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Abstract. Coastal wetland vegetation plays a vital role in shoreline protection and ecosystem management, highlighting the

need for accurate and high-resolution mapping of these unique and vulnerable habitats. Here, we present CCAV-10m, the first

publicly available annual species-level coastal wetland dataset for China at 10 m resolution (2016–2023). This dataset was gen-

erated using a novel phenology-guided coastal wetland vegetation classification network (P_SVCN), which integrates Sentinel-

1/2 satellite imagery with extensive in situ observations. Validation based on 4,668 in situ samples confirms that P_SVCN deliv-5

ers strong classification performance, achieving an overall accuracy of 0.916 and a Kappa coefficient of 0.898. Spatiotemporal

analysis of CCAV-10m reveals that Suaeda spp. is the dominant vegetation type, followed by S. alterniflora, whose coverage

nearly equals the combined extent of P. australis, mangroves, S. mariqueter, and T. chinensis. Notably, this work fills critical

gaps in both spatial detail and temporal consistency across existing coastal wetland datasets, demonstrating the effectiveness

of deep-learning-based fusion of optical and SAR data for high-resolution vegetation mapping. Regular updates to CCAV-10m10

will support long-term coastal wetland research, enhance invasive species monitoring, and inform wetland restoration and pre-

cision management efforts. The CCAV-10m dataset is openly accessible at https://doi.org/10.57760/sciencedb.31077 (Li et al.,

2025).

1 Introduction

Coastal wetlands are complex ecosystems distributed along the land–sea transition zone, influenced jointly by tidal dynamics15

and salinity gradients, and mainly comprise salt marshes, mangroves, tidal flats, and brackish wetland forests (Day et al., 2024;

Bernhardt, 2022; Moreno-Mateos et al., 2012). Tropical mangroves cover approximately 150,000 km2, while temperate tidal

marshes exceed 45,000 km2 (Webb et al., 2013; Luther and Greenberg, 2009), together forming one of the most productive

and carbon-rich ecosystems on earth (Macreadie et al., 2019; Bertram et al., 2021). Coastal wetlands function not only as

geochemical “sinks” but also as highly effective “green filters” that intercept and remove land-derived pollutants (Sun et al.,20

2015; Zhang et al., 2022c). Their ecosystem service value can reach up to US$194,000 per hectare per year, encompassing

carbon sequestration and greenhouse gas regulation, coastal protection, fisheries support, water purification, and biodiversity
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maintenance (Gabler et al., 2017; Schuerch et al., 2018; Costanza et al., 2014; Duarte et al., 2013; Aburto-Oropeza et al., 2008).

China’s coastal wetlands represent a key component of its national blue carbon ecosystems, spanning tropical, subtropical, and

temperate climate zones (Cao and Wong, 2007; Sun et al., 2015; Wang et al., 2021). Their broad distribution and substantial25

carbon sequestration capacity place them at the core of China’s blue carbon strategy (Gu et al., 2025). Dominant vegetation

types in Chinese coastal wetlands include S. alterniflora, P. australis, T. chinensis, Suaeda spp., S. mariqueter, and mangroves

(Gu et al., 2021). Among these, S. alterniflora, introduced in the 1990s, has rapidly expanded across Jiangsu, Shanghai, Zhe-

jiang, and Fujian, with scattered occurrences in Liaoning, Tianjin, Hebei, and Shandong (Min et al., 2025; Chen et al., 2025).

In many East Asian countries, biological invasions, tidal flat reclamation, and wetland restoration occur simultaneously; thus,30

timely and fine-scale species-level monitoring is crucial for tracking invasion dynamics, evaluating restoration outcomes, and

supporting biodiversity conservation and sustainable coastal management (Tian et al., 2020; Sun et al., 2023).

Coastal wetlands are composed of herbaceous plants, grasses, and low-stature shrubs that are adapted to regular or occasional

tidal inundation (Kumar and Sinha, 2014). Due to the inherent complexity of vegetation, tidal dynamics, and anthropogenic

disturbances, mapping of coastal wetlands remains challenging (Zhao et al., 2023). To date, a variety of remote sensing data35

sources have been widely applied to monitor coastal wetland vegetation. In multispectral optical imagery, medium- to low-

resolution datasets such as MODIS and AVHRR offer high temporal resolution (Gallo et al., 2005; Zhang et al., 2023a), which

makes them suitable for wetland information extraction; however, their spatial resolution is insufficient for vegetation species-

level classification (Takeuchi et al., 2003; Zhang et al., 2019). High-resolution optical imagery also plays an important role in

wetland vegetation classification, but it is limited by cloud cover and atmospheric effects (Kang et al., 2023; O’Connell et al.,40

2017). Moreover, traditional remote sensing methods based on vegetation indices and phenological features are still widely

applied. For example, the enhanced phenology-based vegetation index algorithm proposed by Zeng et al. (2022) achieved an

overall accuracy of 86.67% for coastal salt marshes along the Bohai Sea, while Sun et al. (2023) applied a time-series model

and phenological parameters to classify Jiangsu coastal salt marshes with an average overall accuracy of 84.8% (±5.5%).

Although these approaches are effective for short-term monitoring, they often struggle to capture complex spatial structures45

and inter-annual dynamics fully.

