

# Supplementary

## An operational global L-band soil moisture and vegetation optical depth dataset from optimized 40° SMOS brightness temperatures

Zanpin Xing<sup>1,3,4</sup>, Xiaojun Li<sup>\*2,5</sup>, Frédéric Frappart<sup>2</sup>, Gabrielle De Lannoy<sup>6</sup>, Thomas Jagdhuber<sup>7,8</sup>, Jian Peng<sup>9,10</sup>, Lei Fan<sup>11</sup>, Hongliang Ma<sup>12</sup>, Karthikeyan Lanka<sup>13,14</sup>, Xiangzhuo Liu<sup>2</sup>, Mengjia Wang<sup>2,15</sup>, Lin Zhao<sup>16</sup>, Yongqin Liu<sup>1,3,4</sup>, Jean-Pierre Wigneron<sup>2</sup>

<sup>1</sup>Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China

<sup>2</sup>INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave-d'Ornon, France

<sup>3</sup>Key Laboratory of Pan-third Pole Biogeochemical Cycling, Lanzhou, China

<sup>4</sup>Chayu integrated observation and research station of the Xizang Autonomous Region, Xizang, China

<sup>5</sup>Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China

<sup>6</sup>Department of Earth and Environmental Sciences, KU Leuven, Heverlee B-3001, Belgium

<sup>7</sup>German Aerospace Center (DLR) Microwaves and Radar Institute Weßling, Germany

<sup>8</sup>Institute of Geography University of Augsburg (UniA) Augsburg, Germany

<sup>9</sup>Department of Remote Sensing, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

<sup>10</sup>Remote Sensing Centre for Earth System Research-RSC4Earth, Leipzig University, Leipzig, Germany

<sup>11</sup>Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing, China

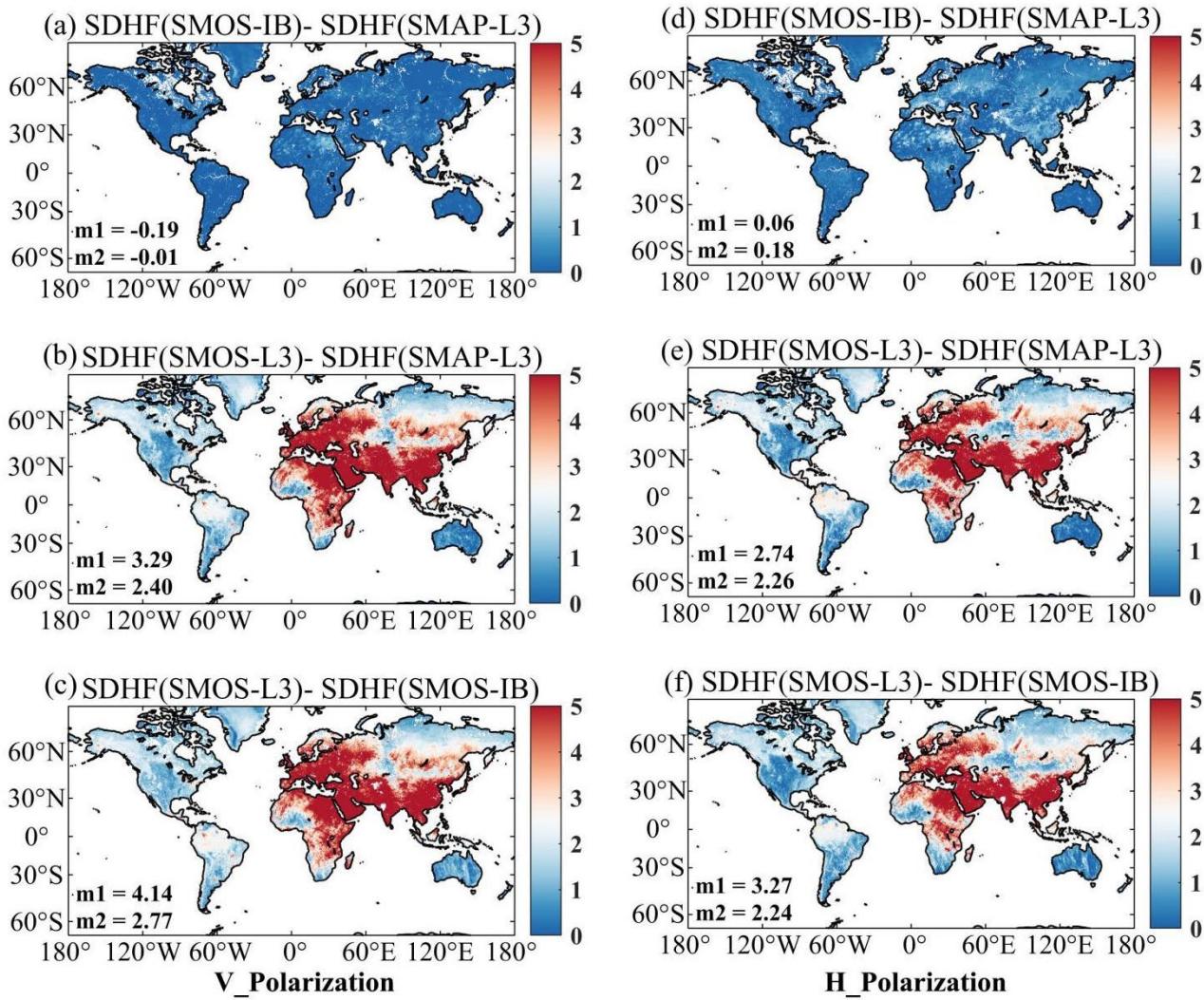
<sup>12</sup>INRAE, UMR 1114 EMMAH, UMT CAPTE, Provence-Alpes-Côte d'Azur, F-84000 Avignon, France

