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Abstract. Contrails — thin ice clouds formed by aircraft — are a major contributor to aviation-induced climate forcing, yet

their observational characterization remains limited. We present a manually labeled contrail dataset derived from observations

of the Meteosat Second Generation (MSG) SEVIRI instrument over Europe and the North Atlantic, comprising 140 scenes of

256 × 256 pixels. Each scene was independently annotated by three labelers, with ground truth established via majority con-

sensus. To provide additional context, the dataset includes outputs from two satellite retrievals: CiPS (Cirrus Properties from5

SEVIRI) and ProPS (Probabilistic Cloud Top Phase retrieval), offering information on cloud cover and cloud top phase, cirrus

probability, ice optical thickness, and ice cloud top height. These complementary variables enable detailed investigations, such

as factors influencing contrail visibility. The dataset supports analyses of contrail detection, contrail characteristics, cloud-

contrail interactions, and environmental conditions affecting detection. By providing high-quality labeled data with auxiliary

cloud information, this resource facilitates the development and evaluation of contrail studies, contributes to improved under-10

standing of aviation-related cloud effects, and informs strategies for climate impact mitigation. The full dataset is available

under: https://doi.org/10.5281/zenodo.17669444.

1 Introduction

Contrails are narrow ice clouds formed by aircraft when ambient temperatures are low enough. Under favorable conditions

(when air is supersaturated with respect to ice), contrails can persist for hours and evolve into extensive cirrus clouds, so called15

contrail cirrus, contributing to aviation’s impact on the climate (Lewellen, 2014; Vázquez-Navarro et al., 2015). Aviation ac-

counts for roughly 3.5 % of anthropogenic effective radiative forcing (ERF), with contrail cirrus being the largest contributor,

exceeding the radiative impact of CO2 emissions from aircraft (Lee et al., 2021). Observational studies indicate that a small

number of flights can produce disproportionately large contrail outbreaks, highlighting the importance of understanding which

flights and atmospheric conditions lead to high-impact events (Burkhardt et al., 2018; Teoh et al., 2024). Despite their climatic20

relevance, observational knowledge of contrail properties, formation conditions, and evolution remains limited (Mannstein
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et al., 1999; Meyer et al., 2007; Bedka et al., 2013; Minnis et al., 2013; Spangenberg et al., 2013; Meijer et al., 2022). Passive

imaging from geostationary satellites provides a critical resource, offering continuous spatial and temporal coverage to mon-

itor contrails and estimate their radiative impact (e.g., Mannstein and Schumann, 2005; Chevallier et al., 2023; Wang et al.,

2023, 2024; Vázquez-Navarro et al., 2015; Haywood et al., 2009; Atlas et al., 2006). However, the development and evalu-25

ation of contrail studies are constrained by the lack of high-quality labeled datasets that reliably indicate where contrails are

present in satellite imagery. Manually labeled datasets serve as an essential foundation, enabling the assessment of contrail

detection algorithm accuracy, the evaluation of contrail properties, and investigation of their visibility under different atmo-

spheric conditions. Synthetic and model-based contrail datasets (e.g. Chevallier et al., 2023) present an alternative to human

labeled contrail datasets as this approach can help to build large-scale datasets with exact ground truth. However, the model-30

based approach uses simplified physics and therefore fails to simulate complex interactions with natural cirrus, overlapping

contrails and variable background clouds. Exactly for those hard cases, human labelers are needed. Several efforts have sought

to derive such human labeled data, but most of them are not publicly available (e.g. Mannstein et al., 1999, 2010; Dekoutsidis

et al., 2023). For instance, Ng et al. (2024) introduced the OpenContrails dataset, which offers manually annotated contrails

over North and South America using geostationary satellite imagery from the GOES-16 Advanced Baseline Imager (ABI).35

Complementing this, McCloskey et al. (2021) developed a human-labeled Landsat-8 contrail dataset, covering a similar geo-

graphical extent but utilizing low Earth orbit (LEO) satellite imagery, and Gourgue et al. (2025) published a dataset of annotated

ground-based hemispheric sky images. These open source datasets are valuable for validating automatic detection methods, for

inter-comparing different detection approaches and also for studying contrail characteristics such as length, width, orientation,

and persistence, which are critical for understanding their formation and climatic effects. Nevertheless, current datasets remain40

limited in spatial and temporal coverage, particularly over regions of dense air traffic like Europe and the North Atlantic, and

often lack complementary information about the surrounding cloud environment.

To address these limitations, comprehensive labeled contrail datasets with additional cloud context are required. We present

a human labeled contrail dataset using the Meteosat Second Generation (MSG) satellite that includes multiple labelers’ an-

notations to assess the inherent subjectivity in manual labeling. We incorporate auxiliary information, such as cloud phase45

or optical properties derived from satellite retrievals, to facilitate more detailed investigations of the factors affecting contrail

detectability. High-quality labeled datasets, such as the one presented here, enable researchers to rigorously evaluate contrail

detections, investigate environmental and observational influences on detectability, and support studies aimed at mitigating the

climate impact of aviation through informed rerouting or operational strategies. Contrail identification in MSG is particularly

challenging due to the low spatial resolution of 3 km at nadir (4-6 km over Europe), compared for instance to 2 km for GOES-50

R/S/T or 1 km for many polar orbiting passive sensors like AVHRR and MODIS.

