

1 **Unveiling the Deep Ocean warming: observed bottom ocean dataset across Mediterranean Sea**

2 Nadia Lo Bue¹, Beatrice Giambenedetti¹, Davide Embriaco², Paolo Bagiacchi¹, Claudia Fratianni³,
3 Riccardo Vagni², Giuditta Marinaro¹.

4 ¹Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, 00143 Rome, Italy

5 ²Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via S. Teresa, Pozzuolo 19032 Lerici (SP), Italy

6 ³Istituto Nazionale di Geofisica e Vulcanologia (INGV), Viale Berti Pichat 6/2, 40127 Bologna, Italy

7

8 *Correspondence to:* Nadia Lo Bue (nadia.lobue@ingv.it)

9 **Abstract**

10 The deep ocean was long assumed to be in a quasi-stationary state, and therefore excluded from studies
11 on climate variability. The awareness of the unsteady state of the deep ocean is a fairly recent
12 achievement, but despite its pivotal role in the assessment of climate variability, the understanding of
13 abyssal ocean dynamics remains largely unknown, primarily due to the scarcity of observations. This is
14 why any observations below 2000 meters depth, although poor or widely dispersed, constitute valuable
15 knowledge that is mandatory to enhance and make available.

16 This work presents validated oceanographic time series collected by benthic multidisciplinary
17 observatories across key locations in the Mediterranean Sea region. It includes details on the data
18 processing and quality control methods used to ensure reliability and aims to deliver high-quality data, as
19 well as standardization in the quality control procedures for deep-sea measurements.

20 The dataset provides a comprehensive description of seafloor observations collected over different time
21 periods during the past decade, contributing to the long-term characterization and understanding of
22 abyssal ocean variability in the region.

23

24 **Short Summary**

25 We present a set of long-term, high-resolution oceanographic datasets collected by benthic observatories
26 across the deep Mediterranean Sea. These datasets provide valuable insight in the study of deep ocean
27 dynamics and its possible impact on climate variability. By applying standardized post-processing and
28 quality control procedures, we ensure the data's reliability and usability for further analysis and model

29 validation. This contribution addresses critical gaps in deep-sea monitoring and supports efforts aligned
30 with the UN Decade of Ocean Science.

31 **1 Introduction**

32
33 The deep ocean is the largest, yet least observed, component of the Earth's climate system. For decades,
34 it was assumed to be a quasi-stationary environment (*Stommel and Arons, 1960; Munk, 1966*) and thus
35 was largely excluded from global monitoring strategies. The unsteady state of the deep ocean is a quite
36 new achieved knowledge (*Ferrari et al. 2016, MacKinnon et al, 2017, Polzin and McDougall, 2011*) that
37 emphasizes the significance of abyssal processes in redistributing heat and energy, thereby influencing
38 surface climate variability.

39 Recent findings (*Talley et al 2016., Desbruyères et al. 2016, Artale et al., 2018*) show that, all over, the
40 deep ocean is far from being a stable environment; rather, it is an active part of the climate system,
41 exerting measurable impacts on decadal time scales. The deep sea is indeed a highly complex and
42 interconnected environment. The whole water column is in continuous vertical exchange up to the surface
43 and with the atmosphere, as well as laterally with surrounding ocean basins, guided by morphological
44 constraints. Given the crucial role of the oceans in absorbing planetary energy imbalance (93%) (*Rhein
et al., 2013*), understanding how and on what timescale deep-water masses redistribute this energy is
45 essential for assessing long-term climate variability and ocean circulation dynamics (*Lo Bue et al., 2021*).
46 Deep sea variability and the impacts of climate change on it are difficult to interpret, and it is difficult to
47 disentangle the different contributions given the small number of available observations, as well as
48 discriminate between local variability and climate change. These knowledge gaps are reflected in current
49 global climate models, where abyssal processes are not well-represented, leading to important biases in
50 the global climate variation estimates. Global climate models need observations for model design, tuning,
51 and validation, so it is straightforward that the under-observed deep ocean results in being poorly
52 represented (*Heuzé et al. 2022*). Recognition of observation as a critical element for ocean health and
53 planet sustainability boosted observing efforts since 2000, but this has almost exclusively concerned the
54 surface ocean (*Visbeck, 2018*). Therefore, the capacity to comprehend and quantify the energy
55 redistribution in the deep ocean and its effects on climate variability will remain underestimated until
56 enhancements in systematic monitoring across a substantial volume of (deep) ocean are achieved. Despite
57 the development of several global ocean observing programs over the past decade, such as ARGO,
58 OceanSITES, GO-SHIP, OOI, ONC, and EMSO, providing continuous deep ocean monitoring, they still
59 only cover a limited and scattered portion of the vast ocean (*Levin et al. 2019*). Currently, just 6% of
60

61 hydrographic observations extend below 2100 m in depth (*de Lavergne et al. 2016*), while the global
62 mean ocean depth exceeds 4000 m.

63 As suggested by the UN decade (Howell, 2021), there is an urgent need to fill the knowledge gap about
64 the deep ocean. This requires a collaborative, synergistic effort that places priority on enhancing
65 observation networks and monitoring programs across various domains as well as delivering
66 standardized, high-quality datasets to support both process studies and model development. High-
67 resolution, long-term datasets are essential not only for understanding deep ocean variability but also for
68 reducing biases in global climate models, which currently lack robust parameterizations for abyssal
69 processes (Heuzé et al., 2022).

70 In this context, we present a collection of validated, long-term oceanographic datasets acquired by benthic
71 observatories deployed at key sites across the deep Mediterranean Sea. These observatories provide
72 unique data for sampling strategies, heterogeneity, location, and endurance. The aim is to facilitate
73 knowledge sharing and promote a harmonized approach to deep-sea monitoring that supports broader
74 scientific efforts in climate research, model validation, and new ocean insight.

75

76 **2 Data acquisition system**

77 Accurate and continuous deep-sea monitoring requires advanced data acquisition systems capable of
78 withstanding extreme conditions and capturing a broad range of environmental variables over extended
79 periods. In this sense, benthic multidisciplinary observatories, such as GEOSTAR-type system (Favali et
80 al. 2006; Favali et al., 2009, Favali et al., 2013) (Fig. 1), are essential tools, integrating physical, chemical,
81 and geophysical sensors to acquire high-resolution data in challenging deep-ocean conditions, where
82 pressure, oxidation and temperature can affect the functioning of the system itself.

83 Benthic observatories can be broadly categorized into two types: autonomous (standalone) and cabled
84 systems. The choice between these configurations depends on monitoring objectives, site accessibility,
85 power and data requirements and logistical constraints.

86 Autonomous systems are designed to operate without external power or data transmission infrastructure.
87 Powered by onboard lithium batteries, these systems store data locally until physical recovery. Low-
88 power electronics are used to optimize battery life, and sensor data are timestamped using high-precision
89 rubidium clocks and stored in a central internal memory. Special attention is paid to sensor placement to
90 minimize interference from the frame structure and to ensure optimal sampling conditions. Depending on
91 the mission configuration, autonomous systems can operate for periods up to one year (*Embriaco et al.,*
92 *2014; Marinaro et al., 2006; Favali et al., 2006; Beranzoli et al., 1998*). The autonomous nature of these
93 systems makes them particularly valuable for deployments in remote areas where establishing a

94 continuous power or data connection is impractical. However, their reliance on limited battery life and
95 local data storage means that they require periodic recovery and maintenance, limiting their ability to
96 provide real-time data.

97

98

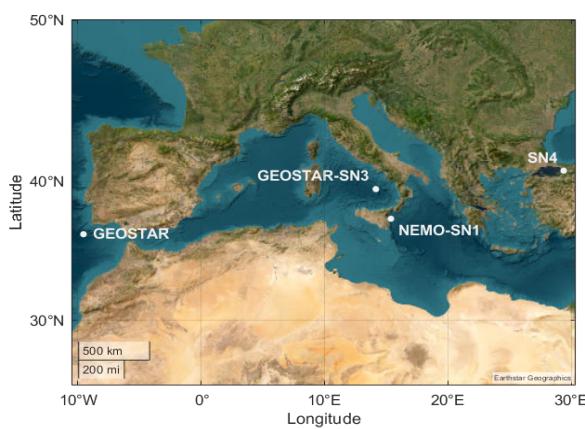
99

100 **Figure 1:** Example of a GEOSTAR-type observatory integrating multidisciplinary sensors. The image shows the NEMO-SN1
101 benthic observatory during the GNNDT-1 campaign (2002–2003).

102

103 Cabled observatories, by contrast, are connected to shore stations via electro-optical submarine cables,
104 allowing for real-time data transmission and continuous power supply. A cabled observatory such as
105 NEMO-SN1(*Favali et al., 2013, Giovannetti et al., 2016*) incorporates an electro-optical jumper and a 28
106 km-long submarine cable that connects the system to a dedicated onshore acquisition system. This setup
107 enables uninterrupted data collection, remote control of sensors, and real and near-real-time quality
108 control (depending on the type of data acquired). Time synchronization is achieved via a GPS signal
109 received at the shore station, ensuring high temporal accuracy across all measurements. Cabled systems
110 are ideal for deep long-term monitoring in accessible regions requiring high-frequency, real-time data.
111 Table 1 summarizes the observatories, deployment sites, and sensor configurations described in this study.

112



113 3 Dataset, processing, and quality control

114 Monitoring the deep sea presents significant challenges, from instrument deployment and data recovery
115 to ensuring the accuracy, quality and comparability of measurements, primarily due to its remote and
116 extreme environment. Harsh environmental conditions, logistical complexity, and technological
117 variability across observatories result in heterogeneous datasets requiring robust processing and
118 harmonization. This section outlines the datasets, their characteristics, and the quality assurance (QA),
119 the standardized post-processing, and quality control (QC) procedures adopted to enhance data integrity,
120 reliability, and interoperability.

