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Abstract. The Soil Moisture and Ocean Salinity (SMOS) mission delivers the first multi-angular L-band observations for 

retrieving global soil moisture (SM) and vegetation optical depth (VOD), two critical variables for understanding terrestrial 

water and carbon cycles. However, the combined effects of non-identical fields of view and aliasing in multi-angular SMOS 

brightness temperature (TB) observations can introduce noise and biases when the TBs are averaged to a nominal incidence 5 

angle, as done in the SMOS L3 dataset, thereby degrading land parameter retrievals. To address this issue, an optimized SMOS 

TB dataset was initially produced at a fixed 40° incidence angle, consistent with the Soil Moisture Active Passive (SMAP) 

mission. We then developed the first SMOS mono-angular SM and VOD products designed to achieve performance 

comparable to SMAP and improved relative to conventional multi-angle SMOS retrievals. The 40° TB optimization was 

performed using the L-band Microwave Emission of the Biosphere (L-MEB) model, and the inversion relied on the SMAP-10 

INRAE-BORDEAUX (SMAP-IB) algorithm, yielding a global 40° SMOS TB record and associated SM and VOD products 

for 2010–2024 at 25 km spatial resolution, collectively referred to as SMOS-IB. Results showed that the optimized 40° TB 

reached a performance level comparable to SMAP and improved relative to SMOS-L3, both in its sensitivity to in-situ SM 

from the International Soil Moisture Network (ISMN) and in the reduction of global pixel-scale noise. When multiple 

evaluation metrics are considered, the SMOS-IB SM and VOD data, benefiting from the use of the optimized TB as input and 15 

a newly optimized soil roughness (Hr) parameterization, showed improved performance compared with those derived from 

SMOS L3 40° TB or from the multi-angular SMOS products. The SMOS-IB TB, SM and VOD products can be used for L-

band algorithm development and SMAP harmonization, global drought monitoring, and studies of vegetation water and 

biomass dynamics. SMOS-IB is publicly available at https://zenodo.org/records/17647385 (Xing et al., 2025). 

 20 

1 Introduction 

Large-scale, long-term datasets of soil moisture (SM) and vegetation optical depth (VOD) provide the core information needed 

to investigate how terrestrial water and carbon systems function. Accurate satellite-derived SM estimates are essential for 

various research domains, including predicting agricultural yields, assessing flood and drought conditions, managing local 

water resources, and analyzing worldwide hydrological processes (Peng et al., 2021; Al Bitar et al., 2017; Sadri et al., 2020). 25 

Meanwhile, VOD, a vegetation index that gauges the extinction of microwave radiation by vegetation, is a valuable parameter 

for tracking vegetation water status (Zotta et al., 2024; Baur et al., 2024) and biomass information (Fan et al., 2022b; Li et al., 

2025; Wigneron et al., 2024). Due to their deep penetration through vegetation canopies and elevated sensitivity to surface 

dielectric properties, L-band (~1.4 GHz) observations are widely considered as a preferred technique for large-scale monitoring 

of both SM and VOD. To date, the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2012; Wigneron et al., 2021) and 30 

Soil Moisture Active Passive (SMAP) (Entekhabi et al., 2010; O'neill et al., 2021), remain two main operational satellite 

missions providing global passive L-band brightness temperature (TB) observations dedicated to SM and VOD retrieval. 
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Although the main objective of both SMOS and SMAP missions is to retrieve SM, they are based on very different types of 

microwave technology. The SMAP mission, launched at the beginning of 2015, is the latest operational L-band satellite 

mission. It acquires mono-angular TBs at a fixed 40° incidence angle, encompassing both V- and H- polarization channels 35 

(Entekhabi et al., 2010). This mono-angular configuration makes it more difficult to derive SM and VOD simultaneously, as 

the potential information overlap between H- and V-polarized TB can result in an ill-posed inversion issue. To address this, 

SMAP retrieval algorithms are generally categorized into two types based on the polarization input: single-channel algorithms 

(SCA) and dual-channel algorithms (DCA). The SCA applies either H-polarization or V-polarization to estimate SM, while 

VOD is prescribed from external NDVI climatology (Jackson, 1993; Chan et al., 2016). On the contrary, DCA, which relies 40 

on both polarizations and enables the simultaneous retrieval of SM and VOD (O’neill et al., 2021), is increasingly interest in 

utilizing VOD for ecological applications, especially in monitoring vegetation dynamics (Frappart et al., 2020; Wang et al., 

2024; Wigneron et al., 2024). Currently, several improved DCA approaches have been proposed, with their methodologies 

and performance comprehensively summarized and compared in (Gao et al., 2021). Among the available DCA-type retrieval 

products, a new mono-angular algorithm developed by INRAE Bordeaux (called SMAP-IB, hereafter referred to as 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), 45 

is designed to jointly retrieve SM and VOD with high accuracy while minimizing reliance on auxiliary optical constraints (Li 

et al., 2022a). Evaluation has shown that the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  SM dataset performs comparably or favorably against other SMAP 

products under varying environmental conditions (Yi et al., 2023; Fan et al., 2023). Its VOD product also shows less saturation 

and stronger correlations with independent forest structure indicators (e.g., tree height, biomass) than optical-constrained VOD 

datasets (Li et al., 2022a; Peng et al., 2024). 50 

Launched in late 2009, the SMOS mission was the first satellite specifically designed for L-band radiometry and has delivered 

continuous global observations since 2010. Through its large Y-shaped antenna, the SMOS mission measures dual-polarized 

and multi-angle TB across the land surface, with incidence angles spanning from 2.5° to 62.5°. This rich observational 

capability enables the simultaneous retrieval of SM and VOD via the L-MEB (L-band Microwave Emission of the Biosphere) 

model (Wigneron et al., 2007; Al Bitar et al., 2017; Wigneron et al., 2017). Currently, three primary physically-based retrieval 55 

datasets retrieved from SMOS TBs are widely used, including the Level 2 product (Kerr et al., 2012), the Level 3 product (Al 

Bitar et al., 2017), and SMOS-IC (hereafter referred to as 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) (Fernandez-Moran et al., 2017a). Among them, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

represents the most recent algorithm designed to make efficient use of SMOS’s multi-angular TB observations. Compared to 

L2 and L3, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 adopts a simpler algorithmic framework and assumes pixels to be homogeneous in their land surface 

conditions, thereby reducing reliance on external ancillary datasets to characterize sub-pixel heterogeneity (Li et al., 2020). 60 

Additionally, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  also includes optimized parameterizations for key radiative transfer variables including vegetation 

scattering albedo and soil roughness as detailed in (Wigneron et al., 2021; Liu et 2025; Konkathi et al., 2025). These 

improvements have contributed to its comparable advantages in multiple comparative analyses (Al-Yaari et al., 2019; 

Colliander et al., 2023; Ma et al., 2019).   
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For both the SMOS and SMAP, the quality of the TBs is critical for the accuracy of land parameter retrievals (Kerr et al., 2016; 65 

Martin-Neira et al., 2016). SMAP, although a mono-angular instrument, is based on an advanced technology dedicated to 

filtering Radio-Frequency Interference (RFI) using a 40° incidence angle real-aperture radiometer (Entekhabi et al., 2010). 