This paper is structured as follows: We begin by presenting the satellite data used in this study and introducing two satellite

retrievals used to produce complementary information about the surrounding cloud environment in Section 2. Next, we pro-

vide a detailed description of the labeling campaign in Section 3, including the scene selection and a detailed description of the

labeling process. In Section 4, we discuss the results of the labeling campaign. Section 5 highlights the compiled dataset with55
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its contents and formats. Finally, Section 6 presents a summary of the key findings and discusses their implications for future

studies on contrail detection and characterization.

2 Satellite Data and Spaceborne Cloud Retrievals

Scenes for labeling are generated from MSG satellite data. To complement the dataset, outputs from two satellite retrievals—

ProPS (Probabilistic Cloud Top Phase retrieval for SEVIRI) (Mayer et al., 2024a) and CiPS (Cirrus Properties from SEVIRI)60

(Strandgren et al., 2017a)—are also incorporated. By providing CiPS-derived cirrus properties and ProPS cloud top phase in-

formation alongside the labeled contrail dataset, the authors enable users to comprehensively examine the cloud characteristics

that may enhance or obscure contrail visibility, thereby informing detection capabilities and algorithm development.

2.1 MSG/SEVIRI

The Meteosat Second Generation (MSG) satellites (Schmetz et al., 2002) are equipped with the Spinning Enhanced Visible and65

Infrared Imager (SEVIRI). The MSG program comprises four geostationary satellites, stationed at the nominal longitude of 0°E

to observe Europe and Africa, though some have been operated at different longitudes or in alternative modes. SEVIRI provides

imagery every 15 minutes, with a nadir spatial resolution of 3 km that degrades to about 4–6 km over Europe due to the oblique

viewing geometry and Earth’s curvature. The instrument observes in twelve spectral channels: four channels measure reflected

solar radiation and eight infrared channels capture emitted thermal radiation. One solar channel, the broadband High Resolution70

Visible (HRV), has a sampling distance of 1 km at nadir. Satellite instruments measure the radiance received at the sensor, which

represents the intensity of radiation within a specific spectral band. However, radiance alone depends on both the illumination

geometry and the spectral characteristics of the sensor, making it difficult to interpret physically. Therefore, radiances in solar

(visible and near-infrared) channels are converted to apparent reflectance, a dimensionless quantity that expresses the fraction

of incident solar radiation reflected by the Earth–atmosphere system. For thermal infrared channels, the measured radiance75

originates from emitted terrestrial radiation rather than reflected sunlight. In this case, radiances are converted to brightness

temperature, defined as the temperature a blackbody would have to emit the same radiance at wavelength λ. Throughout this

work, we use reflectances and brightness temperatures, while SEVIRI channels are referred to by their central wavelength

(e.g., IR108 denotes the 10.8 µm infrared channel). For consistency, only data from MSG3 (Meteosat-10) from the operational

position above 0°E was used. The data ranges from January 2013 to February 2018 and from March 2023 to March 2024.80

2.2 CiPS

The CiPS (Cirrus Properties from SEVIRI) algorithm (Strandgren et al., 2017a) is designed to detect cirrus clouds and retrieve

their key physical and optical properties using the SEVIRI instrument aboard the MSG satellites. CiPS employs artificial

neural networks (ANNs) taking as input SEVIRI thermal infrared observations, European Centre for Medium-Range Weather

Forecasts (ECMWF) surface temperatures, and auxiliary data. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)85

cloud products were used during training of the ANNs as a ground-truth target. The ECMWF surface temperature are spatially
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Figure 1. Example of CiPS outputs for Scene 041 of the dataset (256 x 256 pixels). The figure shows six panels in two rows, with the top

row displaying (from left to right) cirrus cloud probability, cirrus opacity probability and cloud top phase, and the bottom row showing (from

left to right) ice optical thickness, ice water path and ice particle radius. Contrails are located (mostly horizontal) in the central part of the

image.

collocated with the satellite observations using the nearest neighbor and temporally collocated by linearly interpolating between

the ECMWF 6 hour time steps. This approach allows retrievals during both day and night and provides near-continuous

coverage with 15-min temporal resolution and 3 km spatial resolution at nadir. CiPS outputs include: Cirrus Cloud Probability

(CCP), Cirrus Opacity Probability (COP), Cloud Top Height (CTH), Ice Optical Thickness (IOT), Ice Water Path (IWP) and90

Effective Ice Particle Radius (Reff ). In standard usage of CiPS, as recommended by Strandgren et al. (2017a), a pixel is

considered a cirrus covered pixel when CCP is larger than 0.62. When COP is larger than the recommended threshold of 0.86

ice clouds are classified as thick, where CALIOP cannot provide accurate IOT/IWP retrievals. Based on the evaluation of

4.9 million CALIOP collocations, CiPS has a probability of detection for ice clouds of 71 % and 95 % of cirrus clouds with

an optical thickness of 0.1 and 1, respectively. The average false alarm rate for ice clouds is 3.9 %. Identification of a thick95

ice cloud with COP yields a 71 % detection efficiency with a 4 % false alarm rate. CiPS has a relative error of less than 10 %

regarding cloud top height and mean absolute percentage error of less than 100 % for ice optical thickness and ice water path.