121 3.1 Datasets

122 Between 2002 and 2014, eight long-term multidisciplinary time series were collected by four different
123 benthic observatories strategically located across the Mediterranean Sea (Fig. 2). Each observatory hosts
124 a wide array of geophysical sensors. However, for the purposes of this paper, we focus only on those
125 measuring physical and biogeochemical parameters, notably: temperature, conductivity, pressure,
126 turbidity, and ocean currents. Sensor operation varied across deployments, with sampling intervals
127 depending on the sensor type and mission objectives. A central data acquisition unit guarantees time
128 synchronization among sensors that operate with different sampling intervals, ranging from hourly to a
129 frequency as high as 5 Hz. Table 1 provides a summary of each observatory, including deployment
130 periods, sensor types and models, sampling frequencies, and overall data acquisition efficiency. Below,
131 we present a detailed description of the datasets acquired at each site.

132
133 **Figure 2: Location of the benthic multidisciplinary observatories: GEOSTAR (Gulf of Cadiz), GEOSTAR-SN3 (Tyrrhenian Sea),**
134 **NEMO-SN1 (Ionian Sea), and SN4 (Marmara Sea), (© 2025 Google Earth).**

135

136 **NEMO-SN1** observatory (Western Ionian Sea, 2100 m), located ~25 km off the coast of Eastern Sicily
137 (37.5° N, 15.4° E), yielded two different monitoring campaigns: October 2002–February 2003 and June
138 2012–June 2013 (*Favali et al. 2006, Favali et al. 2011, Favali et al. 2013*). The first deployment included
139 a CTD probe (SBE 37SM) sampling every 12 minutes, and an acoustic punctual current meter (Falmouth
140 3D-ACM) operating at 2 Hz. This sensor payload was then improved for the second campaign (2012–
141 2013) by adding an ADCP (RDI WorkHorse, 600kHz), sampling current profiles every 30 minutes. Also,
142 a new punctual acoustic current meter (Nobska MAVS-3 3-axis) replaced the previous one, maintaining
143 the same sampling frequency, while the sampling rate of the CTD was changed to 1 sample per hour. This
144 site is a key transition zone for water mass exchange between the Levantine Basin, Adriatic Sea, and
145 Western Mediterranean, and plays a central role in deep thermohaline circulation of the Eastern
146 Mediterranean (*Malanotte-Rizzoli et al., 1997; Lascaratos et al., 1999; Gacic et al., 2010, Budillon et al.*
147 *2010*).

148 **GEOSTAR-SN3** (Southern Tyrrhenian Sea, 3320 m), located on the Marsili abyssal plain (39.5° N,
149 14.2° E), GEOSTAR-SN3 represents the first long-term pilot deployment at this site. This observatory
150 was implemented to act as the main node of an underwater network of deep-sea observatories (*Favali et*
151 *al. 2009*). It operated in two consecutive missions: 2003–2004 and 2004–2005. The observatory was
152 equipped with a CTD (SBE 16plus), a transmissometer (Chelsea Alphatracka II), an ADCP (RDI
153 WorkHorse 300 kHz), and a point current meter (Falmouth 3D-ACM), all sampling at hourly intervals,
154 except for the last sensor that operated at 2 Hz. Due to the presence of the Marsili Volcano, which
155 represents one of the largest European underwater volcanoes of the Plio-Pleistocene age, this area is key
156 for addressing both geophysical and oceanographic topics (*Beranzoli et al. 2009*).

157 **GEOSTAR** (Gulf of Cadiz, Iberian Sea, 3200 m), an updated version of the GEOSTAR seafloor
158 observatory, was then deployed between 2007 and 2010 near shore in the Gulf of Cadiz (Iberian Sea -
159 36.4°N, 9.5°W). This deployment was part of the CE NEAREST project (Integrated observation from
160 NEAR shore sourcES of Tsunami: Towards an early warning system) (*Favali et al. 2009*), which aimed
161 to enhance the near-real-time detection of signals through a multiparameter seafloor observatory designed
162 to characterize potential sources of tsunamis, contributing to the development of a prototype Early
163 Warning System (EWS). From an oceanographic perspective, this site is significant for monitoring
164 interaction between the North Atlantic current and the Mediterranean outflow, contributing to the
165 oceanographic characterization of a key interbasin exchange zone (*Alves et al. 2011, García-Lafuente et*
166 *al. 2006, Ochoa et al. 1991*). The sensor suite included a CTD (SBE 16plus), a turbidimeter (Wet Labs

167 ECO BB), an ADCP (RDI WorkHorse 300 kHz) sampling every 10 minutes and a punctual current meter
168 (Nobska MAVS-3) sampling at 5 Hz.

169 **SN4** (Marmara Sea, 166 m), deployed along the North Anatolian Fault in the Gulf of Izmit (40.7° N,
170 29.4° E), SN4 monitored seismic activity and its coupling with environmental parameters. Campaigns
171 were conducted in 2009–2010 and 2013–2014, with durations of 5 and 7 months, respectively. Although
172 SN4 is one of the smallest GEOSTAR-class observatories, its instrumentation includes both geophysical
173 and oceanographic sensors (*Favali et al. 2009, Marinaro et al. 2006*), hosting CTD (SBE 16plus), a
174 turbidimeter (Wet Labs ECO NTU), an oxygen optode (AADI 3830), and a point current meter (Nobska
175 MAVS-3), with sampling frequencies ranging from 1 sample every 10 minutes (CTD, turbidity) to 1 Hz
176 (oxygen) and 5 Hz (currents). The observatory's purpose is to investigate potential correlations between
177 seismic activity and gas methane emissions in the surrounding environment, given the area's status as an
178 active seismic zone (*Embriaco et al., 2014*).

179

180 **3.2 post-processing and quality control**

181 The long-term deployment of observatories, along with the evolution of instrumentation over the years,
182 has resulted in variability in data formats and metadata structures. Consequently, a tailored post-
183 processing procedure for each observatory was required to face these discrepancies. To provide a more
184 reliable comparison for future dissemination and usage of the data, in compliance with the FAIR
185 (Findable, Accessible, Interoperable, and Reusable) principles for data sharing, the post-processing
186 workflow consisted of several steps: converting raw data into usable formats, harmonizing metadata, and
187 applying quality checks. Preliminary analysis was always conducted, as the first step, to evaluate the data
188 storage efficiency (Table 1). The raw data extracted from the deck unit were converted into a readable
189 format using custom-designed software tailored for each specific observatory, whereas certain types of
190 data, such as ADCP data, required conversion using the manufacturer's software. Each dataset underwent
191 post-processing utilizing specific multi-step standardized procedures following the manufacturer's
192 recommendation. This process enhances the accuracy, reliability, and interpretability of the raw data,
193 refining its quality and facilitating better interpretation. The QC procedures were guided by
194 recommendations from international frameworks such as GOOS (*IOC, 2010; Pouliquen et al., 2011*) and
195 QUARTOD (*Bushnell et al., 2019*). Tests included checks for time consistency, value ranges, rate of
196 change, and internal consistency across sensors. Data were flagged based on severity and usability
197 (Table 2), with bad or missing data replaced by NaNs to maintain data integrity.

198
199

200
 201 **Table 1: Overview of the benthic observatories, including site location, deployment period, sensor types and**
 202 **models, sampling frequency, and acquisition efficiency.**

Observatory name, depth, and geographical site	Acquisition period	Sensor type	Sensor model	Sampling frequency	Sensor efficiency (%)
NEMO-SN1 (2100 m) Western Ionian Sea	2002-2003 and 2012-2013	CTD	SBE 37 SM	1 sample/12'	100% (2002-2003) 95.3% (2012-2013)
		CURRENT METER	Falmouth 3D-ACM (2002-2003) Nobska MAVS-3 (2012-2013)	2Hz	99.9% (2002-2003) 98.4% (2012-2013)
		ADCP	RDI WH 600 kHz	2 samples/h	98.7% (2012-2013)
GEOSTAR SN3 (3320m) South Tyrrhenian Sea	2003-2004 and 2004-2005	CTD	SBE 37 SM	1 sample/h	99.5% (2003-2004) 98.5% (2004-2005)
		TRANSMISSOMETER	Chelsea Alphatracka II	1 sample/h	99.5% (2003-2004) 98.5% (2004-2005)
		CURRENT METER	Falmouth 3D-ACM	2Hz	100% (2003-2004) 99.9% (2004-2005)
		ADCP	RDI WH 300 kHz	1 samples/h	100% (2003-2004) 99.7% (2004-2005)
GEOSTAR (3200) Gulf od Cadiz	2007-2008 and 2009-2010	CTD	SBE16plus	1 samples/h	91.4% (2007-2008) 96.1% (2009-2010)
		TURBIDIMETER	Wet Labs ECO BB	1 samples/h	91.4% (2007-2008) 96.1% (2009-2010)
		CURRENT METER	Nobska MAVS-3	5Hz	90.5% (2007-2008) 36.8% (2009-2010)
		ADCP	RDI WH 300 kHz	1 sample/h	90.5% (2007-2008) 36.8% (2009-2010)
SN4 (166 m) Marmara Sea	2009-2010 and 2013-2014	CTD	SBE16plus	1 sample/10'	99.5% (2009-2010) 99.7% (2013-2014)
		TURBIDIMETER	Wet Labs ECO BB	1 sample/10'	99.5% (2009-2010) 99.7% (2013-2014)
		CURRENT METER	Nobska MAVS-3	5Hz	99.9% (2009-2010) 17.7% (2013-2014)
		OXYGEN	AADI Optode 3830	1 Hz	99.9% (2009-2010)