With the advancement of remote sensing technology, research on wetland vegetation classification has gradually shifted from

traditional optical image-based methods to multi-source data fusion techniques. Synthetic Aperture Radar (SAR), with its all-

weather and all-time imaging capabilities, has become a key complement to optical imagery (Van Beijma et al., 2014; Veloso

et al., 2017). In recent years, researchers have attempted to integrate SAR and optical imagery to improve the accuracy of salt50

marsh vegetation classification. For instance, Xu et al. (2025) integrated Sentinel-1 SAR and Sentinel-2 optical imagery to

classify wetland vegetation in the Yellow River Delta, China, achieving an overall accuracy of 93.51% and a Kappa coefficient

of 0.917. Similarly, Slagter et al. (2020) combined Sentinel-1 SAR and Sentinel-2 for multi-level wetland classification in the

St. Lucia Wetlands, South Africa, with an overall accuracy of 90.7%. At the same time, with the development of deep learning,

convolutional neural networks and attention mechanisms have been increasingly applied to wetland vegetation classification,55

significantly improving spatial detail representation and cross-temporal feature extraction. For example, Sun et al. (2025)

employed a hybrid 2D–3D CNN to achieve an annual average classification accuracy exceeding 97% for Jiangsu coastal
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wetlands, and Li et al. (2021a) used a U-Net model to classify wetlands in South Carolina, USA, achieving a maximum

accuracy of 90%. Although these regional studies have achieved promising results, they mostly focus on single-date or short-

term analyses. Therefore, long-term, species-level wetland monitoring at a national scale remains limited, which is crucial for60

coastal ecosystem management and wetland conservation.

In this study, we developed a novel phenology-guided coastal wetland vegetation classification network integrating Sentinel-

1/2 (P_SVCN) based on deep learning and employed it to generate the CCAV-10m dataset (https://doi.org/10.57760/sciencedb.

31077, Li et al., 2025), an annual spatiotemporal China’s coastal wetland vegetation dataset, 2016–2023. The P_SVCN model

integrates Sentinel-1 and Sentinel-2 imagery with in situ data, maintaining the sensitivity of SAR data to vegetation structure65

and moisture while adaptively incorporating the spectral and phenological information from optical imagery. P_SVCN signif-

icantly improves classification accuracy, enabling species-level mapping of coastal wetland vegetation. CCAV-10m provides

a valuable spatiotemporal resource for long-term monitoring, ecological research, and sustainable management of China’s

coastal wetlands.

2 Study area70

The Chinese coastline extends approximately 32,000 km, including 14,000 km of island coastlines, ranging from the Yalu

River estuary in northern Liaoning Province to the Beilun River estuary in southern Guangxi and Hainan Island (Gu et al.,

2021, 2025). This study focuses on eight coastal provinces and municipalities: Liaoning, Hebei, Tianjin, Shandong, Jiangsu,

Shanghai, Zhejiang, and Fujian, spanning 23◦30′– 40◦03′ N latitude and 115◦50′– 124◦22′ E longitude (Fig. 1). The study

area covers both temperate and subtropical climatic zones, supporting a diverse range of wetland vegetation types (Hu et al.,75

2021). Wetland boundaries were delineated using the GLC_FCS30D dataset (Zhang et al., 2023b), with a 10 km buffer inland

and seaward from the coastline applied for analysis. Common wetland species include S. alterniflora, P. australis, T. chinensis,

Suaeda spp., S. mariqueter, and mangroves (Chen et al., 2022). S. alterniflora, native to the Americas, was introduced to China

in the 1990s and is now widespread in Jiangsu, Shanghai, Zhejiang, and Fujian, with scattered occurrences in Liaoning, Tianjin,

Hebei, and Shandong (Min et al., 2025; Chen et al., 2025). S. mariqueter occurs mainly in Shanghai, Jiangsu, and the Hangzhou80

Bay area (Sun et al., 2025; Zheng et al., 2023), while T. chinensis and Suaeda spp. are concentrated in northern provinces (Sun

et al., 2021), and mangroves are restricted to the southern coast, reaching their northern limit in Yueqing, Zhejiang (Wei et al.,

2024).
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Figure 1. Location of the study area along the Chinese coastline, showing the extent of the coastal zone and the distribution of in situ

wetland sampling sites.
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3 Data and methods

3.1 Sentinel-185

We used multisource remote sensing data, including Sentinel-1 and Sentinel-2 imagery, to improve coastal vegetation clas-

sification (Zhao et al., 2024). Sentinel-1 Level-1 Ground Range Detected (GRD) data (Potin et al., 2015) at 10 m resolution

were preprocessed in SNAP following orbital correction, thermal noise removal, radiometric calibration, speckle filtering, and

terrain correction, with reflectivity converted from linear scale to decibels (dB) (Li et al., 2024b). A total of 8,018 scenes span-

ning January 2016 to December 2023 in China were composited annually using a mean function. These composites captured90

regional climatic patterns while reducing tidal and seasonal variability in salt marsh vegetation.

3.2 Sentinel-2

Sentinel-2 imagery was selected according to key phenological stages of coastal vegetation, namely green and senescence

(Zhao et al., 2023). Across the study period, 320 scenes were processed in SNAP and ENVI, including resampling and band

fusion (Wang et al., 2024). For each phenophase, four spectral bands with the highest vegetation contrast—B02 (blue), B0395

(green), B04 (red), and B08 (near-infrared)—were extracted, yielding eight optical channels (Bao et al., 2025). Normalized

Difference Vegetation Index (NDVI) maps were derived from red and near-infrared bands of both phenophases to capture

differences in vegetation status. All SAR and optical images were co-registered and resampled to a consistent 10 m resolution

to ensure data alignment and comparability.

3.3 In situ data100

We conducted field surveys and vegetation sampling across wetlands along the coast of China, between 2017 and 2018. High-

precision GPS (Trimble Juno 3D) and a DJI Phantom-4 RTK unmanned aerial vehicle were combined to systematically record

site information. Following a stratified sampling design, plots were established for six representative salt marsh vegetation

types: P. australis, S. alterniflora, Suaeda spp., T. chinensis, mangroves, and S. mariqueter. Each plot measured 10 × 10 m,

with a minimum distance of 100 m between adjacent plots to ensure spatial independence and representativeness. Within each105

plot, three 0.5 × 0.5 m quadrats were randomly located. GPS coordinates of each quadrat were recorded with±5 m accuracy to

guarantee even spatial coverage across vegetation types. Plot locations were further verified and corrected using high-resolution

imagery from Google Earth to ensure consistency with actual vegetation distribution. To complement the field data, we also

compiled additional wetland vegetation validation points from the literature (Zhao et al., 2023; Li et al., 2021b; Sun, 2023).

