
1 

 

GLC_FCS10: a global 10-m land-cover dataset with a fine classification system from Sentinel-1 1 

and Sentinel-2 time-series data in Google Earth Engine 2 

Xiao Zhang 1,2, Liangyun Liu 1,2,3*, Tingting Zhao 1,4, Wenhan Zhang 1,2,3, Linlin Guan1,2, Ming Bai 1,5, and Xidong 3 

Chen 6 4 

1 International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China.  5 

2 Key Laboratory of Digital earth Science, Aerospace information Research institute, Chinese Academy of Sciences, 6 

Beijing, 100094, China.  7 

3 School of electronic, electrical and communication engineering, University of Chinese Academy of Sciences, 8 

Beijing, 100049, China.  9 

4 School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China. 10 

5 College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China. 11 

6 Future Urbanity & Sustainable environment (FUSE) Lab, the University of Hong Kong, Hong Kong, 999007, 12 

China. 13 

Corresponding author: Liangyun Liu (liuly@radi.ac.cn) 14 

Abstract 15 

The continuous development of remote sensing techniques provides ample opportunities for high-16 

resolution land-cover mapping. Although global 10-m land-cover products have made considerable progress 17 

over past few years, their simple classification system makes it difficult to meet the needs of diverse applications. 18 

In this work, we propose a hierarchical land-cover mapping framework to produce a novel global 10-m land-19 

cover dataset with a fine classification system (called GLC_FCS10) using Sentinel-1 and Sentinel-2 time-series 20 

observations in 2023. First, the globally distributed training samples are hierarchically obtained from 21 

multisource prior products after applying a series of refinements. Then, a combination of hierarchical land-cover 22 

mapping, local adaptive modeling, and multisource features is used to produce land-cover maps for each 5  × 23 

5  geographical tile. Next, using 56121 globally distributed validation samples and a third-party validation 24 

dataset (LCMAP_Val), the GLC_FCS10 is assessed. The GLC_FCS10 achieves an overall accuracy of 83.16% 25 

and a kappa coefficient of 0.789 globally and an overall accuracy of 85.09% in the United States. Meanwhile, 26 

comparisons with five released 10- or 30-m land-cover products also demonstrate that GLC_FCS10 has higher 27 

accuracy and captures more diverse land-cover information than three of the released global 10-m land-cover 28 

products. In summary, the novel GLC_FCS10 land-cover maps can provide important support for high-29 

resolution land-cover related research and applications. The GLC_FCS10 can be freely access via 30 

https://doi.org/10.5281/zenodo.14729665 (Liu and Zhang, 2025). 31 
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1. Introduction 33 

Land-cover information is a vital component of global climate change research and plays an important role in 34 

climate change mitigation, biodiversity protection, and global food security (Foley et al., 2005; Liu et al., 2021). With 35 

advancements in satellite techniques and computational and storage capabilities, global land-cover mapping has made 36 

substantial progresses. A series of global land-cover products, ranging from 1-km to 10-m resolutions, has been 37 

continuously released (Giri et al., 2013; Liu et al., 2021). Recently, Wang et al. (2023) reviewed the characteristics 38 

of global land-cover products and found that land-cover mapping has evolved from coarse to high spatial resolution. 39 

Currently, four global 10-m land-cover products are available, including FROM_GLC10 (Gong et al., 2019), ESRI 40 

LC (Karra et al., 2021), European Space Agency (ESA) WorldCover (Buchhorn et al., 2020), and Dynamic World 41 

(Brown et al., 2022). However, all of these products use a simple classification system, which limits their applicability 42 

for specific and fine applications (Zhang et al., 2021). Meanwhile, the work of Zhao et al. (2023) explained that 43 

FROM_GLC10, ESRI LC, and ESA WorldCover have relatively low consistency and accuracy. Thus, developing an 44 

accurate global 10-m land-cover dataset with a fine classification system is still necessary.  45 

The diversity of land-cover types depends on the training samples, and there are two options to generate a 46 

globally distributed training pool—visual interpretation and automated derivation from prior products (Zhang and 47 

Roy, 2017; Zhang et al., 2021). Visual interpretation means that experts or volunteers interpreted the land-cover 48 

information through high-resolution imagery, Google Earth Streetview photos, or other auxiliary datasets. For 49 

example, the training samples in FROM_GLC10 were derived from expert interpretations and contained 50 

approximately 93,000 sites worldwide (Gong et al., 2013), and the ESA WorldCover used 20 trained experts to collect 51 

approximately 141,000 training locations from the Geo-Wiki engagement platform (Buchhorn et al., 2020). 52 

Obviously, training sites from the “visual interpretation” option can ensure high quality (Ban et al., 2015), however, 53 

the problems of cost and time are not to be ignored. The diversity of the land-cover classification system also relies 54 

on the experts’ prior knowledges. The “automated derivation from prior products” option generates the training sites 55 

from prior land-cover datasets after taking some refinements or validations (Radoux et al., 2014; Zhang et al., 2021; 56 

Zhang et al., 2024c). For example, the training areas in the GLC_FCS30 were collected from a combination of time-57 

series MCD43A4 surface reflectance data and CCI_LC land-cover products after using some spatiotemporal 58 

purification methods, and these automatically derived training samples supported high-accuracy land-cover mapping 59 

with overall accuracy of 82.5% (Zhang et al., 2021). The automated option enables more efficient collection of 60 

globally confident training samples; however, the classification errors of prior land-cover products were also easier 61 

to transfer into the derived training samples (Zhang and Roy, 2017). Therefore, it is critical to avoid transferring error 62 

into the training samples. 63 

Another great challenge in global land-cover mapping lies in the choice of suitable methodologies. Currently, 64 

the vast majority of global land-cover mapping ignores the complexity and sparsity of various land-cover types and 65 

completes a mapping project with a single classification model (Friedl et al., 2010; Gong et al., 2013), which leads 66 

to considerable uncertainties in sparse (e.g., impervious surfaces) or complex (e.g., wetlands and shrubland) land-67 

cover types (Karra et al., 2021; Zhang et al., 2021; Zhao et al., 2023). Several measures were taken to improve the 68 

performance of large-area land-cover mapping, such as: local adaptive modeling (Defourny et al., 2018; Li et al., 69 

2023; Zhang and Roy, 2017; Zhang et al., 2021), hierarchical land-cover mapping (Chen et al., 2015; Sulla-Menashe 70 

et al., 2019), or integration of multisource datasets (Yu et al., 2014; Zhang et al., 2020).  71 

Specifically, the local adaptive modeling first split study area into many local areas and further trained 72 

corresponding classification models within each local region to improve the ability to capture regional characteristics. 73 

Zhang and Roy (2017) found that local adaptive modeling had higher accuracy than single global land-cover 74 

modeling, however, it also needs enough training samples to support regional modeling. Hierarchical land-cover 75 



3 

 

mapping divides the land surface into various land-cover layers, and some complicated land-cover layers may need 76 

to be treated independently. Taking wetlands as an example, most global land-cover products perform poorly on 77 

wetlands because of their varied spectral characteristics and complicated spatiotemporal features (Buchhorn et al., 78 

2020; Gong et al., 2019; Zhang et al., 2021). The GlobeLand30 achieved 74.87% accuracy with wetlands because 79 

this land-cover type was treated independently (Chen et al., 2015). Hierarchical land-cover mapping gives more 80 

attention to complicated land-cover types by importing more prior knowledge (Chen et al., 2015) or adding sufficient 81 

high-confidence training samples (Zhang et al., 2023b). Lastly, many previous works have demonstrated the 82 

integration of multisource datasets, such as optical imagery (Landsat and Sentinel-2) and Sentinel-1 single-aperture 83 

radar (SAR) data, to improve the identification of impervious surfaces (Zhang et al., 2020), wetlands (Zhang et al., 84 

2023b), forests (Tang et al., 2023), or croplands (Blickensdörfer et al., 2022; Sun et al., 2024).  85 

The free access to Sentinel imagery and to the powerful cloud computation platform provide ample opportunity 86 

for global land-cover mapping at 10 m. In this work, we developed an accurate and novel global 10-m land-cover 87 

product (GLC_FCS10) containing 30 fine land-cover types from Sentinel-1 and Sentinel-2 time-series imagery. To 88 

achieve this goal, we propose: 1) a hierarchical land-cover mapping framework to decrease the uncertainties of 89 

impervious surfaces and wetlands; 2) to combine the prior multisource land-cover datasets and the metric centroid to 90 

automatically generate a globally distributed and high-confidence 10-m training pool; 3) to integrate time-series 91 

Sentinel-2 optical and Sentinel-1 SAR data for producing the new GLC_FCS10 on the GEE platform; 4) to 92 

comprehensively compare the developed GLC_FCS10 with several previous products. 93 

2. Datasets 94 

2.1 Satellite imagery 95 

All available Sentinel-2 surface reflectance imagery in 2023 were atmospherically corrected using the Sen2Cor 96 

tool, and the corrected images were then stored on the GEE (google earth engine) platform. These imagery contain 97 

12 spectral bands from visible to shortwave infrared and have a revisiting period of 5 days (Berger et al., 2012; 98 