These outputs allow comprehensive characterization of cirrus cloud vertical structure, optical thickness and ice water path,

enabling quantitative assessment of their radiative impact and life cycle evolution. CiPS outputs for one exemplary scene are

shown in Fig. 1. CiPS has been extensively validated and characterized in Strandgren et al. (2017b) and applied in Rybka et al.100

(e.g. 2021).
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Figure 2. Example of cloud-top phases for Scene 041 of the dataset as provided by ProPS

2.3 ProPS

The ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) algorithm (Mayer et al., 2024a) is designed to detect clouds

and determine their thermodynamic phase using the SEVIRI instrument aboard the Meteosat Second Generation (MSG) geosta-

tionary satellites. ProPS employs a Bayesian approach, integrating SEVIRI measurements with a large collocated dataset from105

the DARDAR (liDAR/raDAR) product, which provides cloud phase information from lidar–radar synergy. This methodology

enables the classification of cloud states into six categories: clear sky, warm liquid (LQ), supercooled liquid (SC), mixed-phase

(MP), optically thin ice (TI) and optically thick ice (IC). The algorithm operates effectively during both day and night, offering

near-continuous coverage with 15 min temporal resolution and 3 km spatial resolution at nadir. ProPS outputs the most prob-

able thermodynamic phase assigned to each pixel based on the highest probability of each of the six cloud states. Validation110

against six months of independent DARDAR data demonstrates that ProPS achieves a daytime cloud detection rate of 93 % and

a clear-sky detection rate of 86 %. For phase determination, ProPS accurately classifies 91 % of IC, 78 % of TI, 52 % of MP,

58 % of SC, and 86 % of LQ clouds. These outputs enable detailed analysis of cloud phase distributions, which are crucial for

understanding cloud microphysics, radiative properties, and their role in atmospheric processes. Exemplary cloud-top phases

for the same scene as in Fig. 1 are shown in Fig 2.115

3 Labeling Methodology

In this section, we describe the selection of scenes for the dataset and the contrail labeling procedure.

3.1 Scene selection

The contrail scene samples were created by randomly selecting times available from MSG3 ranging from 2013 to 2024 (see

Sec. 2.1 for details). These were visually inspected with higher attention to regions more likely to contain contrails like Europe120
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Figure 3. Spatial distribution of scenes used in labeled contrail dataset. Color values indicate how many scenes contain each individual pixel

location.

Figure 4. Distribution of solar zenith angle in the dataset. Orange and blue bars correspond to daytime and nighttime samples, respectively.

The values represent the number of pixels falling into each solar zenith angle bin.

and the North-Atlantic Flight Corridor (Fig. 3). 140 images with a size of 256 × 256 pixels were selected (The majority of

annotated contrails have a length of up to 60 pixels). Around 40 % of the scenes were selected with no visible contrails, the

other 60 % were selected to include contrails based on the personal judgment of one human individual. This balance guarantees

that both contrail and non-contrail cases are represented. The examples are not uniformly distributed in space and time as the

images are sampled to include more contrail examples as described above (Fig. 3). Roughly half of the pixels are during daytime125

(Fig. 4), meaning that they have a solar zenith angle < 90◦. The distribution of cloud-top phases using the ProPS algorithm

(Sec. 2.3) in all pixels of our dataset (Tab. 1) shows that clear-sky conditions account for the most frequently occurring pixel

type. A substantial portion of the domain is covered by warm liquid or thin ice clouds. Thick ice and mixed-phase clouds occur

less frequently, while supercooled liquid clouds are observed only rarely. Of course, a part of the contrails is already considered

in this statistic, as they are mostly identified as thin ice clouds.130
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Table 1. Relative frequency of cloud-top phases from ProPS (Mayer et al., 2024a) in the compiled contrail dataset

Cloud Top Phase Relative Occurence [%]

Clear 38.1

Warm Liquid 27.5

Supercooled Liquid 1.4

Mixed Phase 5.2

Thin Ice 21.2

Thick Ice 6.6

Table 2. Channels and normalization ranges for Ash RGB according to EUMETSAT user manual (EUMeTrain, 2022)

Color beam Channel / Channel difference Normalization range [K]

Red IR108 - IR120 -4 2

Green IR087 - IR108 -4 5

Blue IR108 243 303

3.2 Contrail Labeling Process

The Open Source Darwin V7 Labeling tool (V7 Labs) was used for contrail labeling. Human labelers were presented with

a subset of the 140 selected images or more precisely Ash RGB composite images in satellite projection in which contrails

should be marked. The Ash RGB images are created in agreement with the EUMETSAT user manual by linearly stretching

two Brightness Temperature Differences (BTDs) and one Brightness Temperature (BT) over a pre-defined range (see Tab. 2),135

without gamma correction (i.e. γ=1). This composite enhances thin ice clouds visibility, so contrails can be identified as dark

blue linear structures in these images. Because only infrared channels are used, these composites are available during day and

night.