In total, 2,665 ground truth points were collected (Fig. 1), comprising 948 S. alterniflora, 678 P. australis, 432 Suaeda spp.,110

226 S. mariqueter, 263 mangrove, and 118 T. chinensis points. Experienced researchers then conducted visual interpretation and

manual labeling of additional points using Google Earth imagery, resulting in 2,072 S. alterniflora, 2,435 P. australis, 2,632

Suaeda spp., 2,901 S. mariqueter, 1,803 mangrove, and 1,050 T. chinensis points. Collected samples underwent systematic

quality control, producing a reliable dataset for training and validating remote sensing classification models.
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3.4 A phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/2 (P_SVCN)115

In this study, we developed a phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/2

(P_SVCN) with a dual-branch multi-source attention mechanism for the fine-scale classification of coastal wetland vegeta-

tion along the Chinese coast. The training dataset was based on Sentinel-1 imagery from 2017–2018, including VV and VH

polarizations, along with three derived SAR features (SAR-Diff, SAR-NDVI, and SAR-SUM). Simultaneously, dual-phase

Sentinel-2 optical imagery was incorporated, extracting eight spectral bands (B02, B03, B04, and B08 at two phenological120

phases) and their corresponding NDVI indices as input features. Vegetation types recorded at the sampled locations corre-

sponding to the imagery periods were used as ground truth for supervised training. The dataset was strictly split into training

(70%, 10,890 samples) and validation (30%, 4,668 samples) subsets. The trained model was then applied to classify coastal

wetland vegetation from 2016 to 2023 along the Chinese coast.

3.4.1 SAR feature construction from Sentinel-1125

Sentinel-1 SAR imagery offers significant advantages for monitoring wetland vegetation, being highly sensitive to key vari-

ables such as total vegetation water content, canopy structure dynamics, and vegetation cover (Vreugdenhil et al., 2018; Zhang

et al., 2022a). With its all-weather, all-time radar observation capability, Sentinel-1 can reliably acquire data under diverse me-

teorological conditions, providing robust support for temporal analyses of vegetation dynamics (Simioni et al., 2020; Mleczko

and Mróz, 2018). The C-band radar signals can penetrate the canopy and effectively capture interactions between vegetation130

and soil (Mao et al., 2023), making Sentinel-1 particularly suitable for long-term monitoring and dynamic studies of wetland

ecosystems (Yang and Guo, 2019; Zhang et al., 2021).

Backscatter coefficients in VV and VH polarization provide insight into vegetation–ground interactions (Vreugdenhil et al.,

2018; Mandal et al., 2020; Nikaein et al., 2021). Vegetated areas typically exhibit higher surface roughness than non-vegetated

regions, resulting in distinct backscatter differences, although VH polarization signals may be influenced by double-bounce135

effects from soil surfaces (Veloso et al., 2017; Ferro et al., 2011). Based on these considerations, this study utilized VV and VH

single-polarization SAR data along with three derived indices—SAR_NDVI, SAR_SUM, and SAR_Diff—for the classification

of wetland vegetation types along China’s coastal.

SAR_NDVI quantifies normalized differences in backscatter coefficients between VV and VH polarization states, provid-

ing a reliable basis for distinguishing vegetation types (Veloso et al., 2017). SAR_Diff effectively suppresses double-bounce140

effects from straw or surface structures, enhancing the ability to detect subtle differences between vegetation and soil, thereby

improving classification accuracy (Mahdianpari et al., 2020). SAR_SUM integrates the total backscatter intensity from both

VV and VH channels, offering a comprehensive representation of canopy and surface structure information (Li et al., 2024b).

3.4.2 Phenology-based spectral feature extraction from Sentinel-2

The dominant vegetation types in different climatic zones exhibit distinct phenological rhythms (Zhang et al., 2022b). In145

temperate regions, vegetation growth is constrained by low temperatures and dormancy periods, resulting in a relatively con-
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centrated growing season (Luo et al., 2025), whereas in subtropical regions, the growing period is prolonged and phenological

transitions are relatively gradual. Using imagery acquired at a uniform time across the entire coastal zone would lead to

phenological mismatches among regions, thereby increasing spectral confusion and classification errors (Zeng et al., 2022).

Therefore, this study adopted a climate-zone–based strategy, selecting paired images corresponding to the green and senescence150

stages within each zone to enhance the spectral separability among vegetation types. To fully leverage the spectral differences

of coastal wetland vegetation across phenological stages (Gao et al., 2023; Fu et al., 2025), dual-phase optical imagery was

selected based on the growth patterns of representative vegetation within each climatic zone.

The annual NDVI time series of dominant coastal vegetation types along the coast of China (Fig. 2) clearly reveal distinct

seasonal dynamics for each species. The temperate zone was defined as the area north of the Qinling–Huaihe line (approxi-155

mately 33°N), where the mean January temperature is below 0 °C (Almond et al., 2009; Chen et al., 2013), primarily including

the coastal provinces of Liaoning, Tianjin, Hebei, Shandong, and northern Jiangsu. The North Subtropical zone extends from

the Qinling–Huaihe line southward to the northernmost mangrove distribution in Yueqing, Zhejiang (≈28°21′N) (You et al.,