Radeloff et al., 2024). In this work, the four 10-m visible and near-infrared bands and six 20-m red edges and 99 

shortwave infrared bands were used, while the two 60-m bands of aerosols and water vapor were excluded to 100 

minimize atmospheric effects. The six 20-m reflectance imagery bands were resampled to 10-m using the bilinear 101 

resampling method (Berger et al., 2012). Any poor-quality pixels, including clouds and shadows, were masked using 102 

the quality control band (QA60) and the cloud probability product.  103 

Sentinel-1 has a dual-polarization (VV and VH) C-band SAR instrument with a revisiting period of 6 days after 104 

launching of Sentinel-1B (Torres et al., 2012). In this work, all Sentinel-1 imagery in 2023 were obtained through the 105 

GEE platform, which have been preprocessed through radiometric calibration, thermal noise removal, and terrain 106 

correction, and further resampled their resolution of 5 m × 20 m into 10 m × 10 m using Sentinel-1 Toolbox when 107 

archived on the GEE platform.  108 

Some previous works have demonstrated that topographical data can provide auxiliary and useful information in 109 

land-cover mapping (Zhang et al., 2023b), currently, global 10 m digital elevation model (DEM) is not yet available. 110 

In this work, we used the 30-m ASTER GDEM, which has low vertical error of 0.7 m (Tachikawa et al., 2011), to 111 

obtained the elevation, slope, and aspect after bilinear resampling to 10 m × 10 m.  112 

2.2 Prior land-cover products 113 

2.2.1 Impervious surface products 114 

Impervious surfaces are characterized by sparse spatial distribution and complicated spectral and spatial 115 

heterogeneities; thus, it should be treated independently. Its training samples are generated from five previous 116 

products: 1) The Global 30-m Impervious Surface Dynamic (GISD30) dataset, developed with the combination of 117 
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spectral generalization and sample migration during 1985-2020 with the interval of 5-years, achieves a fulfilling 118 

accuracy of 90.1% (Zhang et al., 2022). 2) The Global Impervious Surface Area (GISA 2.0) dataset, produced by 119 

considering the inconsistency among four existing products, is an annual time-series impervious surface maps during 120 

1985-2018 with the F1-score of 0.935 (Huang et al., 2022). 3) The 10 m impervious surface layer in ESA WorldCover 121 

dataset was generated by the supervision classification from time-series Sentinel-1 and Sentinel-2 imagery (Zanaga 122 

et al., 2021). It was demonstrated to achieve the great performance on impervious surfaces with producer’s accuracy 123 

of 82.99% (Zhao et al., 2023). 4) The impervious surface layer in ESRI Land Cover is developed from time-series 124 

Sentinel-2 imagery and the deep-learning (Karra et al., 2021), and achieve high producer’s accuracy of 88.42% (Zhao 125 

et al., 2023) .5) Global urban boundary dataset (GUB) is generated by the combination of cellular-automata and 126 

morphological approach, and shows a good agreement with the results from human interpretation (Li et al., 2020).  127 

Table 1. The characteristics of prior land-cover products. 128 

Category Dataset name Resolution Year Coverage Reference 

Impervious 

surface 

GISD30 30 1985–2020 Global Zhang et al. (2022) 

GISA 2.0 30 1985–2019 Global Huang et al. (2022) 

Imp-ESA_LC 10 2021 Global Zanaga et al. (2021) 

Imp-ESRI_LC 10 2023 Global Karra et al. (2021) 

GUB - 2020 Global Li et al. (2020) 

Wetland 

GWL_FCS30D 30 2000–2022 Global Zhang et al. (2024b) 

National Wetland Inventory 30 2019 United States Wilen and Bates (1995) 

Global Mangrove Watch 30 1996–2020 Global Bunting et al. (2022) 

Global tidal flat products 30 2000–2022 Global Zhang et al. (2023a) 

Global tidal marsh dataset 10 2020 Global 
Worthington et al. 

(2024) 

Land-cover 

GLC_FCS30D 30 1985–2022 Global Zhang et al. (2024c) 

Global oil palm dataset 30 1990–2021 Global Descals et al. (2024) 

Global plantation map 30 1982–2020 Global Du et al. (2022) 

2.2.2 Wetland products 129 

Because almost all global land-cover products have large uncertainties in wetlands identification (Zhang et al., 130 

2023b), wetlands should also be treated as independent land-cover type. The wetland training samples were also 131 

derived from three existing wetland thematic products, including: 1) the GWL_FCS30D is an annual global wetland 132 

products containing 8 wetland subcategories (5 inland and 3 coastal wetland subcategories), and achieves an overall 133 

accuracy of 86.95 ± 0.44% (Zhang et al., 2024b). 2) The NWI (National Wetland Inventory) is national wetland 134 

thematic products covering the whole United States and containing 8 wetland subcategories (Wilen and Bates, 1995). 135 

3) The GMW (Global Mangrove Watch) and GSM10 (global tidal marsh dataset) provide the spatial patterns of 136 

mangrove and salt marsh with the overall accuracy of 87.4% and 85% (Bunting et al., 2022; Worthington et al., 2024), 137 

and the GTF30 (Global tidal flat products), generated by the combination of a new low-tide spectral index and 138 

multisource classification method, achieved the overall accuracy of 90.34% and covered the period of 2000-2022 139 

(Zhang et al., 2023a). 140 

2.2.3 GLC_FCS30D land-cover dynamic products  141 

Except for wetlands and impervious surfaces, training samples for the remaining non-wetland natural land-cover 142 

types are generated from the GLC_FCS30D dataset. It was developed from the combination of a continuous change 143 

detection algorithm with an adaptive updating strategy and had 80.88% (±0.27%) accuracy covering the period of 144 

1985–2022 with 35 fine land-cover subcategories. The dataset has high temporal stability in the European Union  and 145 



5 

 

United States (Zhang et al., 2024c). In this work, we leverage this dynamic product to generate confident training 146 

samples for non-wetland natural land covers, as described in the Section 3.1. 147 

2.2.4 Tree-cover cropland datasets 148 

It is noteworthy that the tree-cover cropland was only mapped in certain regions rather than globally in the 149 

GLC_FCS30D (Zhang et al., 2021; Zhang et al., 2024c); thus, global oil palm and plantation datasets are also used 150 

to identify tree-cover cropland. The global oil palm dataset is a time-series covering 1990–2020 and exceeds 91% 151 

accuracy for industrial plantations and 71% accuracy for smallholders (Descals et al., 2024). A global plantation map 152 

was generated by combining some prior global plantation products and the LandTrendr method, and has an F1 score 153 

of 86.83% with ±5 years tolerance (Du et al., 2022).  154 

3. Methodology 155 

To achieve high quality with detailed categorizations in global 10-m land-cover mapping, a hierarchical land-156 

cover mapping methodology has been proposed. It leverages multisource prior land-cover products and time-series 157 

satellite observations, and gives more attention to impervious surfaces and wetlands by importing more prior 158 

knowledge and adding sufficient high-confidence training samples. Notably, the reasons why we separated 159 

impervious surfaces and wetlands from other land cover types include: 1) impervious surfaces are structurally 160 

different from natural land covers (Huang et al., 2022; Zhang et al., 2022); 2) wetlands are a highly zonal land-cover 161 

type (concentrating in low-lying areas) with extremely complex spectra and heterogeneities due to changes in 162 

phenology and water-levels (Mao et al., 2020; Zhang et al., 2023b); 3) some previous studies emphasized that taking 163 

additional measures (such as: importing more prior knowledge, thematic mapping strategy and so on) was an effective 164 

means of improving the accuracy of wetlands and impervious surfaces (Gong et al., 2020; Zhang et al., 2023b). 165 

Figure 1 presents a flowchart of the proposed method, which involves four procedures: generating hierarchical and 166 

globally distributed training samples from prior products, compositing multisource and multitemporal training 167 

features from time-series Sentinel 1&2 imagery, hierarchical land-cover mapping using local adaptive classifications, 168 

and accuracy assessment and cross-comparisons. 169 

 170 
Figure 1. The flowchart of the proposed method for hierarchical land-cover mapping. 171 

3.1 The description of the classification system  172 

In this work, we develop a novel global 10-m land-cover dataset with a fine classification system (FCS). Table 2 173 

presents the main characteristics of this FCS and its correspondence with the basic classification system. It contains 174 

30 fine land-cover types and emphasizes the forest- and wetland-related subcategories, which are further subdivided 175 

into 10 and 7 subcategories, respectively. The diversity of this fine classification system results from importing the 176 
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GWL_FCS30D (Zhang et al., 2024b) and GLC_FCS30D (Zhang et al., 2024c) products. It should be noted that the 177 

detailed descriptions about each fine land-cover type have been supplemented at the Table S1. 178 

Table 2. The characteristics of the fine classification system in the GLC_FCS10. 179 

Basic classification system Detailed validation system Fine classification system 

Cropland 
Rainfed cropland 

Herbaceous rainfed cropland 

Tree or shrub covered rainfed cropland 

(orchard, oil palm…) 

