaeda spp., and P. australis, with additional occurrences of T.
chinensis in specific areas. In Jiangsu Province, coastal wetlands were primarily dominated by S. alterniflora, Suaeda spp., and
P. australis. Shanghai featured a vegetation assemblage composed of S. alterniflora, S. mariqueter, and P. australis. In Zhejiang
Province, S. alterniflora and S. mariqueter were widely distributed, accompanied by patches of mangroves and P. australis.
Fujian Province, located at the southernmost part of the study area, was characterized by extensive mangrove ecosystems, with

additional distributions of S. alterniflora and P. australis.
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Coastal wetlands showed clear provincial differences in area and species composition. Jiangsu, Shandong, and Zhejiang had
the largest wetland areas, followed by Fujian, Liaoning, and Shanghai, while Hebei and Tianjin were smaller. S. alterniflora and
P. australis dominated most provinces, with Suaeda spp., T. chinensis, S. mariqueter, and mangroves restricted but ecologically
important. In Liaoning, wetlands were stable, dominated by P. australis (450-530 ha) and S. alterniflora (450-9,030 ha). Tian-
jin had scattered wetlands (400-780 ha) with alternating dominance of P. australis and Suaeda spp.. Hebei showed pronounced
species dynamics, with S. alterniflora stable (1,320-2,420 ha) and P. australis increasing from 2,870 to 3,730 ha. Shandong
experienced significant changes, P. australis rising from 3,910 to 7,120 ha, reflecting Spartina control effects. Jiangsu, the
largest coastal wetland province, had over 60% combined S. alterniflora and P. australis, with P. australis slightly increasing
from 3,740 to 4,710 ha. In Shanghai, wetlands shrank from 1,300 to 970 ha, while S. mariqueter partially recovered post-2021.
Zhejiang’s wetlands alternated between S. alterniflora and P. australis (2,990-5,240 ha), and S. mariqueter remained stable
(2,110-4,210 ha). Fujian’s wetlands were relatively stable (2,290-3,850 ha), dominated by S. alterniflora. Coastal wetlands
exhibited clear provincial differences, with S. alterniflora and P. australis dominating most regions, while Suaeda spp., T.
chinensis, S. mariqueter, and mangroves were more restricted in distribution yet remained ecologically significant, reflecting

localized dynamic adjustments within a generally stable vegetation structure.
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Figure 7. Temporal dynamics of wetland vegetation area in eight Chinese coastal provinces from 2016 to 2023. (a) Liaoning, (b)
Tianjin, (c) Hebei, (d) Shandong, (e) Jiangsu, (f) Shanghai, (g) Zhejiang, and (h) Fujian.

5.3 Uncertainty analysis of the CCAV-10m dataset

Despite the high overall classification accuracy of the CCAV-10m dataset (OA = 0.916), certain uncertainties remain (Tab. 5).
To quantitatively evaluate potential sources of error, we conducted ablation experiments comparing three input configurations:

Sentinel-1 only (S1), Sentinel-2 only (S2, dual-temporal composite), and the S1+S2 fusion mode. The overall accuracies were
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0.895, 0.870, and 0.916, respectively, indicating significant complementarity between radar and optical information in intertidal
wetland vegetation identification.

From the classification results, the S1-only configuration slightly outperformed S2 in most vegetation types, particularly in
the discrimination of S. alterniflora and P. australis. Sentinel-1 C-band SAR captures canopy structure, surface roughness, and
moisture scattering features (Zhang et al., 2022a; Mleczko and Mréz, 2018; Rajngewerc et al., 2022), which are less sensitive to
optical disturbances caused by turbid water and cloudy conditions, thus providing advantages in identifying structurally distinct
vegetation. In contrast, the S2-only configuration, although leveraging dual-temporal imagery to enhance spectral temporal
information, is affected by surface albedo variations and spectral mixing in intertidal zones (Feng et al., 2022), resulting
in misclassifications between spectrally similar types such as Suaeda spp. and T. chinensis. The S1+S2 fusion significantly
improved per-class producer’s accuracy (PA) and user’s accuracy (UA), effectively mitigating the limitations of single data
sources. The structural and moisture information from SAR complements the spectral and vegetation index features from
optical imagery, enabling stable model performance across different tidal stages and climatic conditions, particularly enhancing
the separability of Suaeda spp. and T. chinensis.