To further aid the labeling process, additional composites and BTDs were provided as a time series. Images spanning one

hour prior to and one hour following the timestamp of the target image were provided to account for the temporal evolution of140

the objects. Contrails are expected to suddenly appear as thin straight lines and spread out over time. As contrails grow older,

they lose their linear shape and their width increases. This is different to natural clouds that usually form more gradually and

often have diffuse or irregular structures from the start, that might become or include linear structures due to wind shear or

waves in the upper troposphere. This temporal context is very helpful for contrail identification (see also Ng et al., 2024). The

additional time series imagery included the Ash RGB, an inverted Ash RGB, two BTDs (IR108 - IR120 and IR087 - IR120)145

and a Natural Color RGB and HRV Cloud RGB (EUMeTrain, 2022) if the solar channels were available during daytime
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Figure 5. Example images for Scene 041 provided to labelers: a) Ash RGB; b) Inverted Ash RGB; c) BTD IR108 - IR120; d) BTD IR087

- IR120; e) Natural Color RGB; f) HRV Natural Color RGB; g) HRV Cloud RGB; and h) labeling result as the agreement between three

labelers (majority mask).

(Fig. 5). Contrails appear as dark blue lines in the Ash RGB composite and bright yellow lines in the inverted Ash RGB. The

two mentioned BTDs are known to enhance contrail visibility (Inoue, 1985; Mannstein et al., 1999, 2010; Mayer et al., 2024b)

as contrails exhibit higher brightness compared to their surrounding in the BTDs. Additional daytime imagery (Natural Color

RGB and HRV Cloud RGB) is provided to help to more clearly identify natural clouds and allow to help distinguish them from150

contrails.

Using a brush tool, labelers were asked to mark each individual contrail pixel in the Ash RGBs, for all contrails that contain

at least 10 pixels. Labelers were provided a detailed labeling guide in a similar way as in Ng et al. (2024), explaining the

labeling tool and the additional imagery provided.

To establish a validation standard that reduces subjectivity of labelers, each image was labeled independently by three different155

labelers. 14 total labelers were each given a subset of the 140 images, with three labelers receiving the same subset of images,

making sure that each image is annotated three times by different persons. If at least two out of the three labelers marked a
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Figure 6. Examples of individual labeler annotations and the resulting consensus ground truth for selected scenes in the dataset.

pixel as a contrail pixel, it was marked as a contrail pixel in the final contrail mask (majority mask, called also ground truth).

Otherwise the pixel was marked as a non-contrail pixel. Some examples are shown in Fig. 6.
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4 Results160

In the following, we discuss the results of the labeling campaign. The focus is on labeling dependencies, the subjectivity of

human labeling and the established ground truth and its properties.

4.1 Labeling dependencies

Labeling results can be investigated pixel-wise and object-wise. An object-wise agreement was assumed if at least half of the

object’s pixels matched. A total of 94256 pixels were annotated by all labelers. 58 % of those pixels were marked by only165

one person and all three labelers agreed on only 20 % of marked pixels. Labelers marked a total of 1851 contrails in the 140

images. More than half of those contrails, namely 57 %, were only labeled by one person. All three labelers agreed on only

26 % of the labeled contrails. There was also a big difference in which pixels labelers marked in each contrail. On average,

only half of the total labeled pixels for each contrail matched between the labelers. These results indicate that some labelers

were stricter or more confident in identifying contrails. Also, some labelers have marked contrails more conservatively, while170

others included broader areas and marked contrails as longer or wider instead of labeling only the core of the contrail. The

disagreement between the pixel-wise and object-wise results suggests that larger contrails may have more variation in labeling,

while smaller contrails could be missed or misidentified entirely by some labelers. Labeler agreement depended heavily on the

cloud phase (determined by ProPS) of clouds beneath/around the contrail. Contrails were more likely to be identified by all

labelers in clear sky conditions or over warm liquid clouds. Over thick ice clouds they were more likely to be identified by175

only one or two persons (Fig. 7a). High linearity (see Sect.4.2) also had a big impact on labeling agreement as more linear

contrails were marked by all persons more often (Fig. 7b). Narrow contrails (i.e. pixel width < 2.5) were usually marked by

