

1 The OCEAN ICE hydrography profiles compilation and climatology

2 Shenjie Zhou¹, Pierre Dutrieux¹, Claudia Giulivi², Andrew Meijers¹, Won Sang Lee³, Tae-Wan Kim³,
3 Tore Hattermann⁴, Markus Janout⁵

4 ¹British Antarctic Survey, Cambridge, UK

5 ²Lamont-Doherty Earth Observatory, Columbia University, Palisades, USA

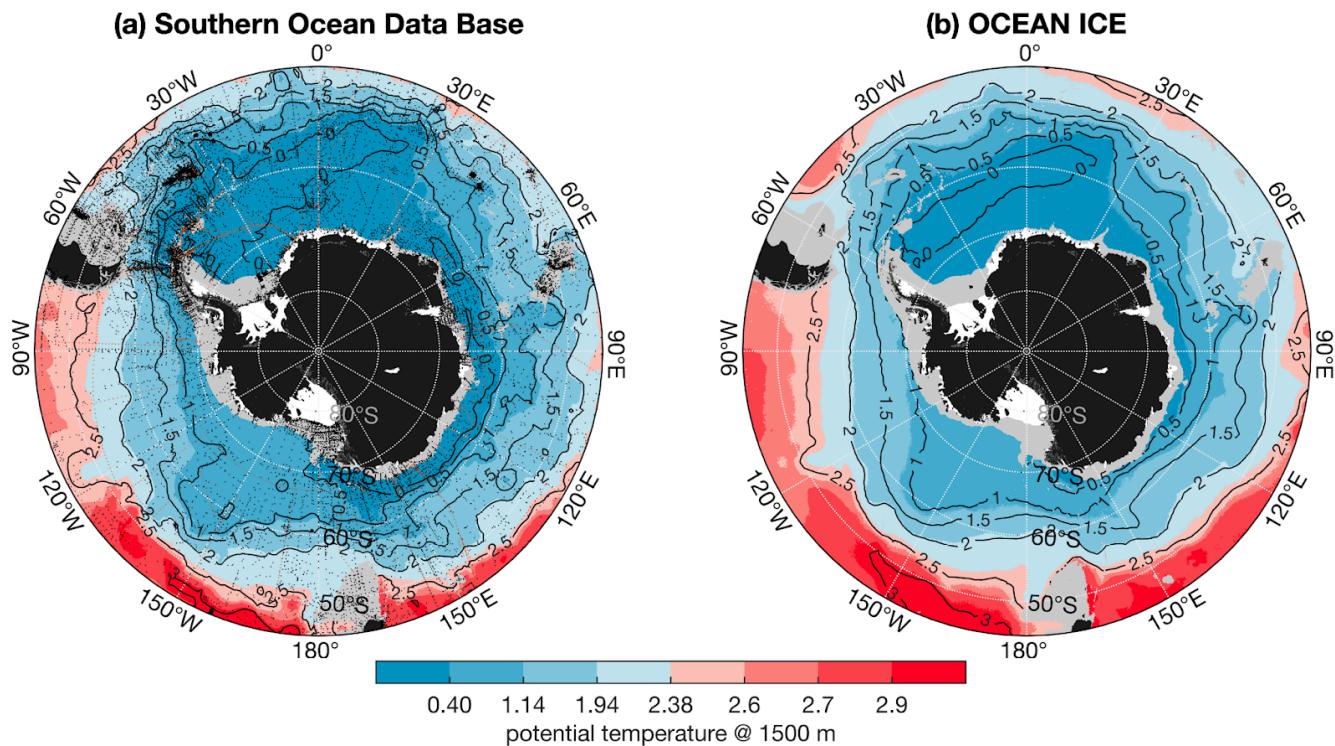
6 ³Korea Polar Research Institute, Incheon, South Korea

7 ⁴Norwegian Polar Institute, Tromsø, Norway

8 ⁵Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

9 Correspondence to: Shenjie Zhou (shezhou@bas.ac.uk)

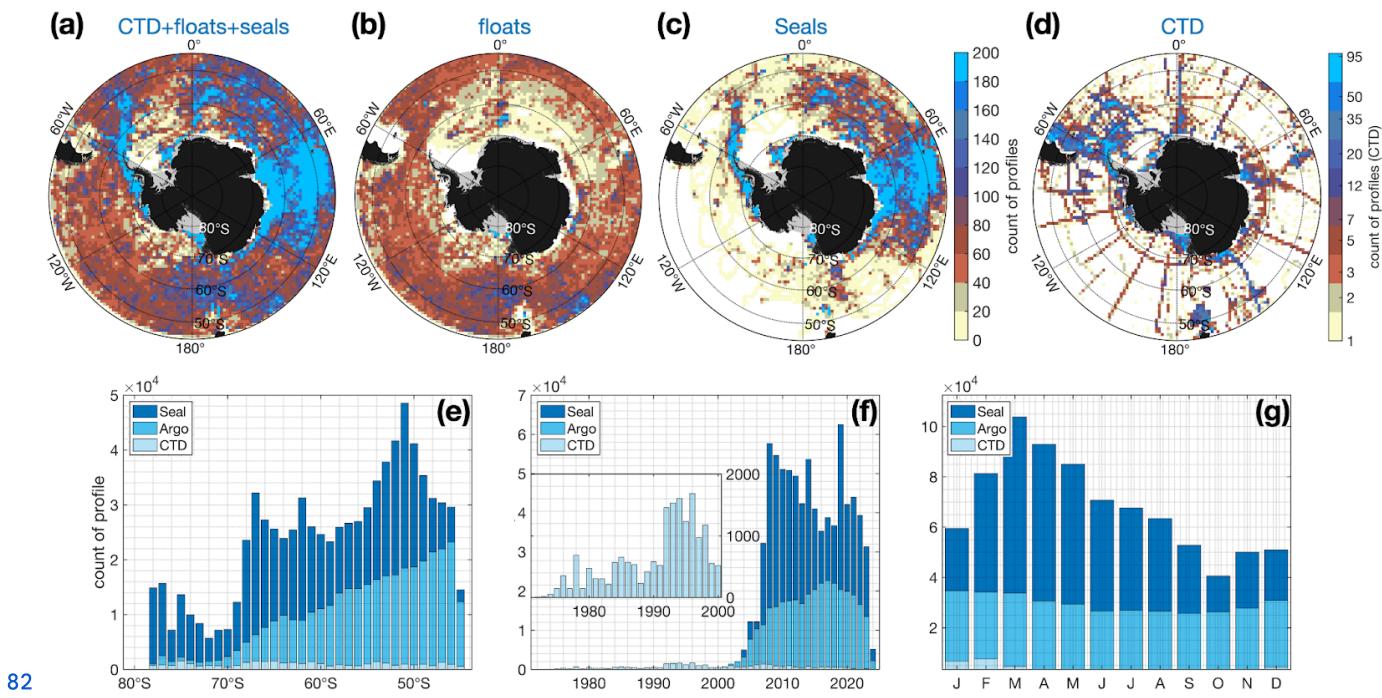
10 **Abstract.** A compilation of in situ temperature and salinity profiles south of 45°S is assembled, drawing from multiple data
11 centers and sensor sources. This database is then used to create a new Southern Ocean climatology, adopting an interpolation
12 scheme that takes into account ocean depth and mean ocean dynamics, influenced by methods developed for the Southern
13 Ocean Atlas. This interpolation scheme is designed to consider along flow spatial coherency and the distinct dynamic
14 regimes between Antarctic shelf seas and the Southern Ocean. Initial exploration of the profile compilation investigates the
15 type of variability timescales one could reasonably start to analyze in different sectors around Antarctica. A comparison
16 between the climatology product and the World Ocean Atlas climatology, the most used product to date, indicates that the
17 OCEAN ICE climatology provides significant improvements in Antarctic shelf seas, including a more detailed representation
18 of the unique water masses they host. The profile compilation is available in NetCDF format with the SEANOE database at
19 <https://doi.org/10.17882/99787>, and the climatology product is available at <https://doi.org/10.17882/103946>. Both the
20 hydrography profiles compilation and the hydrography climatology products are generated under the endorsement of
21 Ocean-Cryosphere Exchanges in ANtarctica: Impacts on Climate and the Earth System (OCEAN ICE) project
22 (<https://ocean-ice.eu/>) funded by the European Commission and UK Research and Innovation.


23 1 Introduction

24 The concept of World Ocean Circulation Experiment (WOCE) originated in the 1970s, and by early 2000s provided the first
25 global view of Conductivity-Temperature-Depth (CTD) distribution for the world oceans (Siedler et al., 2001). Since then
26 regular full depth hydrographic sections have been repeated using research vessels to obtain quasi-decadal in situ snapshots
27 of ocean temperature and salinity (Fig. 1b). This approach provided a fairly sparse but evenly distributed CTD dataset across
28 the Southern Ocean and facilitated the creation of the Southern Ocean Data Base (SODB) and its associated climatology
29 product (Fig. 1a, Orsi and Whitworth 2005). The full-depth measurements also allowed basin-wide examination of deep
30 water mass properties, full-depth ocean heat content and their variability (Johnson et al. 2024), identifying a large scale

31 multi-decadal warming and contraction trend in the Antarctic Bottom Water (AABW) (Purkey and Johnson 2010, 2012,
32 2013; Johnson and Purkey 2024). AABW is a climatically-critical water mass originating from Antarctic coastal seas that
33 ventilates the abyssal ocean and sequesters heat and carbon into the deep ocean through sea ice formation within coastal
34 polynyas (Tamura et al. 2016, Zhou et al. 2023).

35 Since the early 21st century, the advent of Argo float profilers and instrumented seals have both significantly increased the
36 spatial coverage of the data sampling in the Southern Ocean and efforts to produce state of the art ocean climatology have
37 been continuous through rounds of data incorporation into the World Ocean Atlas. These three data sources (ship-based
38 CTD, Argo floats and instrumented-seal data) nicely compensate each other in terms of spatial and temporal coverage.
39 Notably, the seal data has largely enhanced the sampling over Antarctic continental shelf seas that research vessels and Argo
40 float profilers have historically struggled to reach on a regular basis or cover extensively (Fig. 2b, 2c and 2e), while Argo
41 float profilers provided much needed coverage north of the Antarctic continental shelf break (Fig. 2b and 2e). Ship-based
42 CTD casts have a necessarily smaller spatial footprint, and a summer-oriented sampling bias, occasionally reaching the deep
43 South on Antarctic continental shelves (Fig. 2d, 2e and 2g), but importantly extend *in-situ* measurements back to the 1970s,
44 whilst Argo float profilers and instrumented-seal measurements only started to be deployed post 2000 (Fig. 2f). The addition
45 of Argo floats and instrumented-seal measurements reduces the seasonal bias inherent to ship-based CTD measurements
46 (Fig. 2g).