2022), covering southern Jiangsu, Shanghai, and northern Zhejiang. The Subtropical zone lies south of this boundary, encom-

passing southern Zhejiang and Fujian provinces. For the temperate, North Subtropical, and Subtropical regions, two key time160

points (t1 and t2) corresponding to the peak growth and senescence stages were identified. Within each climatic zone, the

dual-phase selection was kept consistent to ensure uniform input features. For spectral feature construction, four key optical

bands—blue (B2), green (B3), red (B4), and near-infrared (B8)—were extracted for each pixel at both phenological stages,

and the Normalized Difference Vegetation Index (NDVI) was calculated from the red and near-infrared bands(Eq. 1). The

dual-phase optical bands and corresponding NDVI values were then combined into a spectral feature vector(Eq. 2).165

NDVI =
NIR−Red
NIR + Red

(1)

Fspectral = [B2t1,B3t1,B4t1,B8t1,NDV It1,B2t2,B3t2,B4t2,B8t2,NDV It2] (2)
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Figure 2. Seasonal NDVI of dominant coastal wetland vegetation along the coast of China. (a) Temperate, (b) North Subtropical, and

(c) Subtropical zones. Distinct annual NDVI variations were observed among the main vegetation types (S. alterniflora, P. australis, Suaeda

spp., S. mariqueter, T. chinensis, and mangroves), which guided the dual-phase selection summarized in Tab 1.

Table 1. Dual-phase phenological information of wetland vegetation across different climatic zones along the coast of China.This table

summarizes the representative vegetation types, selected phenological phases, and the rationale for determining optimal dual-phase optical

imagery in temperate, north subtropical, and subtropical regions.

Climatic Zone Vegetation Types Phase 1 (Green) Phase 2 (Senescence) Selection Rationale

Temperate (Liaoning,

Tianjin, Hebei,

Shandong, Jiangsu)

S. alterniflora, P. australis,

Suaeda spp., T. chinensis
Late May Early September

Late May: P. australis greening advanced

while S. alterniflora has not peaked; Early

September: S. alterniflora near peak and P.

australis declining. Maximizes phenological

contrast between P. australis and S.

alterniflora, and distinguishes T. chinensis (low

NDVI) from consistently low NDVI Suaeda

spp..

North Subtropical

(Jiangsu, Shanghai,

north of Yueqing,

Zhejiang)

S. alterniflora, P. australis, S.

mariqueter, Suaeda spp.
Early May Late September

Early May: growth differences among S.

mariqueter, P. australis, and S. alterniflora are

pronounced; Late September: senescence

differentiates P. australis and S. alterniflora

Subtropical (Zhejiang,

Fujian)
S. alterniflora, mangroves Late July Late February

Late July: S. alterniflora at peak,

distinguishable from evergreen mangroves;

Late February: S. alterniflora NDVI lowest,

clearly distinguishable from mangroves.
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3.4.3 Network framework of the P_SVCN

Coastal wetland vegetation often exhibits high spectral similarity, further complicated by tidal fluctuations, salinity gradients,

and seasonal phenology, which challenge accurate classification (Gao et al., 2023; Fu et al., 2025). To address this, we devel-170

oped a phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/ (P_SVCN), which employs

a dual-branch multi-source attention fusion design to enhance feature representation (Fig. 3). One branch processes Sentinel-1

SAR bands and their derived indices, while the other handles Sentinel-2 optical bands and phenological features. Features from

both branches interact through the SAR–Optical Cross-Source (SOCS) Block. Let the output features of the SAR branch be

FSAR and those of the optical branch be FOptical, projected into query (Q), key (K), and value (V ) spaces as in Eq. (3):175

Q = WQFSAR, K = WKFOptical, V = WV FOptical (3)

where WQ,WK ,WV are learnable parameters. Scaled dot-product attention is then used to compute inter-source correlation

weights (Eq. (4)):

A = Softmax
(

QK⊤
√

d

)
(4)

These weights are applied to reweight the optical features, producing fused multi-source features (Eq. (5)):180

Fcross = FSAR + A ·V (5)

This mechanism retains the sensitivity of SAR to vegetation structure and water content, while adaptively incorporating

optical spectral and phenological information, thereby enhancing feature discriminability. By applying the attention fusion at

multiple hierarchical levels, P_SVCN dynamically adjusts the contribution of each source, effectively distinguishing vegetation

types with similar spectral properties but differing temporal and salinity–hydrology conditions.185

To fully exploit the advantages of multiple attention mechanisms, the SAR–Optical Cross-Source (SOCS) block employs

three parallel attention operations along the channel dimension: window attention (WA), shifted window attention (SWA),

and long-range attention (LRA) (Song and Zhong, 2022). For an input feature map Ti ∈ RH×W×C , the channels are evenly

split into K = 3 groups, each processed by one of the three attention mechanisms. Let the group feature dimensions be

x(1),x(2),x(3), satisfying x(1) + x(2) + x(3) = C. Each group is input to its respective attention module, and the outputs are190

concatenated along the channel dimension, forming the SOCS block output:

SOCS(Ti) = Conv1×1

(
CAT

(
WA(x(1)),SWA(x(2)),LRA(x(3))

))
(6)

where WA(·), SWA(·), and LRA(·) denote window attention, shifted window attention, and long-range attention, respectively,

and CAT(·) represents channel-wise concatenation.195
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Figure 3. Architecture of our proposed model, P_SVCN. The network has dual branches for Sentinel-1 SAR and dual-phase Sentinel-2

optical imagery. Each branch begins with a Head Block producing 72-channel features. Features pass through six SOCS blocks with window

attention, shifted window attention, and long-range attention, residual connections, and feature fusion. Fused features are pooled globally

and fed to a fully connected layer for classification, producing coastal wetland vegetation maps (2016–2023).
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3.4.4 Accuracy evaluation of P_SVCN

To evaluate the classification performance of the proposed P_SVCN, an independent accuracy assessment was conducted. All

samples were randomly divided into training and validation subsets in a strict 7:3 ratio to ensure a balanced representation of

vegetation classes, with 4,668 in situ data points used for model validation.