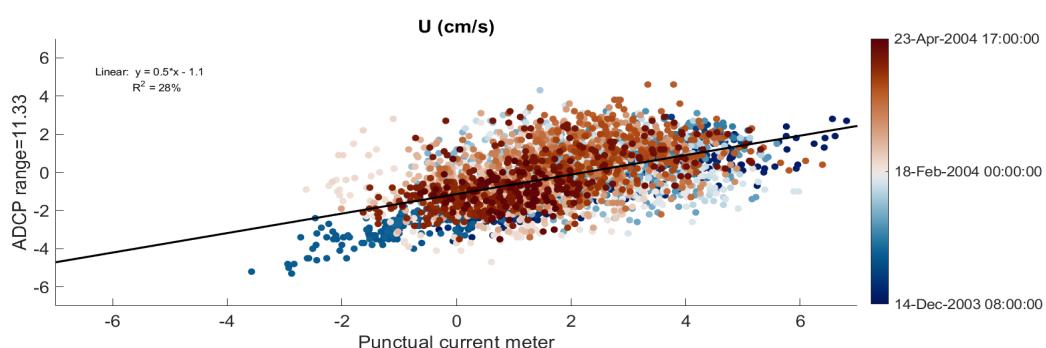
203
 204

205

206 **3.2.1 post-processing**

207 The first stage aimed to collect, convert, and verify the data gathered by different acquisition systems,
 208 considering the diverse types of sensors and the relative data format, to enhance the quality and reliability
 209 of the collected information. A thorough post-processing phase was undertaken to refine and further
 210 validate the data. This involved primarily an inspection of the efficiency of the sensors and their proper
 211 functioning through meticulous post-calibration and validation procedures to ensure the integrity of the

212 data, providing a solid foundation for subsequent analysis and interpretation. Table 1 reports the
213 efficiency for each sensor and mission elaborated, where the overall acquisition efficiency is calculated
214 as the percentage of data recorded on the total acquisition load. The efficiency of the oceanographic
215 sensors was generally very high, with a few exceptions, most notably in the Marmara Sea (Table 2), where
216 the Nobska MAVS-3 sensor stopped functioning relatively early in the mission. Subsequently, several
217 checks were performed to verify timestamp validity, ensure alignment of multivariable measurements,
218 and assess instrument efficiency.


219 **Table 2: Definitions of quality flags applied to datasets. Missing and Bad data (flag 9) are not retained**
220 **and replaced in the new QC datasets with NaNs.**

Code	Definition
1	Good data
3	Suspect data potentially correctable or high-interest data
9	Missing value or bad data

221

222 Moreover, cross-correlation techniques were employed to verify internal consistency, particularly
223 between current meters and ADCPs. For instance, the horizontal velocity component (U) measured by
224 the punctual current meter and by the ADCP deployed at GEOSTAR-SN3 during the 2003-2004 mission
225 showed reasonable agreement ($R^2 = 0.28$), as illustrated in Figure 3.

226

227 **Figure 3: Comparison of the horizontal (U) velocity components from punctual current meter and ADCP at GEOSTAR-SN3 (2003–**
228 **2004). To match these two different types of data we considered the hourly time series.**

230
231

232 This consistency was observed despite differences in their operating principle, measurement accuracy and
233 installation height. The ADCP profiles a section of the water column above the observatory (up to 20 –
234 30 m in this example), while the punctual current meter captures velocity closer to the sensor itself, close
235 to the bottom. This comparison helps confirm the reliability of the collected data.

236

237 **3.2.2 Quality Control Procedures**

238 Before any QC procedure can be meaningfully applied, however, rigorous Quality Assurance (QA) is
239 essential to ensure that the sensors themselves provide measurements within expected accuracy and
240 stability ranges. In these cases, QA included pre-deployment sensor calibration and in situ verification
241 through dedicated CTD casts conducted both immediately before the observatory deployment and after
242 recovery. These steps establish the baseline performance of each instrument, allow the identification of
243 sensor drift or malfunction. Ensuring robust QA is fundamental, as even the most sophisticated QC
244 procedures cannot fully compensate for poorly calibrated or improperly functioning sensors; rather,
245 effective QA provides the foundation upon which reliable real-time and delayed-mode QC can be built.
246 Whether performed in real-time or in delayed mode, QC data is crucial for ensuring the accuracy,
247 reliability, and consistency of the data collected. For cabled observing systems, real-time QC serves as an
248 invaluable tool for assessing, monitoring sensor performance and developing possible real-time
249 applications. It also helps prevent the storage and analysis of erroneous data, while enabling prompt
250 corrections that can minimize data gaps or inaccuracies during critical monitoring periods.

251 In contrast, delayed mode QC provides a more comprehensive review to improve data accuracy. It
252 involves comparing measurements with reference datasets, historical records, or model outputs, allowing
253 the detection and correction of errors missed during real-time processing. Sensor recalibration and cross-
254 referencing with nearby instruments are commonly applied. By applying advanced statistical and tailored
255 threshold-based techniques (e.g. range tests, spike and outlier detection), together with time series
256 methods (e.g. low-pass/high-pass filtering, trend analysis, autocorrelation), delayed mode QC can
257 effectively address issues such as missing data, spikes, and sensor drift, thereby substantially enhancing
258 overall data quality. Since deep ocean data is often collected over extended periods, delayed mode QC
259 plays a crucial role in identifying and correcting inconsistencies caused by sensor degradation or
260 calibration drift. This is especially important for long-term environmental studies, where maintaining
261 consistency across datasets is essential for reliable trend analysis and meaningful comparisons.

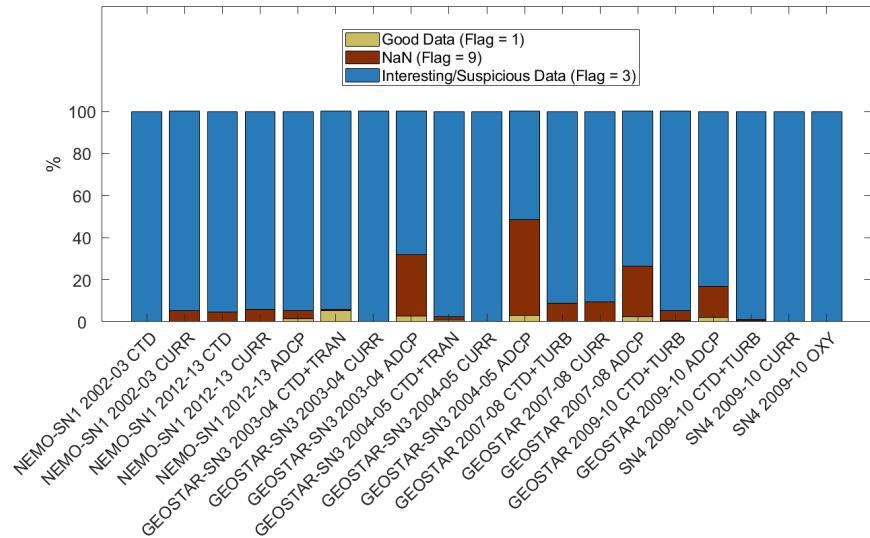
262 All datasets here described, whether collected through stand-alone or cabled system, have been processed
263 in delayed mode with the aim of archiving the dataset for long-term use and sharing high-quality data
264 with the scientific community.
265 Following QUARTOD (QA/QC for Real-Time Oceanographic Data) recommendations (*Pouliquen et al.*
266 2011), a QC protocol was customized for each sensor type and designed to be as automated as possible.
267 Data that failed one or more tests were either flagged or removed according to the test rules. Missing or
268 bad (removed) data were substituted with NaNs, while preserving their corresponding timestamps to
269 maintain a regular temporal grid in the dataset. Custom thresholds were defined for regional and seasonal
270 variability based on climatological data from the Mediterranean Sea (Table 3).
271

272

273

274
275

Table 3: Example of regional thresholds used in quality control tests for the Mediterranean Sea, including seasonal and climatological variability.


SITE	VARIABLE	RANGE
Ionian Sea and Tyrrhenian Sea	Temperature	13-14 ° C
	Conductivity	4-5 S/m
	Current Speed	0-20 cm s ⁻¹
Marmara Sea	Temperature	14-16 ° C
	Conductivity	4-5 S/m
	Current Speed	0-40 cm s ⁻¹
Cadiz Gulf	Temperature	2-3 ° C
	Conductivity	2-4 S/m
	Current Speed	0-20 cm s ⁻¹

276

277

278

279 These measures ensured that flagged data reflected real anomalies rather than environmental variability.
280 Figure 4 provides an overview of the quality of the seafloor observatory data after applying the post-
281 processing and the QC procedure using flags defined in Table 2.
282

283

284 **Figure 4: Data quality distribution across observatories and sensors after QC. Data quality flags as percentages for all processed**
285 **datasets. Bars indicate observatory name, campaign years, and sensor type. Flag codes: 1 = good, 3 = suspect, 9 = missing/removed**

286

287

288 The QC procedure was carried out through a stepwise sequence of tests, such as:

289 **Time check** - The test concerns missing timestamps requires that the observation date and time are
290 sensible and cover the whole campaign duration with the frequency of the instrument. Missing data are
291 typically detected and flagged. In some cases, the acquisition system automatically inserts a standard out-
292 of-range value (e.g., '999') in the raw data to indicate a malfunction; these values are identified and
293 replaced with NaNs.

294 **Out of range test** - Removing any measurements that exceed the output-range thresholds assigned
295 individually to each sensor

296 **Gross Range test** - The global range test evaluates each observed value against the full spectrum of
297 physically plausible measurements, encompassing both the extreme conditions expected in the oceans
298 and the operational limits of the sensors. Any value that falls outside this predefined range is automatically
299 flagged or removed, ensuring that clearly erroneous measurements are excluded from subsequent
300 analyses.

301 **Percent Good (ADCP only)** - This test uses the beams' percent good, which indicates what fraction of
302 the pings were accepted for a given ensemble. The percent good test determines whether the data that are
303 being returned are sufficient to provide the required data quality. For Teledyne RDI ADCPs, when the
304 coordinate frame is not set to beam coordinates, the Percent Good test applies to the percentage of good
305 three and four beam solutions, i.e., the percentage of data for which the sensor has rejected none or only
306 one beam.