<sup>13</sup>Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India

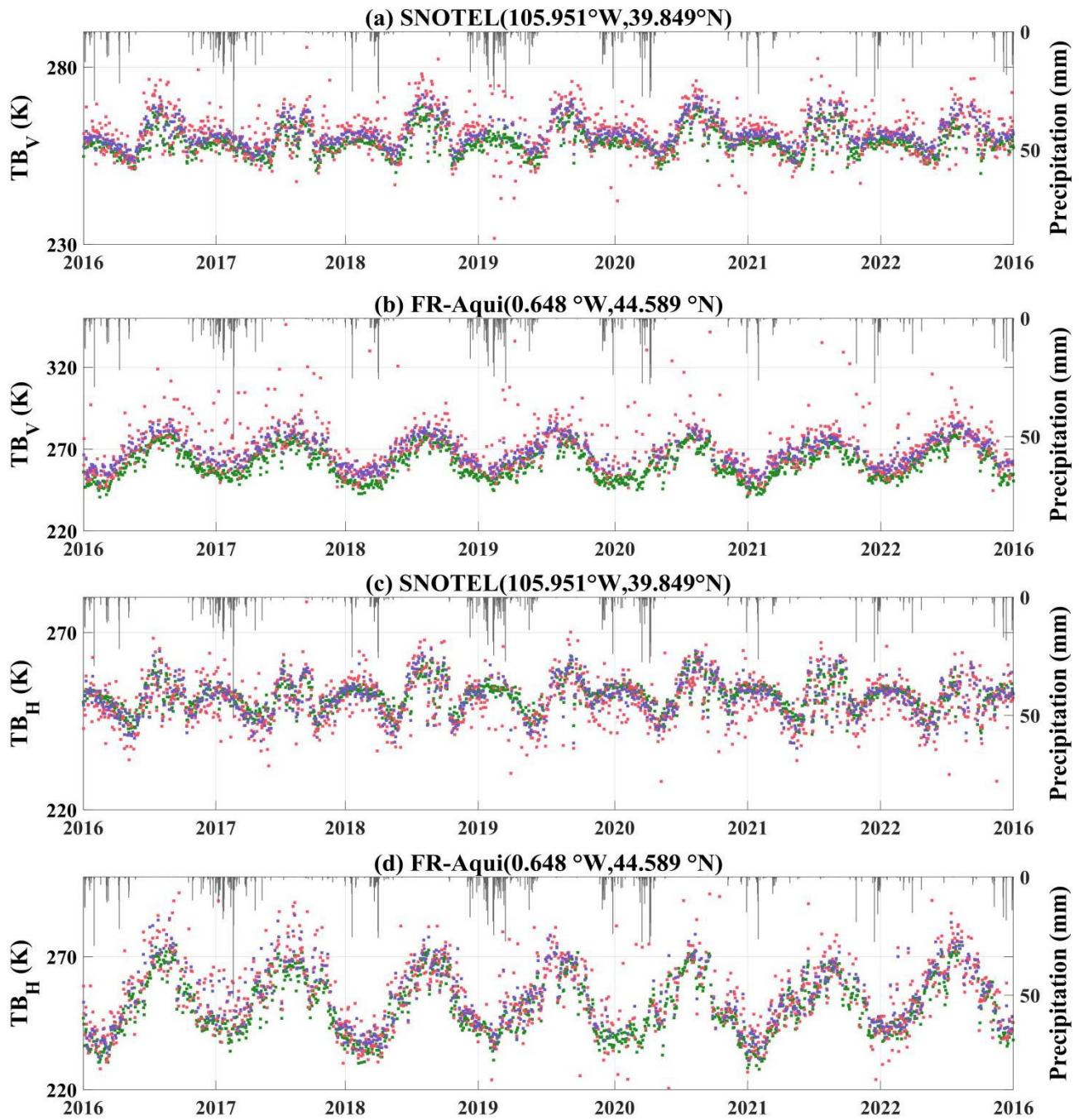
<sup>14</sup>Centre for Climate Studies, Indian Institute of Technology Bombay, Mumbai, India

<sup>15</sup>School of Geo-Science and Technology, Zhengzhou University, Zhengzhou 450001, China