Conversely, SMOS is based on a two-dimensional interferometric radiometer that acquires multi-angular observations but 

remains very sensitive to RFI effects (Wigneron et al., 2021; Oliva et al., 2016; Peng et al., 2023). Moreover, the incidence 

angles of SMOS vary with the distance from the swath center, ranging from 0°–55° near the center to about 40°–50° at the 70 

swath edges (Rodriguez-Fernandez et al., 2015). At the swath edges, reconstruction noise and aliasing become more 

pronounced, particularly at low incidence angles within the “extended alias-free” region where sky-alias correction is applied 

(Martín-Neira et al., 2016). In addition, SMOS exhibits significant daily variations in its angular coverage. Aggregating multi-

angular TBs into fixed 5° bins, a method used in the SMOS L3 product, can introduce considerable noise, a limitation noted 

in prior research (Schmitt and Kaleschke, 2018). Given these limitations, it remains unclear whether improved performance 75 

could be obtained by using improved mono-angular SMOS data rather than noisy multi-angular SMOS L3 TB data. This 

question is very difficult to address presently as all the SMOS products currently available differ in their retrieval algorithms, 

but they share one common feature: they all use multi-angular SMOS L3 TB measurements to retrieve SM and VOD, rather 

than using mono-angle TBs similar to SMAP’s 40° incidence angle. Developing a mono-angular SMOS product is therefore 

of practical importance, as it would provide a consistent alternative to the current multi-angular products and enable more 80 

coherent cross-mission analyses with SMAP, particularly considering SMOS has far exceeded its initial design life. 

In this context, this study aims to develop a mono-angular SMOS product focused on the simultaneous SM and VOD retrievals 

within the SMAP-IB algorithm framework. In parallel, we also attempted to address the following scientific questions: i) Are 

SMOS retrievals based solely on 40° TB inherently less accurate than those based on multi-angle TB data? and ii) Under a 

common algorithmic framework, how does the choice of TB inputs dictate the retrieval accuracy of both SM and VOD? To 85 

address these two main questions, we: 1) directly applied the SMAP-IB algorithm to SMOS L3 40° TB to retrieve 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆; 

2) applied a fitting procedure to reduce noise in L3 40° TB (hereafter SMOS-IB TB), and then used it to generate 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆; 

3) incorporated a refined soil roughness (Hr) scheme into SMAP-IB to obtain 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵; 4) evaluated all resulting SM and 

VOD products  against 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , using International Soil Moisture Network (ISMN) (2016–2022) and four 

vegetation proxies. Comparative analyses revealed that both, the TB optimization procedure and the refined Hr scheme 90 

significantly improved the retrieval performance of SM and VOD, making it comparable to SMAP. These improvements led 

to the development of a 25-km mono-angular SMOS-IB product suite, including optimized TB, SM, and VOD layers (i.e., 

𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵), spanning a 15-year period from 2010 to 2024. This is also the first study to generate global SM and VOD 

datasets simultaneously using only fitted 40° SMOS TB observations. Furthermore, the long-term optimized SMOS-IB 40° 

TB dataset holds potential for broader applications, such as freeze–thaw monitoring and snow depth estimation.  95 
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2 Data and preprocessing  

2.1 SMOS Level 3 TB product 

We used the SMOS Level-3 (SMOS-L3) TB product distributed by the Centre Aval de Traitement des Données (CATDS) for 

the years 2010–2024. SMOS-L3 TB provides multi-angle H- and V-polarized TBs recorded at the top of the atmosphere (Al 

Bitar et al., 2017). Despite the absence of atmospheric correction, the average atmospheric effect remains relatively mild 100 

globally, with ~1 K (H-polarization) and ~0.5 K (V- polarization) at 40° (De Lannoy et al., 2015). It should be noted that the 

SMOS L3 daily multi-angle TB data are obtained using a fixed 5° width binning method, with bin centers lie within the 2.5° - 

62.5° interval. Previous studies have revealed that this approach may result in stronger short-term TB fluctuations at specific 

angles compared to alternative methods, such as two-step regression fitting. This ultimately increases the uncertainty in 

analyses or retrievals dependent on single-angle TB data (Peng et al., 2023; Schmitt and Kaleschke, 2018; Li et al., 2022b). 105 

This work employed the SMOS-L3 TB dataset (on a 25 km EASE-Grid 2.0), utilizing solely the ascending orbit (06:00 am 

local time) TBs. 

2.2 ISMN in-situ SM dataset  

The ISMN in-situ SM measurements (https://ismn.geo.tuwien.ac.at/, accessed on 2025.10.01) were used to evaluate the TB 

and satellite SM retrievals’ accuracy. ISMN was considered to be the most reliable SM dataset and has been extensively 110 

utilized as a benchmark in satellite-based SM calibration and validation studies (Dorigo et al., 2021). Here, SM measurements 

from the 0-5 cm soil depth from 2016 to 2022 incorporating both sparse and dense in-situ networks were collected. Note that 

there is inherent scale mismatch between pixel-derived SM estimates and ground-based SM observation, particularly in the 

sparse observed networks. To maintain good data quality and minimize the issue of the spatial scale differences, only ISMN 

in-situ SM observations flagged as "Good" were spatially aggregated by averaging all available station observations within 115 

each respective 25 km EASE-Grid 2 cell. Ultimately, a total of 464 cells from 23 networks at a EASE-Grid 2.0 25 km scale 

were retained (Figure. 1 and Table S1).  
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Figure 1: Distribution of the SMOS footprints used for evaluation. The MODIS IGBP land cover map was aggregated to the 25 km 

grid using the dominant land cover class, resulting in 17 categories: EBF (Evergreen Broadleaf Forest), ENF (Evergreen Needleleaf 120 
Forest), DNF (Deciduous Needleleaf Forest), MF (Mixed Forests), DBF (Deciduous Broadleaf Forest), OS (Open Shrublands), WS 

(Woody Savannas), CS (Closed Shrublands), S (Savannas), G (Grasslands), PM (Permanent Wetland), Water, CNVM 

(Cropland/Natural vegetation mosaics), C (Croplands), U (Urban), Snow/Ice and Barren. The locations of the ISMN in-situ sites are 

presented in purple dots.  

2.3 Vegetation proxies for assessing VOD  125 

Given that the validation of VOD products at large scales is hindered by the lack of a well-established reference dataset, three 

frequently used vegetation proxies were selected assess the performance of the VOD retrievals (Wigneron et al., 2024), 

including the 1 km spatial resolution Saatchi aboveground biomass (AGB) map (Saatchi et al., 2011), 0.5◦ canopy height 

derived from Global Ecosystem Dynamics Investigation Level 1B LIDAR observations collected between April to July 2019 

(Simard et al., 2011), and 1 km resolution 16-day MODIS NDVI data from 2016 to 2022 (Didan, 2021). The canopy height 130 

serves as an indicator of total vegetation biomass, and NDVI reflects the greenness and photosynthetic activity within the 

upper layer canopy (Li et al., 2021). To preserve high-quality observations, the pixels for MODIS NDVI data flagged as ‘good 

quality’ were kept following the method of (Grant et al., 2016).  