48 **Figure 1.** (a) Locations of stations (black dots) of data used in the SODB laying on top of the colourshades (and labeled contours)
49 depicting 1500m potential temperature field using gridded SODB climatology (reproduced from Orsi and Whitworth 2005). , Black and
50 orange dots are scattered CTD stations and WOCE CTD transects. Station data is available at <https://zenodo.org/records/4071923>. Gridded
51 SODB product for the potential temperature map at 1500m is available at https://woceatlas.tamu.edu/atlas/printed/SOA_1500m.txt. Note
52 that the gridded data available is organized in vector format, therefore the map shown here is a result of the SODB 1500 m potential
53 temperature re-interpolated onto a 10km resolution polar stereographic grid. (b) potential temperature at 1500 m from the new OCEAN
54 ICE (O:I) climatology.

55

56 The Southern Ocean stands as a key regulator of the climate systems due to its disproportionate importance in sequestering
57 excess heat and carbon from the atmosphere (Frölicher et al., 2015, Williams et al. 2024) mainly due to the broad,
58 quasi-circum-Antarctic spreading of the upwelling and subduction of cold and carbon depleted deep water mass within the
59 Antarctic Circumpolar Current. The freshwater input from the Antarctic ice mass loss modulates the upper ocean
60 stratification which is in turn key to the upwelling processes and deep coastal and open ocean convection (Sallée et al. 2023).
61 Furthermore, ocean-driven melting of Antarctic ice shelves reduces their buttressing effect on ice sheet flow, leading to
62 Antarctic ice mass loss of Antarctica and contributing to global sea level rise (IMBIE 2018). Difficulties in accessing the
63 polar regions has created a general scarcity of in situ observations, impeding our progress in understanding ocean heat and
64 salt variability from the Southern Ocean to Antarctic shelf seas, and limiting our ability to evaluate models and theories of its
65 interaction with the atmosphere, sea ice and the Antarctic ice sheet (Akhoudas et al. 2023). With the increasing number of
66 hydrographic profiles now broadcasted on an almost daily basis from the Southern Ocean via satellite, and recognising the
67 somewhat specialized nature of the observations made in polar regions which tends to fall outside of the center of attention
68 of other compilations and climatologies (e.g., WOD, EN4), the time is ripe to create a broad compilation of profile
69 observations and an associated ocean climatology (see also Yamazaki et al, 2025) .

70

71 In this paper, we will present two sets of data products that are generated under the OCEAN ICE (O:I) project. The first
72 dataset is the standardised O:I hydrography profiles compilation that assembles temperature and salinity profiles taken from
73 historical CTD stations, Argo floats and instrumented-seal tags. These profiles undergo a standardisation including quality
74 and duplication checks and are formatted in a coherent data structure that is easy to use and update. The second dataset is the
75 O:I Southern Ocean hydrography climatology (Fig. 1b) generated using the O:I profile compilation and a newly-developed
76 objective analysis method that provides a better representation of the Antarctic shelf seas which to date has been more
77 sparsely sampled and represented in climatologies. The paper is organized as follows. First, we introduce the data source and
78 standardisation procedure that is applied to the profile compilation (section 2). In section 3, we discuss some perspective on
79 the analysis of temporal variability that this profile compilation can potentially provide. Generation and evaluation of the O:I
80 climatology is described in section 4, followed by a short summary in section 5, where we discuss a set of future research
81 avenues offered by the new datasets.

82 **Figure 2.** (a)-(d) Number of non-duplicate profiles within 100×100 km boxes South of 45° S aggregating a combination of different data
 83 sources indicated in subplot titles, note that the CTD profile counts are shown in a logarithmic scale. Stacked bar plots showing (e) the
 84 85 zonally integrated profile count over different latitude bands, (f) yearly profile count with a focus on the 1970-2000 time period in inset,
 86 and (g). monthly profile count.

87 2 Data and Method

88 2.1 Data sources

89 The temperature and salinity profiles compilation that was used for constructing the new Southern Ocean climatology
 90 consists of three data types. Ship-based CTD, Argo float profilers and instrumented seal data that are obtained over south of
 91 45° S. Ship-based CTD data from the World Ocean Database (WOD) were accessed on 19 December 2023, therefore new
 92 CTD casts from the 2023-2024 season are currently excluded from this compilation. Additional CTD casts from other
 93 databases such as the CLIVAR and Carbon Hydrographic Data Office (CCHDO), the British Oceanographic Data Centre
 94 (BODC), SODB (Orsi and Whitworth, 2005), the Korean Polar Data Center (KPDC), Pangaea Data publisher and the
 95 Norwegian Polar Data Center (NPDC). Argo data were accessed through US GODAE
 96 (https://nrlgodae1.nrlmry.navy.mil/cgi-bin/argo_select.pl) on 23 August 2024, and include both the delay-mode profiles and
 97 real-time profiles to maximise the sampling on the continental shelf. Quality-controlled instrumented seal data are obtained
 98 from the MEOP database (Roquet et al. 2024), and were last accessed in November 2024.

99 2.2 Data curation and standardisation

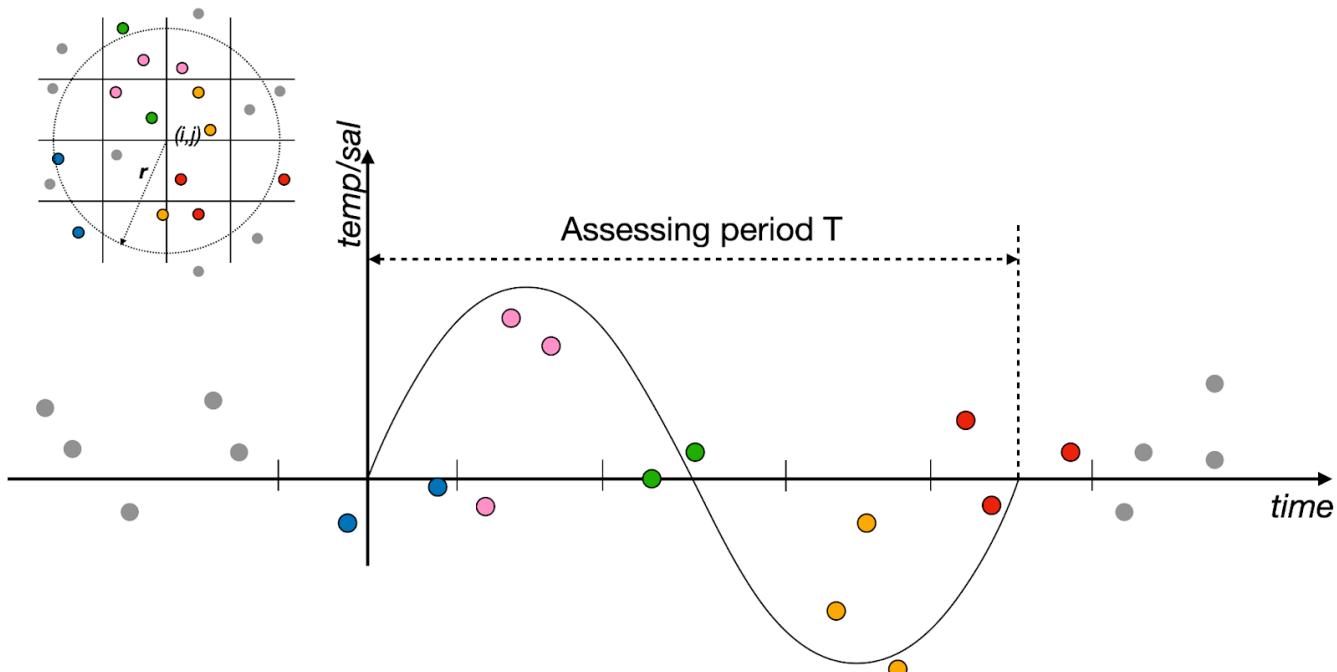
100 Only profiles south of 45°S are retained in our compilation to focus on the Southern Ocean and Antarctic continental
101 shelves. The profiles are first selected based on their position and date control flag to remove any profiles that have been
102 logged as bad data. Argo floats and instrumented seal data share the same quality control (QC) flag scale
103 (https://www.ukargo.net/data/quality_control/, last access: 23 August 2024), while the WOD ship-based CTD profiles apply
104 a different QC flag scale (Garcia et al. 2018). For ship-based CTD casts obtained from other databases, we follow each of the
105 individual QC flag scales and we only select ‘good data’ or equivalent. For the Argo float and instrumented seal data, we
106 select profiles flagged as ‘1’ (good data) or ‘8’ (interpolated value) to include under-ice profiles. Location correction on
107 under-ice profiles of Argo floats were investigated previously by assuming coast-following float trajectories near the
108 Antarctic continent (Yamazaki et al. 2020) over the interpolated float positions. This is an interesting avenue of research.
109 Given the limited amount of concerned trajectories to date and a lack of quantification of the positional error, we opted to use
110 interpolated positions for now, but recognize a proper treatment to correct the Argo trajectories both near the coast and in the
111 open ocean is needed. Each profile is then screened using the separate temperature and salinity quality control flags
112 throughout the water column and we retain only flagged-good data points within each profile.

113

114 Following profiles selection, conservative temperature and absolute salinity are computed using the TEOS-10 GSW toolbox
115 (McDougall and Barker 2011) and each profile is bin-averaged over a standard pressure from 0 to 6000 dbar using a 10-dbar
116 interval. Ship-based CTD profiles arising from different databases are further cross-referenced to remove potential duplicates
117 using a temporal window of 12 hours and a spatial window of 1 km – if duplicated profiles are found, the profile with greater
118 depth and finer vertical resolution is retained (following Schmidtko et al. 2014). Otherwise only one of the profiles is
119 retained. Pressure levels without observations are filled with NaNs to obtain a uniform dimension in the vertical and form a
120 $M \times N$ matrix (M stands for the total number of profiles and N stands for the number of standard pressure levels, here 601).
121 Profiles of conservative temperature and absolute salinity are stored in two separate NetCDF files to accommodate a more
122 user-friendly file size. Extra data information crucial for traceability is also provided in the NetCDF file, including the data
123 sources and instrument types (Table 1). In total, 818,969 temperature/salinity profiles are compiled, among which 33,946 are
124 ship-based CTD profiles, 320,256 are Argo profiles and 465,416 are instrumented seal profiles. Figure 2 illustrates the
125 spatial and temporal complementarity of the various data sources, mentioned above. This compilation is now published with
126 SEANOE (<https://doi.org/10.17882/99787>, last access: 28 September 2025) and freely available and subject to regular
127 (~annual) update.