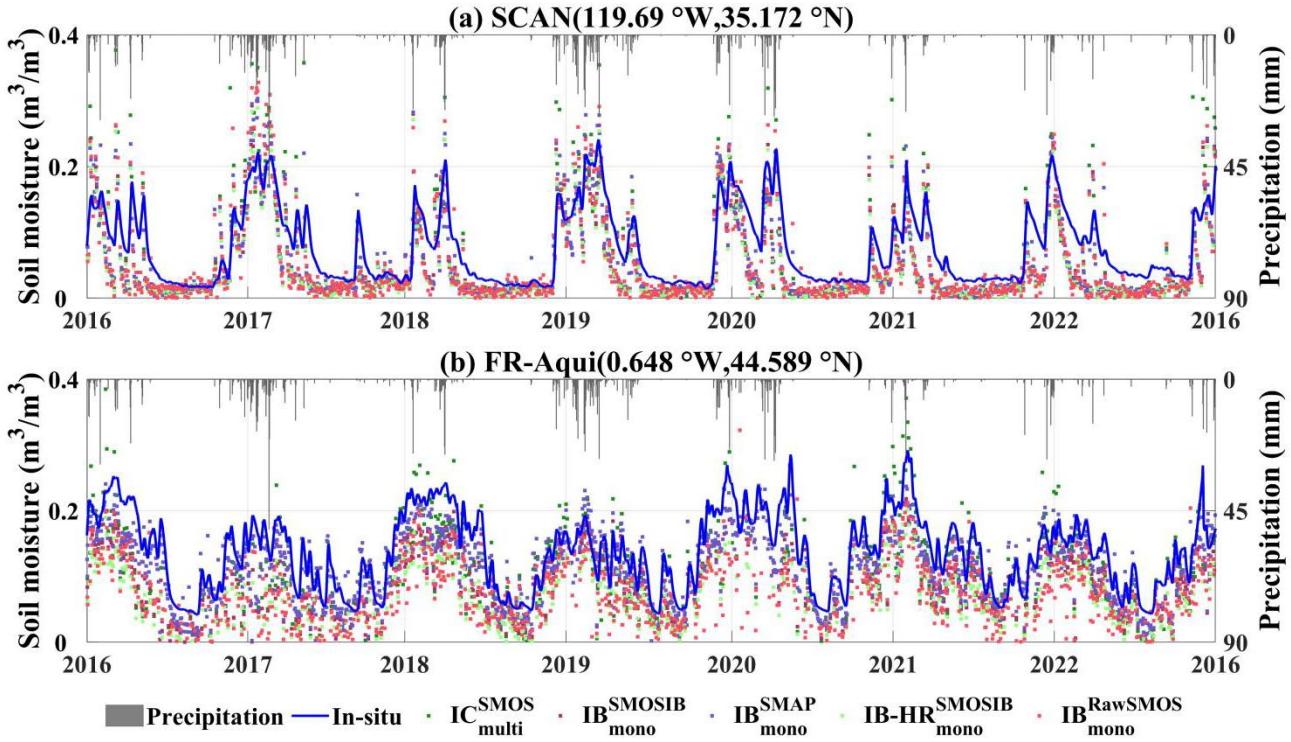
<sup>16</sup>School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China


**Corresponding author:** Xiaojun Li (xiaojunli\_vod@163.com)

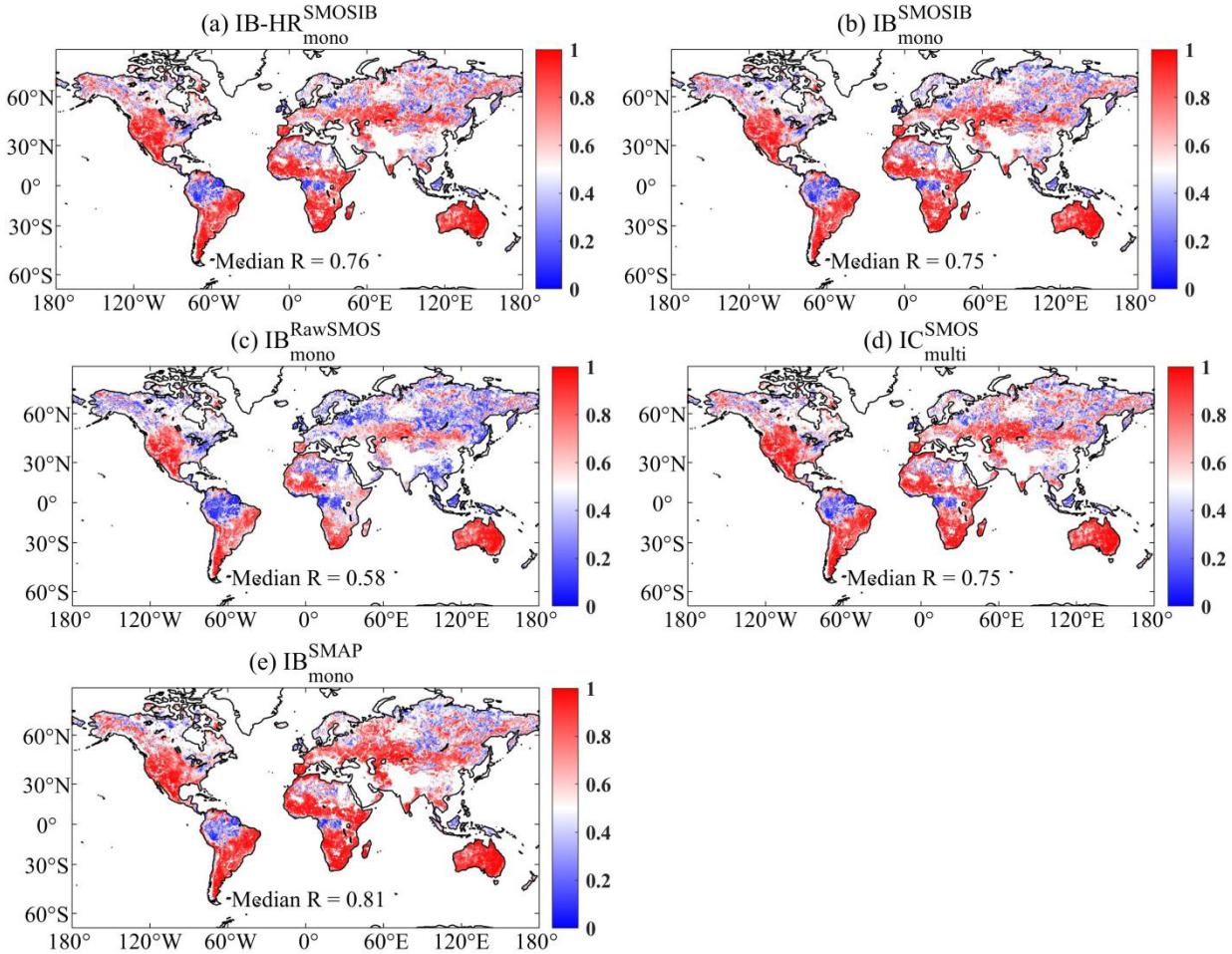
1 **Table S1** Summary of the *in-situ* networks from ISMN used in the study. The number of stations/pixels included in each IGBP  
 2 land cover is also listed.