In addition, this study pioneers to use the satellite canopy water content (CWC) data from 2016 to 2022 to validate the temporal 

behavior of VOD retrievals, since L-band VOD has been demonstrated a linearly relationship with vegetation water content 135 

(Wigneron et al., 2020). The CWC product was newly developed by integrating data from Sentinel-2, Landsat-8, and MODIS 

satellites to monitor canopy vegetation water variations, which has been demonstrated to have good accuracy and reliability, 

https://doi.org/10.5194/essd-2025-728
Preprint. Discussion started: 26 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

7 
 

thus providing a robust reference for assessing VOD data (Ma et al., 2025). The dataset is currently distributed through personal 

communication but will soon be publicly available via ESA data portal. These four vegetation parameters were standardized 

through projection onto the EASE-Grid 2.0 and spatially aggregated to 25 km using arithmetic mean resampling to match the 140 

SMOS grid spatial resolution. This same resampling method has also been employed in several earlier VOD studies (Li et al., 

2021; Fan et al., 2019). 

2.4 Additional microwave TB, SM, and VOD products used for inter-comparison 

To evaluate the performance of optimized SMOS-IB TB (see method Section 3.1) and the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 SM and VOD retrievals, two other L-band TB data (i.e., SMOS-L3 TB and SMAP-L3 TB) and two other L-band 145 

satellite global SM and VOD datasets (i.e.,𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) were collected.  

The SMOS-L3 TB product has been detailed in section 2.1. SMAP-L3 TBs were sourced from the Version 5 SMAP enhanced 

L3 radiometer SM product collected during the morning (06:00 am local time) descending overpass for the period 2016-2022 

(Chan et al., 2018). The SMAP-L3 TB observations were quality controlled based on corresponding quality flags and 

resampled to 25 km via weighted area averaging for consistency with the SMOS’ grid resolution (Li et al., 2022b). 150 

The 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM and VOD products at 25 km projected onto the EASE-Grid 2.0 from 2016 to 2022 were collected. 

(1) The 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 corresponds to the SMOS-IC dataset, originally developed by (Fernandez-Moran et al., 2017a; Fernandez-

Moran et al., 2017b), and is among the most recent SMOS products available. It was retrieved using the processed multi-angle 

SMOS-L3 TB dataset with quality filtering provided by the CATDS using the SMOS-IC version 2 algorithm. The 25 km 

SMOS-IC V2 SM and VOD data retrieved from the morning ascending orbit was utilized; (2) The 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆was retrieved by 155 

applying the SMAP-IB algorithm to the 25km SMAP-L3 TBs (resampled from the 9 km SMAP-L3 TB dataset) at 40◦ incidence 

angle (Li et al., 2022a). Readers refer to (Wigneron et al., 2021) and (Li et al., 2022a) for detailed information about the SMOS-

IC and SMAP-IB algorithm.  

All datasets were evaluated specifically at the 6:00 am local overpass time to capitalize on optimal surface thermal equilibrium 

conditions characteristic of early morning periods (Entekhabi et al., 2010), following rigorous quality-controlled preprocessing 160 

that adhered to each product's specific flagging criteria. For example, the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 unreliable retrievals were 

effectively removed based on two quality control thresholds: “Scene Flags” > 1 and “TB-RMSE” > 8 K (Wigneron et al., 

2021).  
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Table 1: Summary of the three TB products and five SM and VOD products used and generated in this study.  

Category Product 
name Sensor Incidence 

angle Algorithm Metadata 
period Sampling Reference 

TB 
SMOS-IB SMOS 40° - 2010-2024 Daily, 25 km Generated in this study 
SMOS-L3 SMOS 40° - 2010-2024 Daily, 25 km (Al Bitar et al., 2017) 
SMAP-L3 SMAP 40° - 2010-2024 Daily, 9 km (Chan et al., 2018) 

SM and 
VOD 

𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SMOS 40° SMAP-IB 2010-2024 Daily, 25 km Generated in this study 
𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SMOS 40° SMAP-IB 2010-2024 Daily, 25 km Generated in this study 
𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 SMOS 40° SMAP-IB 2010-2024 Daily, 25 km Generated in this study 
𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SMOS 20°-55° SMOS-IC 2010-2024 Daily, 25 km (Wigneron et al., 2021) 

 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SMAP 40° SMAP-IB 2015-2022 Daily, 36 km (Li et al., 2022a) 

2.5 Ancillary datasets  165 

The MODIS IGBP land cover classification (Friedl and Sulla-Menashe, 2022) was employed to analyze SM comparison results 

across different land cover types. Daily precipitation data at a resolution of 0.1°, sourced from the ERA5-Land reanalysis 

dataset, was collected and applied to analyze seasonal variation of the SM and VOD datasets (Muñoz-Sabater et al., 2021). 

To obtain robust evaluation results, we additionally employed Triple Collocation Analysis (TCA), which provides an 

independent error estimate and is not affected by the representativeness errors originating from the spatial discrepancy between 170 

site points and satellite footprints (see Section 3.1.3). For this purpose, the active microwave Advanced Scatterometer (ASCAT) 

surface SM product and the model-based Global Land Data Assimilation System (GLDAS-Noah) SM product from 2016 to 

2022 were obtained (Rodell et al., 2004). (1) ASCAT, onboard the Meteorological Operation-A, -B and -C satellite, acquires 

C-band V-polarized backscatter measurements on both ascending and descending orbits (Wagner et al., 2006). The ASCAT 

SM product is generated from MetOp satellite backscatter measurements using a TU Wien algorithm (Wagner et al., 2013). 175 

The ASCAT CDR(Climate Data Record) v7-H119 SM dataset at 12.5 km resolution was used, with its relative SM values 

converted to volumetric units (m³/m³) based on soil porosity from the Harmonized World Soil Database (HWSD). (2) The 

GLDAS-Noah SM product, with 3-hourly temporal and 0.25° spatial resolution, is derived from the Noah Land Surface Model 

within the Global Land Data Assimilation System (Rodell et al., 2004). The GLDAS SM (kg/m2) was also transformed into 

volumetric unit (m3/m3), with daily average SM computed for analysis (Xing et al., 2021). Both the ASCAT and GLDAS-180 

Noah SM were aggregated to 25 km resolution by applying the arithmetic mean resampling to match the SMOS grid resolution. 

3 Methods 

Figure 2 illustrates the methodological framework, encompassing three major components: SMOS-L3 multi-angle TB 

optimization, SM and VOD inversion, and performance evaluation.  
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 185 
 

Figure 2: Flow chart illustrating the workflow from data production and performance assessment of ①𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂, ②𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 

and ③𝑰𝑰𝑰𝑰_𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺: inputs (purple), SMOS-IB TB calibration (blue), SM and VOD inversion (green) and performance assessment 

(orange). 