fewer labelers (Fig. 7c). The different labeling results are thus due to the subjective decisions taken on the basis of the own

image assessment of the labelers and on the objective challenge in identifying contrail structures of different width, length,

appearance and contrast and separating them from natural clouds.180

As illustrated above, although detailed labeling instructions were given, the task remained subjective. Therefore, we compare

the results from different labelers to assess their level of agreement. This is done by assigning/defining that one labeler is the

truth, so precision and recall for the other ones are computed. The highest precision (proportion of correctly identified contrails

compared to all identified contrails) observed between labelers on the full dataset was 73 %, while some comparisons showed

precision values as low as 43 %. Recall (proportion of correctly identified contrails to all contrails in the truth) values similarly185

varied within this range. When comparing individual labeler’s results to the ground truth, labelers achieve a precision of about

67.5 % and a recall of 82.3 %. Ng et al. (2024) observed similar precision and recall values when comparing 200 examples

from individual labelers with their ground truth, 64 % and 76 % respectively. These results highlight that even the established

ground truth (validation standard) is inherently subjective and not perfectly accurate. Defining it as objects labeled by at least

two out of three labelers inevitably leads to missing an unknown amount of real contrails that were identified by only one190

person or even none but should also reduce false alarms.
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Table 3. Pixel-wise precision and recall comparing individual labeler’s results (assuming that one labeler is the truth, so precision and recall

for the other ones are computed)

Precision [%] 44.04 44.21 73.22 53.80 60.10 43.99

Recall [%] 73.22 60.10 44.04 43.99 44.22 53.80

Figure 7. a) Cloud-top phase of clouds beneath/around labeled contrails; b) Linearity of labeled contrails; c) Maximum width in pixels of

labeled contrails; sorted by labeler agreement (the number of labelers agreeing on a contrail). Percentage refers to the proportion of objects

within each cloud type that were labeled by one, two or three people. (Probability) density indicates the likelihood of observing a given value;

the area under each curve integrates to 1.

4.2 Ground Truth

4.2.1 Derivation of contrail properties

Every contrail identified in the ground truth (majority consensus of three labelers) consists of a set of pixels that have been

marked by the labelers. To compute properties like length, width and linearity we first fit a line to these pixels. The first and last195

point of the line that overlap with the pixels identified by the labelers define the two endpoints of the contrail. Contrail length

is the distance between the two endpoints of the contrail.

We define the width of a contrail as twice the perpendicular distance of a pixel to the fitted line of the contrail. Mean width is

the mean of those distances for all pixels that are part of the contrail, while maximum width is the maximum of those distances.

The average mean width of a contrail is the average of the mean width over all contrails in the ground truth.200

To assess linearity, a Principal Component Analysis (Hotelling, 1933) was performed, and the proportion of variance ex-

plained from the first component is used as a linearity score for the objects. If the pixels form a line, most variance is captured
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Figure 8. a) Length; b) Mean Width; c) Linearity of labeled contrails in the ground truth (annotated by at least 2 labelers).

by the first principal component; if they form a blob, variance is shared with the second. Thus, the variance fraction of the first

component serves as a linearity score.

4.2.2 Contrail properties in the ground truth205

The ground truth contains a total of 772 contrails, with 40812 pixels, that were annotated by at least two labelers. Most contrails

in the ground truth have a length of less than 50 pixels (Fig. 8a), with an average length of 25 pixels. The average mean width

is one pixel. Most labeled contrails have a mean width of up to two pixels (Fig. 8b). The maximum width of contrails in

the ground truth can be up to 6 pixels. Linearity scores of contrails are mostly above 0.9 (Fig. 8c), averaging to 0.984. This

indicates that contrails are easily distinguished in satellite images by human labelers if they are long, thin and linear stripes.210

49 out of the 140 images contain no contrails in the ground truth (Fig. 9), thus 9 more than in the original first image selection

process. This discrepancy highlights that some contrails are challenging to identify—often subtle or ambiguous—making them

difficult to detect at first glance or leading to differences in classification among labelers. Across all scenes, the mean contrail

number is approximately 7. When considering only scenes in which contrails are present, the mean increases to 10.9. 82.89 %

of contrail pixels in the ground truth are classified as cirrus pixels by CiPS. 66.21 % of contrail pixels are correctly classified as215

thin ice clouds by ProPS. While pixels of a contrail might be classified correctly, those algorithms cannot distinguish between

contrail pixels and other surrounding ice cloud pixels. Thus, they cannot depict the contrail in its shape. This indicates that

these two satellite retrievals are not able to detect all contrails and a dedicated algorithm for contrail detection is needed. The

presented ground truth provides the necessary basis for the development and evaluation of a contrail detection algorithm.

5 Dataset Description220

The dataset supporting this study follows the FAIR principles to ensure it is Findable, Accessible, Interoperable, and Reusable.