| Network name | Country                                                                       | No. footprints | IGBP land cover types (No.)                                                                              |
|--------------|-------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|
| AMMA-CATCH   | Benin, Niger                                                                  | 2              | S (1) and G (1)                                                                                          |
| ARM          | USA                                                                           | 15             | G (6) and C (9)                                                                                          |
| FMI          | Finland                                                                       | 2              | WS (2)                                                                                                   |
| FR-Aqui      | France                                                                        | 1              | ENF (1)                                                                                                  |
| HOAL         | Austria                                                                       | 1              | MF (1)                                                                                                   |
| HOBE         | Denmark                                                                       | 3              | C (3)                                                                                                    |
| NAQU         | China                                                                         | 1              | G (1)                                                                                                    |
| OZNET        | Australia                                                                     | 11             | S (2) and C (9)                                                                                          |
| PBO-H2O      | USA                                                                           | 1              | G (1)                                                                                                    |
| REMEDHUS     | Spain                                                                         | 4              | S (3) and C (1)                                                                                          |
| RISMA        | Canada                                                                        | 7              | C (7)                                                                                                    |
| RSMN         | Romania                                                                       | 14             | C (12)                                                                                                   |
| SCAN         | USA                                                                           | 129            | Diverse land cover types: ENF (3), DBF (10), MF (3), OS (31), WS (3), G (46), C (31) and Barren (2)      |
| SMN-SDR      | China                                                                         | 1              | G (1)                                                                                                    |
| SMOSMANIA    | France                                                                        | 17             | Diverse land cover types: ENF (2), MF (5), C (9) and CNVM (1)                                            |
| SNOTEL       | USA                                                                           | 172            | Diverse land cover types: ENF (63), OS (19), WS (6), G (79) and C (5)                                    |
| SOILSCAPE    | USA<br>Côte<br>d'Ivoire,<br>Nigeria,<br>Ghana,<br>Uganda,<br>Rwanda,<br>Kenya | 4              | Diverse land cover types: OS (2), WS (1) and S (1)                                                       |
| TAHMO        |                                                                               | 3              | EBF(2) and WS (1)                                                                                        |
| TERENO       | Germany                                                                       | 1              | MF (1)                                                                                                   |
| TWENTE       | Netherlands                                                                   | 4              | C (4)                                                                                                    |
| TxSON        | USA                                                                           | 6              | G (6)                                                                                                    |
| USCRN        | USCRN                                                                         | 64             | Diverse land cover types: ENF (4), DBF (6), MF (1), CS(1), OS (8), WS (2), G (38), C (13) and Barren (1) |
| iRON         | Canada                                                                        | 1              | ENF (1)                                                                                                  |

4 **Table S2** Statistics of validation results of  $IB\_HR_{mono}^{SMOSIB}$ ,  $IB_{mono}^{SMOSIB}$ ,  $IB_{mono}^{RawSMOS}$ ,  $IC_{multi}^{SMOS}$  and  $IB_{mono}^{SMAP}$  against ISMN *in-situ* SM data for 2016–2022.  
5 Best performance in terms of  $R$ ,  $ubRMSD$  and Bias of the five SM retrievals in each network is typed in bold.  
6