128

Variable names	Attributions and units
lat	Latitude [-90, 90] (°)
lon	Longitude [-180, 180] (°)



dyr	Days since 1950-01-01 00:00:00
source_flag	Data source indices, 1=WOD, 2=SODB, 3=KPDC, 4=CCHDO, 5=BODC, 6=Pangaea, 7=Argo, 8=MEOP.
instrument_type_flag	Instrument type indices, 1=CTD, 2=OSD, 3=XBT, 4=MBT, 5=Argo profiler, 6=instrumented-seal profiler
pres	Standardised pressure level (dbar)
ct/sa	Conservative Temperature (°C)/Absolute Salinity (g/kg)
bathy	Local water depth from RTopo (2.0.4)/CTD cast readings (m)
doi	External source links. The unique cast IDs are given for WOD sourced CTD casts, cruise codes and PI names are given for CTD from KPDC. Otherwise, the downloadable data links are provided.
access_date	The date of access to data centres (in days since 1950-01-01 00:00:00)

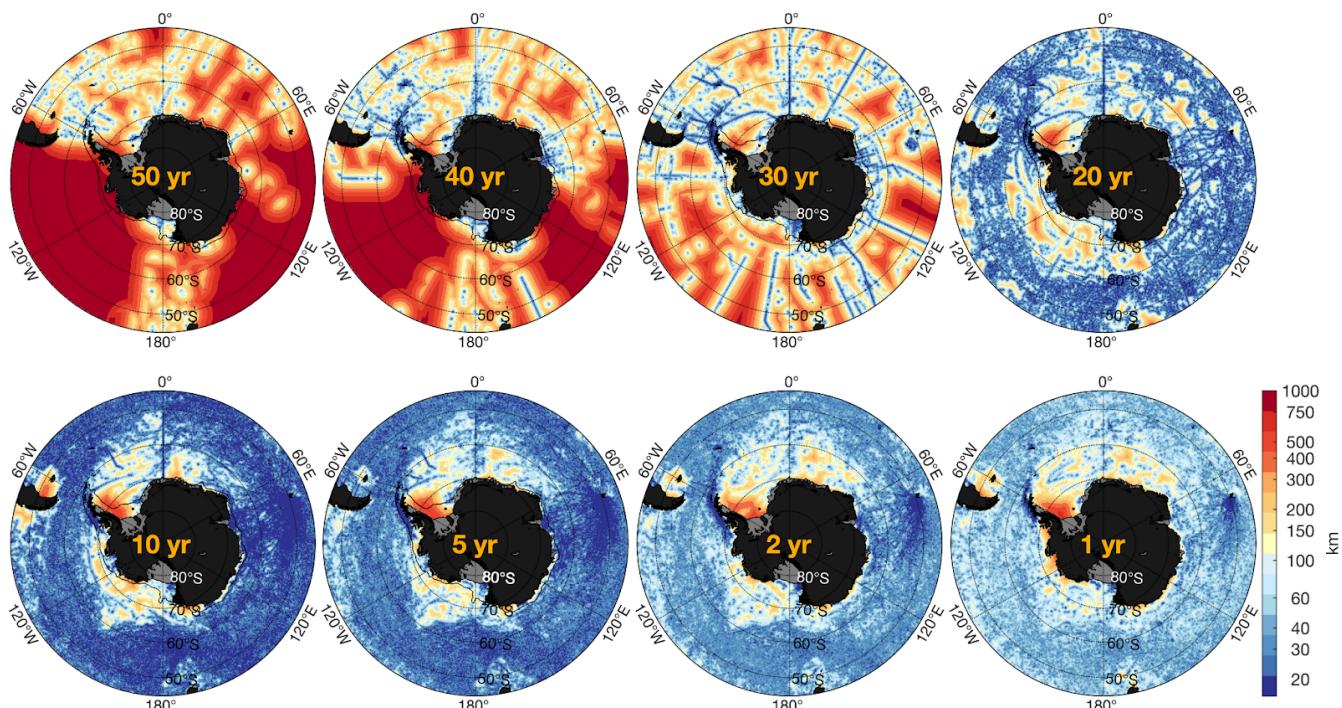
129 **Table 1.** Variables in compiled profiles NetCDF file.

130 3 Exploration of sampled temporal variability

131 The spatial and temporal sampling inhomogeneity of these hydrographic profiles makes it challenging to utilise the profiles
132 collected for temporal variability analysis, as oceanic conditions on the continental shelves and in the deep Southern Ocean
133 are highly region-dependent, separated by dynamic barriers, and therefore may not be prone to respond in phase to climatic
134 forcing. As such, attempts to explore the long-term oceanic trends on multidecadal timescales over broad regions provide
135 some informative results (Schmidtko et al. 2014) but often have to convolve the spatial and temporal variability that we
136 understand to be a feature of the complex atmosphere-ice-ocean interactions in Antarctic shelf seas (Jenkins et al. 2018).
137 Given the presence of large spatial gradients between shelf seas and the Southern Ocean, for example, one has to be careful
138 not to attribute mean steady spatial gradients to temporal variations, and inversely. In the following, we develop a simple
139 metric aiming to inform on the distance around a centre location one has to assume dynamic consistency to discuss temporal
140 trends and variability in statistically meaningful ways.

141

142 **Figure 3.** Schematics depiction of an idealized spatial and temporal distribution of profiles. The spatial distribution of the hydrographic
143 profiles (colored dots) from a central location with coordinate (i,j) is shown in the top left inset. The temporal distribution of the same
144 number of profiles over the assessing time period is presented. The assessing period T is evenly decomposed into 5 segments to evaluate
145 the ability of the temporal sampling to estimate a simplified sinusoidal signal within period T.


146

147 Assuming variability in the form of simple sinusoids of period T, the minimum sampling required to eventually capture or fit
148 such variability requires one sample within each quintile evenly distributed throughout said period T (Fig. 3). The assessing
149 period can then be moved over time to cover the entirety of the observational window of interest (in our case, from 1972
150 onwards). In an ideal world, all samples would be obtained within a self-contained, minimal dynamic entity, typically one
151 single ocean location in areas where ocean dynamics is strongly tied to seabed/ice base geometry. In practice, however,
152 repeat observations are seldom obtained at the same location, so one has to expand its search radius r (Fig. 3, inset) to
153 increase the number of samples considered for the analysis. For a period T, starting from an initial search radius $r=5$ km, a
154 sliding window T looks for one realization where each quintile is sampled. If such a realization is found, the search is
155 completed. If not, the search radius is increased by increments of 5 km and the process continues until a realization is found
156 or the search radius reaches 2250 km, and in which case it is safe to assume that the temporal sampling does not correspond
157 to a single coherent dynamic entity.

158 In practice, we divide the whole domain (south of 45°S) into evenly spaced boxes with 10 km box size. Then at each grid
159 point (i,j), we performed the search for an individual window T using the following steps:

- 160 **Step 1.** Determine assessing period T: e.g., 30-yr period over any point between 1972 and 2024. Start the following steps by
161 placing the assessing period window at the beginning of the observing period, i.e. year 1972.
- 162 **Step 2.** Searching for data within a 5 km radius circle centred at (i,j) containing at least one data point in each of the five
163 segments within the given assessing period.
- 164 **Step 3.** If **Step 2** is not fulfilled, expand the radius by 5 km incrementally until **Step 2** is fulfilled. If **Step 2** is not fulfilled
165 by the searching radius exceeding the entire domain, we then take the searching radius as ~ 5500 km, which is the radius of
166 the entire domain.
- 167 **Step 4.** Record the searching radius returned from **Step 2** and **Step 3** and then move the assessing period window (e.g., the
168 30-yr period) 45 days forward and repeat **Step 2** and **3**. This step therefore records all the searching radius determined for
169 different assessing period windows sliding along the entire observing period from 1972 to 2024.
- 170 **Step 5.** Record the minimum radius (searching range) from **Step 4** for mapping.

171
172 **Figure 4.** The searching range map for eight various assessing periods of choice from 1 year to 50 years. This covers the timescales
173 ranging from seasonal to multidecadal timescales.

174 The algorithm provides a search range (in km) at each grid point that represents the minimum searching radius needed at this
175 point to include sufficient temporal samples to observe a sinusoidal variability. Such search ranges are obtained for different
176 assessing periods (T), varying from 1-year to 50-year, to evaluate the ability of the present compilation to quantify variability
177 over seasonal to multidecadal timescales (Fig. 4). Over multidecadal timescales (30-50 year), small searching ranges are
178 largely constrained by the location of early historical samples from ship-based CTD casts indicated by the blue stripes

179 following WOCE track lines. We note that there is a decent temporal coverage with limited (<100 km) search radius over
180 many continental shelves for 2 to 30-year time periods, in the southwestern Weddell Sea continental shelf, Dronning Maud
181 Land, Cosmonaut Sea, Vincennes Bay, Adelie Land, the Ross Sea, the Amundsen Sea, the Bellinghausen Sea and the West
182 Antarctic Peninsula. At seasonal timescales, the shelf seas are typically poorly sampled primarily because of the dominance
183 of CTD casts that were collected during summer months or the fact that instrumented-seal sensors only cover roughly eight
184 months across the year between the time separating the sensor installation and the following seal moulting season. It is
185 therefore likely that some of the more poorly sampled months of September-November will lack sufficient coverage to create
186 a dynamically consistent view of a monthly climatology. The Ross Sea continental shelf, on the other hand, displays good
187 data coverage throughout all timescales. Here, the decent seasonal coverage is due to Argo float profilers that were deployed
188 over the continental shelf and parked on the seabed between profiles, limiting drift and acting as virtual mooring sampling
189 the area throughout the year.