307 **Error velocity test (ADCP only)** - Uses error velocity, which derives from the four-beam geometry of
308 an ADCP, each pair of opposing beams providing two independent measurements of velocity. The error
309 velocity can be treated as an indicator of errors for each depth bin. Threshold specification from the sensor
310 manufacturer.

311 **Regional/Seasonal range test** - This is a variation on the gross range test, where the thresholds are
312 adjusted to seasonal averages (e.g., climatological ranges, expected variability from the measured region).
313 Table 4 provides an example of specific ranges for observations from the Mediterranean Sea.

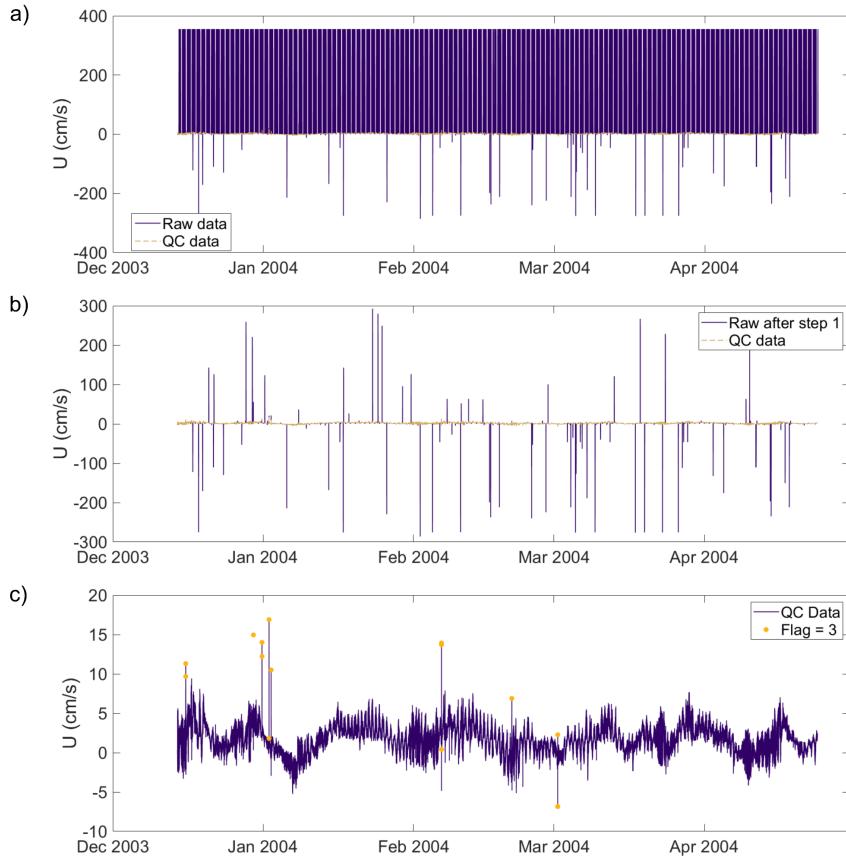
314 **Spike test** - This test checks for single value spikes usually due to an electrical signal from the sensor,
315 relative to adjacent data points. Spikes consisting of more than one data point are difficult to capture, but
316 their onset may be flagged by the following Rate of change test.

317 **Rate of change** – This test inspects the time series for a time rate of change that exceeds a threshold. The
318 observed quantities can change substantially over short periods in some locations, hindering the value of
319 this test, so the thresholds have been chosen carefully and tailored based on the sensor's operational limits
320 and location. This test is equivalent to removing outliers, i.e. data over three standard deviations from the
321 mean. In the case of dissolved oxygen measurements, because of its dynamic nature, this test does not
322 involve outliers' removal but flagging.

323 **Flat line** - A common sensor failure mode can provide a data series that is nearly a flat line suggesting
324 sensor failure. This test checks for a continuously repeated observation of the same value. Since in the
325 deep sea there is generally little variability, this kind of test is performed for flagging suspicious data
326 since it cannot be considered necessarily bad in this specific case.

327 **Sensor Tilt** (for current meter and ADCP) - Current sensors must be aligned within an expected range of
328 tilt angles to properly measure horizontal and vertical currents. For fixed-mounted sensors, as in the case
329 of seafloor observatories, this test serves to verify that there has not been a misalignment or an unexpected
330 platform motion in time. In the case of ADCP measurements, this test can be replaced with a rate of
331 change test performed along the vertical (i.e., along depth instead of time).

332 **Echo Intensity** (ADCP only) - If a beam reflects off a boundary, then the echo intensity increases from
333 the previous bin. The test checks for echo intensities that may indicate interaction with the surface,
334 bottom, or in-water structures.


335 **Current gradient** (ADCP only) - The current speed is expected to change at a gradual rate with depth.
336 This test checks for excessive current speed/direction changes in the vertical profile.

337 An example of the QC procedure is shown in Figure 5, using the horizontal velocity component measured
338 by the punctual current meter on GEOSTAR-SN3 during the 2003–2004 mission. The raw data initially
339 contained numerous spikes, out-of-range values, and outliers, making interpretation difficult (Figure 5a).
340 Applying only the out-of-range test significantly improved data clarity (Figure 5b) and completing the
341 full QC process resulted in a clean and accurate representation of the eastward velocity component (Figure
342 5c). All tests were conducted within the valid measurement range for the instrument, as specified in Table
343 4. These QC procedures, excluding the tilt test, were also applied to CTD probes, turbidimeters, and
344 transmissometers. For CTD data, derived quantities were calculated using the international TEOS-10
345 (*Thermodynamic Equation of SeaWater, 2010*) subroutines (*McDougall and Barker, 2011*), including in-
346 situ salinity (S, PSU), absolute salinity (SA, g/kg), conservative temperature (CT, °C), potential
347 temperature (θ , °C), and in-situ density (ρ , kg/m³).

348 For dissolved oxygen measurements, the same QC procedures were used, with a modified rate-of-change
349 test to account for the dynamic nature of oxygen in the marine environment.

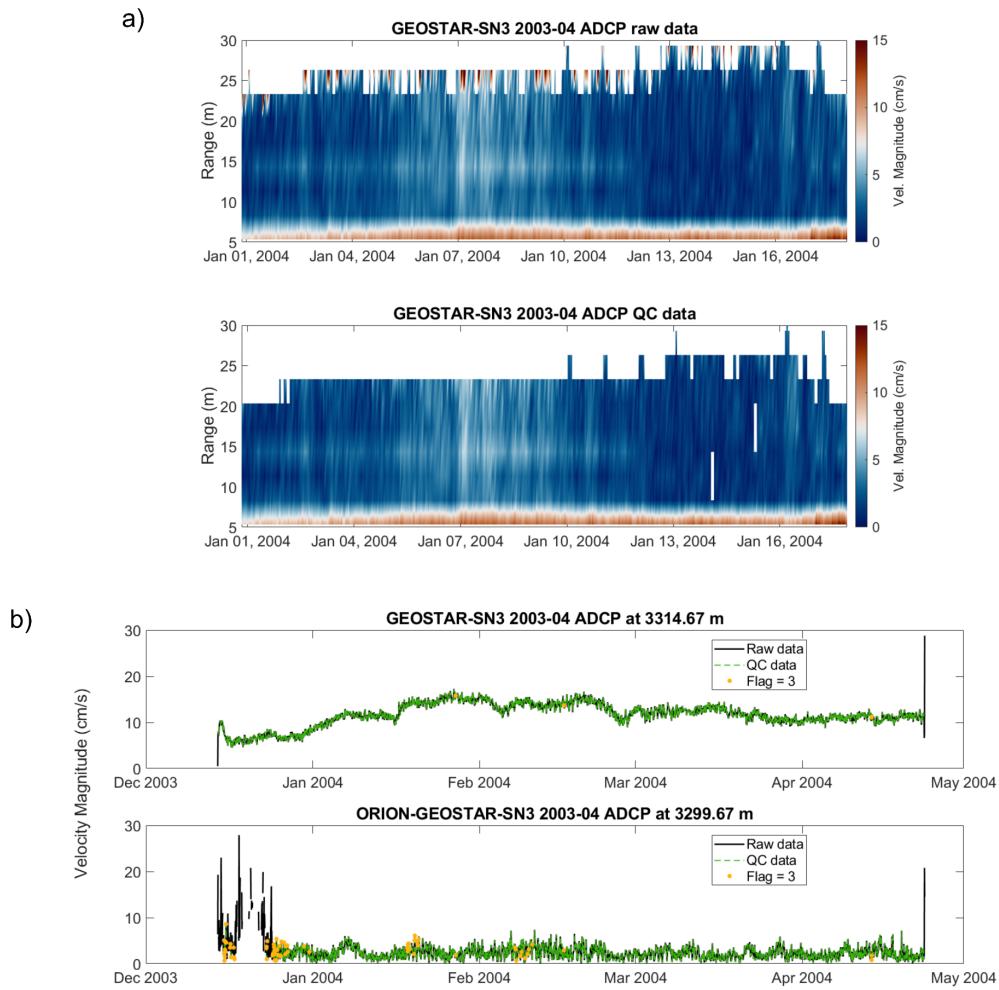
350 The ADCP measurements required a slightly different approach compared to the other sensors due to
351 their operational differences. Figure 6 shows an example of the QC steps applied to the velocity magnitude
352 measured by the ADCP mounted on SN3 observatory during the 2003-2004 acquisition campaign.

353

354
355 **Figure 5: Quality control procedure applied to the eastward velocity component measured by the punctual current meter at**
356 **GEOSTAR-SN3 (2003–2004). (a) Raw data showing outliers; (b) intermediate results after range and spike tests; (c) final cleaned**
357 **dataset after applying full QC protocol.**

358 This sensor measures current time series across various depth ranges, up to ~ 20 m from the top of the
359 observatory. Consequently, visual inspection of the raw dataset is more difficult to interpret, as can be
360 seen in Figure 6(a), noisy data is not immediately evident in the raw data. The two panels of Figure 6(a)
361 have been limited to a single month to better highlight the differences between the raw and the quality
362 checked data, particularly in the upper ranges where the measurements are noisier. Figure 6(b) displays
363 detailed data extracted from two different depths at 5.33 and 20.33 m above the sensor, highlighting more
364 clearly the effects of the QC procedures. Each depth range is tested for ranges, spikes, outliers, flat lines,
365 and tilt, like the other sensors. Additionally, the rate of change in the vertical direction, the percentage of
366 data acquired using three or more beams, echo intensities to account for spurious ping interactions, and
367 the velocity error range are also evaluated.
368

369
 370
 371
 372


Table 4: Statistical parameters computed for time series from all observatories, including sensor type and campaign details.