Irrigated cropland Irrigated cropland 

Forest 

Evergreen broadleaved forest 
Closed evergreen broadleaved forest 

Open evergreen broadleaved forest 

Deciduous broadleaved forest 
Closed deciduous broadleaved forest 

Open deciduous broadleaved forest 

Evergreen needleleaved forest 
Closed evergreen needleleaved forest 

Open evergreen needleleaved forest 

Deciduous needleleaved forest 
Closed deciduous needleleaved forest 

Open deciduous needleleaved forest 

Mixed-leaf forest 
Closed mixed-leaf forest 

Open mixed-leaf forest 

Shrubland Shrubland 
Evergreen shrubland 

Deciduous shrubland 

Grassland Grassland Grassland 

Tundra Tundra Lichens and mosses 

Wetland Wetland 

Swamp 

Marsh 

Lake/river flat 

Saline 

Mangrove forest 

Salt marsh 

Tidal flat 

Impervious surfaces Impervious surfaces 
Urban impervious surfaces 

Rural impervious surfaces 

Bare areas 
Sparse vegetation Sparse vegetation 

Bare areas Bare areas 

Water  Water  Water  

Permanent ice and snow Permanent ice and snow Permanent ice and snow 

3.2 Generating hierarchical training samples 180 

To ensure quality in global 10-m land-cover mapping, land surfaces are hierarchically divided into impervious 181 

surface, wetland, and non-wetland natural land-cover types. Their corresponding training samples also need to be 182 

generated independently. Because training sample quality greatly affects land-cover mapping performance (Foody 183 

and Arora, 2010; Zhang and Roy, 2017), generating confident and globally distributed training samples is a 184 

prerequisite for generating the GLC_FCS10. 185 

3.2.1 Training areas of impervious surfaces 186 

Regarding the training samples of impervious surfaces, we combine four prior global 10-m or 30-m impervious 187 

surface products (GISA 2.0, GISD30, Imp-ESA_LC, and Imp-ESRI_LC) and one urban boundary dataset (GUB) to 188 

automatically generate the training samples. Specifically, because the previous studies have demonstrated high-189 

accuracies of three impervious surface products (Huang et al., 2022; Zanaga et al., 2021; Zhang et al., 2022)and high 190 

producer’s accuracy of Imp-ESRI_LC (Zhao et al., 2023), the areas marked as impervious surfaces by all four 191 

products (GISD30-2020, GISA2.0-2019, Imp-ESA_LC-2021, and Imp-ESRI_LC-2023) are selected as candidate 192 

areas for generating the training samples (TrainCanArea_imp) in Eq. (1).  193 
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𝑇𝑟𝑎𝑖𝑛𝐶𝑎𝑛𝐴𝑟𝑒𝑎𝑖𝑚𝑝 = 𝐺𝐼𝑆𝐷30 ∩ GISA2.0 ∩ (Imp-ESALC) ∩ (Imp-ESRI_LC) (1) 

Afterward, we further consider the uneven distribution of rural and urban impervious surfaces as well as their spectral 194 

variability. If random sampling is used to obtain training samples from the TrainCanArea_imp, rural impervious 195 

surfaces are underrepresented due to their sparse distribution, thus, the GUB urban boundary dataset for 2020 is 196 

further used to divide the TrainCanArea_imp into urban (TrainCanArea_urban) and rural areas 197 

(TrainCanArea_rural).  198 

Beyond the confident impervious surface areas, it is equally important to identify high-quality natural land-cover 199 

types (Zhang et al., 2024a). To avoid confusion between natural land-cover types and impervious surfaces, the 200 

maximum impervious surface boundary (MaxBound_imp) is also generated. The training samples for natural land-201 

cover types should be located outside of the MaxBound_imp, i.e., some inner-city areas, easily misclassified or 202 

confused with impervious surfaces, will be excluded because Imp-ESRI_LC exhibits extensive patches of the 203 

impervious surface and lacks spatial details (Wang et al., 2024; Xu et al., 2024b). To determine MaxBound_imp, the 204 

union of the four products is applied as: 205 

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑖𝑚𝑝 = 𝐺𝐼𝑆𝐷30 ∪ GISA2.0 ∪ (Imp-ESALC) ∪ (Imp-ESRI_LC) (2) 

3.2.2 Training areas of wetland 206 

In this work, wetlands are divided into four inland subcategories (swamp, marsh, river/lake flats, and saline) and 207 

three coastal wetland subcategories (mangrove, salt marsh, and tidal flats in Table 2). Because coastal wetlands have 208 

a more pronounced zonation, and the global coastal wetland mapping have make great progresses while the works of 209 

global inland wetland mapping is still sparse (Wang et al., 2023), thus, the generation of wetland training candidate 210 

areas further distinguishes between inland and coastal wetlands.  211 

The time-series GWL_FCS30D wetland product covering the period of 2000–2022 is used to derive the inland 212 

wetland training candidate areas (Zhang et al., 2024b). Because temporally stable areas achieve higher accuracy 213 

(Yang and Huang, 2021), a temporally stable analysis is applied to the GWL_FCS30D, and only those stable areas 214 

where wetland subcategories do not change during 2000–2022 are retained (yielding the training area, 215 

TrainCanArea_Inwet). Then, because adjacent land-cover areas are easier to suffer from the higher misclassifications 216 

(Radoux et al., 2014) and to the impact of the satellite geolocation error (Zhang and Roy, 2017), a spatial filter with 217 

a local window of 3 pixels × 3 pixels is applied to TrainCanArea_Inwet to retain spatially homogeneous areas as the 218 

training areas. Further, the integration of multiple wetland products can further improve sample quality, but there are 219 

few high-quality wetland products that have been publicly shared. In this study, only the National Wetland Inventory 220 

for 2019 is imported to optimize the swamp and marsh land-cover types in TrainCanArea_Inwet over the United 221 

States because the National Wetland Inventory does not identify river/lake flats or saline subcategories. Namely, the 222 

areas identified as swamp and marsh in TrainCanArea_Inwet and the National Wetland Inventory are retained. .  223 

As for the three coastal wetland subcategories, their training areas are generated from the combination of 224 

GWL_FCS30D and three coastal wetland products (GMW, GTF30, and GSM10 in Table 1). We identify temporally 225 

stable coastal wetland areas from GWL_FCS30D, GMW, and GTF30 through time-series analysis and label them 226 

GWL_stable, GMW_stable, and GTF_stable. Then, we intersect GWL_stable with GMW_stable to generate 227 

mangrove forest training areas and intersect GWL_stable with GTF_stable to generate tidal flat training areas. Next, 228 

as the GSM10 only provides salt marsh maps in 2020, the salt marsh training areas are selected as the intersection 229 

between GWL_stable and GSM10. The mangrove forest, tidal flat, and salt marsh training areas are grouped as 230 

TrainCanArea_Cowet. 231 

Last, the maximum wetland boundary (𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑤𝑒𝑡) is also necessary for the subsequent identification of 232 

training areas for non-wetland natural land-cover types. 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑤𝑒𝑡 is determined as the union of the five global 233 
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wetland products: 234 

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑤𝑒𝑡 = 𝐺𝑊𝐿_𝐹𝐶𝑆30𝐷 ∪ NWI ∪ 𝐺𝑀𝑊 ∪ 𝐺𝑇𝐹30 ∪ 𝐺𝑆𝑀10 (3) 

3.2.3 Training areas of non-wetland natural land-covers 235 

Many previous works have emphasized that these spatiotemporally stable areas always performed higher 236 

mapping accuracy (Zhang and Roy, 2017; Zhang et al., 2024c). In this work, the time-series global 30-m land-cover 237 

dynamic product (GLC_FCS30D), covering the period of 1985–2022 is used. Specifically, three measures are taken 238 

to identify spatiotemporally stable areas of non-wetland natural land-cover types from GLC_FCS30D: 1) a time-239 

series consistency analysis is applied to the GLC_FCS30D, and only stable areas during 1985–2022 will be retained 240 

as TrainCanArea_NLCs. 2) The 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑖𝑚𝑝 and 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑤𝑒𝑡 are imported to mask the TrainCanArea_NLCs, 241 

i.e., the training areas for non-wetland natural land-cover types should be located outside of 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑖𝑚𝑝 and 242 

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑤𝑒𝑡. The aim of this step is to minimize confusion between non-wetland natural land-cover types and 243 

these two land-cover types. 3) A morphological erosion filter with a local window of 3 pixels × 3 pixels is used to 244 

find the spatially homogeneous areas for non-wetland natural land-cover types. In addition, it should be noted that 245 

the TrainCanArea_NLCs represents the stable areas during 1985-2022, and there is still one-year interval with the 246 

land-cover mapping year in 2023. Fortunately, the ongoing updating of GLC_FCS30D is still in progress, the land-247 

cover change masks during 2022-2023 have been finished, and which are used to guarantee the temporal consistency 248 

between prior land-cover products with the training areas. 249 

As mentioned in Section 2.2.4, the training areas for tree-cover cropland (oil palm, orchards, etc.) from the 250 

GLC_FCS30D do not cover the globe. These cropland training areas are therefore divided into herbaceous rainfed 251 

cropland and tree- or shrub-cover cropland. Because the global oil palm and global plantation datasets provide the 252 

plantation years of oil palm and orchards at 30 m, we overlap the training areas of rainfed cropland, oil palm, and 253 

orchard plantation from the global plantation dataset to extract the training areas for tree-cover cropland. Then, to 254 

minimize error, the tree-cover cropland training areas are further filtered using a local window of 3 pixels × 3 pixels 255 

to ensure spatial homogeneity of tree-cover cropland training areas.  256 

3.2.4 Generating a globally distributed training pool from stratified sampling 257 

Although we take a series of measures to ensure training area quality (including: TrainCanArea_urban, 258 