Model performance was evaluated using a confusion matrix, from which several widely adopted statistical metrics were de-200

rived, including Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy (UA), F1-score, and the Kappa coefficient

(Morales-Barquero et al., 2019). Specifically, the Overall Accuracy (OA), representing the proportion of correctly classified

samples among all validation samples, was computed as shown in Eq. (7). The Producer’s Accuracy (PA) and User’s Accuracy

(UA), which quantify omission and commission errors for each class, respectively, were calculated according to Eq. (8). The

F1-score, providing a harmonic mean of precision and recall for each class, was computed as in Eq. (9). Finally, the Kappa205

coefficient, which evaluates the agreement between the classified and reference data beyond random chance, was calculated

following Eq. (10).

OA =
∑N

i=1 nii∑N
i=1

∑N
j=1 nij

(7)

PAi =
nii∑N

j=1 nij

, UAi =
nii∑N

j=1 nji

(8)

F1i = 2× PAi×UAi

PAi + UAi
(9)210

κ =
po− pe

1− pe
, pe =

∑N
i=1

(∑N
j=1 nij

)(∑N
j=1 nji

)

(∑N
i=1

∑N
j=1 nij

)2 (10)

To further validate the effectiveness of the multi-source attention fusion design, P_SVCN was compared with the Salt marsh

Vegetation Classification Network (SVCN) (Li et al., 2024b), a baseline model built upon MobileNet V3. Both models were

trained and validated using the same dataset and experimental settings to ensure a fair and reliable comparison. All accuracy

metrics were computed in a Python environment using the scikit-learn library. This validation framework provides a systematic215

and objective basis for quantitatively assessing the advantages of the P_SVCN over single-source approaches in salt marsh

vegetation classification.
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4 Results

4.1 CCAV-10m dataset

We present the annual spatiotemporal China’s coastal wetland vegetation dataset at 10 m resolution (CCAV-10m), which220

accurately captures the spatiotemporal dynamics of coastal wetland vegetation types along the coast of China from 2016 to

2023. The dataset has a spatial resolution of 10 m and represents the first publicly released annual time series of coastal wetland

vegetation in China. CCAV-10m distinguishes six representative coastal wetland vegetation types—S. alterniflora, P. australis,

Suaeda spp., S. mariqueter, mangroves, and T. chinensis—achieving species-level classification. Model validation shows a

high overall accuracy (OA) of 0.916 and a Kappa coefficient of 0.898, indicating stable and reliable identification across all225

vegetation types.

In 2023, coastal wetlands in China covered a total area of 617,976.38 ha, comprising six dominant vegetation types: S.

alterniflora, P. australis, Suaeda spp., S. mariqueter, T. chinensis, and mangroves (Fig. 4). From 2016 to 2023, coastal wetland

vegetation exhibited pronounced interannual dynamics across China (Tab. 2), with Suaeda spp. as the dominant type, followed

by S. alterniflora, whose coverage is nearly equivalent to the combined extent of P. australis, mangroves, S. mariqueter, and230

T. chinensis. S. alterniflora, as an invasive saltmarsh species, maintained a relatively stable area, fluctuating between 20,202 ha

and 25,918 ha, with occasional declines. Suaeda spp. showed a notable increasing trend, expanding from 24,436 ha in 2018

to 35,452 ha in 2023. P. australis exhibited considerable interannual variability, reaching its maximum of 22,893 ha in 2020,

then decreasing to 10,614 ha in 2023. T. chinensis and S. mariqueter occupied relatively smaller areas, although T. chinensis

experienced localized expansion in 2020 and 2022. As a key component of coastal protection, mangroves increased from 4,894235

ha in 2017 to 7,648 ha in 2023, showing an overall upward trend.

12

https://doi.org/10.5194/essd-2025-741
Preprint. Discussion started: 4 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 4. Spatial distribution of coastal wetland vegetation in China and representative regional changes from 2016 to 2023. The

main map shows the distribution of dominant coastal wetland species across China in 2023. Insets illustrate the temporal changes in species

distribution for key coastal regions: (a1, 2016) and (a2, 2023) represent the Yellow River Estuary; (b1, 2016) and (b2, 2023) represent the

Jiangsu coast; (c1, 2016) and (c2, 2023) represent the Yangtze River Estuary; (d1, 2016) and (d2, 2023) represent the Zhejiang coast; and

(e1, 2016) and (e2, 2023) represent the Fujian coast.
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Table 2. Area of coastal wetland vegetation types in China from 2016 to 2023 (ha). The table summarizes annual changes for six

representative vegetation types (S. alterniflora, Suaeda spp., P. australis, T. chinensis, S. mariqueter, and mangroves), highlighting temporal

dynamics and trends over the eight years.

Vegetation Type 2016 2017 2018 2019 2020 2021 2022 2023

S. alterniflora 23218 25918 22855 20202 22952 20201 22970 22384

Suaeda spp. 30670 27149 24436 25819 28567 32087 27484 35452

P. australis 10711 11772 10171 16349 22893 15411 15233 10614

T. chinensis 1161 2063 1159 1320 3173 2502 3449 2085

S. mariqueter 3913 4046 3019 3551 2708 2923 2203 2270

mangroves 5320 4894 5293 6203 7898 7030 6630 7648

The transition matrices (Fig. 5) derived from the classification results of 2016, 2018, 2020, and 2023 indicate that the

dominant wetland vegetation types along the coast of China experienced substantial dynamics during this period. Overall,

transitions among S. alterniflora, Suaeda spp., and P. australis were the most frequent, whereas the distributions of T. chinensis,

S. mariqueter, and mangroves remained relatively stable.240

During 2016–2018, the primary transitions occurred from Suaeda spp. and P. australis to S. alterniflora, with transition

areas of approximately 830 ha (30.5%) and 2,800 ha (26.0%), respectively. The self-persistence of S. alterniflora was about

7,970 ha (56.6%), higher than that of other types, indicating that most patches maintained their type between the two periods.