Observatory name	Acquisition campaign	Sensor	Variable	Minimu m	Maximu m	Mean	Standard deviation
NEMO-SN1	2002-2003	CTD	T (°C)	13,71	13,77	13,75	0,01
			C (S/m)	4,648	4,656	4,652	0,001
			Depth (dbar)	2102,8	2110,7	2109,7	1,8
		Current meter	U (cm/s)	-17,7	10,8	-2	1,9
			V (cm/s)	-5,2	24	7,8	3
			W (cm/s)	-12,5	20,2	-0,6	1
	2012-2013	CTD	T (°C)	13,74	13,82	13,76	0,02
			C (S/m)	4,656	4,665	4,658	0,002
			Depth (dbar)	2060,1	2060,8	2060,5	0,1
		Current meter	U (cm/s)	-12,1	8,9	-1,4	1,4
			V (cm/s)	-15,9	7,1	-3	1,9
			W (cm/s)	-7,4	7,8	0,5	0,6
GEOSTAR-SN3	2003-2004	ADCP	U (cm/s)	-19,9	20	-2	3
			V (cm/s)	-19,9	20	-4,1	3,4
			W (cm/s)	-19,7	17,9	-0,3	1,1
		CTD	Echo average (cnt)	43	130,4	51,6	3,1
			T (°C)	13,52	13,61	13,54	0
			C (S/m)	4,631	4,697	4,681	0,007
	2004-2005	Transmissometer	Depth (dbar)	3401,2	3401,9	3401,6	0,1
			Beam attenuation (m ⁻¹)	0,344	0,398	0,363	0,015
			U (cm/s)	-6,8	16,9	1,7	1,6
		Current meter	V (cm/s)	-13,2	14,4	2,3	1,8
			W (cm/s)	-18,3	15,8	-0,9	1,3
		ADCP	U (cm/s)	-27,4	28,6	-1,6	4,6
			V (cm/s)	-29,9	23,3	0,1	2,5
			W (cm/s)	-23,4	7,4	-0,7	0,7
		CTD	Echo average (cnt)	43,2	59,8	44,1	0,6
			T (°C)	13,53	13,55	13,54	0,01
			C (S/m)	4,661	4,671	4,666	0,003
		Transmissometer	Depth (dbar)	3401,2	3401,9	3401,6	0,1
			Beam attenuation (m ⁻¹)	-0,072	0,008	-0,051	0,02
			U (cm/s)	-15,9	16,4	1,2	1,4
		Current meter	V (cm/s)	-15,9	19,8	2,3	1,7
			W (cm/s)	-17,2	15,4	-1,3	1
			U (cm/s)	-19,4	19,9	0,4	3,2
		ADCP	V (cm/s)	-19,5	20	-0,8	0,6
			W (cm/s)	-8,7	9,1	-0,7	0,6
			Echo average (cnt)	42,6	45,3	43,5	0,3

373

Observatory name	Acquisition campaign	Sensor	Variable	Minimum	Maximum	Mean	Standard deviation
GEOSTAR	2007-2008	CTD	T (°C)	2,44	2,68	2,58	0,04
			C (S/m)	3,244	3,267	3,258	0,004
			Depth (dbar)	3254,3	3257,8	3256	0,8
		Turbidimeter	Turbidity (NTU)	-0,095	0,631	-0,017	0,037
			U (cm/s)	-18,3	10,2	-0,3	2,2
		Current meter	V (cm/s)	-15,7	17,3	-2	2,6
			W (cm/s)	-9,1	14,9	-0,6	0,7
		ADCP	U (cm/s)	-29,1	28,1	-0,7	3,7
			V (cm/s)	-29,2	28,9	-1,7	3,6
			W (cm/s)	-9,1	10,6	-0,4	0,5
			Echo average (cnt)	44,6	49,1	46,3	1
	2009-2010	CTD	T (°C)	2,48	2,67	2,61	0,03
			C (S/m)	3,246	3,264	3,258	0,003
			Depth (dbar)	3227,6	3231,3	3229,4	0,8
		Turbidimeter	Turbidity (NTU)	-0,076	0,543	-0,023	0,039
			U (cm/s)	-9	11,3	0,1	0,6
		Current meter	V (cm/s)	-11,3	10	-0,6	0,5
			W (cm/s)	-12,4	19,1	0	0,2
		ADCP	U (cm/s)	-29,6	28,5	-0,8	4,1
			V (cm/s)	-29	29,8	0,1	3,7
			W (cm/s)	-8,1	11,7	-0,5	0,5
			Echo average (cnt)	44,7	52,3	47,1	1,6
SN4	2009-2010	CTD	T (°C)	14,42	15,83	14,66	0,15
			C (S/m)	4,637	4,798	4,665	0,017
			Depth (dbar)	166,5	167,2	166,9	0,1
		Turbidimeter	Turbidity (NTU)	0,923	48,398	3,719	4,083
			U (cm/s)	-39,4	26,6	-1,5	4,4
		Current meter	V (cm/s)	-29,1	25,3	-0,4	2,3
			W (cm/s)	-29	11,9	-0,4	1,3
		Oxygen meter	O ₂ (μmol/l)	5,1	103,1	39,1	9,2
	2013-2014	CTD	T (°C)	14,49	15,76	14,81	0,16
			C (S/m)	4,647	4,791	4,685	0,018
			Depth (dbar)	167,1	167,6	167,3	0,1
		Turbidimeter	Turbidity (NTU)	0,712	82,346	4,447	7,433
			U (cm/s)	-30,9	6,2	-1,4	3,7
		Current meter	V (cm/s)	-15,7	9,4	0,2	2,1
			W (cm/s)	-1,6	4,9	0,3	0,6

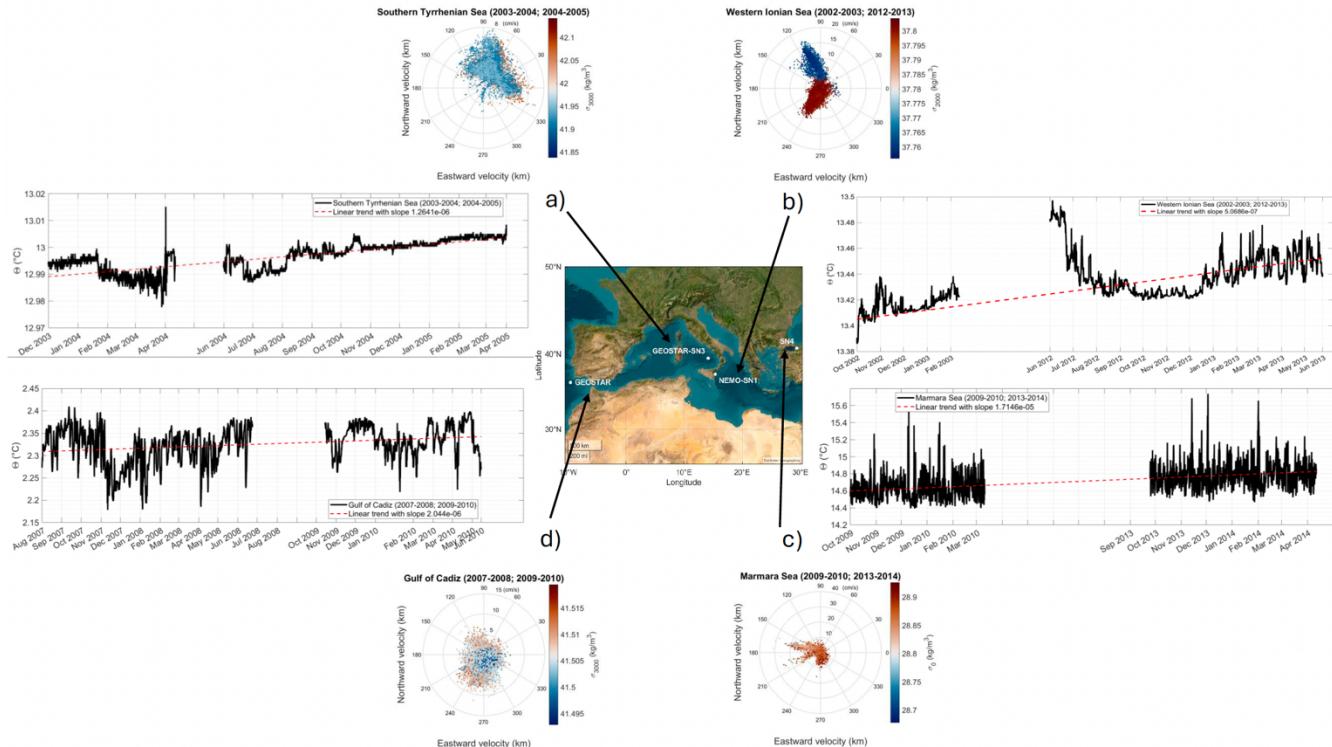
377
378 **Figure 6: Quality control of ADCP velocity magnitude data at GEOSTAR-SN3 (2003–2004). (a) Color map of current magnitude**

379 across depth for January: top panel = raw data; bottom = QC-checked. (b) Time series from two depth bins (5.33 m on the top panel

380 and 20.33 m bottom panel): black = raw, green = quality-checked, yellow = flagged.