TrainCanArea_rural, TrainCanArea_Inwet, TrainCanArea_Cowet, and TrainCanArea_NLCs), how to generate 259 

training samples from the training areas needs to address the following two aspects.  260 

First, the distribution and balance of training samples greatly affect the subsequent land-cover classification 261 

(Ghorbanian et al., 2020; Jin et al., 2014; Mellor et al., 2015; Pelletier et al., 2017; Zhu et al., 2016). There are two 262 

options to allocate the sample distribution: equal or area-fraction allocation (Zhang et al., 2021). Equal distribution 263 

means that all land-cover types have the same number of training samples, i.e., the sample sizes of sparse land covers 264 

will be augmented while those of the abundant land covers will be suppressed. In contrast, area-fraction distribution 265 

allocates the sample size according to the land-cover area of each type, that is, abundant land covers have larger 266 

sample sizes while sparse land-cover types have smaller sample sizes (Zhu et al., 2016). Because impervious surfaces 267 

and wetlands are sparser than natural land-cover types and are independently generated, equal-distribution allocation 268 

is suitable to enhance the training samples’ ability to characterize these two land-cover types. As for the non-wetland 269 

natural land-covers, the area-fraction allocation is more appropriate for the non-wetland natural land-cover types 270 

because we want to optimize results for all non-wetland natural land-cover types rather than a single land-cover type. 271 

Meanwhile, to avoid sample size imbalance in the area-fraction allocation, maximum and minimum sample sizes of 272 

8000 pixels and 600 pixels are chosen for the abundant and sparse land-cover types, respectively (suggested by the 273 

work of Zhu et al. (2016)).  274 

Second, most high-quality training samples (except for those for impervious surfaces) are derived from the 30-275 
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m training areas, so there is also a need to reduce the 30-m training samples to 10-m samples to achieve a global 10-276 

m land-cover map. In this work, the “metric centroid” method is adopted, which had been used to downscale 500-m 277 

training samples from MCD12Q1 to 30-m in the work of Zhang and Roy (2017). Specifically, as each 30-m pixel 278 

corresponds to 3 × 3 10-m pixels, we first find the centroid from these nine pixels as 𝑃𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 through spectral 279 

averaging, and then the point with the smallest absolute distance with 𝑃𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 was chosen as the optimal downscaled 280 

10-m sample point [Eq. (4)]. 281 

𝑃𝑖 = argmin
𝑖

(|𝝆𝑃𝑖
− 𝝆𝑃𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

|) , 𝝆𝑃𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑
=

1

9
∑

𝝆𝑃𝑗

9

9
𝑗=1   (4) 

Where 𝝆𝑃𝑖
 is the spectra value of composited Sentinel-2 training features (See Section 3.3) at pixel 𝑃𝑖. If more than 282 

one point in the nine pixels has the same minimum absolute distance, then we pick randomly from among them. 283 

3.3 Compositing multisourced training features 284 

In addition to high-confidence training samples, how to generate these multisource training features is also 285 

important (Dong et al., 2015; Jin et al., 2023; Yang and Huang, 2021). In this work, we composite multitemporal 286 

optical and SAR information from Sentinel-1 and Sentinel-2 time-series observations. First, because of the 287 

overlapping orbits of the satellites and the effects of clouds and shadows, there are substantial differences in the clear-288 

sky observations in different regions. Compositing methods help to obtain dimensionally consistent spectral-289 

phenological features. The percentile-based statistical multitemporal compositing method attracts attention because 290 

of its robustness, efficiency, and simplicity (Azzari and Lobell, 2017). The basic principle of this method is to 291 

rearrange intra-annual time-series reflectance according to mathematical magnitude and take the corresponding 292 

quartiles to reflect the phenological variation of the time-series and suppress the noise interference such as clouds 293 

and shadows (Hansen et al., 2014). Many previous studies have demonstrated its ability to flexibly balance noise 294 

removal and signal retention, that is, it can efficiently capture the phenological variations with less prior knowledge 295 

and is also robust to the residual cloud and shadows (Hansen et al., 2014; Zhang and Roy, 2017). Thus, in this study, 296 

time-series Sentinel-2 images are composited into the 10th, 30th, 50th, 70th, and 90th percentiles for their 10 optical 297 

bands from visible to shortwave infrared and three typical indexes [NDVI, NDWI, and LSWI in Eq. (5)] using the 298 

percentile-based compositing method. The 10th and 90th percentiles are selected  to represent the poles of time-series 299 

variations and also suppress the effects of residual cloud and shadow, and the other three percentiles can partly reflect 300 

the phenological variations (Xie et al., 2020). Meanwhile, another major advantage of 10-m Sentinel-2 imagery is 301 

that it provides clearer textural features, so we generate time-series texture features from the five percentiles in the 302 

NIR bands using the gray level co-occurrence matrix. Only the texture features in the NIR band are extracted to avoid 303 

redundancy, because of the texture similarity within different spectral bands (Rodriguez-Galiano et al., 2012).  304 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟

𝜌𝑁𝐼𝑅 + 𝜌𝑟
, 𝐿𝑆𝑊𝐼 =

𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1
 𝑎𝑛𝑑 𝑁𝐵𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑆𝑊𝐼𝑅1
 (5) 

where 𝜌𝑔𝑟𝑒𝑒𝑛, 𝜌𝑟, 𝜌𝑁𝐼𝑅, 𝜌𝑆𝑊𝐼𝑅1 are the spectral bands of green, red, NIR, and SWIR1 in the Sentinel-2 imagery. 305 

Then, because SAR signals are sensitive to changes in surface water dynamics and spatial structure, it is also 306 

necessary to extract multitemporal SAR features from Sentinel-1 imagery (Bullock et al., 2022; Dabrowska-Zielinska 307 

et al., 2018; Zhang et al., 2020). The percentile-based composited method is also used to capture the time-series 308 

variabilities of VV and VH at the 10th, 30th, 50th, 70th, and 90th percentiles. In summary, a total of 10 SAR features 309 

are composited from time-series Sentinel-1 observations.  310 

Afterward, because some land-cover types are characterized by important topographic distribution (e.g., 311 

permanent snow and ice are clustered in high elevation areas, croplands and impervious surfaces usually locate on 312 

these flat areas), the topographical variables (slope, aspect and elevation), generated from the resampled ASTER 313 

GDEM dataset, are collected into the multisourced training features. It should be noted that some 5  × 5  geographical 314 
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tiles do not have sufficient Sentinel-1 observational data in 2023 since Sentinel-1B is retired in 2022, the 315 

corresponding tiles use only Sentinel-2 and topographic data. 316 

3.4 Hierarchical land-cover mapping 317 

A major advantage of hierarchical land-cover mapping is the ability to improve the characterization of complex 318 

land-covers with independent models, the major flowchart is illustrated at the Figure 2. In this work, we first separate 319 

global land-cover types into impervious surfaces and natural land-cover types, then identify the wetlands from among 320 

the natural land-covers, and finally classify the remaining non-wetland natural land-cover types into 20 land-cover 321 

subcategories.  322 

 323 

Figure 2. The detailed flowchart of hierarchical land-cover mapping algorithm by integrating globally distributed 324 

training samples and multisourced composited features. 325 

3.4.1 The separation of impervious surfaces and natural surfaces 326 

To separate impervious surfaces and natural surfaces, we rely on the globally distributed training samples 327 

(Section 3.2.4) and the combination of multitemporal optical and SAR features. Specifically, because we divide 328 

impervious surfaces training samples into rural and urban samples and design the equal distribution to enhance the 329 

training samples’ ability to characterize impervious surfaces. The ratio of urban samples, rural samples, and natural 330 

surfaces is 1:1:1 for each 5  × 5  geographical tile. Meanwhile, in terms of the sample size of each class, some previous 331 

studies have quantified the relationship between sample size and mapping accuracy (Foody, 2009; Li et al., 2014), 332 

and suggested a minimum size of 600 and maximum size of 8000 for these sparse and abundant land-cover types 333 