In 2018–2020, these transitions intensified, with areas converting from Suaeda spp. and P. australis to S. alterniflora reaching

approximately 560 ha (17.0%) and 2,910 ha (23.5%), respectively, both higher than in the previous period. The net gain of245

S. alterniflora during this interval was about 3,810 ha, representing the most pronounced expansion phase, consistent with its

large-scale colonization of the lower tidal flats. During 2020–2023, the overall transition rate decreased. The reverse transitions

from S. alterniflora to Suaeda spp. and P. australis were approximately 970 ha (8.2%) and 3,520 ha (29.6%), respectively,

while conversions from Suaeda spp. to S. alterniflora still accounted for 1,720 ha (25.1%), suggesting local replacement or

management interventions. The areas of change for mangroves and T. chinensis were both less than 200 ha (<1%), remaining250

concentrated in the southern estuarine regions.
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Figure 5. Sankey diagram showing the transitions among coastal wetland vegetation types in China from 2016 to 2023. The width of

each flow represents the area of vegetation conversion between consecutive years, highlighting dominant succession pathways and interannual

dynamics among S. alterniflora, Suaeda spp., P. australis, T. chinensis, S. mariqueter, and mangroves.

4.2 Performance evaluation of P_SVCN

We collected a total of 15,558 in situ data points across the China coastal wetlands, of which 4,668 were reserved for model

validation. To further evaluate the effectiveness of the proposed P_SVCN model, we compared its performance with the Salt

marsh Vegetation Classification Network (SVCN) (Li et al., 2024b) on the same validation dataset. As shown in Tab. 3,255

P_SVCN outperformed SVCN across all vegetation classes. For S. alterniflora, P_SVCN achieved a producer’s accuracy

(PA) of 0.927, user’s accuracy (UA) of 0.882, and F1 score of 0.904, compared to 0.881, 0.820, and 0.849 for SVCN. For P.

australis, the corresponding values were 0.921, 0.880, and 0.900 for P_SVCN versus 0.876, 0.829, and 0.852 for SVCN. For

Suaeda spp., P_SVCN yielded a PA of 0.904, UA of 0.954, and F1 score of 0.928, higher than SVCN (PA = 0.851, UA =

0.920, F1 = 0.884). Similarly, S. mariqueter (P_SVCN: 0.937/0.953/0.945; SVCN: 0.902/0.927/0.914), mangroves (P_SVCN:260

0.918/0.979/0.948; SVCN: 0.890/0.953/0.921), and T. chinensis (P_SVCN: 0.846/0.813/0.829; SVCN: 0.811/0.796/0.803) also

exhibited higher accuracy metrics under P_SVCN. The overall accuracy (OA) and Kappa coefficient for P_SVCN were 0.916

and 0.898, respectively, exceeding those of SVCN (OA = 0.874, Kappa = 0.845). These results indicate that the dual-branch

multi-source attention design of P_SVCN effectively enhances classification performance for coastal wetland vegetation types.
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Table 3. Comparison of classification accuracy between P_SVCN and SVCN for coastal wetland vegetation types. The upward arrow

(↑) indicates that the P_SVCN’s metric values are comparatively higher, demonstrating the P_SVCN’s superior performance.

Vegetation Type P_SVCN (this study)↑ SVCN (Li et al., 2024b)

PA↑ UA↑ F1↑ PA UA F1

S. alterniflora 0.927 0.882 0.904 0.881 0.820 0.849

P. australis 0.921 0.880 0.900 0.876 0.829 0.852

Suaeda spp. 0.904 0.954 0.928 0.851 0.920 0.884

S. mariqueter 0.937 0.953 0.945 0.902 0.927 0.914

mangroves 0.918 0.979 0.948 0.890 0.953 0.921

T. chinensis 0.846 0.813 0.829 0.811 0.796 0.803

Overall Accuracy (OA) 0.916 0.874

Kappa 0.898 0.845

The detailed confusion matrices for the P_SVCN and SVCN models are presented in Fig. 6. Rows correspond to the ground265

truth classes, and columns represent predicted classes. Diagonal entries indicate the number of correctly classified samples,

while off-diagonal elements reflect misclassifications. P_SVCN shows consistently higher per-class accuracy compared with

SVCN. The largest improvements are observed in Suaeda spp. and T. chinensis, which are often confused with neighboring

species in SVCN predictions. Misclassifications in both models mainly occur between spectrally or structurally similar vegeta-

tion types, such as S. alterniflora vs. P. australis. This highlights the advantage of P_SVCN’s multi-source feature integration,270

which effectively captures both SAR structural information and optical phenology for improved discriminability.
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Figure 6. Comparison of confusion matrices for P_SVCN and SVCN on coastal wetland vegetation classification. The diagonal el-

ements indicate the percentage of correctly classified samples, while the off-diagonal elements represent the percentage of misclassified

samples.

5 Discussion

5.1 The CCAV-10m dataset: Filling a critical gap in coastal wetland vegetation mapping

We introduce CCAV-10m, an annual 10m coastal wetland vegetation dataset generated using the P-SVCN model, which cap-

tures the spatial and temporal dynamics of China’s coastal wetland vegetation from 2016 to 2023. As the first publicly avail-275

able national-scale, species-level coastal wetland dataset, CCAV-10m provides fine-resolution mapping of six representative

vegetation types—S. alterniflora, P. australis, Suaeda spp., S. mariqueter, mangroves, and T. chinensis. Model evaluation

demonstrates robust performance, with an overall accuracy of 0.916 and a Kappa coefficient of 0.898.