190 4 OCEAN ICE (O:I) climatology

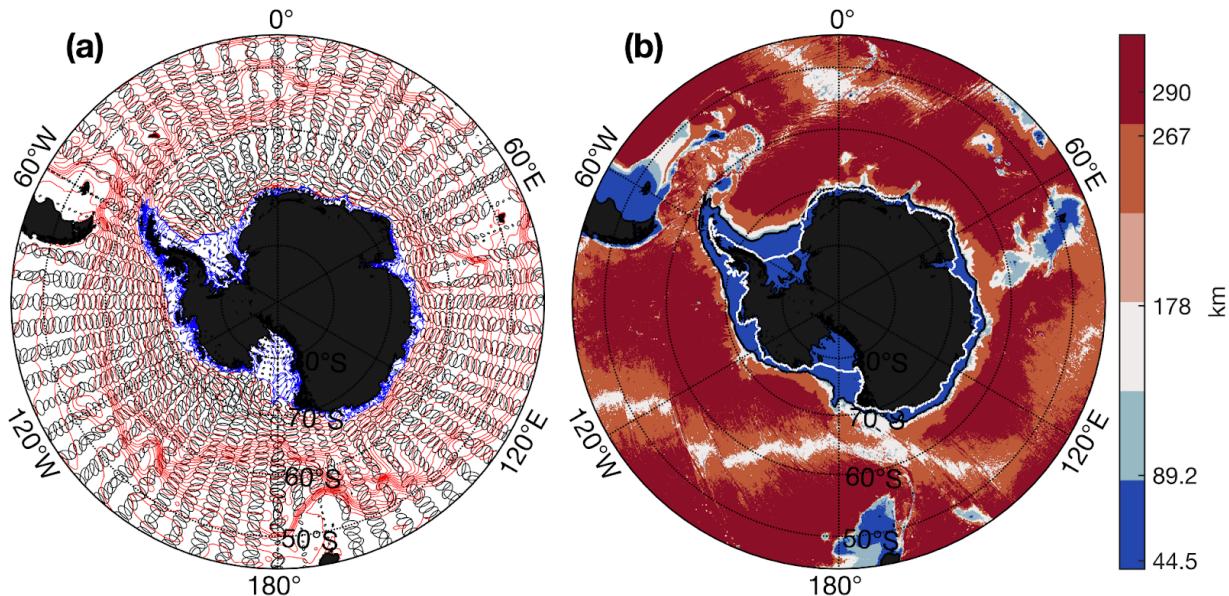
191 Keeping the caveats related to spatio-temporal sampling noted above in mind, we nevertheless provide new climatologies of
192 the mean state of temperature and salinity south of 45°S. Focusing on the Southern Ocean and Antarctic shelf seas, the
193 large-scale distribution of the temperature and salinity in the Southern Ocean has been described by previous versions of
194 Southern Ocean climatologies such as the Southern Ocean Atlas based purely on ship-based measurements such as CTD and
195 bottle samples (Orsi and Whitworth 2005) or more recently by assembling data from both ships, Argo floats (Schmidtko et
196 al. 2014) and instrumented seals (Yamazaki et al 2025). Except for the latter, all of these climatology products adopt optimal
197 estimation of the temperature and salinity field to map the water properties from scattered data points. In our climatology, we
198 use the notion of ‘ellipse of influence’ around designated climatological grid points to obtain a mean local state of the ocean,
199 which is inspired by the method used in the Southern Ocean Atlas, but with some refinements discussed in the following.

200 4.1 Interpolation scheme

201 In the Southern Ocean Atlas, it was assumed that circulation in the interior of the Southern Ocean was mainly zonal, such
202 that tracers would remain fairly uniform and could be averaged over ellipses with their main axis aligned in the zonal
203 direction. Each ellipse was further characterized with a fixed 2:1 anisotropy in zonal:meridional correlation length scales,
204 and the length scales were designed to accommodate local bathymetry - 666:333 km in deep ocean with the bottom depth
205 greater than 4000 m, 444:222 km in places where water depth varying between 1000 and 4000 m to account for ocean ridges
206 and finally 222:111 km in shelf seas shallower than 1000 m, further assuming that horizontal length scales were dynamically
207 tied to water column height. With the advent of satellite observations and data assimilation models, improved understanding
208 of ACC meanders, the presence of quasi-steady gyres arrested by topographies, we are now able to refine our assumptions

209 about the direction of the main ocean circulation to maximize the representation of gyre-scale features and the effect of local
210 bathymetry. We can also add the complementary float and seal profiles.

211


212 For the O:I climatology, instead of applying zonally oriented ellipse clusters, the orientation of each ellipse is determined
213 using the sea surface height (SSH) contour, here used as a proxy for the barotropic component of the ocean circulation (Fig.
214 5a). The SSH is provided by the 139th iteration of Southern Ocean State Estimate (SOSE, Mazloff et al. 2010), which
215 assimilates observations not only temperature/salinity profiles but also the mooring time series and surface measurements
216 such as the observed sea surface height, temperature, salinity and sea ice concentration. The SSH field therefore covers the
217 sea-ice area and provides a dynamically conserved estimation of the large-scale barotropic ocean circulation. With improved
218 spatial sampling, we also adjust the size of the ellipse, reducing the correlation length scales compared to those used in the
219 Southern Ocean Atlas. In our algorithm, the largest correlation length scale is 290:145 km in the deep ocean with water
220 column thickness in excess of 4000 m, 267:138 km between 4000 m and 3000 m, 178:89 km between 3000m and 2000m,
221 89:44.5km between 2000 and 1000 m. Small ellipses with the aspect ratio of 44.5:22.2 km are applied everywhere where the
222 water column thickness is lower than 1000 m which we regard as continental shelf regions (Fig. 5b). RTopo 2.0.4 (Schaffer
223 et al. 2016) is used to provide the bathymetry information needed for determining correlation length scales for each ellipse.
224 The orientation of the ellipse on the continental shelf follows the local topography gradient due to the deterioration of the
225 SOSE SSH robustness associated with the lack of reliable assimilated data, model resolution, and representation of ice shelf
226 ocean interactions (Mazloff 2010).

227

228 The climatology is constructed on a $0.2^\circ \times 0.1^\circ$ (longitude \times latitude) grid. The choice of the horizontal resolution is to
229 accommodate the shelf ellipse size so that the neighbouring ellipse has a certain degree of overlapping to avoid missing
230 sampling data points. At each grid point, our initial approach for obtaining averaged representative values consists in using a
231 weighting matrix based on the distance from target location distorted by the elliptical fields described above. The weighting
232 is formulated as

$$233 w_{SODB} = e^{-[(\frac{\Delta d_M}{M})^2 + (\frac{\Delta d_m}{m})^2]},$$

234 where Δd_M is the horizontal distance of a data point to the major axis of the ellipse, M is the length of the ellipse major axis.
235 Δd_m is the horizontal distance of a data point to the minor axis of the ellipse, and m is the length of the ellipse minor axis..

236

237 Figure 5. (a) Black ellipse polygons are the coarse-grained ellipses distribution of the interpolation scheme. Red contours are the
 238 time-mean SOSE SSH contours north of the 1000m isobath and the blue contours show the continental shelf topography. The ellipses are
 239 oriented along-stream of SOSE SSH contours off the shelf and seabed topography on the shelf to account for more detailed dynamic
 240 coherence and distinguish the different dynamic regimes on and off the continental shelf. (b) The spatial distribution of the correlation
 241 length scales depicted by the major axis length of ellipses.

242

243 This method is adequate for sufficiently sampled regions, and those where bathymetric constraints on flow are taken into
 244 account by ellipse orientations, i.e. intermediate to surface Southern Ocean. It is however more problematic in sparsely
 245 sampled regions and those where bathymetry plays a significant role in water mass properties horizontal anisotropy (e.g. the
 246 continental shelf). To alleviate this issue, a fast-marching (FM) algorithm is performed to search for and select data beyond
 247 the spatial bound defined by ellipses, thereby filling gaps in sparsely unsampled regions where a simple average metric
 248 within ellipses loses meaning. FM algorithms have been previously adopted, for example, in constructing Monthly
 249 Isopycnal and Mixed-layer Ocean Climatology (MIMOC, Schmidtko et al. 2013), and bears the advantage of a reasonable
 250 consideration of topography-steered currents dominating the Antarctic continental shelves, by measuring data point distance
 251 along the isobath derived from a given bathymetry and applying extra penalty on data points that are sitting across isobaths.
 252 The FM weighting matrix associated with the along-path distance is formulated as

$$253 w_{FM} = e^{-\left[\left(\frac{\Delta d}{L_d}\right)^2\right]},$$

254 where Δd is the along-path distance given by the FM algorithm and L_d is the decorrelation length scale of the Gaussian
 255 weighting function, here set to 400 km to be equivalent to the open ocean ellipse length scale. Note that we further limit our
 256 FM average to the top 1000 weighted data points, for computational efficiency.

257

258 Our final product incorporates the FM algorithm with our SODB ellipse-based interpolation scheme to retain the capability
259 of resolving spatial gradients within sufficiently densely sampled ellipses and interpolating in more poorly sampled regions.
260 The construction of the climatology field is therefore performed based on the FM selected data points with a
261 spatially-varying weighting strategy combining both the FM-determined along-path distance of data points from the centre of
262 each grid and the horizontal distance between the data points to the ellipses. The relative importance of two sources of
263 weighting is controlled by the number of data points counted within the ellipse at each grid point, favouring the SODB
264 ellipse based method in densely sampled regions. The complete spatial weighting matrix combining the FM and ellipse
265 styles with the consideration of data density is then given as

$$266 w_D = w_{FM}^{-N_{ellipse}^p} \cdot w_{SODB}^{(1-N_{ellipse}^p)},$$

267 where $N_{ellipse}^p$ is the number of profiles counted within each ellipse in the OCEAN ICE hydrography profiles at each depth.