3.1 Generation of SMOS-IB TB through optimization of SMOS-L3 multi-angle TB  190 

To mitigate the angular-related noise and enhance the consistency of TBs, we adopted the L-MEB model, originally developed 

for the SMOS and shown to effectively reproduce SMOS TBs across varies land surface conditions (Wigneron et al., 2012). 

In our implementation, L-MEB was employed as a forward model, with multi-angular SMOS L3 TB as input. The optimal 

fitting results were obtained by minimizing the RMSE (root mean square error) between the L-MEB simulated and observed 

TB values. Figure 3 shows examples of the fitting results on May 5, June 15, July 3, and August 8, 2024. It can be seen that 195 

the fitted TBs significantly reduce the irregularity and dispersion present in the raw L3 TBs, for both polarizations. The fitted 

TBs at 40° incidence angle, which is in line with SMAP observations, were used as the SMOS-IB product for subsequent 

applications. In addition, the fitted TB-RMSE for each pixel was retained in the dataset, as it has been shown to serve as a 

simple and effective indicator for assessing the real influence of RFI on SMOS TBs’ quality (Li et al., 2022; Wigneron et al., 

2021). 200 
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Figure 3: Examples of L-MEB model fitting to CATDS L3 TB at a SMOS pixel located at 83.646°E, 31.661°N. Panels (a) – (d) 

correspond to May 5, June 15, July 3, and August 8, 2024, respectively. 

 

3.2 SM and VOD inversion using SMAP-IB algorithm 205 

Note that three types of SM and VOD datasets were produced with the aim to address the key scientific questions of this study: 

①𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: implementing the SMAP-IB to the raw SMOS-L3 40° TB; ②𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: implementing the SMAP-IB to the 

SMOS-IB 40° TB, and ③𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: implementing the SMAP-IB algorithm that incorporated a refined soil roughness 

(Hr) parameterization scheme to the SMOS-IB 40° TB. 

The Tau-Omega (τ-ω) radiative transfer approach was used to compute microwave TB from land surfaces (Mo et al., 1982), 210 

which includes three parts: (1) direct upwelling soil emission attenuated by the canopy 𝑇𝑇𝐺𝐺(1 − 𝑟𝑟𝐺𝐺𝑃𝑃)𝛾𝛾𝑃𝑃; (2) direct upwelling 

canopy emission 𝑇𝑇𝐶𝐶(1 −𝜔𝜔)(1 − 𝛾𝛾𝑃𝑃); and (3) downwelling canopy emission reflected upward by the soil 𝑇𝑇𝐶𝐶(1 − 𝛾𝛾𝑃𝑃)𝛾𝛾𝐺𝐺𝑃𝑃𝛾𝛾𝑃𝑃: 

 𝑇𝑇𝑇𝑇𝑃𝑃 = 𝑇𝑇𝐺𝐺(1 − 𝑟𝑟𝐺𝐺𝑃𝑃)𝛾𝛾𝑃𝑃 + 𝑇𝑇𝐶𝐶(1 − 𝜔𝜔)(1 − 𝛾𝛾𝑃𝑃) + 𝑇𝑇𝐶𝐶(1 − 𝛾𝛾𝑃𝑃)𝑟𝑟𝐺𝐺𝑃𝑃𝛾𝛾𝑃𝑃                                                                                         (1) 
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where 𝑇𝑇𝐶𝐶 and 𝑇𝑇𝐺𝐺 are the effective temperatures of vegetation and soil (K), computed using ERA5 soil and skin temperatures; 

𝛾𝛾𝑃𝑃  denotes the vegetation attenuation factor, estimated as 𝛾𝛾𝑃𝑃= exp(−VOD/cosθ); The effective scattering albedo 𝜔𝜔 was 215 

assigned according to the IGBP land cover types (Kurum, 2013). 𝑟𝑟𝐺𝐺𝑃𝑃 represents the soil reflectivity and is computed using the 

H-Q-N semi-empirical model developed by (Wang and Choudhury, 1981), which combines the smooth-surface reflectivity 

(𝑟𝑟𝐺𝐺𝐺𝐺∗ ) with a roughness correction governed by 𝐻𝐻𝐻𝐻. In this study, we used the values of a novel global calibrated pixel-level 

𝐻𝐻𝑟𝑟 data (Konkathi et al., 2025). Their approach moves beyond prior methods, which only accounted for HR differences 

between vegetation types, by also incorporating intra-type HR differences through a methodology that synergistically combines 220 

radiative transfer modeling with machine learning. 

The 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆SM and VOD were jointly retrieved based on the optimized SMOS 40° incidence angle TBs using SMAP-

IB algorithm, incorporating the values of a novel global calibrated𝐻𝐻𝐻𝐻. To resolve the underdetermined problem of 2-Parameter 

retrieval from correlated SMOS TB observations, the SMAP-IB method implements an optimized least-squares iteration, 

which minimizes a cost function (CF) that accounts for prior knowledge of SM and VOD. 225 

𝐶𝐶𝐶𝐶 =
∑(𝑇𝑇𝑇𝑇𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑇𝑇𝑝𝑝∗ )2

𝜎𝜎(𝑇𝑇𝑇𝑇)2
+ ∑(𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖−𝑆𝑆𝑆𝑆∗)2

𝜎𝜎(𝑆𝑆𝑆𝑆)2
+ ∑(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖−𝑉𝑉𝑉𝑉𝑉𝑉∗)2

𝜎𝜎(𝑉𝑉𝑉𝑉𝑉𝑉)2
                                                                                                               (2)  

where 𝑇𝑇𝑇𝑇𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 (𝑇𝑇𝑇𝑇𝑝𝑝∗) denote the measured and simulated TBs at both polarizations, respectively; 𝜎𝜎(∙) is the standard deviation 

operator; and the second and third terms are regularization functions that involve the retrieval parameters (𝑆𝑆𝑆𝑆∗, 𝑉𝑉𝑉𝑉𝑉𝑉∗) and 

their initial estimates (𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖, 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖). Please refer to (Li et al., 2022a) for a detail description of these initial estimations of 

the SMAP-IB algorithm. 230 

3.3 Evaluation of TB, SM and VOD 

Four key metrics were applied to examine the performance of the retrieved dataset: (1) Pearson's correlation coefficient (R; 

Eq. 3), (5) systematic bias (Eq. 4), (3) RMSD (Eq. 5), and (4) unbiased RMSD (ubRMSD; Eq. 6) (Entekhabi et al., 2010).  