(Zhu et al., 2016). In this study, after considering the trade-off between sample representativeness with mapping 334 

efficiency, the sample size of each class was selected as 5000, which was also consistent with the work of Zhang et 335 

al. (2022) in monitoring the impervious surface dynamics. 336 

Then, we split the globe into 984 5  × 5  geographical tiles (approximately 556 km × 556 km on the equator, 337 

illustrating on the Figure S1), because some studies emphasized that the local adaptive modeling usually achieves 338 

better mapping accuracy than single land-cover global modeling (Zhang et al., 2021), and previous works of Zhang 339 

and Roy (2017) and Zhang et al. (2019) have explained that the training samples of sparse land-cover types in a small 340 

geographical grid were usually missed or greatly sparse. Thus, after balancing the training sample volume, mapping 341 

accuracy, and the limitation of GEE platform, the local modeling tile size of 5  × 5 , similar to the works of (Zhang 342 

et al., 2021; Zhang et al., 2024c), were used. When building the training model for each 5  × 5  geographical tile, we 343 

also import training samples within their spatial neighborhood of 3 × 3 tiles to ensure spatial consistency over the 344 

adjacent tiles. Since the 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑖𝑚𝑝  (Eq. (2)) provides the maximum potential areas of impervious surfaces 345 
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because of the overestimation problem of Imp-ESRI_LC (Wang et al., 2024; Xu et al., 2024b), all identified 346 

impervious surfaces should be within the 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑖𝑚𝑝. Afterward, we can produce 984 5  × 5  impervious surface 347 

and natural land cover maps using the local adaptive modeling strategy. In addition, although we divide the training 348 

samples into urban and rural samples, there is serious confusion between urban and rural areas in the classification 349 

maps because they share similar spectral and SAR characteristics. We therefore consider the two subcategories to be 350 

inseparable at the classification stage. Correspondingly, inspired by the work of Li et al. (2020) who used the cellular 351 

automata and morphological approaches to accurately capture urban boundaries, this method is also applied in this 352 

work to distinguish urban and rural impervious surfaces. 353 

Notably, in terms of the selection of classifier at the local adaptive modeling, the random forest classification 354 

model (including the later section 3.4.2 and 3.4.3) is used. The random forest has some advantages over other 355 

traditional classifiers, such as managing high-dimensional data more efficiently, having higher mapping robustness, 356 

being insensitive to parameter settings, and avoiding overfitting problems effectively (Belgiu and Drăguţ, 2016; 357 

Breiman, 2001). In terms of its parameter settings, the random forest only has two adjustable parameters, and the 358 

variations of these two parameters have little effect on the performance of the random forest model (Du et al., 2015; 359 

Gislason et al., 2006), thus, the default parameter settings are applied to train the random forest models on the GEE 360 

platform. 361 

3.4.2 The separation of wetland and non-wetland natural land-cover types 362 

In terms of how to identify the fine wetland subcategories from natural land-covers, we use the stratified wetland 363 

mapping algorithm to independently distinguish coastal wetlands and inland wetlands. Wetlands are divided into four 364 

inland and three coastal wetland subcategories (in Table 2), and equal-distribution sampling is used to enhance the 365 

training samples’ ability to characterize wetlands. Additionally, since some non-wetland land-cover types also 366 

reflected the similar spectral characteristics with the wetlands, for example, the swamp and the forest/shrubland 367 

shared similar vegetation spectra during the peak growth period, while the marsh and cropland/grassland exhibited 368 

the characteristics of herbaceous vegetations, and the river flats also performed the spectral characteristics of bare 369 

land during the dry seasons (Zhang et al., 2023b). Thus, the approximate ratio of inland wetlands, coastal wetlands, 370 

and non-wetlands (including water body, forest/shrubland, cropland/grassland, bare land, and others) is 4:3:5 in areas 371 

where they coexist. Then, because coastal wetlands have a more pronounced zonation, we can obtain their maximum 372 

coverage through the union of some previous coastal wetland products, as Eq. (6). 373 

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝐶𝑜𝑠_𝑤𝑒𝑡 = 𝐺𝑊𝐿_𝐹𝐶𝑆30𝐷_𝐶𝑜𝑎𝑠𝑡𝑎𝑙 ∪ 𝐺𝑀𝑊 ∪ 𝐺𝑇𝐹30 ∪ 𝐺𝑆𝑀10 (6) 

When building the wetland random forest classification models for each 5  × 5  geographical tile, we first train the 374 

coastal wetland classification model using the coastal wetland and non-wetland training samples within their spatial 375 

neighborhood of 3 × 3 tiles, and combine multisourced training features to identify the spatial distribution of coastal 376 

wetlands within the 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝐶𝑤𝑒𝑡; i.e., all coastal wetland pixels should be within the 𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝐶𝑤𝑒𝑡, otherwise, 377 

they would be corrected.  378 

Afterwards, the inland wetland and non-wetland training samples are used to train another random forest 379 

classification model, and the remaining areas are further classified as four inland wetland subcategories and non-380 

wetland natural land-cover types using the inland wetland classification model.  381 

3.4.3 Mapping of non-wetland natural land-cover types 382 

After classifying the impervious surface and wetlands using the hierarchical land-cover mapping, we now need 383 

to classify the remaining non-wetland natural land-cover types. Like the previous mapping processes, the local 384 

adaptive random forest models are trained for each 5  × 5  geographical tile using the corresponding training samples 385 

within the spatial neighborhood of 3 × 3 tiles. The non-wetland natural land-cover types are classified through a 386 

combination of trained random forest models and multisource training features. Lastly, after overlapping the 387 
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hierarchical maps for impervious surface, wetland, and non-wetland natural land-cover types, we can obtain 10-m 388 

land-cover maps with a fine classification system. 389 

3.5 Accuracy assessment and cross-comparison  390 

To comprehensively assess the performance of our developed GLC_FCS10 products, a globally distributed 391 

validation dataset and one third-party validation dataset are collected to quantify the accuracy metrics. First, the 392 

global validation dataset, guided by the work of (Zhao et al. (2023), is collected through stratified random sampling 393 

and visual interpretation from high-resolution remote sensing imagery in 2023. Figure 3 illustrates the spatial 394 

distribution of the global validation dataset; it contains 56121 globally distributed validation points and covers 16 395 

land-cover types. Next, the Land Cover Monitoring, Assessment, and Projection Collection (LCMAP) validation 396 

dataset (called LCMAP_Val), as a national third-party validation dataset, contains 16082 nationally distributed 397 

validation points during 1985–2021 (Stehman et al., 2021). In this work, the LCMAP_Val in 2021 is also updated to 398 

2023 through visual interpretation. Afterward, the confusion matrix and four accuracy metrics are calculated, 399 

including: the overall accuracy (O.A.) and kappa coefficient (measuring the comprehensive performance) and the 400 

producer accuracy (P.A.), and the user accuracy (U.A.), which measure the commission and omission errors for each 401 

land-cover type to quantify the accuracy of GLC_FCS10 (Foody and Arora, 2010; Liu et al., 2007; Nelson et al., 402 

2021). 403 

 404 

Figure 3. The spatial distribution of global validation samples containing 16 land-cover types in 2023. 405 

In addition, to qualitatively investigate the performance of GLC_FCS10, three global 10-m land-cover products 406 

[ESRI_LC (Karra et al., 2021), ESA WorldCover (Zanaga et al., 2021), and FROM_GLC10 (Gong et al., 2019)], and 407 

one 30-m land-cover product [GLC_FCS30 (Zhang et al., 2021)]  are collected as comparative products. None of 408 

these five data products have been updated to 2023. Their latest available data will be collected for our comparative 409 

analysis. 410 

4. Results and discussions 411 
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4.1 Overview of the GLC_FCS10 map 412 

Figure 4 illustrates the spatial distribution of the GLC_FCS10 land-cover map with 30 fine land-cover types in 413 

2023. Overall, it accurately charactersizes global land-cover patterns, i.e., forests concentrate in tropical rainforest 414 

regions and cold temperate forest zones in the northern hemisphere, cropland is found in low-lying plains areas such 415 

as the North China Plain, Central Plains of the United States, Central Eurasia, and bare land and grassland are 416 

distributed in arid and semiarid areas. Meanwhile, because a characteristic of the GLC_FCS10 is its diverse 417 

classification system, we can see that broadleaved forests are found in low- and medium-altitude regions, while 418 

needle-leaved forests are distributed in cold temperate zones as well as in high-altitude areas.  419 

 420 

Figure 4. Spatial distribution of the 30 fine land-cover types in GLC_FCS10 land-cover map in 2023. 421 

4.2 Accuracy assessment  422 

4.2.1 Global-scale accuracy assessment 423 

Table 3 presents the confusion matrix between GLC_FCS10 and the 56121 globally distributed validation points 424 

for 10 major land-cover types (corresponding to the basic classification system in Table 2). Overall, GLC_FCS10 425 

achieves an O.A. of 83.16% and a kappa coefficient of 0.789. For specific land-cover types, permanent snow and ice, 426 

water bodies, forest, impervious surfaces, and cropland perform the best, with the corresponding U.A. and P.A. values 427 

approximating or exceeding 90%. Their high accuracies stem from the distinct spectral properties inherent to water 428 

bodies and permanent ice and snow, the abundant coverage of cropland and forest, and hierarchical land-cover 429 

mapping for impervious surfaces. However, shrubland, grassland, tundra, and wetlands suffer obvious 430 

misclassifications, in which the shrubland has the lowest U.A. of 67.04% and wetland has the lowest P.A. of 53.69%. 431 

There are considerable confusions between shrubland, grassland, and bare areas because they share similar spectral 432 

characteristics and coexist in arid and semiarid areas. Wetlands have the lowest P.A. due to the confusions between 433 

wetlands, water bodies, forest, and grassland. Wetlands have complicated and heterogeneous spectral and temporal 434 

variations, thus, the swamp subcategory is easily confused with forest, and the marsh subcategory shares spectral 435 

characteristics with grasslands (Zhang et al. (2023b).  436 
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Table 3. The confusion matrix between GLC_FCS10 and the globally distributed validation dataset for 10 major 437 

land-cover types. 438 

 Crop Forest Shrub Grass Tundra Wetland Impervious Barren Water Ice-Snow Total U.A. 