The published dataset (Santos Gabriel et al., 2025) contains manually annotated contrail masks derived from MSG/SEVIRI
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Figure 9. Distribution of contrail number per scene in the labeled dataset

imagery. Additionally, cloud properties and ancillary data are provided. Scenes are sequentially numbered from 0 to 139. The

data repository includes the following content:

– ash RGB images (PNG format)225

– ground truth images (PNG format)

– labeler annotations, cloud properties and ancillary data (NetCDF format)

– contrails as per Ground truth as individual objects (GeoJSON format)

– file with observation times, regions, and additional info of full dataset (CSV format)

– documentation file (md format)230

Our dataset provides the Ash RGB images (see Tab. 2) used for labeling and the ground truth (the majority consensus of

labelers) in PNG format. The main data is stored in NetCDF files, that include processed satellite data, labeler annotations,

cloud properties and ancillary information (see a list of all variables and attributes in Tab. 4). They contain the annotations of

each labeler per scene, with the additional info on labeler name (anonymized), as well as the established ground truth as the

majority consensus of the three labelers. Satellite data, processed by the authors of this paper, for all 12 SEVIRI channels is235

provided in the NetCDF files as well. SEVIRI scans the Earth’s disk line by line, requiring several minutes to complete a full

scan. Each image line is acquired at a slightly different time, so the acquisition time is provided in the dataset to identify the

timestamp at which that specific scan line was recorded. Each scene is accompanied by the corresponding latitude and longitude

grids in satellite projection, allowing the spatial collocation of detected contrails with their corresponding geophysical positions

on Earth. The solar zenith angle, satellite elevation angle, and satellite off-nadir angle are also provided to support spatial240

collocation with respect to the satellite position. The solar zenith angle is the angle between the local zenith (straight up at

point from scene on Earth) and the direction of the sun, where a value of less than 90 degrees represents day and a value greater

than 90 degrees represents night. The satellite elevation angle is the angle between the local horizon and the line-of-sight to
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the satellite. The satellite off-nadir angle is the angle between the satellite nadir vector (line from satellite straight down to

sub-satellite point) and the satellite-to-point-of-scene vector. The satellite viewing angle (the angle between the local vertical245

(nadir direction) at the point of the scene on Earth’s surface and the line of sight to the satellite) can be calculated by subtracting

the satellite elevation angle from 90◦. A land–sea mask and surface altitude map (derived from the GTOPO30 global elevation

dataset; U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center) are provided as additional auxiliary

datasets. The land–sea mask (0 = sea, 100 = land) helps distinguish between oceanic and terrestrial regions, which is essential

for interpreting surface-dependent features such as temperature, reflectance, or cloud characteristics. The surface altitude, given250

in meters, provides topographic context and supports a more accurate interpretation of variables influenced by elevation, such

as radiance and temperature. The ice cloud properties cirrus cloud probability, cirrus opacity probability, cloud top height, ice

optical thickness, ice water path and effective ice particle radius, derived from CiPS (see Sec. 2.2), are supplemented to the

dataset. Note that all ice cloud properties are provided even if CiPS does not declare a pixel as a cirrus pixel (Calculation of

ice cloud properties are only verified for cirrus pixels). In addition, cloud-top phases are determined with ProPS (see Sec. 2.3)255

and added to the NetCDF files. Here, a flag value is provided to indicate the cloud-top phase. A value of 0 corresponds to

a clear sky pixel. 1 are thick ice clouds with an optical thickness greater than two. A flag value of 3 represents warm liquid

and a value of 4 supercooled liquid clouds. Finally, thin ice clouds with an optical thickness smaller than two are assigned

the value of 5. The Dataset contains two spatial grids: x, y for the native 3-km SEVIRI resolution, and x_highres, y_highres

for the corresponding 1-km high-resolution of the HRV channel. These coordinates correspond to the standard geostationary260

projection used by the SEVIRI instrument, centered on the satellite’s subpoint. In addition to the pixel-wise variables provided

in two-dimensional format for each satellite scene, scene-level quantities are stored as global attributes within the NetCDF files.

Each file has a title containing the subsequent scene number. The timestamp and native SEVIRI bounding coordinates of each

scene, corresponding to a cropped region of the MSG full disk, are included to enable an exact identification of the contrail’s

temporal and spatial context. To facilitate rapid analysis and ensure reproducibility, several secondary attributes—derived from265

the primary dataset—are provided. Although these can be recomputed from the original data, their inclusion allows users to

avoid redundant calculations. Those attributes include the boreal season and daytime (day or night). Longitude, latitude, solar

zenith angle, satellite elevation angle and satellite off-nadir angle are provided for the central point in the scene. The fractions

of surface types (sea or land) in the scene, as well as the fractions of cloud-top phases are given for each labeled scene. Lastly,

the number of contrails in each scene is provided as global attribute in the NetCDF files. All Variables and Attributes are270

presented in a detailed table in Appendix A. An overview of the whole dataset and all attributes of each scene is provided

as well to allow for a rapid overview of the entire dataset. To supplement the ground truth, provided as a binary pixel mask,

all individual contrails—including all constituent pixels—are represented in GeoJSON format. Each contrail can be accessed

either as a LineString object, containing only its endpoints, or as a MultiPoint object, containing all associated pixels. This

object-based ground truth is designed to facilitate analyses at the level of individual contrails. A documentation file is included275

in the dataset explaining all data and its usage.
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Table 4. Variables and global attributes in NetCDF files included in the annotated contrail dataset for MSG