𝑅𝑅 = �1 − (𝜃𝜃𝑅𝑅𝑅𝑅−𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅)2

(𝜃𝜃𝑅𝑅𝑅𝑅−𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅��������)2
                                                                                                                                                                   (3) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝜃𝜃𝑅𝑅𝑅𝑅 − 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅                                                                                                                                                                      (4) 235 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �(𝜃𝜃𝑅𝑅𝑅𝑅 − 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅)2������������������                                                                                                                                                           (5) 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = √𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2                                                                                                                                                   (6) 

where 𝜃𝜃𝑅𝑅𝑅𝑅 is the satellite TB, SM or VOD dataset; 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅 is the reference data; the overbar represents the temporal averaging 

operator (i.e., 𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅������). Since systematic biases between observations and satellite retrievals may distort RMSD, the ubRMSD 

and R typically provide more reliable metrics for validation (Xing et al., 2021). 240 

3.3.1 TB and SM evaluation 

(1) In-situ based metrics 
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The retrieved SM data were rigorously validated against the ISMN in-situ observations. Concurrently, the sensitivity of TB to 

in-situ SM was quantitatively evaluated. This analysis is based on the well-established physical principle of a negative TB-SM 

correlation: as SM increases, the consequent rise in the soil's dielectric constant reduces its microwave emissivity, leading to 245 

a decrease in observed TB. Following the method of early studies (Yi et al., 2023; Xing et al., 2023), a three-step analysis was 

applied to retain valid evaluation result to ensure fair comparisons: (1) all datasets were assessed for the consistent period from 

2016 to 2022, (2) maximum 1-hour temporal matching between in-situ data and satellite overpasses, (3) minimum 31 valid 

observations (i.e., 1 month) per station for statistical robustness, and (4) restriction to the same stations containing valid 

evaluation metrics for all TB or SM datasets. TB assessment focused on R to evaluate radiometric consistency, while SM 250 

evaluation employed four metrics (R, bias, RMSD, and ubRMSD). Note that we also performed paired t-tests to quantify 

whether the differences in each of the two TB or SM products' performance metrics are statistically significant (null hypothesis: 

equal means between product pairs; α=0.05).   

(2) TCA-based metrics 

The direct validation of the SM retrievals using sparse in-situ networks may not be sufficient for obtaining a robust evaluation 255 

result due to potential representativeness errors associated with the spatial discrepancy between obseved SM and satellite SM 

observations (Al-Yaari et al., 2019; Xing et al., 2021). The TCA method was employed as a secondary evaluation approach 

for SM quality evaluation, owing to its applicability at the footprint as well as pixel scale (Dong and Crow, 2017). Before 

conducting TCA, we preprocessed the SM data by removing the climatological seasonal signal from each product to avoid 

potential overestimation in TCA metrics that could arise from inter-product climatology correlations (Dong et al., 2020; Kim 260 

et al., 2020). The SM anomalies were computed as below: 

𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑡𝑡−17:𝑡𝑡+17)��������������                                                                                                                                                      (7) 

where 𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) is the SM anomalies at day t and 𝜃𝜃(𝑡𝑡−17:𝑡𝑡+17)��������������  is the mean SM value via a 35-day moving window  (Fan et al., 

2022a). 

Given that the TCA method requires strictly independent error structures across its three collocated SM products, we adopted 265 

the conventional triplet configuration proposed by Gruber et al. (2020), including passive (i.e., 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,  𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), active microwave product (i.e., ASCAT) and a model-based SM product (i.e., GLDAS-

Noah). The analysis specifically examined the TCA-derived correlation coefficient (hereafter referred to as TCA-R) as the 

primary metric of product performance. Please refer to (Fan et al., 2022a) and (Dong and Crow, 2017) for more information 

about the TCA method. 270 

3.3.2 VOD evaluation 

The performance of VOD was assessed using two complementary approaches: (1) spatial R (VOD vs. AGB/canopy height) 

and (2) temporal R (VOD vs. CWC) and R (VOD vs. NDVI), following previous studies (Chaparro et al., 2019; Zotta et al., 
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2024; Li et al., 2021). Daily VOD were composited into 16-day intervals in order to align with the NDVI data, while retaining 

only statistically significant R with a p-value < 0.05. 275 

3.4 The 𝑰𝑰𝑰𝑰_𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑰𝑰𝑰𝑰 dataset 

The global 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 dataset is archived in netCDF4 format and mapped to EASE-Grid 2.0, featuring a 584 × 1388 grid 

with a 25 km sampling resolution. The dataset contains 14 layers (Table 2), including TB, SM, and VOD, their associated 

uncertainty layers, expressed as the standard errors of SM and VOD, and the global soil roughness map. The RMSE values 

layer between the measured and modeled TB and the Scene_Flags layer are also included in the dataset. The RMSE layer, the 280 

optimal fitting results obtained by minimizing the RMSE between the L-MEB simulated and observed TB values, serves as a 

measure of RFI influence on the TBs and to filter out SM and VOD data substantially influenced by RFI. The Scene_Flags 

layer is used to filter out multiple impacts linked to specific climate or topographic conditions (Table 2). The datasets for the 

period 2010-2024 can be freely downloaded at website (https://zenodo.org/records/17647385) (Xing et al., 2025) and will be 

continuously maintained on the INRAE Bordeaux Remote Sensing Product website (https://ib.remote-sensing.inrae.fr/). 285 

Table 2: Overview of the gridded data layers included in the 𝑰𝑰𝑰𝑰_𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 dataset. 

Data layer Description Units 

CRS Coordinate reference systems (CRS) include spatial reference 
information and geographic transformation parameters / 

lat The latitude of the center of each grid cell degree  
lon The longitude of the center of each grid cell degree  
Incidence_Angle Pixel-based Incidence Angle degree 
TIME_UTC Year information starting from 2010 / 
BT_H Optimized brightness temperature at H polarization K 
BT_V Optimized brightness temperature at V polarization K 
Soil_Moisture Soil Moisture (SM) retrievals m3/m3 
Soil_Moisture_StdError Error on the derived Soil Moisture m3/m3 
Optical_Thickness_Nad Vegetation Optical Depth (VOD) retrievals / 
Optical_Thickness_Nad_StdError Error on the derived Vegetation Optical Depth / 
Soil_Roughness Global Soil Roughness Map / 

RMSE Goodness-of-fit between measured TB and modelled TB (Root Mean 
Square Error, RMSE) K 

Scene_Flags 

8-bit flag  
'00000001': moderate Topography 
'00000010': strong Topography 
'00000100': polluted scene (water+urban+ice > 10% of the pixel), 
'00001000': frozen scene, ECMWF_Surf_Temperature < 273K 

/ 
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4 Result and discussions 

4.1 Evaluation of the optimized TB 

The global spatial pattern of high-frequency TB variations was quantified by calculating the standard deviation (SDHF) of TB 290 

after removing seasonal cycle for SMOS-IB, SMAP-L3, and SMOS-L3 (Figure 3). It was observed that the high-frequency 

variability was consistently higher in H-polarization than in V-polarization across all products, particularly in water-limited 

regions. Critically, the spatial median SDHF for both SMOS-IB and SMAP-L3 was low and comparable (< 5.33 K), whereas 

SMOS-L3 exhibited markedly higher variability (> 7.20 K). This demonstrated that SMOS-IB and SMAP-L3 shared similarly 

low noise levels, while SMOS-L3 retained the strongest high-frequency fluctuations. These differences reflected their distinct 295 

processing chains: unlike the top of atmosphere SMOS-L3 TB, SMAP-L3 included atmospheric correction and dedicated RFI 

mitigation, and SMOS-IB benefited from noise reduction via L-MEB model optimization, bringing its variability 

characteristics closer to those of SMAP-L3. Spatially, SMOS-L3 showed markedly higher SDHF than the other two products 

over central and northeastern Africa, central and eastern Asia, and parts of eastern Europe, regions that coincide with known 