Compared with existing coastal wetland datasets (Table 4), CCAV-10m demonstrates significant advantages in terms of

spatial coverage, functional composition, and temporal continuity. First, regarding spatial coverage, CCAV-10m spans the280

entire coastal zone of China, and its 10 m resolution enables precise delineation of complex intertidal vegetation mosaics. In

contrast, SaltMarshVegYRD (Zhang et al., 2021) is limited to the Yellow River Delta with a 30 m resolution, and CMSA (Li

et al., 2024a), although also at 10 m resolution, focuses solely on a single invasive species, failing to systematically represent

coastal vegetation patterns at the national scale. Second, in terms of functional composition, CCAV-10m provides species-level

refinement, differentiating six representative vegetation types along the Chinese coast: S. alterniflora, P. australis, Suaeda285
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spp., S. mariqueter, mangroves, and T. chinensis. By comparison, CCSV(Zhao et al., 2023) classifies only broad salt marsh

categories, and CMSA focuses exclusively on the invasive species S. alterniflora, both lacking intra-community functional

differentiation. Finally, in the temporal dimension, CCAV-10m offers a continuous annual time series from 2016 to 2023,

enabling long-term and systematic monitoring of coastal wetland dynamics. In contrast, CCSV contains only a single epoch in

2020, and CMSA provides annual sequences but only for a single species.290

CCAV-10m achieves multidimensional improvements in spatial coverage, functional composition, and temporal continuity.

It represents the first high-resolution coastal vegetation dataset in China with multi-species recognition and annual consistency,

providing unified and high-quality baseline data for studies on coastal ecosystem succession, invasive species spread, and blue

carbon assessment.

Table 4. Comparison of CCAV-10m with existing coastal wetland datasets.

Dataset Spatial Coverage
Spatial

Resolution
Functional Composition

Temporal

Dimension

CCAV-10m

(Ours)
China’s Coastal Wetland 10 m

S. alterniflora, P. australis,

Suaeda spp., S. mariqueter,

mangroves, T. chinensis

2016–2023

SaltMarshVegYRD

(Zhang et al., 2021)

Yellow River Delta

wetland
30 m S. alterniflora, P. australis,

Suaeda spp.
1999–2020

CCSV

(Zhao et al., 2023)
China’s Coastal Wetland 10 m Salt marsh 2020

CMSA

(Li et al., 2024a)
China’s Coastal Wetland 10 m S. alterniflora 2017–2021

5.2 Provincial-scale dynamics of China’s coastal wetland vegetation (2016–2023)295

Coastal wetland vegetation exhibited clear provincial-scale differences in China from 2016 to 2023. In Liaoning Province,

the dominant vegetation types included S. alterniflora, Suaeda spp., and P. australis. Hebei, Shandong, and Tianjin showed

similar compositions, characterized mainly by S. alterniflora, Suaeda spp., and P. australis, with additional occurrences of T.

chinensis in specific areas. In Jiangsu Province, coastal wetlands were primarily dominated by S. alterniflora, Suaeda spp., and

P. australis. Shanghai featured a vegetation assemblage composed of S. alterniflora, S. mariqueter, and P. australis. In Zhejiang300

Province, S. alterniflora and S. mariqueter were widely distributed, accompanied by patches of mangroves and P. australis.

Fujian Province, located at the southernmost part of the study area, was characterized by extensive mangrove ecosystems, with

additional distributions of S. alterniflora and P. australis.
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Coastal wetlands showed clear provincial differences in area and species composition. Jiangsu, Shandong, and Zhejiang had

the largest wetland areas, followed by Fujian, Liaoning, and Shanghai, while Hebei and Tianjin were smaller. S. alterniflora and305

P. australis dominated most provinces, with Suaeda spp., T. chinensis, S. mariqueter, and mangroves restricted but ecologically

important. In Liaoning, wetlands were stable, dominated by P. australis (450–530 ha) and S. alterniflora (450–9,030 ha). Tian-

jin had scattered wetlands (400–780 ha) with alternating dominance of P. australis and Suaeda spp.. Hebei showed pronounced

species dynamics, with S. alterniflora stable (1,320–2,420 ha) and P. australis increasing from 2,870 to 3,730 ha. Shandong

experienced significant changes, P. australis rising from 3,910 to 7,120 ha, reflecting Spartina control effects. Jiangsu, the310

largest coastal wetland province, had over 60% combined S. alterniflora and P. australis, with P. australis slightly increasing

from 3,740 to 4,710 ha. In Shanghai, wetlands shrank from 1,300 to 970 ha, while S. mariqueter partially recovered post-2021.

Zhejiang’s wetlands alternated between S. alterniflora and P. australis (2,990–5,240 ha), and S. mariqueter remained stable

(2,110–4,210 ha). Fujian’s wetlands were relatively stable (2,290–3,850 ha), dominated by S. alterniflora. Coastal wetlands

exhibited clear provincial differences, with S. alterniflora and P. australis dominating most regions, while Suaeda spp., T.315

chinensis, S. mariqueter, and mangroves were more restricted in distribution yet remained ecologically significant, reflecting

localized dynamic adjustments within a generally stable vegetation structure.

Figure 7. Temporal dynamics of wetland vegetation area in eight Chinese coastal provinces from 2016 to 2023. (a) Liaoning, (b)

Tianjin, (c) Hebei, (d) Shandong, (e) Jiangsu, (f) Shanghai, (g) Zhejiang, and (h) Fujian.

5.3 Uncertainty analysis of the CCAV-10m dataset

Despite the high overall classification accuracy of the CCAV-10m dataset (OA = 0.916), certain uncertainties remain (Tab. 5).

To quantitatively evaluate potential sources of error, we conducted ablation experiments comparing three input configurations:320

Sentinel-1 only (S1), Sentinel-2 only (S2, dual-temporal composite), and the S1+S2 fusion mode. The overall accuracies were
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0.895, 0.870, and 0.916, respectively, indicating significant complementarity between radar and optical information in intertidal

wetland vegetation identification.