Variables Global Attributes

Ground Truth Latitude title

Labeler 1 Longitude timestamp

Labeler 2 solar_zenith_angle native_coordinates

Labeler 3 sat_elevation_angle season

HRV sat_off_nadir_angle daytime

VIS_006 Land Sea Mask central_longitude

VIS_008 Surface Altitude central_latitude

NIR_016 ccp_cips central_solar_zenith_angle

IR_039 cop_cips central_elevation_angle

WV_062 cth_cips central_off_nadir_angle

WV_073 iot_cips surface_types

IR_087 iwp_cips cloud_phase_fractions

IR_097 ireff_cips contrail_number

IR_108 cloudphases_props

IR_120 acquisition_time

IR_134

6 Conclusions

In this study, we present a manually labeled contrail dataset based on Meteosat Second Generation (MSG) SEVIRI imagery

mainly over Europe and the North Atlantic. The dataset consists of 140 scenes of 256 × 256 pixels, each annotated indepen-

dently by three labelers, with the ground truth defined through majority consensus. Beyond the binary pixel-level masks for all280

contrails and the majority mask, we provide an object-based representation of individual contrails in GeoJSON format, captur-

ing both their shape and all associated pixels. To give additional context, we include outputs from two satellite retrievals—CiPS

(Cirrus Properties from SEVIRI) and ProPS (Probabilistic Cloud Top Phase retrieval)—which provide information on cloud

top phase, cirrus probability, ice optical thickness, ice water path, and effective ice particle radius. Auxiliary data, such as

scene-level attributes, geolocation, solar and satellite angles, land–sea masks, and surface altitude, are also included to support285

detailed analyses and reproducibility.

This dataset addresses a significant gap in observational resources for contrail research. Although contrails and contrail cirrus

are known to have an important impact on climate (Lee et al., 2021), observational data remain limited, and high-quality la-

beled datasets are rare. By providing carefully labeled data along with complementary satellite-derived variables, researchers

can investigate contrail formation, evolution, and visibility under different atmospheric conditions. The inclusion of multiple290

15

https://doi.org/10.5194/essd-2025-740
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



labelers’ annotations also allows exploration of the subjectivity inherent in manual labeling, helping to quantify uncertainty

and the limitations of human detection.

The dataset can be used for a variety of purposes. It can serve as a benchmark for developing and testing automatic contrail

detection methods, as well as for studying contrail characteristics such as length, width, and orientation. The auxiliary cloud

information makes it possible to look at cloud–contrail interactions and environmental factors that affect contrail detectability,295

which is important for understanding their radiative impact. Scene-level and pixel-level metadata make it easier to filter and

analyze the data, which is useful both for machine learning approaches and more traditional observational studies.

By making this dataset publicly available, we intend to provide a resource that supports research into contrail detection, subse-

quently improves understanding of aviation-related cloud effects, and eventually informs strategies to reduce aviation’s climate

impact. We expect it to serve as a foundation for future work in atmospheric science, remote sensing, and climate modeling,300

supporting both algorithm development and scientific studies into the role of contrails in the climate system.

Appendix A: Variables and Attributes in Contrail Dataset

In this section, we present a table with all global attributes contained in the NetCDF files of our compiled dataset (Tab. A1).

This table includes the names of the global attributes as well as a description, the units and one example of this attribute. We

also provide a table with all variables in the NetCDF files (Tab. A2). This table includes the name of the variables, a description,305

the dimensions of this variable, the data type, units and additional attributes of the variable.

Data availability

The full dataset is available under: https://doi.org/10.5281/zenodo.17669444 (Santos Gabriel et al., 2025).

Contains modified EUMETSAT Meteosat data (2025). MSG/SEVIRI data are available from the EUMETSAT (European

Organisation for the Exploitation of Meteorological Satellites) data centre (https://user.eumetsat.int/catalogue/EO:EUM:DAT:310

MSG:HRSEVIRI, EUMETSAT, 2025).
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Table A1. Description of Attributes in NetCDF files in the annotated contrail dataset for MSG