268 The FM weighting and the ellipse weighting are illustrated as an example in Fig. 6a/b/d.

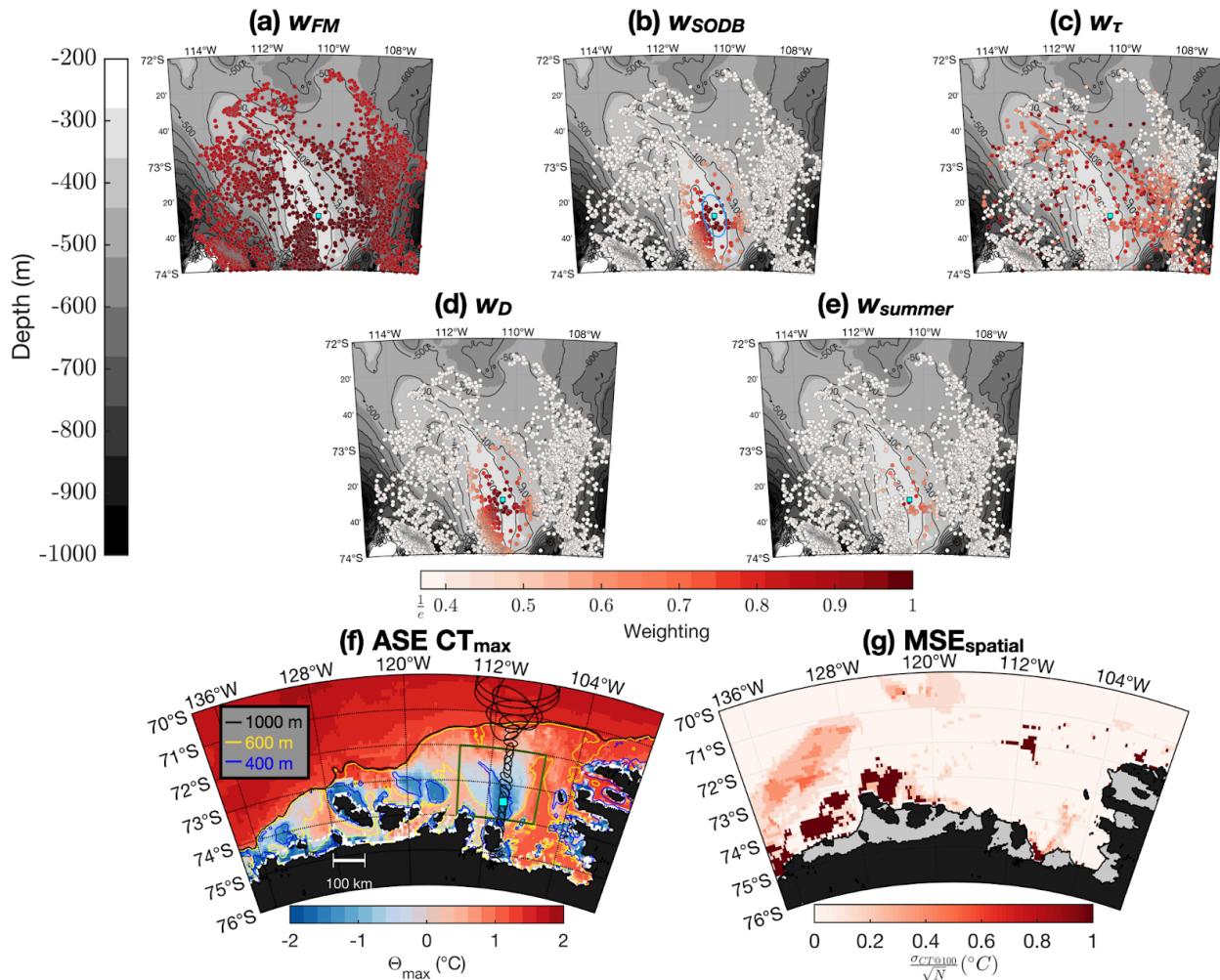
269 An optional temporal weighting is designed to provide extra seasonal/monthly constraints on climatological fields. Fig. 6e
270 shows the temporal weighting centred around the month January which is regarded as austral mid-summer on average. The
271 temporal weighting is given as

$$272 w_\tau = e^{-\left[\left(\frac{\Delta\tau}{L_\tau}\right)^2\right]},$$

273 where $\Delta\tau$ is the time difference of the data point from the given month (mid-January, central month = 0.5), and L_τ , set to be
274 2.5 months, is the decorrelation timescale. For our summer climatology construction, the weighting matrix is then given as

$$275 w_{summer} = w_D \cdot w_\tau.$$

276


277 The results herein are mainly based on the full climatology without temporal weighting, and we only briefly show the
278 difference between the full and summer climatology later. A third climatology is created and available using only the data
279 after 2000 with a focus on the ‘contemporary’ period when the data acquisition is dominated by the advent of Argo floats
280 and instrumented-seal profiles, and which may be useful for some numerical model comparison exercises. A zoomed in view
281 of the constructed full climatological conservative temperature maximum field in Amundsen Sea Embayment (Fig. 6f)
282 shows strong lateral gradients across the continental shelf over a few kilometres. The stripe of circles and ellipses in Fig. 6f
283 showcases the ellipse size variation from the continental shelf to the open ocean. Within reason, the size of circles on the
284 continental shelf is fine enough to resolve lateral gradients, lending credence to our choice of correlation length scales over
285 the continental shelves. To quantify the error of the climatology product, a modified standard error to show the spatial
286 distribution of data in contributing to the data uncertainty ($MSE_{spatial}$) is computed by scaling the weighted standard
287 deviation, σ_w , with the number of valid data points counted in the ellipses, $N_{ellipse}$,

288 $MSE_{spatial} = \frac{\sigma_w}{\sqrt{N_{ellipse}}}.$

289 Note that the $N_{ellipse}^p$ and $N_{ellipse}$ are two different metrics. The former represents the number of casts in each ellipse which is
290 a depth-independent metric while the latter is the count of valid data points in each ellipse at each depth. $N_{ellipse}^p$ is used to
291 constrain the relative contribution to the total distance weighting from FM and ellipse algorithms at each grid point, such that
292 the weighting metric is kept uniform in depth instead of using the depth-varying $N_{ellipse}$ that tends to weigh more on FM
293 strategy over the ellipse strategy and leads to overly smoothed temperature and salinity field than desired. The MSE of the
294 conservative temperature at 100 dbar in the Amundsen Sea Embayment is shown in Fig. 6g, where the dark red marks point
295 to the large MSE region where the produced climatology value suffers from large uncertainty due to the lack of data points.
296 For the summer climatology, the modified standard error (MSE_{summer}) is computed using the number of the data points
297 collected from November to March, corresponding to the central month and decorrelation time scale used for summer
298 climatology, N_{summer} ,

299 $MSE_{summer} = \frac{\sigma_w}{\sqrt{N_{summer}}}.$

301 **Figure 6.** (a) The weights (ranging from 0 to 1) defined by along-path distance, w_{FM} , computed by FM algorithm over the climatology
 302 grid at 110.4°W, 73.5°S. Colour shading of the data points denotes the value of weights, the redder the colour is, the more weight is
 303 assigned. Cyan square denotes the centre location of the inspected climatology grid cell. The gray shades in the background and black
 304 contours show the bathymetry from RTopo. (b) to (e) are the same as (a) except that the data points are coloured according to the ellipse
 305 size weighting w_{SODB} , month weighting w_{τ} (with the given month being January), combined distance weighting w_D , and combined
 306 summer weighting w_{summer} , respectively. Blue polygon in (b) denotes the ellipse used to compute the w_{SODB} at the highlighted grid point.
 307 (a)-(e) only plotted the location of first 100 data points with highest combined distance weighting, w_D . (f) shows the maximum
 308 conservative temperature in the Amundsen Sea Embayment from the O:I climatology. The continental shelf break is highlighted by the
 309 1000 m isobath (thick black contour) and bathymetric contours are overlaid in yellow for 600 m and blue for 400 m. Ellipses exemplify the
 310 choice of ellipse size along a longitudinal transect constrained by the local water depths on the continental shelf and SSH contour off the

311 shelf break. (g) shows the modified spatial standard error ($MSE_{spatial}$) for conservative temperature at 100 dbar in the Amundsen Sea
312 Embayment, with dark red regions denoting high interpolation uncertainty, hence low confidence in the climatology.

313 4.2 Cabbeling correction

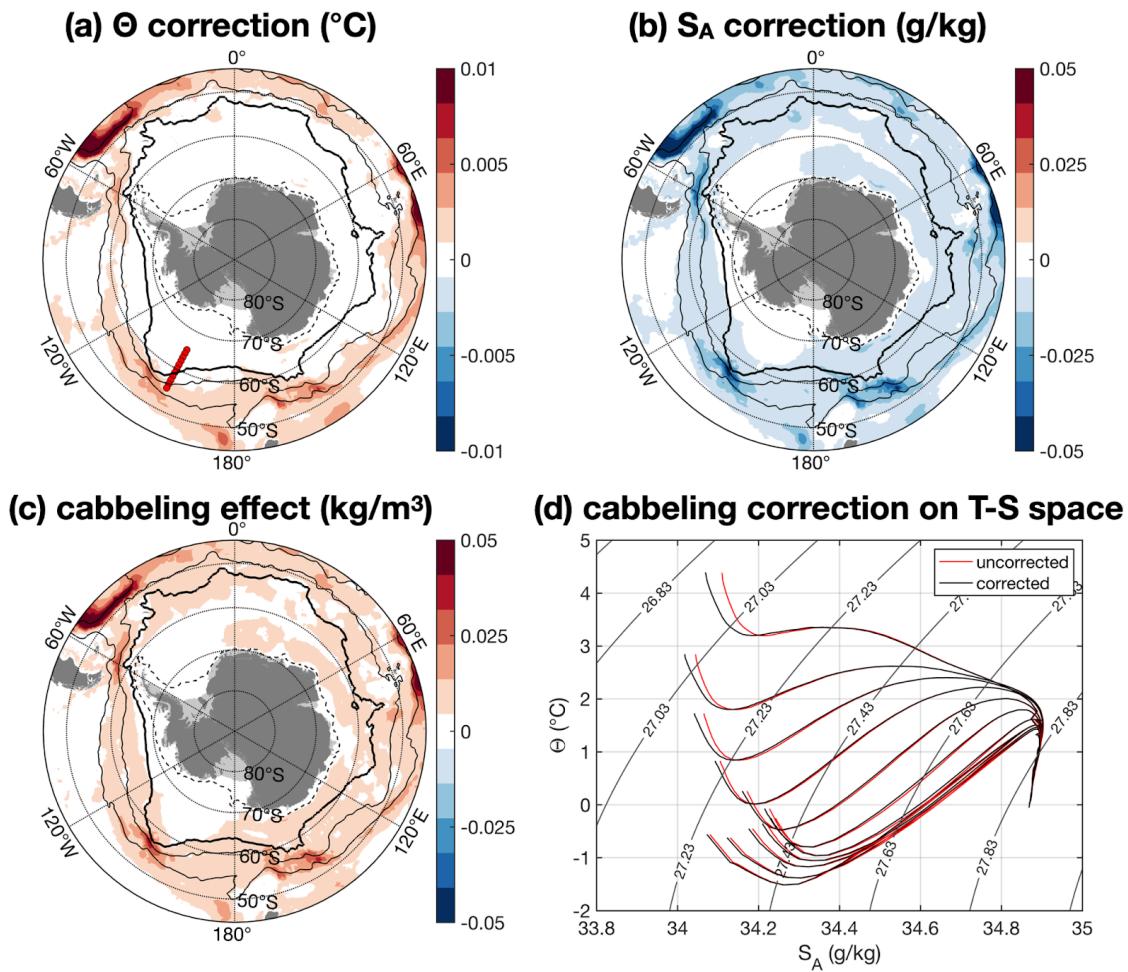
314 The cabbeling effect due to the nonlinearity of seawater's state equation leads to artificially created dense water masses when
315 taking average over temperature and salinity fields. In the case of an isopycnal climatology product (Schmidtko et al. 2013),
316 the mixing process can be represented by taking average over the temperature and salinity field along isopycnal coordinates.
317 The cabbeling correction on temperature and salinity can be then derived following

$$318 \Delta\Theta = \frac{\sigma(S_{Amap}, \Theta_{map}) - \sigma_i}{2\alpha\rho_0} \text{ and } \Delta S_A = -\frac{\sigma(S_{Amap}, \Theta_{map}) - \sigma_i}{2\beta\rho_0}.$$