Crop 8442 339 588 768 0 53 39 46 9 0 10284 82.09 

Forest 161 18342 1191 189 0 250 2 12 4 0 20151 91.02 

Shrub 190 701 4091 922 12 72 4 109 1 0 6102 67.04 

Grass 673 255 275 5817 33 170 7 391 4 1 7626 76.28 

Tundra 0 25 78 153 805 2 0 61 0 0 1124 71.62 

Wetland 10 74 136 100 14 946 1 23 30 0 1334 70.91 

Impervious 20 6 11 28 0 1 902 5 0 0 973 92.70 

Barren 66 5 187 544 24 29 6 3882 3 13 4759 81.57 

Water 2 6 9 4 0 239 1 25 2328 0 2614 89.06 

Ice-Snow 0 1 1 33 0 0 0 5 1 1113 1154 96.45 

Total 9564 19754 6567 8558 888 1762 962 4559 2380 1127 56121  

P.A. 88.27 92.85 62.30 67.97 90.65 53.69 93.76 85.15 97.82 98.76   

O.A. 83.16 

Kappa 0.789 

To intuitively understand the spatial distribution of the GLC_FCS10 accuracy metrics, Fig. 5 presents the spatial 439 

variations of O.A. and the kappa coefficient among 30 climate zones from Köppen climate zones. There is high 440 

consistency of the O.A. and kappa coefficient within the spatial patterns, i.e., some climatic transition zones, land-441 

cover heterogeneity zones, cloud-contaminated tropical zones, and small subdivisions tend to have lower accuracy 442 

(below 80%). Conversely, some homogeneous zones (such as Greenland and the Sahara Desert) and forest- or 443 

cropland-rich zones (such as the east-central United States, central Eurasia, and East Asia) achieve the high O.A. and 444 

kappa coefficient.  445 

 446 
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Figure 5. (a) Regional O.A. and (b) kappa coefficient of the GLC_FCS10 land-cover map among various Köppen 447 

climate zones (http://koeppen-geiger.vu-wien.ac.at/) using the globally distributed validation points.  448 

Table 4 further analyzes the confusion matrix between GLC_FCS10 and the global validation dataset with 16 449 

land-cover types (refining the forest and cropland subcategories). Under this fine validation system, the GLC_FCS10 450 

achieves an O.A. of 76.45% and a kappa coefficient of 0.736, which are reduced by 6.71% and 0.053, respectively, 451 

from the metrics in Table 3. This reduction is due to confusion between the finer land-cover subcategories; e.g., 452 

forests have a U.A. value of 91.02% in Table 3, but when broken down into five forest subcategories the average 453 

U.A. value drops to 68.52%. Taking mixed forest as an example, it has a low accuracy of only 44.17%, of which the 454 

proportions misclassified as evergreen broadleaved forest (EBF), deciduous broadleaved forest (DBF), evergreen 455 

needleleaved forest (ENF), and deciduous needleleaved forest (DNF) are 5.34%, 7.77%, 27.18%, and 5.83%, 456 

respectively. Higher likelihoods of confusion exist for closely related land-cover subcategories; e.g., the highest 457 

proportion of misclassification in EBF is in DBF, and rainfed cropland is easily misclassified as irrigated cropland, 458 

shrubland, or grassland. Previous research also demonstrated that considerable misclassifications occur between 459 

similar land-cover types (Homer et al., 2020; Wickham et al., 2021; Zhang et al., 2021; Zhang et al., 2024c). 460 

Table 4. The confusion matrix between GLC_FCS10 and the globally distributed validation dataset for 16 land-cover 461 

types. 462 

 
RCP ICP EBF DBF ENF DNF MF SHB GRS LMS SPV WET IMP BAL WTR SNW Total U.A. 

RCP 7575 302 134 137 21 13 6 574 746 0 10 24 31 35 6 0 9614 78.79  

ICP 121 444 19 7 2 0 0 14 22 0 1 29 8 0 3 0 670 66.27  

EBF 138 0 7263 842 289 59 48 429 70 0 0 140 1 1 2 0 9282 78.25  

DBF 21 1 375 3955 235 149 61 482 52 0 0 40 0 1 0 0 5372 73.62  

ENF 0 0 191 129 2535 533 11 138 28 0 0 51 1 3 1 0 3621 70.01  

DNF 1 0 0 77 122 1278 4 127 37 0 1 16 0 6 1 0 1670 76.53  

MF 0 0 11 16 56 12 91 15 2 0 0 3 0 0 0 0 206 44.17  

SHB 184 6 60 440 52 140 9 4091 922 12 40 72 4 69 1 0 6102 67.04  

GRS 654 19 24 109 21 98 3 275 5817 33 232 170 7 159 4 1 7626 76.28  

LMS 0 0 0 6 1 18 0 78 153 805 18 2 0 43 0 0 1124 71.62  

SPV 40 3 0 2 1 2 0 0 0 11 266 6 1 0 1 3 336 79.17  

WET 8 2 29 9 9 27 0 136 100 14 12 946 1 11 30 0 1334 70.91  

IMP 14 6 4 1 0 1 0 11 28 0 0 1 902 5 0 0 973 92.70  

BAL 20 3 0 0 0 0 0 187 544 13 118 23 5 3498 2 10 4423 79.09  

WTR 2 0 1 1 1 1 2 9 4 0 0 239 1 25 2328 0 2614 89.06  

SNW 0 0 0 1 0 0 0 1 33 0 0 0 0 5 1 1113 1154 96.45  

Total 8778 786 8111 5732 3345 2331 235 6567 8558 888 698 1762 962 3861 2380 1127 56121 
 

P.A. 86.30  56.49  89.55  69.00  75.78  54.83  38.72  62.30  67.97  90.65  38.11  53.69  93.76  90.60  97.82  98.76   
 

O.A. 76.45 

Kappa 0.736 

Note: RCP: rainfed cropland, ICP: irrigated cropland, EBF: evergreen broadleaved forest, DBF: deciduous broadleaved forest, ENF: evergreen needleleaved forest, 463 
DNF: deciduous needleleaved forest, MF: mixed forest, SHB: shrubland, GRS: grassland, LMS: lichens and mosses, SPV: sparse vegetation, WET: wetland, IMP: 464 
impervious surface, BAL: bare areas, WTR: water body, SNW: permanent ice and snow  465 

4.2.2 National-scale accuracy analysis using the LCMAP_Val datasets 466 

Table 5 presents the confusion matrix for GLC_FCS10 based on the LCMAP_Val validation points over the 467 

America. It should be noted that the LCMAP_Val dataset only contains eight land-cover types and merges shrubland 468 

and grassland into one mosaiced land-cover type (grass/shrub). The GLC_FCS10 achieves O.A. of 85.09% and a 469 

kappa coefficient of 0.804 using these 16082 national validation points. Regarding the U.A. and P.A., the cropland, 470 

http://koeppen-geiger.vu-wien.ac.at/


16 

 

forest, water. and grass/shrub land-cover types achieve balanced U.A. and P.A. values approximating or exceeding 471 

80%. In contrast, developed land has the lowest U.A. of 54.26% with high P.A. of 98.85%, mainly because of the 472 

difference in definitions of developed land and impervious surfaces. The LCMAP_Val definition of developed land 473 

is broad enough to classify inner-city greenery as developed land as well (Xian et al., 2022), which is considered a 474 

vegetation land-cover type in the GLC_FCS10. Barren land has the lowest P.A. value of 31.93%, indicating a high 475 

omission error of 68.07%. Most of these misclassifications came from the confusion between barren land and 476 

grass/shrub land-cover types. It is noteworthy that the grass/shrub shares similar spectral characteristics with barren, 477 

and both of them co-exist in arid regions of the western United States, thus, it is usually difficult to distinguish 478 

between the two with high accuracy.  479 

Table 5. The confusion matrix between GLC_FCS10 and the LCMAP_Val dataset. 480 

 Cropland Forest Grass/Shrub Wetland Impervious Barren Water Ice & Snow Total U.A. 

Cropland 3445 28 393 6 0 9 2 0 3883 88.72 

Forest 7 4621 133 92 0 0 2 0 4855 95.18 

Grass/Shrub 368 358 3440 21 1 272 1 0 4461 77.11 

Wetland 37 260 30 522 1 0 5 0 855 61.05 

Developed 44 69 164 3 344 9 1 0 634 54.26 

Barren 1 0 0 10 0 137 1 0 149 91.95 

Water 0 2 1 63 2 1 1173 0 1242 94.44 

Ice & Snow 0 0 0 0 0 1 0 2 3 66.67 

Total 3902 5338 4161 717 348 429 1185 2 16082  

P.A. 88.29 86.57 82.67 72.80 98.85 31.93 98.99 100.00   

O.A. 85.09 

Kappa 0.804 

Figure 6 illustrates the spatial distribution of O.A. and kappa coefficient values among different Köppen climate 481 

zones using the LCMAP_Val validation points over the America. There is notable consistency between O.A. and 482 

kappa coefficient in terms of the spatial patterns, i.e., the GLC_FCS10 considerably outperforms the Western U.S. in 483 

the Eastern U.S. and has an optimal kappa coefficient of more than 0.8 in the Northeastern U.S. Combined with the 484 

climatic distribution, it performs relatively poorly in the arid and semi-arid zones of the Midwestern U.S., mainly 485 

attributed to the difficulty in distinguishing between shrubs, grasses, and bare land within the region. 486 