Global Attribute Description Units Example

scene_number Sequential image number in dataset - 1

title Title of NetCDF file containing data - MSG Contrail Dataset - Scene 001

timestamp Timestamp of labeled satellite image in format

yyyy-mm-dd hh:MM:ss

- 2024-01-12 15:00:00

native_coordinates Native SEVIRI coordinates of boundary box of

cropped scene [x_min x_max y_min y_max]

pixels [2600 2856 3100 3356]

season Boreal season - Spring (MAM)

daytime Day/night according to solar zenith angle - day

central_longitude Longitude at central point of satellite image ° -39.748

central_latitude Latitude at central point of satellite image ° 45.155

central_solar_zenith_angle Angle in degrees between the local zenith

(straight up at central point of scene on Earth)

and the direction to the Sun

° 66.88

central_elevation_angle Angle in degrees between the local horizon at

central point of scene on Earth and the line-of-

sight to the satellite

° 82.12

central_off_nadir_angle Angle in degrees between the satellite nadir

vector (line from satellite straight down to sub-

satellite point) and the satellite-to-central point

of scene vector

° 7.29

surface_types Fractions of land, ocean, and coastline pixels in

image

- {"Land": 0.016, "Ocean": 0.980,

"Coast": 0.004}

cloud_phase_fractions Fractions of cloud-top phases in image - {"Clear Sky": 0.0393, "Warm Liquid":

0.3161, "Supercooled Liquid": 0.0008,

"Mixed Phase": 0.0063, "Thin Ice":

0.3692, "Thick Ice": 0.2681}

contrail_number Number of contrail segments in image - 2
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Table A2. Description of Variables in NetCDF files in the annotated contrail dataset for MSG

Variable Description Dimensions Data Type Units Additional Attributes
Ground Truth Ground truth as majority Consensus of labelers (x,y) float64 - -
Labeler 1 Pixel-wise annotations of first labeler (x,y) float64 - labeler: Name of labeler

(anonymized)
Labeler 2 Pixel-wise annotations of second labeler (x,y) float64 - labeler: Name of labeler

(anonymized)
Labeler 3 Pixel-wise annotations of third labeler (x,y) float64 - labeler: Name of labeler

(anonymized)
HRV Reflectance of High Resolution Visible channel

(broadband 0.4 µm - 1.1 µm)
(x_highres,
y_highres)

float64 % -

VIS006 Reflectance of MSG channel with central wave-
length 0.635 µm

(x,y) float64 % -

VIS008 Reflectance of MSG channel with central wave-
length 0.81 µm

(x,y) float64 % -

NIR016 Reflectance of MSG channel with central wave-
length 1.64 µm

(x,y) float64 % -

IR039 Brightness Temperature of MSG channel with
central wavelength 3.90 µm

(x,y) float64 K -

WV062 Brightness Temperature of MSG channel with
central wavelength 6.25 µm

(x,y) float64 K -

WV073 Brightness Temperature of MSG channel with
central wavelength 7.35 µm

(x,y) float64 K -

IR087 Brightness Temperature of MSG channel with
central wavelength 8.70 µm

(x,y) float64 K -

IR097 Brightness Temperature of MSG channel with
central wavelength 9.66 µm

(x,y) float64 K -

IR108 Brightness Temperature of MSG channel with
central wavelength 10.80 µm

(x,y) float64 K -

IR120 Brightness Temperature of MSG channel with
central wavelength 12.00 µm

(x,y) float64 K -

IR134 Brightness Temperature of MSG channel with
central wavelength 13.40 µm

(x,y) float64 K -

acquisition_time acquisition time of row in satellite image (y) DateTime64 - -
Latitude Latitude grid for the image, allowing mapping

from pixel indices to geographic coordinates
(x,y) float64 ◦ -

Longitude Longitude grid for the image, allowing mapping
from pixel indices to geographic coordinates

(x,y) float64 ◦ -

solar_zenith_angle Angle in degrees between the local zenith and
the direction to the Sun

(x,y) float64 ◦ -

sat_elevation_angle Angle in degrees between the local horizon and
the line-of-sight to the satellite

(x,y) float64 ◦ -

sat_off_nadir_angle Angle in degrees between the satellite nadir
vector and the satellite-to-point of scene vector

(x,y) float64 ◦ -

Land Sea Mask Land sea mask, where 0: sea and 100: land (x,y) float32 - -
Surface Altitude Surface altitude (Above sea level) (x,y) float32 m -
ccp_cips Cirrus Cloud Probability derived from CiPS

(cirrus covered pixel assumed above 0.62)
(x,y) float32 1 -

cop_cips Cirrus Opacity Probability derived from CiPS
(thick ice cloud covered pixel assumed above
0.86)

(x,y) float32 1 -

cth_cips Cloud-top Height derived from CiPS (x,y) float32 km -
iot_cips Ice Optical Thickness derived from CiPS (x,y) float32 1 -
iwp_cips Ice Water Path derived from CiPS (x,y) float32 gm−2 -
ireff_cips Effective Ice Particle Radius derived from CiPS (x,y) float32 µm -
cloudphases_props Cloud-top Phases derived from ProPS (x,y) float32 - flag_description: ’0: clear;

1: thick ice (OT>2); 2:
mixed-phase; 3: warm liq-
uid; 4: supercooled liquid;
5: thin ice (OT<2)’
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