319 Here S_{Amap} and Θ_{map} are mapped salinity and temperature along the initial isopycnal coordinate σ_i , α and β are local thermal
320 and haline expansion coefficients and ρ_0 is the reference density. In our case, temperature and salinity are averaged over
321 pressure coordinates, therefore there is no reference isopycnal to quantify the density changes raised by the cabbeling effect.
322 Instead, we crudely use the averaged in-situ density as our reference density. In this case, the density correction to be applied
323 is simply the difference between the averaged in-situ density, $\overline{\rho(S_A, \Theta, p)}$, and the density computed using averaged
324 temperature and salinity, $\rho(\overline{S}_A, \overline{\Theta}, p)$,

$$325 \Delta\rho = \rho(\overline{S}_A, \overline{\Theta}, p) - \overline{\rho(S_A, \Theta, p)},$$

326 where the $\overline{\Theta}$ and \overline{S}_A are the weighted mean value of the temperature and salinity estimated by the objective mapping as
327 above. The adjustments of temperature and salinity required to effectuate this density change, under first-order
328 approximation, are


$$329 \Delta\rho = \frac{\partial\rho}{\partial\Theta}\Delta\Theta + \frac{\partial\rho}{\partial S_A}\Delta S_A.$$

330 The above can be treated as the single linear constraint for estimating the temperature and salinity adjustment. To minimize
331 the adjustment on temperature and salinity field while complying with the density correction constraint above. We treat the
332 problem as a least-square minimization problem where the cost function of the minimization is represented as the total
333 adjustment on temperature and salinity estimated as $J = \Delta\Theta^2\left(\frac{\alpha}{\beta}\right)^2 + \Delta S_A^2$. Note that we weighted the conservative
334 temperature adjustment with the ratio $\frac{\alpha}{\beta}$ to arrive at the same unit as the absolute salinity. Since this is a linear minimization
335 problem with one linear constraint and a quadratic cost function, the temperature and salinity adjustments can be analytically
336 estimated as,

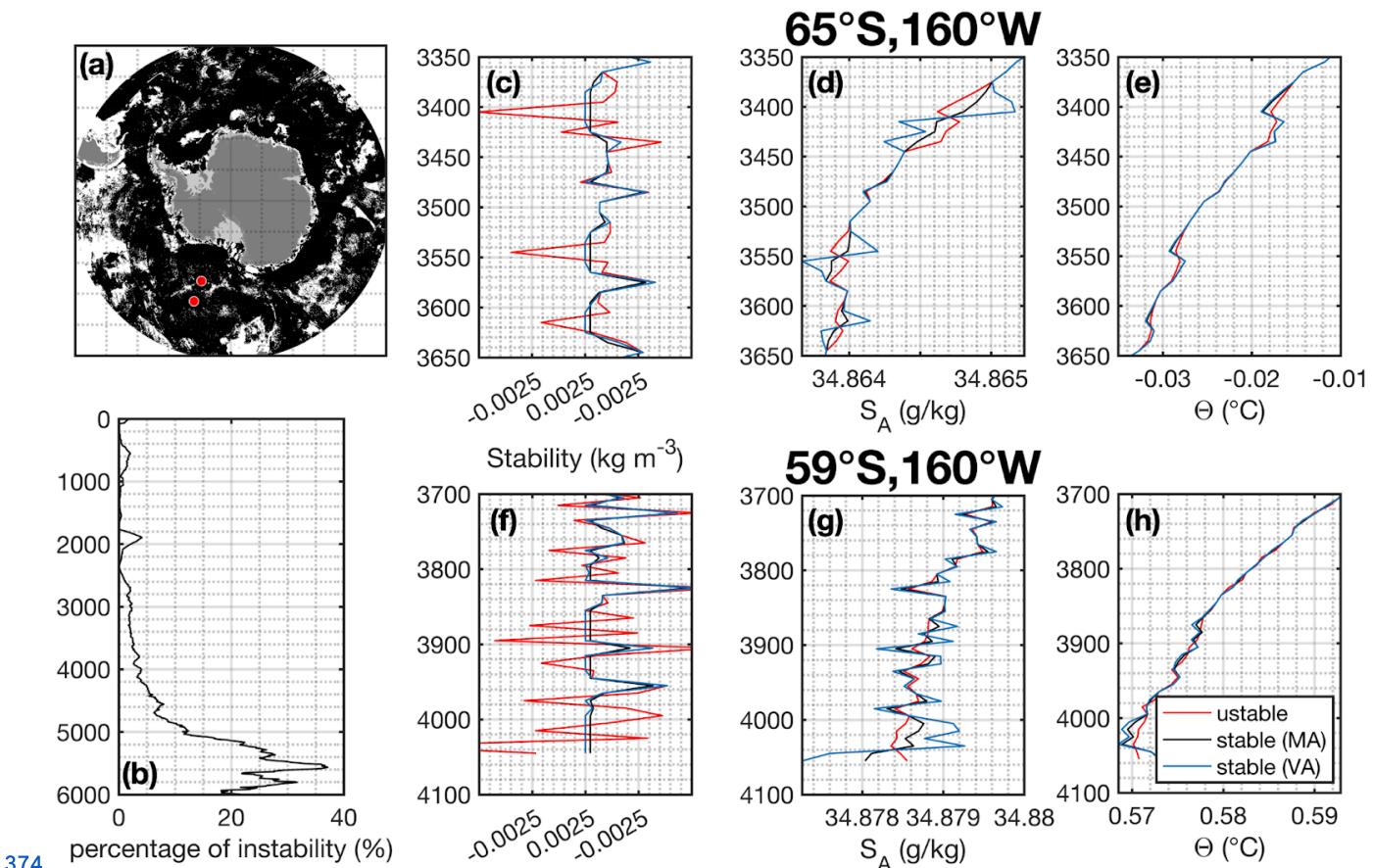
$$337 \Delta\Theta = \frac{\Delta\rho}{2\alpha\rho} \text{ and } \Delta S_A = -\frac{\Delta\rho}{2\beta\rho}.$$

338 Fig. 7 illustrates the cabbeling corrections applied on conservative temperature (Fig. 7a) and absolute salinity (Fig. 7b) fields
 339 to rectify the cabbeling effect on the density field quantified as the density difference between the density computed from
 340 averaged temperature and salinity and the averaged in-situ density (Fig. 7c) at 1000 dbar. Some of the strongest nonlinear
 341 mixing biases are found in the core of the Antarctic Circumpolar Current (ACC), bounded by the Subantarctic front and
 342 southern ACC front, with regional hotspots of larger bias coinciding with the reported enhanced upwelling locations forced
 343 by local topographic feature (Tamsitt et al. 2017). The effect of T-S relation adjustment is shown in Fig. 7d over the
 344 locations denoted in Fig. 7a. The T-S adjustment resembles those found in Schmidtko et al. (2013) where the cabbeling effect
 345 is well-defined in isopycnal-averaged temperature and salinity fields. The cabbeling correction is mostly discernible over
 346 shallower depths where the temperature and salinity experience larger variance along the isopycnals.

347

348 **Figure 7.** The cabbeling correction of (a) conservative temperature, (b) absolute salinity and (c) the cabbeling effect on the in-situ density
 349 at 1000 dbar. (d) the adjustment of T-S by cabbeling correction over the 10 selected locations denoted in (a) by red circles, background
 350 contours are potential density. Thick black contour in panels (a) to (c) denotes the southern Antarctic Circumpolar Current front, two thin
 351 contours further north denote the (from south to north) polar front and sub-Antarctic front (Kim and Orsi 2014).

352 4.2 Density stabilisation


353 Climatologies created in isobaric spaces are prone to create interpolation-derived density inversion. Some form of density
354 stabilisation is therefore needed, assuming that density inversion is not a sensible stable state (e.g. Ridgway et al, 2002,
355 Boyer et al. 2005, Locarnini et al. 2013). Various methods have been developed by the community, often solving a nonlinear
356 minimization problem (Jackett and McDougall 1995, Chu and Fan 2010, Wang et al. 2012, Barker and McDougall 2017) to
357 minimise temperature and salinity correction while achieving stabilization with the least adjustments possible. In our
358 climatology, before cabling correction, we first locate profiles with unstable density structure. The criterion for detecting
359 unstable water column is formulated as the following (Chu and Fan, 2010),

360 $E < 0$,

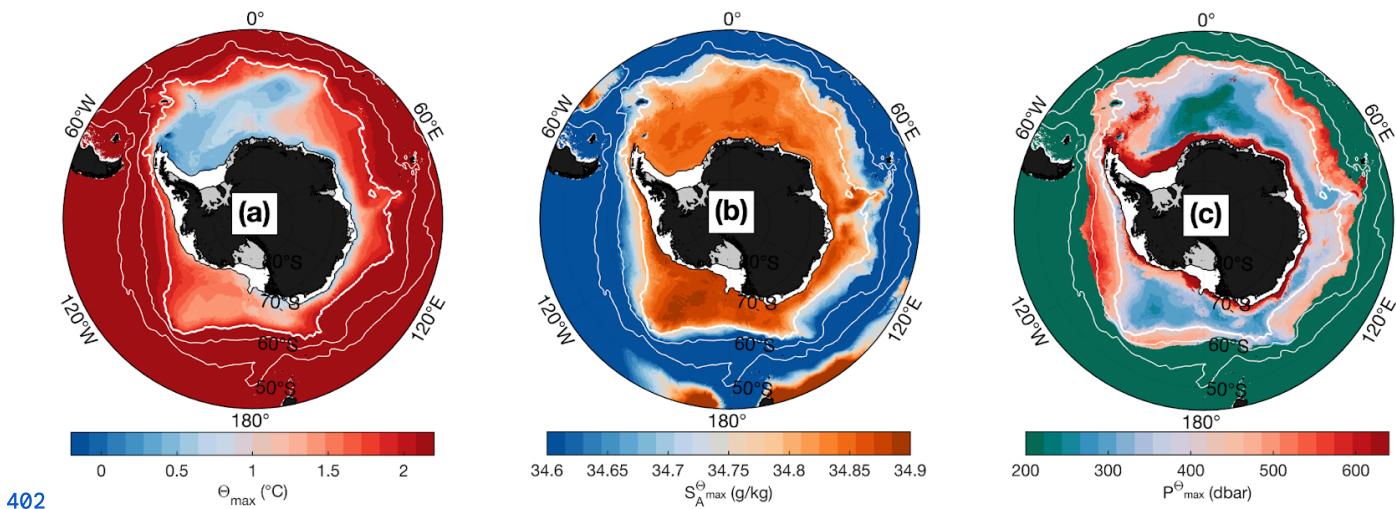
361 where E is the measure of the water column stability represented by the vertical density gradient. For discrete sample (T_k, S_k)
362 at depth z_k ($k = 1, 2, \dots$), E_k is obtained as the difference between two adjacent levels,

363
$$E_k = \rho(T_{k+1}, S_{k+1}, z_k) - \rho(T_k, S_k, z_k),$$

364 which is density difference between the local potential density of a water parcel at z_{k+1} that the water parcel would acquire if
365 it was adiabatically brought to a reference depth (z_k), $\rho(T_{k+1}, S_{k+1}, z_k)$, and the in-situ density at z_k , $\rho(T_k, S_k, z_k)$. E_k is then
366 defined as the local static stability (Lynn and Reid, 1968). In practice, it is not always possible for the discretely measured
367 temperature and salinity to reach a static stability at zero due to the precision of these measurements. A minimum stability,
368 E_{\min} , is therefore user-defined to be a small positive value (Chu and Fan 2010, Wang et al. 2012). We choose 10^{-7} kg/m^3 for
369 E_{\min} to locate the profiles with unstable density structure and apply two types of stabilisation corrections (see below). In our
370 climatology, before density stabilisation, over 80% of gridded profiles have at least one pair of unstable T-S measurement
371 (Fig 8a) and on average the water column is unstable near the bottom of the water column. This is potentially a common
372 issue of the isobaric average in the deep ocean where the weighted-mean is performed over a pool of CTD profiles with
373 different local bottom depth hence different measuring depth range (Fig. 8b).