 487 

Figure 6. The spatial distributions of (a) O.A. and (b) kappa coefficient using the LCMAP_Val validation points over 488 

the America among various Köppen climate zones. 489 

4.3 Cross-comparisons with previous land-cover products 490 

Table 6 gives quantitative comparisons among GLC_FCS10 and four public global 10- or 30-m land-cover 491 

products using the LCMAP_Val dataset. The GLC_FCS10 achieves the highest O.A. of 85.09% and a kappa 492 

coefficient of 0.804, followed by the ESA WorldCover (82.34% and 0.760) and ESRI_LC (82.10% and 0.754), while 493 
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the GLC_FCS30 and FROM_GLC10 have relatively inferior performance, below 80%. Specifically, in terms of the 494 

P.A., U.A. and F1-score, we can find that: 1) all five products achieve superior performance for water with 495 

corresponding P.A., U.A. and F1 score values of more than 90%. 2)The GLC_FCS10 and ESA WorldCover have 496 

advantages over other products for cropland and forest (with F1 scores exceeding 85%). The ESRI_LC F1 scores for 497 

cropland, forest, and grass/shrub exceed 80%. 3)All five products faced challenges for wetlands and barren land due 498 

to their complicated spectral characteristics. Taking wetlands as an example, the GLC_FCS10 achieves the highest 499 

F1 score of 66.63%, with most other products below 50%. The FROM_GLC10 has the lowest F1 score of 7.58%. 4) 500 

As stated in Section 4.2.2, the difference in definitions for developed land and impervious surfaces mean that all 501 

land-cover products have lower U.A. than P.A. values for developed land, i.e., they cannot identify inner-city greenery 502 

as impervious surfaces. 503 

Table 6. Comparisons among GLC_FCS10 and four other comparative products using the LCMAP_Val dataset. 504 

  Cropland Forest Grass/Shrub Wetland Developed Barren Water Snow O.A. Kappa 

GLC_FCS10 

U.A. 88.72 95.18 77.11 61.05 54.26 91.95 94.44 66.67 

85.09 0.804 P.A. 88.29 86.57 82.67 72.80 98.85 31.93 98.99 100.0 

F1 88.50 90.67 79.79 66.41 70.06 47.40 96.66 80.00 

FROM_GLC10 

U.A. 71.14 87.13 73.70 4.02 41.64 90.50 96.03 100.0 

74.31 0.653 P.A. 89.17 82.42 73.47 66.00 85.31 9.30 98.34 50.00 

F1 79.14 84.71 73.58 7.58 55.96 16.87 97.17 66.67 

ESA WorldCover 

U.A. 86.14 94.51 80.69 13.78 35.49 93.85 97.41 100.0 

82.34 0.760 P.A. 93.09 82.00 85.15 88.28 97.20 14.38 98.93 75.00 

F1 89.48 87.81 82.86 23.84 52.00 24.94 98.16 85.71 

ESRI_LC 

U.A. 90.02 82.84 84.98 10.15 69.36 56.52 97.69 100.0 

82.10 0.754 P.A. 80.65 83.05 81.86 69.72 74.38 38.72 98.48 25.00 

F1 85.08 82.94 83.39 17.72 71.78 45.96 98.08 40.00 

GLC_FCS30 

U.A. 85.78 88.85 75.29 37.68 38.10 73.49 90.79 100.0 

77.76 0.699 P.A. 77.39 74.69 84.47 56.09 91.70 20.08 98.14 75.00 

F1 81.37 81.16 79.62 45.08 53.83 31.54 94.32 85.71 

Figure 7 compares GLC_FCS10 with ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 on the 505 

East Coast of the United States. Overall, there is the highest consistency between GLC_FCS10 and actual land-cover 506 

situations, i.e., wetlands are predominantly found in low-lying river valleys and along the coast, and with a cross-507 

section of forests and cropland due to the undulating topography. Conversely, ESA WorldCover has the largest forest 508 

area because some swamps or woody wetlands are labeled as forests (Fig. 7R1 is an enlargement showing an 509 

example). ESA WorldCover also has the smallest impervious surface area because some is misclassified as forest 510 

(Fig. 7R2 is an enlargement showing an example). Thus, ESA WorldCover has low U.A. values of 13.78% and 35.49% 511 

for wetland and developed land, respectively (Table 6). ESRI_LC has the largest impervious surface area and also 512 

identifies some swamps as forest, so it has the lowest P.A. value of 74.38% for developed land. ESRI_LC 513 

overestimates impervious surfaces and has obvious omission errors for swamps. FROM_GLC10 has the lowest 514 

wetland area, i.e., some swamps are classified as forest and herbaceous wetlands are labeled as water, so it has the 515 

lowest U.A. value of 4.02% for wetlands in Table 6. Last, GLC_FCS30 also has omission errors for wetlands (the 516 

red rectangle on GLC_FCS30) and lacks spatial details for some small objects (such as small rivers in Fig. 7R1).  517 
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 518 
Figure 7. Comparisons among GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 on 519 

the East Coast of the United States. Images in the first column are false-color composited from time-series Sentinel-520 

2 imagery. 521 

Figure 8 presents comparisons for the moddle reaches of the Yangtze River, China. Overall, all land-cover 522 

products accurately capture the regional spatial patterns, and GLC_FCS10 and GLC_FCS30 have advantages with 523 

the diversity of land-cover types over the other three products. Specifically, Fig. 8R1 illustrates cross-comparisons 524 

for the megacity of Wuhan. ESA WorldCover underestimates and has the lowest impervious surface area, ESRI_LC 525 

overestimates and has the highest impervious surface area, and FROM_GLC10 misclassifies some impervious 526 

surfaces as grassland (Huang et al., 2022). Based on the former comparison and previous works (Huang et al., 2022), 527 

the ESA WorldCover underestimates these low-density impervious surfaces, the ESRI_LC suffers the overestimation 528 

problem on the impervious surfaces, and FROM_GLC10 suffers some misclassificaiton between impervious surfaces 529 

and grassland. Fig. 8R2 shows comparisons over the Payang Lake wetlands. ESA WorldCover captures most marsh 530 

wetlands but misses these lake/flooded flats, while ESRI_LC, FROM_GLC10, and GLC_FCS30 have serious 531 

omission errors for these wetlands. ESRI_LC misclassifies some marsh wetlands as grassland. Lastly, Figure 8R3 532 

illustrates comparisons for mountainous areas, the ESRI_LC still overestimates impervious surfaces, and 533 

GLC_FCS30 misses some small impervious surface objects (roads) due to spatial resolution constraints. 534 
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 535 
Figure 8. Comparisons among GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 for 536 

the middle reaches of the Yangtze River, China. Images are derived from Sentinel-2 imagery using false-color 537 

compositing. The colormap of all land-cover products are same as in Fig. 6. 538 

Since land-cover mapping usually meets great challenging on the tropic areas due to the frequent contaminations 539 

of cloud and shadow, Fig. 9 further shows comparisons for Kalimantan Island, Indonesia. It is noteworthy that the 540 

region has experienced extensive deforestation and oil palm cultivation over the past few decades (Descals et al., 541 

2024). Overall, the GLC_FCS10, GLC_FCS30, and FROM_GLC10 can capture the spatial patterns of oil palms 542 

because they identify oil palms as cropland, while ESA WorldCover and ESRI_LC tend to treat oil palms as forest. 543 

Specifically, in the enlargement areas of Fig. 9R1, we can see more regular oil palm plantations due to human 544 

activities, while FROM_GLC10 and GLC_FCS30 might overestimate this oil palm croplands. Then, as for the local 545 

region R2 in which contains swamp, mangrove and oil palms, the ESRI_LC and FROM_GLC have serious omission 546 

errors on mangroves and swamps while ESA WorldCover still cannot identify these swamp wetlands and oil palms, 547 

and GLC_FCS30 is consistent with GLC_FCS10 in capturing the wetlands and oil palms.  548 

 549 
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Figure 9. Comparisons between GLC_FCS10 and ESA WorldCover, ESRI_LC, GLC_FCS30, and FROM_GLC10 550 

for Kalimantan Island, Indonesia. Images are derived from Sentinel-2 imagery in 2023, and the colormap is the same 551 

as in Fig. 7. 552 

4.4 The feasibility and benefits of the proposed method for large-area land-cover mapping 553 

4.4.1 The feasibility and advantages of globally derived training samples 554 

A principal difficulty of land-cover mapping is obtaining high-quality training samples (Li et al., 2023; Zhang 555 

et al., 2021), in this work, we integrate prior multisource global land-cover products to generate globally distributed 556 

training samples. To ensure the confidence of these derived training samples and minimize the classification errors 557 

of each prior product, we took the following actions: 1) spatiotemporal consistency checking was used to find 558 

homogeneous and stable areas. 2) The intersection of multiple land-cover products minimized the influence of 559 

classification errors in each product. 3) A morphological erosion filter was applied to reduce the impact of edge-560 

mixing effects. The accuracy assessment partly demonstrates the reliability of these derived training samples, i.e., 561 