| Metrics     | $R$                      |                      |                       |                     |                    | $ubRMSD$ ( $m^3/m^3$ )   |                      |                       |                     |                    | Bias ( $m^3/m^3$ )       |                      |                       |                     |                    |
|-------------|--------------------------|----------------------|-----------------------|---------------------|--------------------|--------------------------|----------------------|-----------------------|---------------------|--------------------|--------------------------|----------------------|-----------------------|---------------------|--------------------|
| Networks    | $IB\_HR_{mono}^{SMOSIB}$ | $IB_{mono}^{SMOSIB}$ | $IB_{mono}^{RawSMOS}$ | $IC_{multi}^{SMOS}$ | $IB_{mono}^{SMAP}$ | $IB\_HR_{mono}^{SMOSIB}$ | $IB_{mono}^{SMOSIB}$ | $IB_{mono}^{RawSMOS}$ | $IC_{multi}^{SMOS}$ | $IB_{mono}^{SMAP}$ | $IB\_HR_{mono}^{SMOSIB}$ | $IB_{mono}^{SMOSIB}$ | $IB_{mono}^{RawSMOS}$ | $IC_{multi}^{SMOS}$ | $IB_{mono}^{SMAP}$ |
| AMMA-CATCH  | 0.89                     | <b>0.90</b>          | 0.87                  | 0.88                | 0.90               | <b>0.024</b>             | 0.025                | 0.030                 | 0.030               | 0.026              | <b>0.000</b>             | 0.012                | 0.012                 | 0.014               | 0.013              |
| ARM         | 0.85                     | <b>0.85</b>          | 0.84                  | 0.84                | 0.85               | <b>0.043</b>             | 0.044                | 0.046                 | 0.046               | 0.044              | -0.069                   | -0.069               | -0.068                | <b>-0.064</b>       | -0.069             |
| FMI         | 0.48                     | 0.46                 | 0.36                  | 0.49                | <b>0.51</b>        | 0.043                    | 0.041                | 0.053                 | 0.058               | <b>0.038</b>       | <b>0.031</b>             | 0.060                | 0.128                 | 0.103               | 0.082              |
| FR-Aqui     | 0.82                     | 0.81                 | 0.78                  | 0.77                | <b>0.86</b>        | 0.035                    | 0.035                | 0.037                 | 0.043               | <b>0.030</b>       | -0.066                   | -0.047               | -0.063                | -0.032              | <b>-0.024</b>      |
| HOAL        | 0.67                     | 0.64                 | 0.46                  | 0.61                | <b>0.74</b>        | 0.044                    | 0.046                | 0.054                 | 0.050               | <b>0.040</b>       | -0.182                   | -0.171               | -0.188                | -0.156              | <b>-0.116</b>      |
| HOBE        | 0.68                     | 0.68                 | 0.63                  | 0.64                | <b>0.73</b>        | <b>0.038</b>             | 0.039                | 0.051                 | 0.047               | 0.041              | -0.071                   | -0.070               | -0.065                | <b>-0.063</b>       | -0.066             |
| NAQU        | 0.80                     | 0.80                 | 0.79                  | 0.76                | <b>0.86</b>        | 0.054                    | 0.057                | 0.054                 | 0.064               | <b>0.053</b>       | 0.057                    | 0.059                | 0.054                 | 0.066               | <b>0.048</b>       |
| OZNET       | 0.76                     | 0.76                 | 0.75                  | 0.73                | <b>0.76</b>        | <b>0.059</b>             | 0.060                | 0.065                 | 0.067               | 0.060              | -0.018                   | -0.008               | -0.007                | <b>-0.004</b>       | -0.009             |
| PBO-H2O     | 0.85                     | 0.85                 | 0.81                  | 0.85                | <b>0.87</b>        | 0.067                    | 0.067                | 0.068                 | <b>0.062</b>        | 0.063              | -0.081                   | -0.082               | -0.081                | <b>-0.078</b>       | -0.080             |
| REMEDHUS    | 0.79                     | <b>0.80</b>          | 0.79                  | 0.78                | 0.79               | <b>0.046</b>             | 0.047                | 0.049                 | 0.051               | 0.047              | -0.033                   | -0.024               | -0.024                | -0.022              | <b>-0.020</b>      |
| RISMA       | 0.63                     | <b>0.63</b>          | 0.58                  | 0.62                | 0.61               | <b>0.062</b>             | 0.064                | 0.070                 | 0.074               | 0.068              | -0.096                   | -0.083               | -0.083                | <b>-0.077</b>       | -0.084             |
| RSMN        | 0.62                     | 0.62                 | 0.53                  | 0.61                | <b>0.62</b>        | 0.060                    | 0.061                | 0.068                 | 0.072               | <b>0.058</b>       | -0.011                   | <b>-0.001</b>        | -0.011                | 0.005               | 0.002              |
| SCAN        | 0.67                     | <b>0.67</b>          | 0.64                  | 0.66                | 0.66               | 0.052                    | <b>0.052</b>         | 0.056                 | 0.057               | 0.053              | -0.049                   | -0.039               | -0.037                | <b>-0.034</b>       | -0.040             |
| SMN-SDR     | 0.57                     | 0.57                 | <b>0.58</b>           | 0.58                | 0.48               | 0.034                    | <b>0.035</b>         | 0.039                 | 0.040               | 0.039              | -0.115                   | -0.114               | -0.110                | -0.110              | <b>-0.097</b>      |
| SMOSMANIA   | <b>0.73</b>              | 0.73                 | 0.67                  | 0.72                | 0.75               | 0.063                    | 0.061                | 0.062                 | <b>0.058</b>        | 0.057              | -0.104                   | -0.090               | -0.112                | -0.074              | <b>-0.074</b>      |
| SNOTEL      | <b>0.62</b>              | 0.62                 | 0.56                  | 0.58                | 0.60               | <b>0.075</b>             | 0.075                | 0.077                 | 0.078               | 0.075              | -0.088                   | -0.084               | -0.083                | <b>-0.077</b>       | -0.085             |
| SOILSCAPE   | 0.86                     | 0.86                 | 0.84                  | 0.86                | <b>0.87</b>        | <b>0.039</b>             | 0.041                | 0.054                 | 0.042               | 0.041              | -0.032                   | -0.019               | <b>-0.010</b>         | -0.016              | -0.014             |
| TAHMO       | 0.67                     | 0.67                 | 0.63                  | 0.63                | <b>0.71</b>        | <b>0.039</b>             | 0.041                | 0.047                 | 0.046               | 0.040              | -0.039                   | -0.027               | -0.028                | <b>-0.025</b>       | -0.027             |
| TERENO      | 0.78                     | <b>0.78</b>          | 0.67                  | 0.75                | 0.78               | 0.057                    | 0.055                | 0.063                 | 0.056               | <b>0.055</b>       | -0.191                   | -0.169               | -0.167                | <b>-0.162</b>       | -0.169             |
| TWENTE      | 0.75                     | 0.75                 | 0.69                  | 0.73                | <b>0.77</b>        | 0.063                    | 0.063                | 0.069                 | 0.065               | <b>0.060</b>       | -0.107                   | -0.099               | -0.096                | <b>-0.094</b>       | -0.095             |
| TxSON       | 0.85                     | 0.85                 | 0.84                  | 0.84                | <b>0.85</b>        | <b>0.033</b>             | 0.034                | 0.036                 | 0.038               | 0.033              | <b>-0.056</b>            | -0.060               | -0.063                | -0.057              | -0.059             |
| USCRN       | <b>0.74</b>              | 0.73                 | 0.70                  | 0.71                | 0.73               | 0.049                    | 0.049                | 0.051                 | 0.051               | <b>0.049</b>       | -0.057                   | -0.053               | -0.053                | <b>-0.050</b>       | -0.053             |
| iRON        | 0.44                     | <b>0.48</b>          | 0.40                  | 0.38                | 0.48               | 0.051                    | 0.050                | 0.052                 | 0.052               | <b>0.050</b>       | -0.114                   | -0.110               | -0.113                | -0.109              | <b>-0.107</b>      |
| Median      | <b>0.67</b>              | 0.67                 | 0.64                  | 0.65                | 0.67               | <b>0.058</b>             | 0.059                | 0.063                 | 0.063               | 0.059              | -0.067                   | -0.061               | -0.062                | <b>-0.056</b>       | -0.061             |
| Optimal/All | 3/23                     | 7/23                 | 1/23                  | 0/23                | <b>12/23</b>       | <b>10/23</b>             | 2/23                 | 0/23                  | 2/23                | 9/23               | 3/23                     | 1/23                 | 1/23                  | <b>11/23</b>        | 7/23               |