374 **Figure 8.** (a) locations of unstable profiles shown as black shade where at least one pair of unstable water parcels is found. (b) Histogram
 375 of the number of instabilities as a function of depth in O:I climatology before density stabilisation and the example at 59°S, 160°W (c) -
 376 (e) and 65°S, 160°W (f) - (h) showing the (c), (f) stability (d), (g) salinity and (e), (h) temperature before (red) and after the MA (black)
 377 and VA (blue) density correction. Locations of example profiles are denoted as red circles in panel (a).

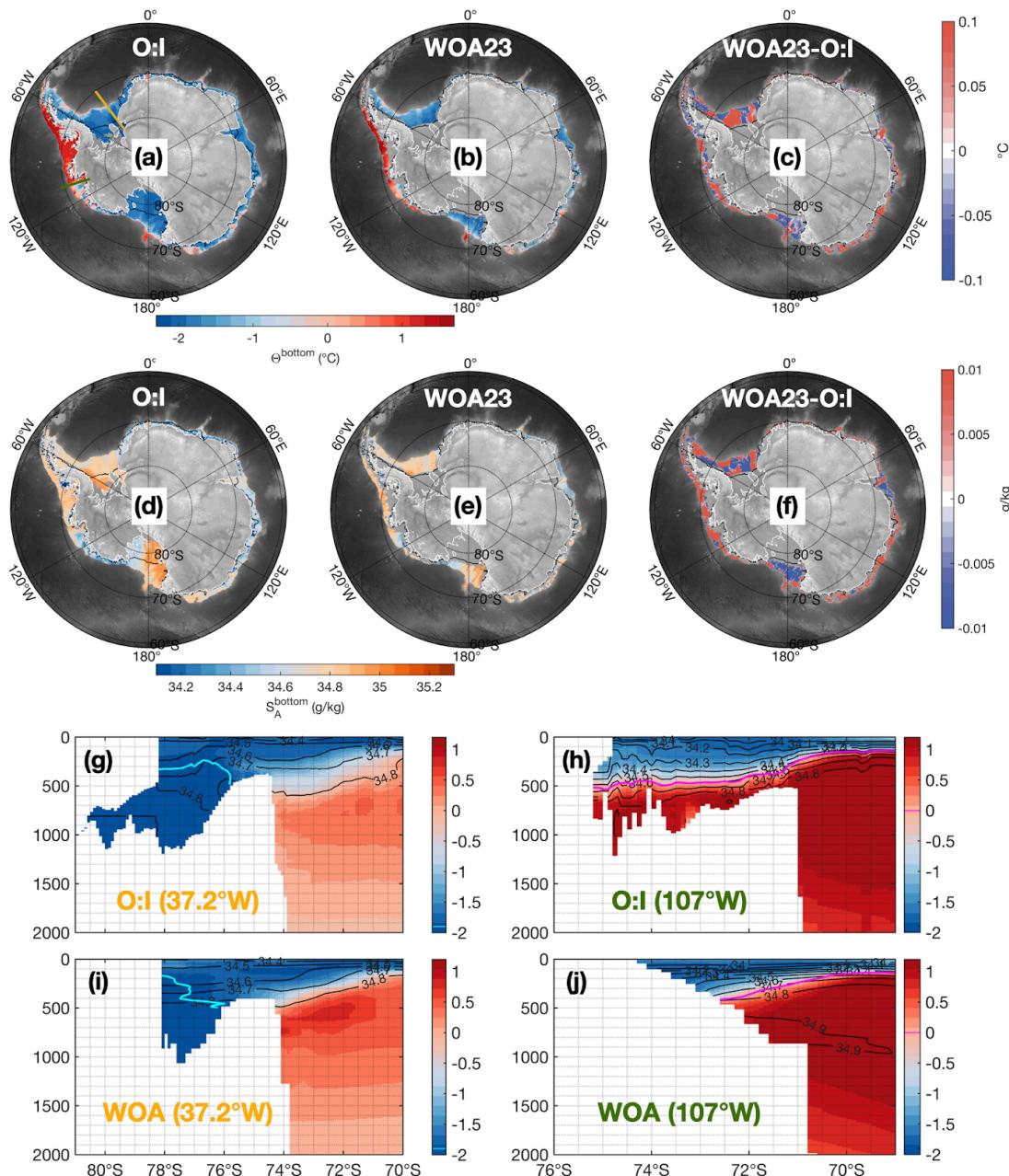
379


380 We then compared two most recently developed or refined methods: the Variational Adjustment (VA) scheme by Wang et al.
 381 (2012) and an updated Minimal Adjustment (MA) by Barker and McDougall (2017). The MA method uses constrained least
 382 squares to minimize the temperature and salinity changes while retaining the T-S coherency by constraining the minimisation
 383 problem with a localized linear relation of a representative and smoothed temperature and salinity curve (Barker and
 384 McDougall, 2017). The VA method, used in a recent climatology (Yamazaki et al. 2025), is designed to conserve heat and
 385 salt content of a water column and preserves T-S coherency determined by the surrounding temperature and salinity field
 386 (Wang et al. 2012). While both methods stabilise the water column (Fig 8c and Fig 8f), the VA method tends to overcorrect
 387 the temperature and salinity throughout the water column (Fig 8d, 8e, 8g and 8h) and appears to be marginally less effective
 388 on rectifying the instability (Fig 8c and Fig 8f) compared to the MA method, as noted in Barker and McDougall (2017). A

389 detailed description of the MA method and a thorough comparison of the two methods tested in this study along with other
390 conventional density correction methods can be found in Barker and McDougall (2017). To achieve the final form of a
391 statically stable climatology with minimal tampering, we chose the MA scheme and strategically deployed it to profiles
392 where at least one pair of unstable water parcels was detected.

393 4.2 Evaluation of OCEAN ICE (O:I) climatology

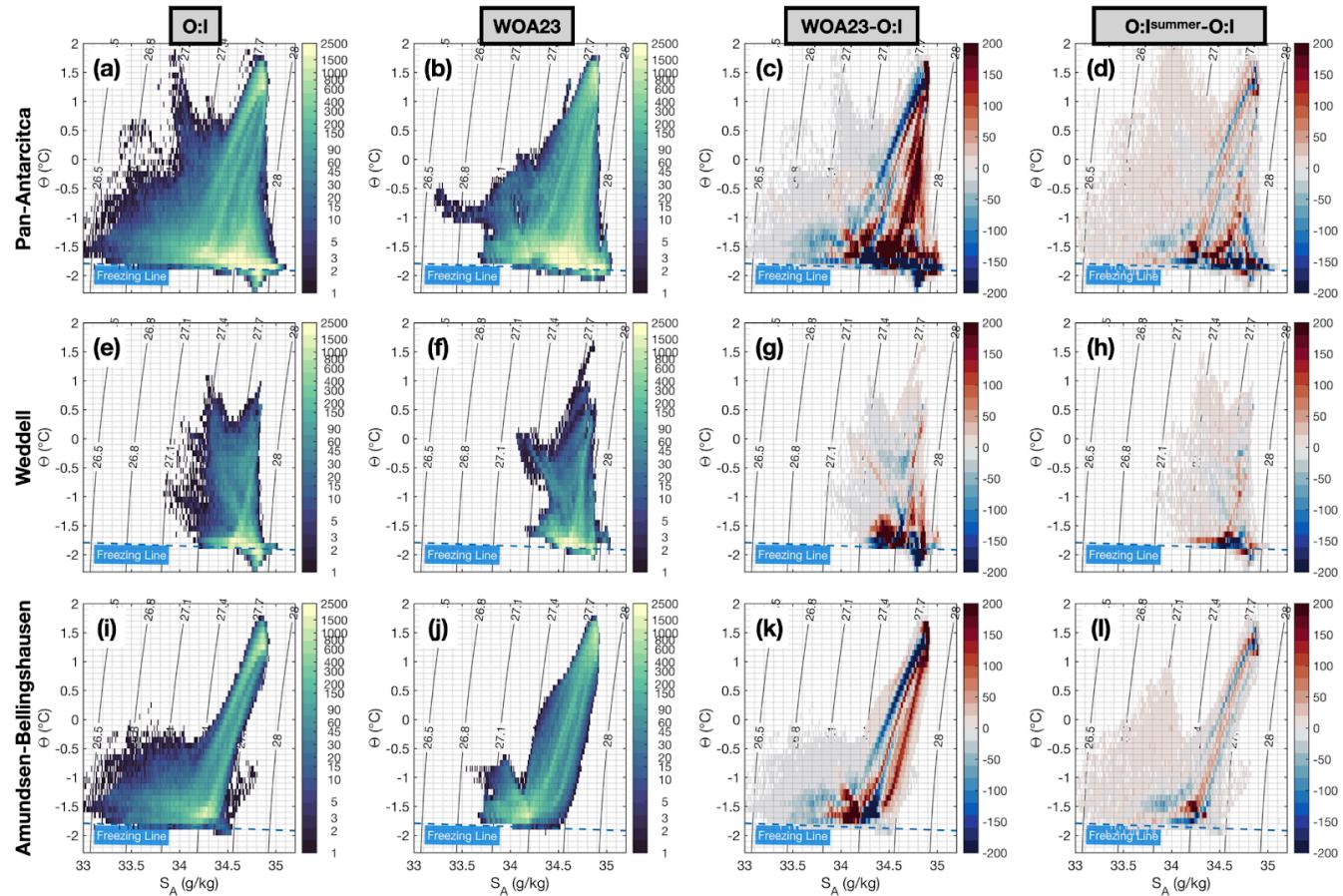
394 In the following, we provide a brief evaluation of the OCEAN ICE (O:I) climatology using metrics previously built to
395 understand the multidecadal trend of the water masses in the Southern Ocean and on the Antarctic continental shelves,
396 namely the Circumpolar Deep Water (CDW) core temperature, core salinity and core depth and the continental shelf bottom
397 temperature and salinity (Schmidtko et al. 2014). At each horizontal position, the CDW core temperature is defined as the
398 temperature maximum below 100 m to avoid capturing instead surface seasonal warming signatures. CDW core salinity and
399 depth are then defined as the salinity and pressure level where the temperature maximum is observed. The bottom water
400 temperature and salinity on the continental shelf are defined as the average temperature and salinity within 150 m from the
401 seabed.