GLC_FCS10 achieves satisfactory accuracy metrics and outperforms several other land-cover products. Due to the 562 

large volume of these globally distributed training samples, we selected approximately 10,000 derived samples from 563 

the training sample pool in Section 3.2.4. Upon meticulous inspection, we determined that these chosen samples 564 

attained an overall accuracy (O.A.) of 92.18%, with certain uncertainties existing for shrubland and grassland. This 565 

result was in accordance with the earlier analysis presented in Table 3.  566 

Moreover, it is still uncertain whether this small amount of erroneous training samples could impact the 567 

performance of land-cover mapping, Fig. 10 illustrates the quantitative relationship between the erroneous training 568 

samples and the O.A. and kappa coefficients for the basic classification system. Initially, O.A. and the kappa 569 

coefficient remain stable as the number of erroneous training samples increases. However, a significant decline occurs 570 

when the proportion of erroneous samples exceeds 30%. This indicates that the trained random forest model is robust 571 

to the erroneous training samples as long as their proportion remains below 30%. In this work, if the fraction of 572 

erroneous samples was kept below 30%, the difference in O.A. is approximately 2% and the decrease in the kappa 573 

coefficient is approximately 3%. Gong et al. (2024) also demonstrated that a small number of incorrect samples 574 

(approximately 20%) didn’t affect the land-cover classification accuracy.  575 

 576 

Figure 10. A sensitive analysis of kappa coefficient and O.A. with respect to the proportion of erroneous training 577 

samples.  578 

4.4.2 The advantages of hierarchical land-cover mapping strategy 579 

One of the novelties of this study is the adoption of the hierarchical land-cover mapping strategy. The accuracy 580 

assessment in Table 3 indicates that impervious surfaces have a high U.A. value of 92.70% and P.A. value of 93.76%. 581 

The wetlands U.A. and P.A. values are 70.91% and 53.69%, which were superior to those of the other land-cover 582 

products in Table 6 and the cross-comparisons in Figs. 7–9. To intuitively understand the advantage of the hierarchical 583 

land-cover mapping strategy, a comparative experiment (ComExp) has been designed using the training samples 584 
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from area-fraction allocation (explained in the Section 3.2.4)in the Fig. 11, i.e., the impervious surfaces and wetlands 585 

are not classified separately in the middle reaches of the Yangtze River (the comparative site in Fig. 7). Overall, the 586 

ComExp is consistent with the GLC_FCS10 spatial patterns and shows some variations in the details. Specifically, 587 

in the Fig. 10R1, the ComExp misclassifies some marsh wetlands as herbaceous rainfed cropland, i.e., some lake 588 

flats (red rectangles in Fig. 11R1) cannot be comprehensively captured when compared with the GLC_FCS10. Figure 589 

10R2 gives the comparisons on the impervious surface areas, we can find that the ComExp has lower impervious 590 

surface areas because it misclassifies some bright impervious surfaces as bare areas and some residential areas as 591 

vegetated land. In summary, the hierarchical land-cover mapping strategy can increase the ability to characterize 592 

specific land-cover types. Similarly, the work of Sulla-Menashe et al. (2019) also used hierarchical mapping to 593 

generate annual global land-cover types for MCD12Q1 and demonstrated its better performance. 594 

 595 

Figure 11. A comparative experiment on whether to adopt the hierarchical land-cover mapping strategy over the 596 

middle reaches of the Yangtze River. Images are composited from Sentinel-2 imagery, and the enlargement came 597 

from © Google Earth. The colormap is the same as in Fig. 7. 598 

4.5 The limitations and prospects 599 

By combining a globally distributed training sample pool and the hierarchical land-cover mapping strategy, a 600 

novel GLC_FCS10 product containing 30 category-detailed land-cover types have been produced. GLC_FCS10 601 

achieves more accurate performance than several previous products in quantitative and qualitative comparisons 602 

(Sections 4.2 and 4.3). However, there are still some limitations or uncertainties regarding the proposed method and 603 

the developed products, which will be addressed in our ongoing works. First, although we combined hierarchical 604 

land-cover mapping and multisource satellite observations to improve the recognition of complicated land-cover 605 

types (impervious surfaces and wetlands), however, it can be found that the accuracy metrics of shrubland, grassland 606 

and wetland still have substantial room for improvement. Recently, some efforts have shown that incorporating both 607 

climatic and landform factors can enhance the discrimination of grassland areas (Parente et al., 2024), and the 608 

combination of Lidar (Light Detection And Ranging) and optical information increases the separability of shrubland 609 

and forest (Prošek and Šímová, 2019). Thus, one of the further works will combine multisource information to 610 
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enhance the ability to recognize more complex land-cover types. Meanwhile, although the combination of time-series 611 

Sentinel-1 and Sentinel-2 can minimize the effect of clouds and shadows, some high cloud-contaminated areas might 612 

be still affected, i.e., mosaic seams may be visible in these special areas. Many previous studies have demonstrated 613 

that the harmonization of Landsat and Sentinel-2 can increase the likelihood of clear observations (Claverie et al., 614 

2018), and the advances of deep learning models also improve the land-cover mapping performance on these cloudy 615 

areas (Xu et al., 2024a). Thus, how to make full use of the Landsat imagery and deep learning techniques to further 616 

improve the quality of GLC_FCS10 in the persistent cloudy areas will be one of the future works.  617 

We collected a globally distributed validation dataset and one third-party validation dataset (LCMAP_Val) for 618 

the purpose of quantifying the performance of the GLC_FCS10. However, the accuracy metrics of GLC_FCS10 for 619 

the fine classification system (containing 30 land-cover types) is still unknown. Actually, some previous studies have 620 

emphasized that collecting a large-area validation dataset is quite challenging (Morales et al., 2023; Tsendbazar et al., 621 

2021; Xu et al., 2020), especially as this study also needed to focus on 30 fine land-cover types. Fortunately, over the 622 

past decades, many previous works have collected high-quality validation points at global or regional scales 623 

(d'Andrimont et al., 2020; Li et al., 2017; Stanimirova et al., 2023; Stehman et al., 2012; Zhao et al., 2023). Making 624 

full use of these prior knowledge bases to refine the globally distributed validation points into 30 fine land-cover 625 

types will be another focus for ongoing work. In addition, to objectively understand the accuracy performance of 626 

GLC_FCS10, we introduced the LCMAP_Val third-party validation dataset, but the differences in the definition of 627 

the classification system still affect the accuracy metrics, such as the higher P.A. and the lower U.A. for the 628 

impervious surfaces in Table 5. Therefore, one of the ongoing works would take some measures (such as: semantic 629 

similarity (Gao et al., 2020)) for more comprehensively and objectively assessing the third-party accuracy metrics of 630 

GLC_FCS10. 631 

Lastly, in order to maximize the utilization of training samples distributed worldwide and strengthen the 632 

classification modeling capacity for capturing regional characteristics, the local adaptive modeling strategy (Section 633 

3.4) was applied in each 5  × 5  geographical tile, i.e., the global land-cover maps were produced as 984 independent 634 

local adaptive models. There may be a slight spatial discontinuity in some local land-cover maps between neighboring 635 

areas even though we introduced spatial neighborhood information into the regional modeling. Thus, further work 636 

will take some measures to join global and regional sample modeling to enhance the spatial continuity of global land-637 

cover maps.  638 

5. Data availability 639 

In this study, the new GLC_FCS10 land-cover dataset with the fine classification system in 2023 has been 640 

uploaded to the Zenodo platform and can be visually visited at https://zhangxiao-641 

glcproj.users.earthengine.app/view/glcfcs102023maps and freely access at 642 

https://doi.org/10.5281/zenodo.14729665 (Liu and Zhang, 2025). To facilitate the use of this dataset, the global 643 

GLC_FCS10 dataset has been stored by a total of 984 independent 5  × 5  geographical tiles, and the tile names 644 

as “GLC_FCS10_2023_E/W***N/S##,” in which the “***” and “##” illustrate coordinates of longitude and latitude 645 

at the upper - left corner of the tile data.  646 

As the collection of global validation dataset is labor intensive and time-consuming, our globally distributed 647 

validation dataset in 2023 will be available upon reasonable request. 648 

6. Conclusion 649 

The continuous improvement of satellite techniques and computational capability provide ample opportunity for 650 

high-resolution global land-cover mapping. In this work, we proposed a framework that leverages prior multisource 651 

https://zhangxiao-glcproj.users.earthengine.app/view/glcfcs102023maps
https://zhangxiao-glcproj.users.earthengine.app/view/glcfcs102023maps
https://doi.org/10.5281/zenodo.14729665
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land-cover products, hierarchical land-cover mapping, and local adaptive classification to generate a novel 652 

GLC_FCS10 global land-cover product containing 30 fine land-cover types in 2023 from time-series Sentinel-1 and 653 

Sentinel-2 imagery on the GEE platform. The GLC_FCS10 was validated to achieve an O.A. of 83.16% and a kappa 654 

coefficient of 0.789 using 56121 globally distributed validation points and achieved an O.A. of 85.09% in the 655 

United States using a third-party validation dataset. Furthermore, cross-comparisons with several public global 656 

high-resolution land-cover products also demonstrated that GLC_FCS10 had advantages on the diversity of 657 

land-cover types and capturing spatial details. Therefore, the GLC_FCS10 is a novel global 10-m land-cover 658 

product with high accuracy and a fine classification system. It can provide vital support for high-resolution land-659 

cover applications. 660 
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