381

382


383 4 Results

384 Although the acquired datasets pertain to several EOVS, the results reported here primarily concern
385 temperature data, intending to provide some benchmarks of the deep layer state over the last decade across
386 the Mediterranean Sea, from the Sea of Marmara to the Cádiz area. After post-processing a QC validation
387 routine has been performed, potential temperature and density anomaly data derived following TEOS-10

388 international standards (<https://teos-10.org/>), exhibit interesting variability at all sea-bottom sites
389 monitored during these years (Figure 7).

390

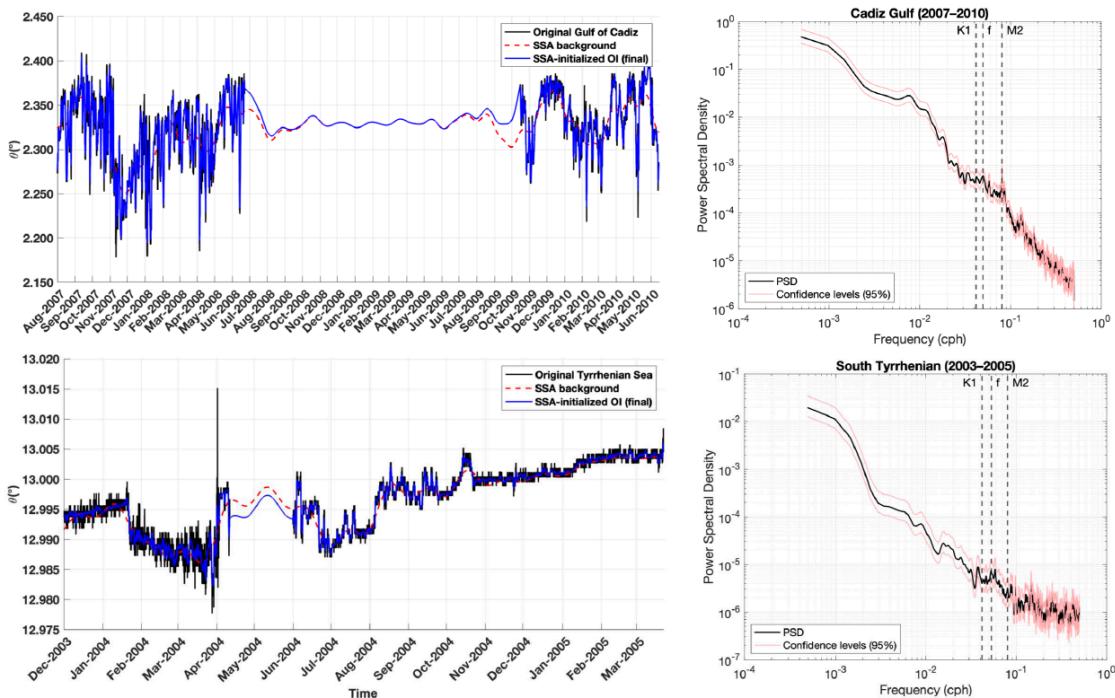
391

392 **Figure 7:** Temperature time series and corresponding current hodographs, along with potential density anomalies (calculated
393 relative to in situ pressure), reveal a warming trend and variability observed in the Tyrrhenian Sea (a), the Ionian Sea (b), the
394 Marmara Sea (c), and the Gulf of Cádiz (d) across the Mediterranean region (map at the center © 2025 Google Earth).

395

396

397 Temperature trends measured between 2002 and 2013 at all monitored deep sites are consistently positive,
398 in agreement with the global warming trend reported by the Intergovernmental Panel on Climate Change
399 (IPCC, 2013). Although the statistical weight varies among sites depending on the length of the
400 observation period, the annual rate of temperature increase, calculated for all datasets using least-squares
401 linear fits to hourly measurements, remains within the same order of magnitude, ranging from $+0.011\text{ }^{\circ}\text{C}$
402 year $^{-1}$ in the Tyrrhenian Sea to $+0.018\text{ }^{\circ}\text{C}$ year $^{-1}$ in the Gulf of Cadiz and $+0.047\text{ }^{\circ}\text{C}$ year $^{-1}$ in the Ionian
403 Sea. The higher value observed in the Ionian Sea reflects the fact that it was derived from two time series
404 collected a decade apart, providing a coherent and reliable estimate of a decadal-scale warming process.



405 The only exception is the Marmara Sea, where the rate is an order of magnitude higher ($+0.15 \text{ }^{\circ}\text{C year}^{-1}$),
406 likely due to its shallower depth (166 m).
407 At all sites, temperature data reveal notable internal variability, but the recorded variations are not directly
408 comparable as they result from differences in monitoring periods and local characteristics; therefore, they
409 have to be assessed on a case-by-case basis. As for the NEMO-SN1 case in the Ionian Sea, where the
410 variability recorded over one decade is not a simple warming signature but a real change of the deep-
411 water masses (Malanotte-Rizzoli *et al.*, 1999; Hainbucher *et al.*, 2006; Artale *et al.* 2018). This is evident
412 looking at the current hodograph, also showing potential density anomaly (σ^2 , calculated with reference
413 pressure of 2000 dbar) (Figure 7b). In ten years, it reveals a change of $\Delta\sigma^2 = 0.05 \text{ kg/m}^3$, which is four
414 times bigger than the usual range of inter-annual variability expected at these depths in the Ionian bottom
415 water. Along with changes in thermohaline properties, the current hodograph for the Ionian Sea also
416 reveals a clear shift in the direction of prevailing currents (Giambenedetti *et al.*, 2024), offering a rare
417 snapshot of water mass redistribution. This shift may be attributed to the alternating advection of dense
418 water masses that the Ionian basin receives from the Adriatic or Aegean Sea, which could sustain the
419 better-known decadal reversals (BIOS) occurring in the upper-layer circulation (Gacic *et al.*, 2010). This
420 is an example of how the variability of the deep layer, generally assumed to be a stationary state
421 environment, can instead feed internal processes impacting properties of the water masses and circulation
422 dynamics.
423 Despite their scientific importance, deep-ocean time series remain sparse in both time and space.
424 Therefore, developing techniques to handle data gaps and maximize the information content of existing
425 records is essential. All time series here reported contain missing data, with gap lengths varying according
426 to maintenance needs, technological refurbishments, or ship availability. To address these discontinuities,
427 a combination of Singular Spectrum Analysis (SSA) and Optimal Interpolation (OI) was applied to
428 selected time-series (Figure 8), demonstrating an effective approach to mitigate data gaps and fully exploit
429 the available observations.
430 SSA is a fully data-driven, nonparametric method particularly suitable for time series with relatively long
431 and continuous gaps, as it does not require a priori assumptions that might introduce artificial oscillations
432 (Ghil *et al.*, 2002; Kondrashov and Ghil, 2006; Beckers and Rixen, 2003). The approach involves two
433 main steps: (i) SSA extracts the dominant deterministic components, such as trends, seasonal and tidal
434 oscillations, and low-frequency variability, providing a continuous background estimate across missing
435 intervals; and (ii) OI is then applied to the detrended and SSA-backgrounded residuals, optimally merging
436 observed data with the reconstructed background field based on their covariance structure.
437 This SSA–OI approach combines the signal reconstruction capability of SSA with the statistical
438 optimality of OI, effectively filling both short and long gaps while preserving the realistic variance and

439 autocorrelation structure of the original record. Through this process, missing segments were
440 reconstructed by identifying and interpolating the dominant modes (6 mode) associated with physical
441 oceanographic variability, thereby ensuring the temporal coherence and dynamical consistency of the
442 reconstructed time series. Beyond data reconstruction, this approach enhances the performance of
443 subsequent analyses, such as Power Spectral Density (PSD) estimation. As shown in Figure 8, the
444 warming signal in the reconstructed time series (Figure 8, left part) is consistent with its spectral
445 counterpart (Figure 8, right part). The alignment of the observed signal (black line) within the 95%
446 confidence band (red line) confirms the robustness of the spectral estimate. Focusing on the deep-water
447 component, both spectra display dominant energy at low frequencies, reflecting the slow and persistent
448 variability typical of long-term warming processes evident in the reconstructed series. Distinct peaks at
449 tidal and inertial frequencies are also apparent, though with different amplitudes, indicating that these
450 processes remain active even at great depth and may contribute to the redistribution of accumulated
451 thermal energy.

452

453

454 **Figure 8.** Time series from the Gulf of Cádiz (upper left) and the Tyrrhenian Sea (lower left) showing original data with gaps (black),
455 SSA-based background estimation (red dashed line), and the reconstructed signal (blue line). Corresponding spectra (upper and
456 lower right) highlight dominant low-frequency energy, indicating slow, persistent variability associated with long-term warming
457 recorded.

458

459 **5 Data availability**

460 The datasets described in this study can be accessed through the Multidisciplinary Oceanic Information
461 SysTem (MOIST, <https://doi.org/10.13127/MD/MOIST>, Azzarone *et al.*, 2010) and via the INGV
462 ERDDAP server (<http://oceano.bo.ingv.it/erddap/index.html>), (Table 5 in Appendix A provides the
463 complete references for each dataset.). Data and metadata have been formatted into NetCDF (Network
464 Common Data Form) and comply with Climate and Forecasting (CF) metadata conventions. These
465 specifications are also aligned with OceanSITES and SeaDataNet vocabularies, ensuring semantic clarity,
466 long-term interoperability, and machine-readability. Domain-specific metadata attributes are harmonized
467 using the NERC Vocabulary Server (NVS), which provides authoritative controlled vocabularies for
468 parameter descriptions, units, and semantic consistency across datasets. Organizational identifiers follow
469 the European Directory of Marine Organisations (EDMO) and the Research Organization Registry
470 (ROR), and SPDX is used for licensing. In line with the INGV Data Policy, all datasets are released under
471 a Creative Commons Attribution 4.0 International License (CC BY 4.0), allowing free use with
472 appropriate citation. To be fully compliant with FAIR principles, each dataset is registered and assigned
473 a Digital Object Identifier (DOI) through the INGV Data Registry (<https://data.ingv.it/>), acknowledging
474 the efforts of those who contributed to generating the data and products and assuring data availability in
475 further scientific publications. Multiple datasets are available, each corresponding to a specific
476 observatory and mission. A comprehensive summary, including DOIs and citation formats, is available
477 on the MOIST portal for each dataset.