RFI hotspots for SMOS (Wigneron et al., 2021; Al-Yaari et al., 2019). Pixel-wise SDHF differences further reinforced these 300 

patterns (Figure S1): deviations between SMOS-IB and SMAP-L3 were minimal (within ±0.02 over most regions), whereas 

SMOS-L3 showed systematically higher values, particularly over the above-mentioned RFI-affected areas where differences 

relative to both SMOS-IB and SMAP-L3 typically exceeded 5 K. These results confirmed that SMOS-L3 preserved substantial 

high-frequency noise, while SMOS-IB and SMAP-L3 provided cleaner temporal TB profiles (Figure S2).  
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 305 
Figure 4 Maps of the standard deviation of the high-frequency variations (SDHF) in the TB time series for (a) SMOS-IB, (b) SMOS-

L3 and (c) SMAP-L3 TB in V-polarization, and (d) - (f) in H-polarization. SDHF was derived by removing the seasonal cycle, which 

was computed with a 30-day moving window average filter. m1 and m2 denote the spatial mean and median SDHF value (unit: k), 

respectively.  

To further investigate how the three TB products respond to SM variations, we assessed their sensitivity to ISMN in-situ SM 310 

using the coefficient of determination (R²) across 12 MODIS IGBP land cover types (Table 3). Overall, all three products 

showed the strongest SM sensitivity in shrublands (S), with R² values exceeding 0.80 for both polarizations, and the weakest 

sensitivity in barren or sparsely vegetated areas, where R² values fell below 0.30, reflecting the reduced radiometric sensitivity 

of microwave observations in regions with low SM dynamics. The land cover-specific analysis confirmed and extended the 

overall patterns described above: SMAP-L3 TB generally presented the highest R² values, followed closely by SMOS-IB TB, 315 

while SMOS-L3 TB showed the lowest sensitivity to ISMN in-situ SM data. This ranking pattern (SMAP-L3 > SMOS-IB > 
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SMOS-L3 TB) showed complete consistency across all land cover types for H-polarization and in 7 of 12 cases for V-

polarization, respectively. Particularly, SMOS-IB TB achieved slightly higher R² than SMAP-L3 TB in MF, CS, OS, WS, S 

and G land cover types. These findings indicated that the proposed optimization process effectively enhanced the sensitivity 

of SMOS TB to SM and enabled SMOS-IB to achieve performance levels comparable to SMAP-L3 TB in most cases.  320 

Table 3 Coefficient of determination (R²) between ISMN in-situ measurements and the satellite-based TB products (SMOS-IB, 

SMOS-L3, and SMAP-L3) for both polarizations during 2016–2022, used to assess the sensitivity of TB to SM across the 12 MODIS 

IGBP land cover types. Red < yellow < green indicates the color coding from the lowest to highest R² values, and, for each product, 

the land cover type with the highest TB–SM R² is highlighted in bold.  

Polarization Product ENF EBF DBF MF CS OS WS S G C CNVM Barren Overall 

H-polarization 
SMOS-IB 0.40 0.46 0.39 0.43 0.58 0.43 0.50 0.87 0.53 0.50 0.65 0.22 0.48 
SMOS-L3 0.33 0.41 0.33 0.29 0.53 0.40 0.42 0.85 0.50 0.48 0.57 0.19 0.45 
SMAP-L3 0.41 0.54 0.40 0.43 0.58 0.45 0.51 0.87 0.54 0.51 0.69 0.23 0.49 

V-polarization 
SMOS-IB 0.41 0.41 0.36 0.42 0.59 0.45 0.50 0.90 0.57 0.49 0.67 0.19 0.49 
SMOS-L3 0.36 0.18 0.35 0.32 0.57 0.40 0.45 0.85 0.53 0.47 0.61 0.17 0.44 
SMAP-L3 0.41 0.48 0.40 0.40 0.57 0.44 0.49 0.89 0.56 0.49 0.70 0.22 0.49 

 325 

4.2 Evaluation of the SM retrievals 

4.2.1 ISMN in-situ SM-based comparison 

Figure 5 presents the overall evaluation performance of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM against ISMN in-situ measurements, indicated by 

median values of R, ubRMSD, RMSD, and Bias, with comparative analysis of four other SM products (𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) from 2016 to 2022. Regarding R and ubRMSD, 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM achieved similarly high performance 330 

with 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, with all three products reaching a median R of 0.67 and a median ubRMSD of ~0.059 m³/m³. In 

comparison, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅yielded lower median R of 0.65 and 0.64, respectively, and higher ubRMSD of 0.063 

m3/m3 (Figure 5(a)-(b)). Particularly, the better performance of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆SM products over 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 SM 

demonstrated that high-quality TB data enabled more accurate SM retrievals. This was further supported by the time series 

comparison in Figure S3, which showed that the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 SM product exhibited higher noise levels in its retrievals—a direct 335 

consequence of the noisier TB input. Since these products employed the same inversion method (i.e., SMAP-IB algorithm) 

but differed in SMOS TB inputs, the results underscored the critical role of pre-processed TB quality in enhancing SM 

estimation accuracy from the data side (leaving algorithm improvements aside). Besides, the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 performed better than the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM product, indicating that, when supported by a sufficiently robust retrieval 

algorithm, a mono-angular approach was not necessarily inferior to a multi-angular one. Regarding RMSD, the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 340 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM products (RMSD ranged from 0.093 to 0.097 m³/m³) exhibited marginally lower errors 

compared to 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (RMSD = 0.100 m³/m³) (Fig. 5(c)). All five SM datasets were dryer than observed SM, as illustrated 

by a negative bias (satellite SM minus in-situ SM), in which 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (Bias = -0.058 m³/m³) had a lower bias compared to the 
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other four SM products (Bias ranges from -0.067 to -0.061 m³/m³) (Fig. 5(d)). These findings were in agreement with the 

evaluation results indicted in Li et al. (2022b).  345 

To systematically assess the accuracy of the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆SM dataest across diverse networks, we computed in-situ network-

level median statistics for three statistical metrics including R, ubRMSD, and Bias (Table S2). In terms of ubRMSD,  

𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆achieved the lowest error in 10 out of 23 networks, followed closely by 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆with 9 out of 23, and they 

outperformed 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅in both the number of networks and their overall ubRMSD levels. Regarding R, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

acquired the highest accuracy over the other four SM products in 52% of the networks, followed by 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. 350 

Across networks, all five satellite SM products showed their strongest agreement with observation in the AMMA-CATCH 

network, where they achieved uniformly high R values (≥ 0.88) and low error metrics (ubRMSD ≤ 0.03 m³/m³), meeting the 

typical L-band mission accuracy requirement of ~0.04 m³/m³. In contrast, the FMI network in-situ SM recorded the lowest R 

values (≤ 0.51), and the SNOTEL network in-situ SM showed the highest ubRMSD values (≥ 0.075 m³/m³) for all products. 