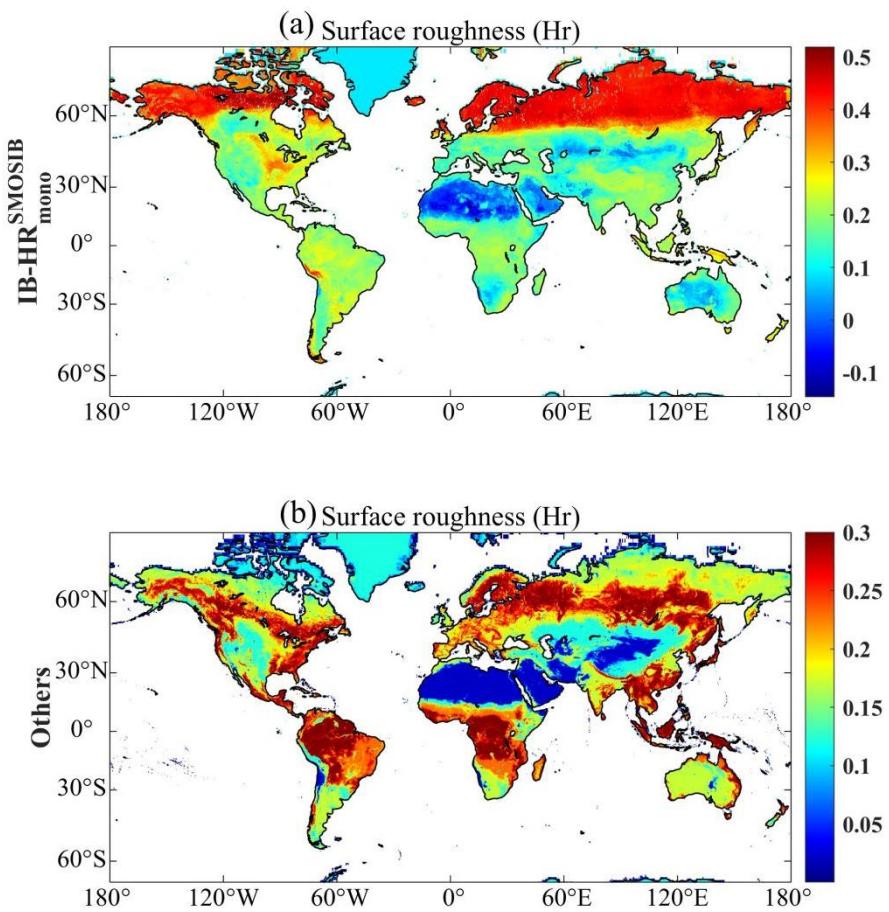

9 **Figure S1** Maps of the standard deviation of the high-frequency variations (SDHF) difference of the TB time series for each  
10 of the three TB products in V-polarization (a) - (c) and H-polarization (d) - (f). The TB SDHF were computed after removing  
11 the seasonal trend that was estimated with a 30-days moving window average filter.  $m1$  and  $m2$  denote the spatial mean and  
12 median SDHF difference value, respectively.

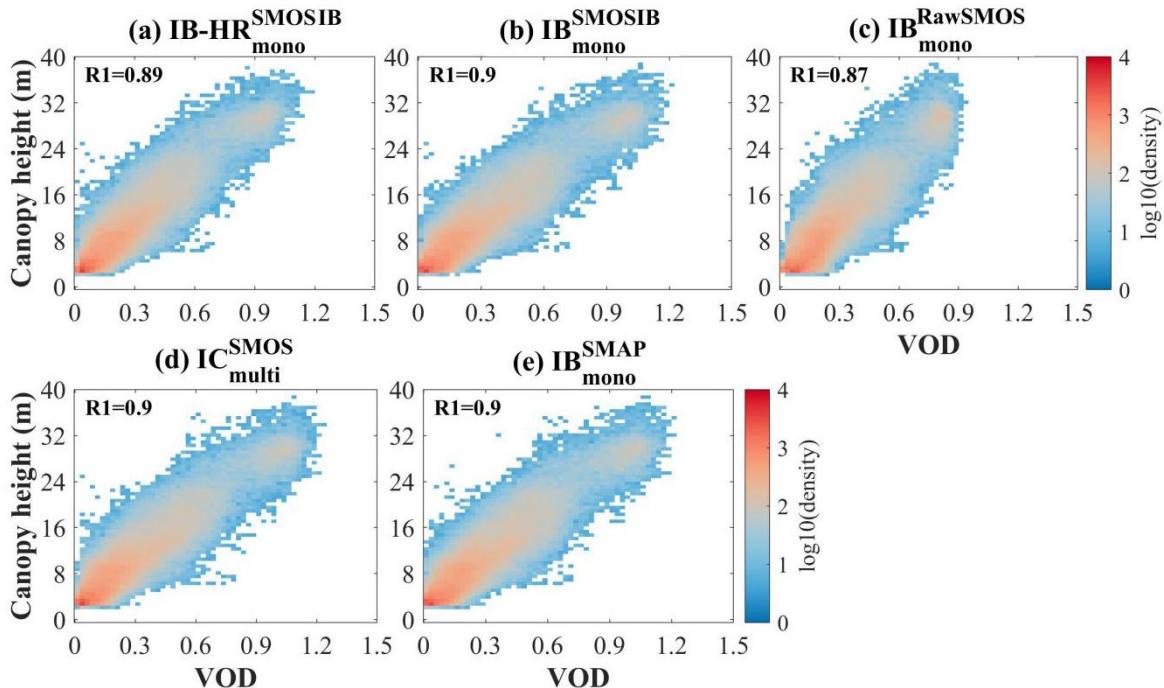


14  
15 **Figure S2** Time series of the three TB products and *in-situ* measurements between 2016 and 2022 at two sites from (a) SCAN  
16 and (b) FR-Aqui network, respectively. Each plot also contains daily precipitation shown in the axis on the right side (grey  
17 bar).