478 **6 Conclusions and Perspectives**

479 The implementation of harmonized post-processing and quality control (QC) procedures for deep-sea data
480 is a key step toward expanding the availability of reliable, high-quality oceanographic observations from
481 the least sampled regions of the global ocean. Standardizing these methods ensures data accuracy and
482 consistency while enabling the effective use and sharing of information essential to understanding deep-
483 sea variability, still among the most poorly characterized components of the climate system. Beyond data
484 collection, the application of advanced analytical methods proposed in this study minimizes spectral
485 leakage and enhances the reliability of frequency-domain diagnostics, enabling a more accurate
486 characterization of dominant variability modes and periodic signals. Furthermore, the reconstruction of
487 longer and more continuous records increases the resolution and robustness of spectral estimates, allowing

488 a deeper and more comprehensive interpretation of the frequencies associated with the observed
489 oceanographic processes.

490 Strengthening and extending the deep-ocean observational network, particularly in under-sampled
491 regions, remains essential to improve both regional process understanding and global climate modeling.
492 By promoting open access and adherence to FAIR data principles, this effort contributes to the goals of
493 the UN Decade of Ocean Science, supporting the development of a more integrated, sustainable, and
494 climate-relevant deep-ocean observing framework.

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515 **Appendix A**

516 **Table 5: Summary of all datasets discussed in the paper, including their DOIs and corresponding citations**

517

Observatory Name and acquisition period	Sensor type	Citation to add in the references
NEMO-SN1 (2002-2003)	CTD	Favali P., Beranzoli L., Etiope G., Marinaro G., Giambenedetti B., Lo Bue N.. CTD dataset with Quality Control (SBE 37-SM @ 1 sample / 12 min) from INGV/NEMO-SN1 seafloor platform during GNDT-SN1 project in Western Ionian Sea site (East Sicily), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/wis-sn1-2002-ctd-qc , 2024
	Current meter	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (FSI 3D-ACM @ 2 Hz) from INGV/SN1 seafloor platform during GNDT-SN1 project in Western Ionian Sea site (East Sicily), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/wis-sn1-2002-curr-qc , 2024
NEMO-SN1 (2012-2013)	CTD	Embriaco D., Marinaro G., Giovanetti G., Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 37-SM @ 1 sample / hour) from INGV/NEMO-SN1 seafloor platform during SMO project in Western Ionian Sea site (East Sicily), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/wis-sn1-2012-ctd-qc , 2023
	Current meter	Giovanetti G., Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (Nobska MAVS-3 @ 2 Hz) from INGV/NEMO-SN1 seafloor platform during SMO project in Western Ionian Sea site (East Sicily), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/wis-sn1-2012-current_meter-qc , 2023
	ADCP	Giovanetti G., Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. ADCP dataset with Quality Control (RDI WorkHorse 600 kHz @ 2 profile / hour) from INGV/NEMO-SN1 seafloor platform during SMO project in Western Ionian Sea site (East Sicily), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/wis-sn1-2012-adcp-qc , 2023
GEOSTAR SN3 (2003-2004)	CTD	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B. (2024). CTD dataset with Quality Control (SBE 16 @ 1 sample / hour) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), ORION1 campaign. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2003-ctd-qc , 2024
	Transmissometer	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. Transmissometer dataset with Quality Control (Ctg Alphatrack II @ 1 sample / hour) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), part of ORION network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2003-trans-qc
	Current meter	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (FSI 3D-ACM @ 2 Hz) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), part of ORION network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2003-curr-qc , 2024
	ADCP	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. ADCP dataset with Quality Control (RDI WorkHorse 300 kHz @ 1 sample / hour) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), part of ORION network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2003-adcp-qc
GEOSTAR SN3 (2004-2005)	CTD	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 16 @ 1 sample / hour) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), ORION2 campaign. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2004-ctd-qc , 2024
	Transmissometer	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. Transmissometer dataset (alphatrack II @ 1 sample / hour) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), part of ORION network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2004-trans-qc , 2024
	Current meter	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (FSI 3D-ACM @ 2 Hz) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), part of ORION network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2004-curr-qc , 2024
	ADCP	Favali P., Beranzoli L., Etiope G., Marinaro G., Lo Bue N., Giambenedetti B.. ADCP dataset with Quality Control (RDI WorkHorse 300 kHz @ 1 profile / hour) from INGV/GEOSTAR - SN-3 seafloor platform during ORION-GEOSTAR3 project in Southern Tyrrhenian Sea site (Marsili Basin), part of ORION network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/sts-geostar-2004-adcp-qc , 2024

518

519

520

GEOSTAR (2007-2008)	CTD	Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 16plus @ 1 sample / hour) from INGV/GEOSTAR seafloor platform during NEAREST project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2007-ctd-qc , 2023
	Turbidity meter	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Turbidity meter dataset with Quality Control (ECO-BB(RT)D 6000m @ 1 sample / hour) from INGV/GEOSTAR seafloor platform during NEAREST project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2007-turb-qc , 2023
	Current meter	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (Nobska MAVS-3 @ 5 Hz) from INGV/GEOSTAR seafloor platform during NEAREST project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2007-curr-qc , 2023
	ADCP	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. ADCP dataset with Quality Control (RDI WorkHorse 300 kHz @ 1 profile / hour) from INGV/GEOSTAR seafloor platform during NEAREST project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2007-adcp-qc , 2023
GEOSTAR (2009-2010)	CTD	Embriaco D., Marinaro G., Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 16plus @ 1 sample / hour) from INGV/GEOSTAR seafloor platform during Esonet NoE project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2009-ctd-qc , 2023
	Turbidity meter	Embriaco D., Marinaro G., Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 16plus @ 1 sample / hour) from INGV/GEOSTAR seafloor platform during Esonet NoE project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2009-ctd-qc , 2023
	Current meter	Embriaco D., Marinaro G., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (Nobska MAVS-3 @ 5 Hz) from INGV/GEOSTAR seafloor platform during Esonet NoE project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2009-curr-qc , 2023
	ADCP	Embriaco D., Marinaro G., Lo Bue N., Giambenedetti B.. ADCP dataset with Quality Control (RDI WorkHorse 300 kHz @ 1 sample / hour) from INGV/GEOSTAR seafloor platform during ESONET-NOE-LIDO project in Iberian Margin site (Gulf of Cadiz), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/im-geostar-2009-adcp-qc , 2023
SN4 (2009-2010)	CTD	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 16plus @ 1 sample / 10 min) from INGV/SN-4 seafloor platform during ESONET-MARMARA-DM project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/mar-sn4-2009-ctd-qc , 2024
	Turbidity meter	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Turbidity meter dataset with Quality Control (ECO-NTU(RT)D 6000m @ 1 sample / 10 min) from INGV/SN-4 seafloor platform during ESONET-MARMARA-DM project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/mar-sn4-2009-turb-qc , 2024
	Current meter	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (Nobska MAVS-3 @ 5 Hz) from INGV/SN-4 seafloor platform during ESONET-MARMARA-DM project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/mar-sn4-2009-curr-qc , 2024
	Oxygen	Marinaro G., Lo Bue N., Giambenedetti B.. Oxygen meter dataset with Quality Control (AADI Optode 3830 @ 1 Hz) from INGV/SN-4 seafloor platform during ESONET-MARMARA-DM project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/ms-sn4-2009-oxygen_meter-qc , 2024
SN4 (2013-2014)	CTD	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. CTD dataset with Quality Control (SBE 16plus @ 1 sample / hour) from INGV/SN-4 seafloor platform during MARSITE 1 project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/mar-sn4-2013-ctd-qc , 2024
	Turbidity meter	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Turbidity meter dataset with Quality Control (ECO-NTU(RT)D 6000m @ 1 sample / 10 min) from INGV/SN-4 seafloor platform during MARSITE 1 project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/mar-sn4-2013-turb-qc , 2024
	Current meter	Marinaro G., Embriaco D., Lo Bue N., Giambenedetti B.. Current meter dataset with Quality Control (Nobska MAVS-3 @ 5 Hz) from INGV/SN-4 seafloor platform during MARSITE 1 project in Marmara Sea site (Marmara Sea), part of EMSO network. Istituto Nazionale di Geofisica e Vulcanologia (INGV). https://doi.org/10.13127/md/mar-sn4-2013-curr-qc , 2024

521

522

523

524 **Author contributions.** Concept development and manuscript writing were carried out by NLB and BG, with input from all
 525 co-authors. Measurements were performed by NLB and GM. Data processing and analysis were conducted by NLB and BG,
 526 while data curation was handled by BG, DE, PB, CF, and RV. All authors have read and approved the final version of the
 527 manuscript.

528 **Competing interest.** The authors declare that they have no conflict of interest.

529 **Acknowledgments.** We wish to express our gratitude to all those who, over the past 30 years, have contributed to the
530 development of deep-sea observatory technology from the preparation and management of several EC projects that enabled
531 their creation, to their design, construction, and deployment at sea. This achievement was made possible through the combined
532 efforts of numerous researchers, engineers, and technicians, all united by a shared spirit of experimentation and scientific
533 curiosity.

534 **Financial support.** This study was developed and financially supported within the framework of the INGV departmental
535 project MACMAP.