However, the retrieval performance in these networks was not uniformly degraded across all metrics; for example, the FMI 355 

network still exhibited reasonable ubRMSD levels, while the SNOTEL network retained moderate R values. These patterns 

indicated that the limitations arose from different aspects of the retrieval, suggesting room for further improvement in these 

regions. 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 acquired the lowest Bias of the five SM products over 11 observation networks, though all SM products 

exhibited similar median dry biases (-0.056 to -0.067 m³/m³).  

https://doi.org/10.5194/essd-2025-728
Preprint. Discussion started: 26 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

18 
 

 360 
Figure 5: Boxplots summarizing the overall metrics of 𝑰𝑰𝑰𝑰_𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹, 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, and 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 against ISMN in-

situ SM regarding (a) R, (b) ubRMSD (m3/m3), (c) RMSD (m3/m3) and (d) Bias (m3/m3) from 2016 to 2022. The scatter points in the 

boxplot represent individual data points. The symbols *, **, and *** indicate that the P-Value computed from the two-sample t-test 

between the metrics of each two products is below 0.05, 0.01, and 0.001, respectively. 
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Figure 6 shows the site-level scatterplots of ΔR (difference in R) and ΔubRMSD (difference in ubRMSD) between each pair 365 

of SM products for the ISMN in-situ sites covered by non-forest and forest LUCC types. The purpose was to assess whether 

improvements in correlation and ubRMSD occured simultaneously at the site scale. Based on the number of sites showing 

concurrent gains in both metrics, 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆consistently outperformed 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM across both forest and 

non-forest regions, as evidenced by pairwise metric differences: 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆showed positive ΔR (higher correlation) and 

negative ΔubRMSD over 84% and 78% of non-forest in-situ sites, respectively. This advantage also persisted in forest regions 370 

with positive ΔR and negative ΔubRMSD over 84% and 53% of the in-situ sites (Figure. 6(a), (b), (a1) and (b1)). These results 

demonstrated the robust performance of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  across diverse land cover types, reconfirming the advancements 

achieved by the advanced TB observations (𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 vs. 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) and mono-angel angular algorithm (𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

vs. 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ). Notably, compared with 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆achieved absolute ubRMSD reductions greater than 0.01 

m3/m3 and R increased above 0.10 at several forest and non-forest sites, further confirming the effectiveness of the optimized 375 

TB fitting. Besides, a better performance of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 than 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(in 31.83% and 41.75% of the in-situ sites) and 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (in 48% and 43% of the in-situ sites) was also observed across both non-forest and forest regions (Figure. 6(c), (d), 

(c1) and (d1)). This improvement underscored the benefit of the new Hr parameterization scheme, which further enhanced SM 

retrieval accuracy beyond what was achievable with optimized TB data alone. In addition, both 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

demonstrated lower accuracy than 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆over 74% and 79% of the non-forest sites and 56% and 74% of the forest sites 380 

(Figure 6(e), (f), (e1) and (f1)). These findings also confirmed that algorithmic refinements—particularly in TB calibration 

and in the optimization of key radiative transfer parameters—can bridge the performance gap between SMOS and SMAP, 

making 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆a reliable high-precision product for hydrological and climate applications. These results aligned with 

the finding of (Colliander et al., 2023) and (Colliander et al., 2022), who found that both SMOS and SMAP L-band radiometers 

exhibited comparable sensitivity to SM variations.  385 
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Figure 6: Scatterplots of ΔR (difference in correlation coefficient) and ΔubRMSD (difference in unbiased RMSD) between paired 

soil moisture datasets for the ISMN in-situ sites. The colors of the symbols represent the (a-f) non-forest (orange) and (a1-f1) forest 

(green), aggregated based on MODIS IGBP LUCC types. 

4.2.2 TCA-based comparison 390 
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We then used TCA-R to evaluate the pixel-scale performance of SM anomaly estimates from five satellite products (Figure 7 

and Figure S4). Overall, the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM product performed the best with higher TCA-R values across most regions (spatial 

median TCA-R = 0.81), followed by 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆IB, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 with spatial median TCA-R ranging from 0.75 to 

0.76 (Figure S4(a)-(d)). In contrast, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅displayed lower accuracy, with a spatial median TCA-R of only 0.58, indicating 

a notable performance gap compared to the other four SM products (Figure S4(c)). Similar to the ISMN in-situ measurements-395 

based evaluation result, the performance ranking for the five SM products was maintained, suggesting robust consistency 

between the two independent SM evaluation approaches. The spatial patterns and histograms of the TCA-R differences 

between paired SM products showed absolute median spatial differences in TCA-R of 0.001 and 0.150 (Figure 7). Notably, 

the aligned evaluation results indicated that these performance differences for the five SM products originate from TB inputs 

and the inherent differences in SM retrieval algorithms. 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆demonstrated a clear and consistent performance 400 

advantage over most other SM products, including 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, as illustrated in Figures 7(a) - (c) and 

7(f) - (h).  

The performance gap between 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 was particularly striking, evidenced by both an overwhelmingly 

red global map, which indicated widespread positive ∆R values, and high median ∆R of 0.107 (Figures 7(a) and (f)). This 

pronounced visual and quantitative contrast reconfirmed our finding that robust TBs is fundamental to obtaining more accurate 405 

SM retrievals. Regarding the performance difference of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆vs. 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, the differences in TCA-R 

values were distributed with a centroid near zero (absolute mean ∆R = 0.005, median ∆R < 0.002), indicating generally 

consistent performance between these three SM products across most regions, while the extended tails of these distributions 

reveal non-negligible discrepancies in certain areas (Figure 7(g) and (h)). It is noteworthy that 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 exhibited a distinct 

deficiency in the northern high latitudes compared to 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. This resulted from the improved parameterization of 410 

surface roughness in the Northern Hemisphere in the new Hr scheme. Unlike the original Hr scheme, which prescribed 

generally low roughness values solely based on land cover type, the new Hr scheme used in 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆more accurately 

captured the characteristically high per-pixel roughness there (Figure S5). This improvement was primarily attributed to the 

scheme's ability to incorporate the significant influence of high soil organic carbon in the northern high latitude regions 

(Konkathi et al., 2025).  415 
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Figure 7: Spatial distribution ((a)–(e)) and histograms ((f)–(k)) of TCA-based R differences between paired SM anomaly products. 

m1 and m2 denote the mean and median (red line) difference value. A black vertical line marks the zero-difference reference. 