From the classification results, the S1-only configuration slightly outperformed S2 in most vegetation types, particularly in

the discrimination of S. alterniflora and P. australis. Sentinel-1 C-band SAR captures canopy structure, surface roughness, and325

moisture scattering features (Zhang et al., 2022a; Mleczko and Mróz, 2018; Rajngewerc et al., 2022), which are less sensitive to

optical disturbances caused by turbid water and cloudy conditions, thus providing advantages in identifying structurally distinct

vegetation. In contrast, the S2-only configuration, although leveraging dual-temporal imagery to enhance spectral temporal

information, is affected by surface albedo variations and spectral mixing in intertidal zones (Feng et al., 2022), resulting

in misclassifications between spectrally similar types such as Suaeda spp. and T. chinensis. The S1+S2 fusion significantly330

improved per-class producer’s accuracy (PA) and user’s accuracy (UA), effectively mitigating the limitations of single data

sources. The structural and moisture information from SAR complements the spectral and vegetation index features from

optical imagery, enabling stable model performance across different tidal stages and climatic conditions, particularly enhancing

the separability of Suaeda spp. and T. chinensis.

Nevertheless, residual uncertainties persist. First, T. chinensis and Suaeda spp. are often interspersed in the upper wet-335

land, with similar temporal and phenological characteristics (Gao et al., 2015; Jiao et al., 2021; Wu et al., 2020), making

complete discrimination challenging even under multi-source fusion. Second, Scirpus mariqueter has a narrow and highly

patchy distribution (Gu et al., 2021), which may result in omission errors under 10 m resolution. Future studies could integrate

higher-resolution SAR data (e.g., TerraSAR-X, GF-3) and phenology-based temporal compositing strategies to further reduce

classification uncertainty and enhance spatiotemporal consistency.340

Table 5. Comparison of producer’s accuracy (PA) and user’s accuracy (UA) for different input configurations: Sentinel-1 (S1),

Sentinel-2 (S2, dual-temporal), and S1+S2 fusion. The upward arrow (↑) indicates that the S1+S2 configuration achieves comparatively

higher metric values, demonstrating its superior performance.

Class PA (S1) PA (S2) PA (S1+S2)↑ UA (S1) UA (S2) UA (S1+S2)↑

S. alterniflora 0.913 0.887 0.927 0.859 0.879 0.882

P. australis 0.898 0.868 0.921 0.853 0.857 0.880

Suaeda spp. 0.883 0.852 0.904 0.939 0.842 0.954

S. mariqueter 0.924 0.901 0.937 0.943 0.891 0.953

Mangroves 0.891 0.851 0.918 0.975 0.837 0.979

T. chinensis 0.800 0.762 0.846 0.747 0.782 0.813

Overall Accuracy (OA) 0.895 0.870 0.916 - - -
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6 Conclusions

This study developed a phenology-guided coastal wetland vegetation classification network integrating Sentinel-1/ (P_SVCN)

and generated the CCAV-10m dataset, which maps the coastal wetland vegetation types in China from 2016 to 2023. By inte-

grating multi-source Sentinel-1 SAR and Sentinel-2 MSI data, the P_SVCN fully exploits structural and phenological features,

enabling accurate discrimination of spectrally similar and spatially fragmented vegetation types. The results are summarized345

as follows:

(1) A long-term, high-resolution species-level vegetation dataset (CCAV-10m).The dataset provides annual species-level

maps of coastal wetland vegetation at a spatial resolution of 10 m, distinguishing six dominant plant types. Spatiotempo-

ral analysis shows that Suaeda spp. is the predominant vegetation type, followed by S. alterniflora, whose coverage nearly

matches the combined extent of P. australis, mangroves, S. mariqueter, and T. chinensis. Further temporal assessments reveal350

pronounced community succession in recent years, including the continued expansion of S. alterniflora and Suaeda spp., fluc-

tuating patterns in P. australis, and a steady increase in mangrove extent. Transition matrices indicate that conversions among S.

alterniflora, Suaeda spp., and P. australis occurs most frequently, reflecting the dynamic responses of coastal wetland ecosys-

tems to natural processes and human activities.

(2) A novel phenology-guided deep-learning framework (P_SVCN). The P_SVCN model exhibits strong classification per-355

formance, achieving an overall accuracy of 0.916 and a Kappa coefficient of 0.898 based on validation with 4,668 in situ

samples. These results exceed those of the baseline SVCN model (overall accuracy 0.874, Kappa 0.845). Ablation experiments

further demonstrate the complementary strengths of Sentinel-1 synthetic aperture radar and Sentinel-2 optical observations,

particularly in distinguishing vegetation types with highly similar spectral properties or fragmented spatial patterns.

CCAV-10m effectively bridges the gap between coarse-resolution ecosystem maps and single-species products by balanc-360

ing species-level classification accuracy and large-scale spatial coverage. The dataset provides high-precision spatiotemporal

information for monitoring vegetation succession, assessing invasive species, estimating blue carbon stocks, and supporting

ecological restoration planning. Moreover, it offers a robust foundation for sustainable coastal ecosystem management un-

der global environmental change. The CCAV-10m dataset is publicly available at https://doi.org/10.57760/sciencedb.31077,

supporting reproducibility and further applications in related research.365

Data availability. The Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral data used in this study are available from

the Copernicus Open Access Hub (https://scihub.copernicus.eu, last access: 21 October 2025) under the Copernicus open data policy. The

species-level coastal wetland vegetation dataset, CCAV-10m, produced in this study is publicly available at the Science Data Bank (https://doi.

org/10.57760/sciencedb.31077, Li et al., 2025). Validation samples comprising 84% of the total dataset are provided in the file “Vegetation

samples.xlsx” within the same repository; these samples cover all vegetation classes and major coastal regions and were derived from field370

surveys, visual interpretation, and public reference sources. The remaining 16% of the field sampling data are not publicly released but can

be obtained upon a reasonable scientific request to the authors.
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