536

537 **References**

1. **Alves, J. M. R., Carton, X., and Ambar, I.** (2011): Hydrological structure, circulation and water mass transport in the Gulf of Cadiz, *Int. J. Geosci.*, **2**, 432–456, <https://doi.org/10.4236/ijg.2011.24047>.
2. **Artale, V., et al.** (2018): Linking mixing processes and climate variability to the heat content distribution of the Eastern Mediterranean abyss, *Sci. Rep.*, **8**, 11317, <https://doi.org/10.1038/s41598-018-29343-4>.
3. **Azzarone, A., Marcucci, N. M., & Marinaro, G.** (2010). Multidisciplinary Oceanic Information SysTem (MOIST). Istituto Nazionale di Geofisica e Vulcanologia (INGV). <https://doi.org/10.13127/MD/MOIST>
4. **Beckers, J. M. and Rixen, M.** (2003): EOF calculations and data filling from incomplete oceanographic datasets, *J. Atmos. Oceanic Technol.*, **20**, 1839–1856, [https://doi.org/10.1175/1520-0426\(2003\)020<1839:ECADFF>2.0.CO;2](https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2).
5. **Beranzoli, L., De Santis, A., Etiopic, G., Favali, P., Frugoni, F., Smriglio, G., Gasparoni, F., and Marigo, A.** (1998): GEOSTAR: a geophysical and oceanographic station for abyssal research, *Phys. Earth Planet. Inter.*, **108**, 175–183, [https://doi.org/10.1016/S0031-9201\(98\)00094-6](https://doi.org/10.1016/S0031-9201(98)00094-6).
6. **Beranzoli, L., De Santis, A., Calcara, M., Ciafarini, A., et al.** (2009): Multiparametric seafloor exploration: the Marsili Basin and volcanic seamount case (Tyrrhenian Sea, Italy), in: *Proc. 3rd IASME/WSEAS Int. Conf. Geology and Seismology (GES'09)*, WSEAS Press.
7. **Budillon, G., Lo Bue, N., Siena, G., and Spezie, G.** (2010): Hydrographic characteristics of water masses and circulation in the Northern Ionian Sea, *Deep Sea Res. II*, **57**, 441–457, <https://doi.org/10.1016/j.dsr2.2009.08.017>.
8. **Bushnell, M., Waldmann, C., Seitz, S., Buckley, E., Tamburri, M., Hermes, J., et al.** (2019): Quality assurance of oceanographic observations: standards and guidance adopted by an international partnership, *Front. Mar. Sci.*, **6**, 706, <https://doi.org/10.3389/fmars.2019.00706>.
9. **de Lavergne, C., Madec, G., Capet, X., et al.** (2016): Getting to the bottom of the ocean, *Nat. Geosci.*, **9**, 857–858, <https://doi.org/10.1038/ngeo2850>.
10. **Desbruyères, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C., and King, B. A.** (2016): Deep and abyssal ocean warming from 35 years of repeat hydrography, *Geophys. Res. Lett.*, **43**, 10356–10365, <https://doi.org/10.1002/2016GL070413>.
11. **Embriaco, D., Marinaro, G., Frugoni, F., Monna, S., et al.** (2014): Monitoring of gas and seismic energy release along the North Anatolian Fault (Sea of Marmara, NW Turkey), *Geophys. J. Int.*, **196**, 850–866.
12. **Favali, P., Beranzoli, L., D'Anna, G., Gasparoni, F., et al.** (2006): NEMO-SN-1: the first real-time seafloor observatory of ESONET, *Nucl. Instrum. Methods Phys. Res. A*, **567**, 462–467.

- 567 13. **Favali, P., Beranzoli, L., D'Anna, G., Gasparoni, F., et al.** (2009): A fleet of multiparameter observatories for
568 geophysical and environmental monitoring at seafloor, *Ann. Geophys.*, **49**.
- 569 14. **Favali, P., Beranzoli, L., Italiano, F., Migneco, E., et al.** (2011): NEMO-SN1 developments in view of the EMSO
570 and KM3Net infrastructures, *Nucl. Instrum. Methods Phys. Res. A*, **626**–627, S53–S56.
- 571 15. **Favali, P., Chierici, F., Marinaro, G., Giovanetti, G., et al.** (2013): NEMO-SN1 cabled observatory in the
572 Western Ionian Sea, *IEEE J. Oceanic Eng.*, **38**, 358–374.
- 573 16. **Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M., et al.** (2016): Turning ocean mixing upside down,
574 *J. Phys. Oceanogr.*, **46**, 23–.
- 575 17. **Gačić, M., Borzelli, G. E., Civitarese, G., Cardin, V., et al.** (2010): Can internal processes sustain reversals of
576 ocean upper circulation? The Ionian Sea example, *Geophys. Res. Lett.*, **37**, L09608,
577 <https://doi.org/10.1029/2010GL043216>.
- 578 18. **García-Lafuente, J., Delgado, J., Criado-Aldeanueva, F., Bruno, M., et al.** (2006): Water mass circulation on
579 the continental shelf of the Gulf of Cádiz, *Deep Sea Res. II*, **53**, 1182–1197,
580 <https://doi.org/10.1016/j.dsr2.2006.04.011>.
- 581 19. **Giambenedetti, B., Lo Bue, N., and Artale, V.** (2024): Role of abyssal ocean stratification in potential vorticity
582 redistribution through the water column, *Ocean Sci.*, **20**, 1209–1228, <https://doi.org/10.5194/os-20-1209-2024>.
- 583 20. **Giovanetti, G., Monna, S., Lo Bue, N., Embriaco, D., et al.** (2016): Observing volcanoes from the seafloor in the
584 central Mediterranean area, *Remote Sens.*, **8**, 298, <https://doi.org/10.3390/rs8040298>.
- 585 21. **Hainbucher, D., Rubino, A., and Klein, B.** (2006): Water mass characteristics in the deep layers of the western
586 Ionian Basin, *Geophys. Res. Lett.*, **33**, L05608, <https://doi.org/10.1029/2005GL025318>.
- 587 22. **Heuzé, C., Purkey, S. G., and Johnson, G. C.** (2022): It is high time we monitor the deep ocean, *Environ. Res.*
588 *Lett.*, **17**, 121002.
- 589 23. **Howell, K. L., Hilário, A., Alcock, A. L., et al.** (2021): A decade to study deep-sea life, *Nat. Ecol. Evol.*, **5**, 265–
590 267, <https://doi.org/10.1038/s41559-020-01352-5>.
- 591 24. **IOC, SCOR, and IAPSO** (2010): The international thermodynamic equation of seawater – 2010, *Manuals and*
592 *Guides*, **56**, 196 pp.
- 593 25. **IPCC** (2013): Climate Change 2013: The Physical Science Basis, Cambridge University Press.
- 594 26. **Kondrashov, D. and Ghil, M.** (2006): Spatio-temporal filling of missing points in geophysical data sets, *Nonlin.*
595 *Processes Geophys.*, **13**, 151–159, <https://doi.org/10.5194/npg-13-151-2006>.
- 596 27. **Lascaratos, A., Roether, W., Nittis, K., and Klein, B.** (1999): Recent changes in deep water formation and
597 spreading in the eastern Mediterranean Sea, *Prog. Oceanogr.*, **44**, 5–36, [https://doi.org/10.1016/S0079-6611\(99\)00019-1](https://doi.org/10.1016/S0079-
598 6611(99)00019-1).
- 599 28. **Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., et al.** (2019): Global observing needs in the deep ocean,
600 *Front. Mar. Sci.*, **6**, 241, <https://doi.org/10.3389/fmars.2019.00241>.
- 601 29. **Lo Bue, N., Artale, V., and Schroeder, K.** (2021): Impact of deep oceanic processes on circulation and climate
602 variability, *Front. Mar. Sci.*, **8**, 801479, <https://doi.org/10.3389/fmars.2021.801479>.
- 603 30. **MacDougall, T. J. and Barker, P. M.** (2011): Getting started with TEOS-10 and the GSW Oceanographic
604 Toolbox, SCOR/IAPSO WG127, 28 pp.
- 605 31. **MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., et al.** (2017): Climate Process Team on internal
606 wave–driven ocean mixing, *Bull. Am. Meteorol. Soc.*, **98**, 2429–2454.
- 607 32. **Malanotte-Rizzoli, P., Manca, B. B., d'Alcalà, M. R., Theocaris, A., et al.** (1997): Hydrography and circulation
608 in the Ionian Sea during POEM-Phase I, *Prog. Oceanogr.*, **39**, 153–204.
- 609 33. **Malanotte-Rizzoli, P., Manca, B. B., d'Alcalà, M. R., Theocaris, A., et al.** (1999): The Eastern Mediterranean
610 in the 80s and 90s: transition of intermediate and deep circulations, *Dyn. Atmos. Oceans*, **29**, 365–395.
- 611 34. **Marinaro, G., Etiope, G., Lo Bue, N., Favali, P., et al.** (2006): Monitoring of a methane-seeping pockmark by
612 cabled benthic observatory, *Geo-Mar. Lett.*, **26**, 297–302.
- 613 35. **Munk, W.** (1966): Abyssal recipes, *Deep Sea Res.*, **13**, 707–730.

614 36. **Ochoa, J. and Bray, N.** (1991): Water mass exchange in the Gulf of Cádiz, *Deep Sea Res. A*, **38**, S465–S503.
615 37. **Polzin, K. L. and McDougall, T.** (2021): Mixing at the ocean's bottom boundary, in: *Drivers, Mechanisms and*
616 *Impacts*, Elsevier.
617 38. **Pouliquen, S., et al.** (2011): Recommendations for in-situ data real-time quality control.
618 39. **Rhein, M., Rintoul, S., Aoki, S., Campos, E., Chambers, D., Feely, R., and Wang, F.** (2013): Observations:
619 *Ocean*, in *Climate Change 2013: The Physical Science Basis*, IPCC.
620 40. **Stommel, H. and Arons, A. B.** (1960): On the abyssal circulation of the world ocean–II, *Deep Sea Res.*, **6**, 217–
621 233.
622 41. **Talley, L. D., Pickard, G. L., and Emery, W. J.** (2011): *Descriptive Physical Oceanography*, 6th ed., Academic
623 Press.
624 42. **Visbeck, M.** (2018): Ocean science research is key for a sustainable future, *Nat. Commun.*, **9**, 690,
625 <https://doi.org/10.1038/s41467-018-03158-3>.

626
627