18  
19 **Figure S3** Time series of the five SM products and *in-situ* measurements between 2016 and 2022 at two sites from (a) SCAN  
20 and (b) FR-Aqui network, respectively. Each plot also contains daily precipitation shown in the axis on the right side (grey  
21 bar). Note that a 7-day moving window filter was applied to the *in-situ* observations to distinguish them from the satellite-  
22 based SM.  
23





24

25

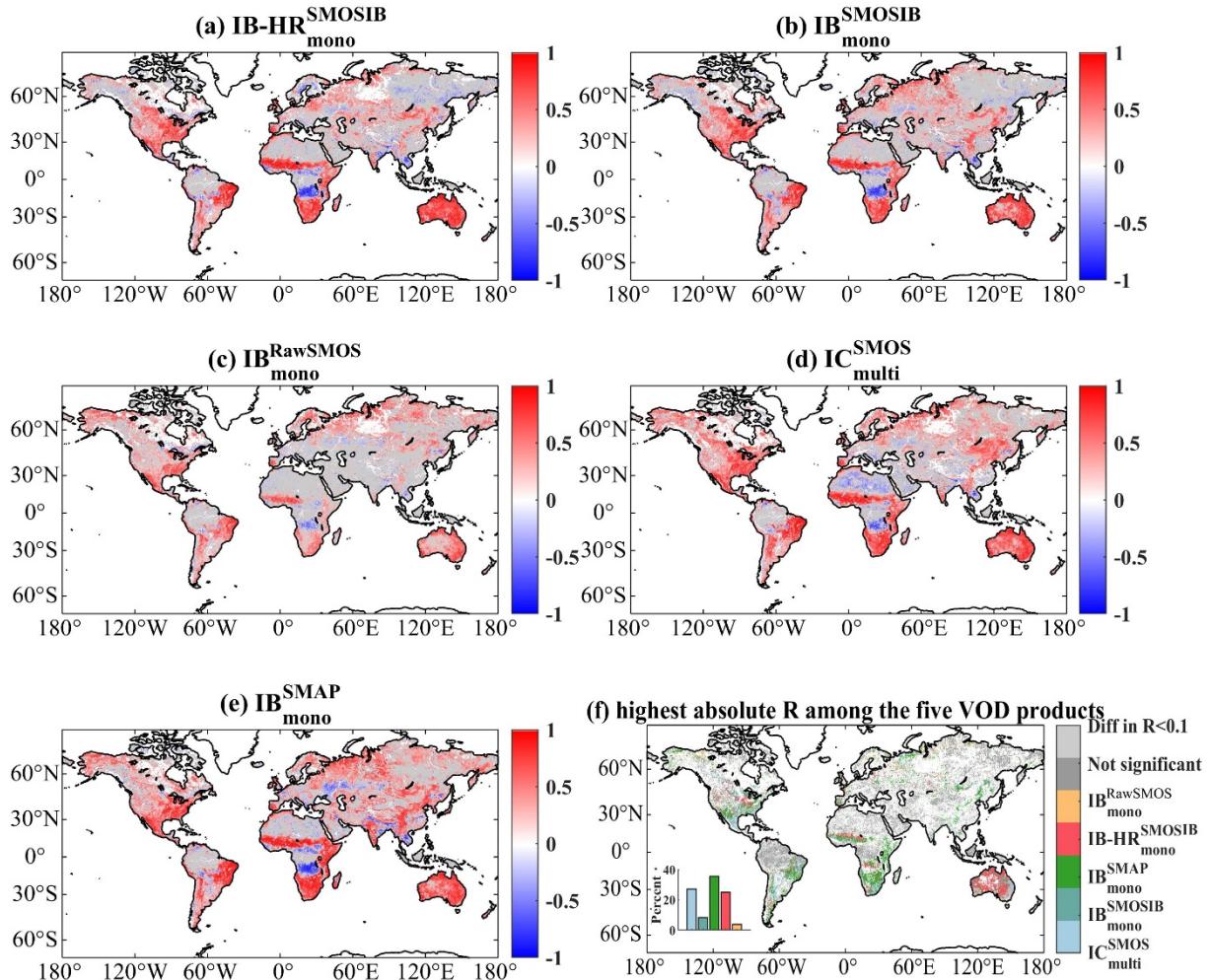
26 **Figure S4** The spatial distribution of the TCA-based  $R$  calculated by soil moisture anomaly estimates for (a)  $IB\_HR_{mono}^{SMOSIB}$ ,  
 27 (b)  $IB_{mono}^{SMOSIB}$ , (c)  $IB_{mono}^{RawSMOS}$ , (d)  $IC_{multi}^{SMOS}$  and (e)  $IB_{mono}^{SMAP}$ .