 

4.3 Evaluation of the VOD retrievals 420 

Figure 8 presents the spatial density distributions of the five VOD datasets against the aboveground biomass (AGB) map. It 

was found that the four VOD products showed very similar R values, ranging only from 0.84 for 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 0.85 for 

𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, whereas 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 had the lowest R values of 0.80. Moreover, all five VOD products 

effectively captured the spatial gradients of AGB, yielding the same highest R values of 0.87 when comparing predicted and 

observed AGB (Figure 8(a) - (e)). Similarly, the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  VOD products exhibited the same 425 

highest spatial R value (0.90) when correlated with forest canopy height, indicating a strong linear relationship–even for tall 
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trees. Followed by 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 with spatial R of 0.89 and 0.87 (Figure S6). This aligned with previous VOD 

validation studies (Zotta et al., 2024; Li et al., 2021; Rodríguez-Fernández et al., 2018), as L-band VOD responded to  the full 

vertical structure of vegetation, encompassing woody components (Frappart et al., 2020). These findings suggested that, in 

terms of spatial patterns, it was difficult to distinguish clear advantages among the five products. Nevertheless, given the 430 

comparable influence of VOD and Hr in the τ–ω model and their strong coupling (Eq.1), we plotted each VOD product against 

the corresponding Hr used in its retrieval (Figure 8(a1) - (e1)). It was found that  𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 VOD demonstrated a notably 

weaker spatial correlation with its Hr (R = 0.39) than the other VOD products using IGBP-based Hr schemes (R > 0.70). This 

decoupling effect was particularly evident in forested areas, where the spatial R between 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 VOD and Hr (R = -

0.36) was the lowest among all products, while the others showed R > 0.57. These findings collectively indicate that the new 435 

Hr scheme effectively mitigated the coupling effect with VOD, leading to more physically independent VOD retrievals 

compared with the IGBP-based Hr schemes. 

The per-pixel temporal correlation coefficient between the five VOD datasets and CWC were also calculated to examine the 

discrepancy of the temporal performances for the VOD datasets (Figure 9). All VOD products exhibited consistent spatial 

patterns in their temporal R values with vegetation dynamics, particularly across eastern US, southern Africa, eastern Brazil, 440 

Siberia, and Australia (Figure. 9a–d), with the 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅VOD product showing particularly widespread non-significant pixels 

across these biomes (Figure. 9e). Figure 9(f) identifies the VOD dataset with the strongest per-pixel temporal R values (absolute 

R difference > 0.1) after excluding non-significant pixels. It was found that 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 demonstrated 

highest R values with CWC across 41 %, 24 % and 21 % of the analyzed pixels, respectively, with these pixels mainly located 

in mid- to low-latitude regions (e.g., Australia,  South, East and West Africa, and America). Similar findings were also obtained 445 

when NDVI was used as a reference (Figure S7). It is noteworthy that the temporal R between 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and CWC was 

generally higher than that derived using 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 across most regions globally, particularly in high vegetated regions (e.g., 

Australia, Central North America, Amazon, Central Africa, etc.). This finding underscored the advantage of incorporating 

optimized Hr inputs in VOD retrievals, because the key distinction between the two VOD products lied in the optimization of 

roughness inputs. Similarly, Konkathi et al. (2025) also showed that the improved VOD-NDVI correlation in these regions 450 

resulted from their refined Hr scheme, which mitigated SM and VOD compensations (Figure S8). 
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Figure 8: Global density plots of VOD vs. AGB for five products: (a)𝑰𝑰𝑰𝑰_𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, (b) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, (c) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹, (d) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 and (e) 

𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. R1 denotes the correlation coefficient between VOD and AGB, and R2 denotes the R between VOD-predicted AGB and 

reference AGB. Panels (a1–e1) show VOD vs. Hr scatter plots for the same products, with spatial correlations reported for all pixels 455 
(R), forest pixels (R-F) and non-forest pixels (R-NF). 
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Figure 9: Temporal correlation between VOD and CWC (2016–2022) for (a) 𝑰𝑰𝑰𝑰_𝑯𝑯𝑯𝑯𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, (b) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺, (c) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹, (d) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 

and (e) 𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. (f) maps of the above five VOD products with the highest absolute R values with CWC. Non-significant R are 

represented by dark grey pixels (p > 0.05), and the light grey color indicates pixels with R difference for each paired VOD product 460 
< 0.1. White areas represent “no valid data”. 

 

5 Data availability 

The global SMOS-IB TB, SM and VOD datasets for the period 2010-2024 can be freely downloaded at 

(https://zenodo.org/records/17647385) (Xing et al., 2025) and will be continuously maintained on the INRAE Bordeaux 465 

Remote Sensing Product website (https://ib.remote-sensing.inrae.fr/). 
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6 Conclusion and outlook 

In this study, we first generated an optimized global 40° SMOS TB dataset and then derived the corresponding mono-angular 

SM and VOD datasets using the SMAP-IB retrieval framework. This mono-angular approach was specifically designed to 470 

isolate and investigate the underlying causes of performance differences between existing SMOS and SMAP products retrieved 

from different algorithms and satellite observations. To achieve this, a comprehensive evaluation of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 TB, SM 

and VOD retrievals was conducted against ISMN in-situ SM data and four vegetation parameters (i.e., CWC, Saatchi AGB, 

canopy height, and MODIS NDVI), by inter-comparison with other four datasets (i.e., 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆). The following key conclusions are drawn: 475 

(1) Our evaluation showed that the newly developed 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼dataset demonstrated robust performance for TB as well 

as SM and VOD retrievals. Specifically, the optimized 40° SMOS-IB TB had markedly lower noise than the SMOS-L3 

TB and provided global accuracy comparable to SMAP-L3. Correspondingly, the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼SM product derived from 

SMOS-IB TB also achieved an accuracy (median R of 0.67, ubRMSD of 0.059 m³/m³) comparable to 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Moreover, 

it clearly outperformed 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (median R of 0.65, ubRMSD of 0.063 m³/m³) and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(median R of 0.64, ubRMSD 480 

of 0.063 m³/m³).  

(2) Regarding VOD retrievals, although all five products exhibited similar spatial relationships with AGB (R ~ 0.85), the new 

Hr scheme effectively decoupled surface roughness from vegetation contributions, thereby enabling more physically-

based 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼  VOD retrievals. Consistently, the temporal correlation between 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 and CWC was 

generally higher than that obtained using 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in moderate to high vegetated regions, further confirming the role of 485 

optimized Hr inputs in the 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 VOD retrievals. 

(3) Under the same algorithmic framework, the better performance of 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 and 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 SM products over 

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅SM demonstrated that high-quality TB inputs enabled more accurate SM retrievals. Building on this, the 

refined Hr retrieval scheme further improved performance, as 𝐼𝐼𝐼𝐼_𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼 performed better than 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in many in-

situ networks, with particularly enhanced accuracy in the northern high latitudes. Our results demonstrated that a mono-490 

angular approach was not necessarily less effective than a multi-angular one. In particular, the combined use of optimized 

mono-angular observations and an advanced retrieval algorithm (e.g., SMAP-IB) can yield better results than multi-angle 

approaches (e.g., the SMOS-IC algorithm). 

Our evaluation demonstrated that the mono-angular SMOS-IB TB, SM and VOD products achieved performance comparable 

to SMAP product, while outperforming multi-angular SMOS products in most cases. Therefore, SMOS-IB holds potential for 495 

broader applications, such as drought monitoring, assessing vegetation water dynamics for plant stress evaluation, and 

supporting eco-hydrological studies. This study also contributed to the longstanding issue about the relative importance of 

algorithm design versus instrument characteristics in L-band radiometry. Our findings provided evidence that future mission 
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development should prioritize both the refinement and selection of suitable retrieval algorithms and improvements in TB 

observation quality. Taken together, these results offered valuable scientific insights for guiding future algorithm selection and 500 

supporting the continued advancement of upcoming satellite missions. 
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