Nevertheless, residual uncertainties persist. First, 7. chinensis and Suaeda spp. are often interspersed in the upper wet-
land, with similar temporal and phenological characteristics (Gao et al., 2015; Jiao et al., 2021; Wu et al., 2020), making
complete discrimination challenging even under multi-source fusion. Second, Scirpus mariqueter has a narrow and highly
patchy distribution (Gu et al., 2021), which may result in omission errors under 10 m resolution. Future studies could integrate
higher-resolution SAR data (e.g., TerraSAR-X, GF-3) and phenology-based temporal compositing strategies to further reduce

classification uncertainty and enhance spatiotemporal consistency.

Table 5. Comparison of producer’s accuracy (PA) and user’s accuracy (UA) for different input configurations: Sentinel-1 (S1),
Sentinel-2 (S2, dual-temporal), and S1+S2 fusion. The upward arrow (7) indicates that the S1+S2 configuration achieves comparatively

higher metric values, demonstrating its superior performance.

Class PA (S1) PA(S2) PA(S1+S2)T UA(S1) UA(S2) UA (S14S2)7
S. alterniflora 0.913 0.887 0.927 0.859 0.879 0.882

P. australis 0.898 0.868 0.921 0.853 0.857 0.880
Suaeda spp. 0.883 0.852 0.904 0.939 0.842 0.954

S. mariqueter 0.924 0.901 0.937 0.943 0.891 0.953
Mangroves 0.891 0.851 0.918 0.975 0.837 0.979

T. chinensis 0.800 0.762 0.846 0.747 0.782 0.813
Overall Accuracy (OA) 0.895 0.870 0.916 - - -
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6 Conclusions

This study developed a phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/ (P_SVCN)
and generated the CCAV-10m dataset, which maps the coastal wetland vegetation types in China from 2016 to 2023. By inte-
grating multi-source Sentinel-1 SAR and Sentinel-2 MSI data, the P_SVCN fully exploits structural and phenological features,
enabling accurate discrimination of spectrally similar and spatially fragmented vegetation types. The results are summarized
as follows:

(1) A long-term, high-resolution species-level vegetation dataset (CCAV-10m).The dataset provides annual species-level
maps of coastal wetland vegetation at a spatial resolution of 10 m, distinguishing six dominant plant types. Spatiotempo-
ral analysis shows that Suaeda spp. is the predominant vegetation type, followed by S. alterniflora, whose coverage nearly
matches the combined extent of P. australis, mangroves, S. mariqueter, and T. chinensis. Further temporal assessments reveal
pronounced community succession in recent years, including the continued expansion of S. alterniflora and Suaeda spp., fluc-
tuating patterns in P. australis, and a steady increase in mangrove extent. Transition matrices indicate that conversions among S.
alterniflora, Suaeda spp., and P. australis occurs most frequently, reflecting the dynamic responses of coastal wetland ecosys-
tems to natural processes and human activities.

(2) A novel phenology-guided deep-learning framework (P_SVCN). The P_SVCN model exhibits strong classification per-
formance, achieving an overall accuracy of 0.916 and a Kappa coefficient of 0.898 based on validation with 4,668 in situ
samples. These results exceed those of the baseline SVCN model (overall accuracy 0.874, Kappa 0.845). Ablation experiments
further demonstrate the complementary strengths of Sentinel-1 synthetic aperture radar and Sentinel-2 optical observations,
particularly in distinguishing vegetation types with highly similar spectral properties or fragmented spatial patterns.

CCAV-10m effectively bridges the gap between coarse-resolution ecosystem maps and single-species products by balanc-
ing species-level classification accuracy and large-scale spatial coverage. The dataset provides high-precision spatiotemporal
information for monitoring vegetation succession, assessing invasive species, estimating blue carbon stocks, and supporting
ecological restoration planning. Moreover, it offers a robust foundation for sustainable coastal ecosystem management un-
der global environmental change. The CCAV-10m dataset is publicly available at https://doi.org/10.57760/sciencedb.31077,

supporting reproducibility and further applications in related research.

Data availability. The Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral data used in this study are available from
the Copernicus Open Access Hub (https://scihub.copernicus.eu, last access: 21 October 2025) under the Copernicus open data policy. The
species-level coastal wetland vegetation dataset, CCAV-10m, produced in this study is publicly available at the Science Data Bank (https://doi.
org/10.57760/sciencedb.31077, Li et al., 2025). Validation samples comprising 84% of the total dataset are provided in the file “Vegetation
samples.xIsx”” within the same repository; these samples cover all vegetation classes and major coastal regions and were derived from field
surveys, visual interpretation, and public reference sources. The remaining 16% of the field sampling data are not publicly released but can

be obtained upon a reasonable scientific request to the authors.
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