28





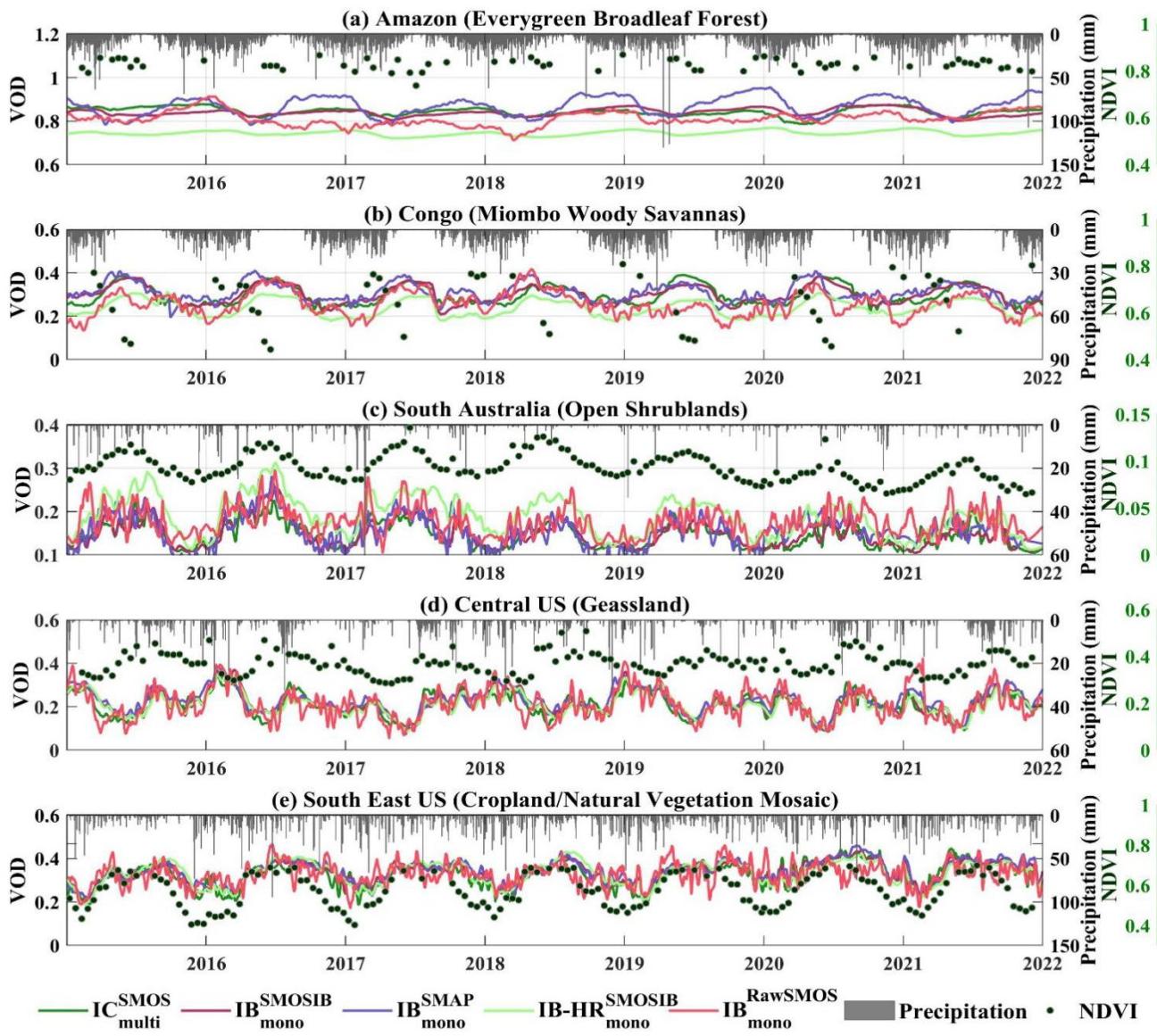
32


33

34

35

36


**Figure S6** Global density plots of VOD vs. canopy height (a-e) for five products: (a)  $IB\_HR_{mono}^{SMOSIB}$ , (b)  $IB_{mono}^{SMOSIB}$ , (c)  $IB_{mono}^{RawSMOS}$ , (d)  $IC_{multi}^{SMOS}$  and (e)  $IB_{mono}^{SMAP}$ .  $R1$  denotes the correlation coefficient computed spatially between VOD and corresponding proxies.



37

38 **Figure S7** Correlation coefficient ( $R$ ) of the temporal relationship between 16-day composite of VOD and NDVI (2016 – 2022)  
39 for (a)  $IB\_HR^{SMOSIB}$ , (b)  $IB^{SMOSIB}$ , (c)  $IB^{RawSMOS}$ , (d)  $IC^{SMOS}$  and (e)  $IB^{SMAP}$ . (f) maps of the above five VOD datasets with  
40 the highest absolute  $R$  values with NDVI. The dark grey color indicates pixels with non-significant ( $p > 0.05$ )  $R$  values, and  
41 the light grey color indicates pixels with  $R$  difference for each paired VOD product  $< 0.1$ . White areas mean “no valid data”.

42



43

44 **Figure S8** Time series of the five VOD products over five pixels corresponding to (a) Evergreen broadleaf forest ( $64.79^{\circ}\text{W}$ ,  
 45  $6.65^{\circ}\text{S}$ ), (b) Miombo woody savannas ( $23.71^{\circ}\text{E}$ ,  $8.85^{\circ}\text{S}$ ), (c) Open shrublands ( $124.54^{\circ}\text{E}$ ,  $30.31^{\circ}\text{S}$ ), (d) Grasslands  
 46 ( $110.39^{\circ}\text{W}$ ,  $34.31^{\circ}\text{N}$ ) and (e) Cropland/Natural vegetation mosaic ( $86.83^{\circ}\text{W}$ ,  $35.34^{\circ}\text{N}$ ) between Jan 2016 and Dec 2022.  
 47 Each plot also contains daily precipitation and NDVI information. Note that a 7-day moving window filter was applied to the  
 48 VOD values of the five products to distinguish them from the NDVI values.

49