402
403 **Figure 9.** (a) The maximum conservative temperature below 100 m as an indicator of CDW core temperature in the open ocean.
404 Continental shelf is mapped with this metric for completeness. (b) same as (a) but for the absolute salinity at the temperature maximum
405 depth. (c) same as (a) and (b) but for pressure level where the temperature maximum is detected.

406

407 Maps of CDW properties in the O:I climatology are shown in Fig. 9. Unsurprisingly, the O:I climatology captures the CDW
408 features (water mass property and position, previously seen in other commonly used climatology products such as the World
409 Ocean Atlas (WOA23, Reagan et al. 2024), with the Weddell and to a lesser extent Ross gyres acting as more or less
410 efficient barriers to the southward ingress of warm CDW towards Antarctic shelf seas. On the continental shelf, bottom
411 water properties are directly compared between the O:I and WOA23 climatologies in Fig. 10 a-f. Overall WOA23 produces

412 warmer continental shelf bottom water properties, notably in the dense shelves such as in the Weddell Sea and Ross Sea. A
413 vertical section across the Weddell Sea continental shelf break at 37.2°W details differences in dense shelf water
414 representation between the O:I and WOA23 climatologies (Fig. 10g and Fig. 10i). O:I captures a more widespread and
415 thicker cold dense water layer near the sea bed extending across the shelf sea toward the shelf break that is consistent with
416 the understanding and snapshot observations of the dense water overflow arising at this longitude (Nicholls et al. 2009,
417 Darelius et al. 2014). O:I also resolved a more suppressed warm deep water core off the continental shelf in southern
418 Weddell Sea (Fig 10g and Fig 10i), reflecting the contrast between the water mass properties on and off the continental shelf
419 in the dense shelf regime such as in the Weddell Sea where the continental shelf is mostly shielded from modified CDW
420 intrusions (Thompson et al. 2018). As an example of comparison in a warm shelf regime, the difference in bottom water
421 mass properties across a section of the Amundsen Sea continental shelf between WOA23 and O:I climatology are in contrast
422 affected by the different representation of the bathymetry (Fig. 10h and Fig. 10j). But, similarly to its colder regime
423 counterpart, the O:I climatology offers sharper representations of horizontal gradients, with Antarctic slope front clearly tied
424 to the continental shelf break in O:I, in accord with multiple observations (e.g., Walker et al., 2013), whilst it is smeared and
425 much more weakly defined in WOA23. An associated distinguishing feature of the bottom properties difference between
426 WOA23 and O:I climatology is that the WOA23 tends to have a warmer/saltier shelf break (Fig. 10c), which we surmise is
427 associated with a broader scale averaging method used to create the latter and an associated leakage of the warm and saline
428 CDW available offshore to the shelf seas. Indeed, while O:I climatology uses reduced averaging length scales down to 20 km
429 on the continental shelf region, WOA23 smallest influence radii for its interpolation is 200 km (Boyer et al. 2005). Another
430 reason for a warmer/saltier shelf break could be associated with the discrepancies in the bathymetry used in O:I and WOA
431 climatology. For example, the warm water in the latter occupies more fraction of the water column due to the unrealistically
432 deep shelf break in the Amundsen Sea (Fig 10h and Fig 10j) that leads to a warmer/saltier bottom water properties in this
433 region.


434

435 **Figure 10.** The shelf bottom water temperature/salinity from O:I climatology a/c and WOA23 d/e. Differences of shelf bottom water
 436 temperature and salinity between WOA23 and O:I climatology is in c and f. Zoomed-in continental shelf vertical section at Weddell
 437 (35°W) derived from (g) O:I climatology and (i) WOA23. (h) and (j) are the same as (g) and (i) but for the Amundsen Sea (107°W).
 438 Conservative temperature is shown in colour and absolute salinity is shown in black contours in the vertical section plot. Cyan and
 439 magenta thick contours denote the -1.9°C and 0°C isotherm in Weddell and Amundsen Sea, respectively. The locations of two vertical
 440 sections shown in (g)-(j) are indicated by green and yellow transect lines in (a).

441

442 A comparison of the T-S properties of the continental shelf between the two climatology products is conducted by retrieving
443 regional and circum-Antarctic shelf seas Probability Distribution Function (PDF) in T-S space (Fig. 11). The T-S PDFs are
444 produced from gridded O:I climatology and WOA23 climatology, where the coarser WOA23 climatology is interpolated
445 onto the finer O:I grid and both climatology products are re-masked using the NaN values from both products to ensure the
446 total number of valid temperature and salinity data points are consistent with each other. Regional differences are
447 exemplified in the Weddell Sea (Fig. 11a-c) and in the Amundsen-Bellingshausen Sea (Fig. 11d-f). The raw data used to
448 compute O:I climatology in the Weddell Sea consists of CTD casts near the ice shelf front, and for those obtained in Filchner
449 Trough where one would expect signature of the supercooled Ice Shelf Water (ISW) created by glacial melt as High Salinity
450 Shelf Water (HSSW) interacts with the ice shelf base (Nicholls et al. 2009, Janout et al. 2021, Zhou et al. 2023). ISW is
451 slightly fresher than HSSW but much colder than the local surface freezing point. Such a signature is present in the O:I
452 climatology (Fig. 11a), but absent in WOA23 (Fig. 11c and Fig. 11b) due probably to the over-smoothing by WOA23
453 objective interpolation. The O:I climatology also possesses a more extensive array of water masses associated with sea ice
454 freezing (data points sitting along the surface freezing line) compared to WOA23 (Fig. 11c) in the Weddell Sea region. A
455 comparison of the thermohaline signature between the O:I full climatology and the O:I Summer climatology is also shown in
456 Fig. 11d, 11h and 11l. Broadly speaking, the main difference between the two products in T-S space shows anomalies along
457 the surface freezing line and anomalous dipoles along lines connecting surface and deeper/denser mCDW end-members in
458 warm shelf regimes (Fig. 11d, 11l). The former difference, a deficit of near-surface freezing counts in summer, is most likely
459 a result of sea ice formation processes not being captured in the summer climatology, as one would expect. This applies to
460 both the HSSW in cold regimes (Fig. 11h) and Winter Water (WW, characterized by temperature minimum near the surface
461 freezing point) in warm regimes (Fig. 11l). We surmise the latter difference reflects seasonal changes in intermediate depth
462 water mass properties, associated with a mix of sea-ice production-driven convection events, and advection (Kimura et al,
463 2017, Yang et al, 2022). Whilst certainly calling for a more in-depth analysis of seasonal variability, the results we present
464 demonstrate that the temporal weighting can effectively capture and highlight the seasonality in some of the key water
465 masses on the continental shelves over both pan-Antarctic and regional contexts.

466

467 **Figure 11.** Probability Distribution Function (PDF) derived from the OCEAN ICE and WOA23 climatologies and their differences and the
 468 differences in PDF between OCEAN ICE summer climatology and the OCEAN ICE climatology in: a - d pan-Antarctic shelf seas; e-h
 469 Weddell Sea (60°W - 15°E); i - l Amundsen-Bellingshausen Sea (150°W - 70°W).

470

471 Another artefact produced by coarser WOA23 interpolation and already mentioned earlier along vertical sections is revealed
 472 as a straight line in the T-S space connects two source water types - CDW and WW - in the Amundsen-Bellingshausen Sea
 473 (light red stripe in Fig. 11k), whilst the coarser bathymetry used in WOA23 also allows larger volumes of saltier waters
 474 available offshore to artificially flood the near-seabed continental shelf (large red stripe in Fig. 11k), a feature that is not
 475 actually observed (see also Fig. 10h, 10f). Closer to the surface, the O:I climatology captures the presence of a larger volume
 476 of a third source core water that is warmer and fresher: the summer/spring Antarctic surface water (e.g., Thompson et al.
 477 2020, blue stripe in Fig. 11k). The regional differences between the two climatology products in the T-S space are imprinted
 478 to the pan-Antarctic comparison (Fig. 11c).

479

480 5 Summary

481 In this paper, we present an updated hydrography profiles compilation. We provide an overview of the spatio-temporal
482 distribution of the available data and a new metric to evaluate the ability of the profiles compilation in resolving temporal
483 variability at different timescales over different regions. Three newly-developed O:I climatology products using the profiles
484 compilation with a primary focus in the subpolar regions in the Southern Ocean and Antarctic continental shelf are created,
485 and two are briefly presented. The O:I climatology design considers the dynamic connectivity between data points by
486 constraining an anisotropic interpolation scheme using assimilated SSH product and incorporates the distinct dynamic
487 regimes difference between open oceans and shelf seas by adjusting the interpolation radii of influence using bathymetry.
488 The O:I climatologies are constructed such that the small lateral gradient of water mass distribution on the Antarctic
489 continental shelf are resolved, in contrast to previous, more globally focused climatological products. The O:I climatologies
490 can readily be used as a better initial/boundary condition for numerical models, or in evaluation exercises. The accurate
491 representation of the thermal forcing of the shelf water masses is in particular critical for the ice sheet modelling community
492 to derive a modern-day melting condition for future projection (e.g., Jourdain et al. 2020, Finucane and Stewart 2024). This
493 compilation building exercise highlighted a need to combine various and sometimes disparate and not fully interconnected
494 data sources. This is perhaps due to the somewhat irregular sampling nature of polar regions. We recognize large efforts are
495 concentrating on aggregating profiles from all sources (e.g. WOA23) and hope gaps will be resolved soon. We aim to
496 maintain this circum-Antarctic profile compilation in the future and would be happy to receive profile contributions from
497 collaborators.

498 6 Data Availability

499 OCEAN ICE hydrography profiles compilation is available at <https://doi.org/10.17882/99787> (Zhou et al. 2025a, last access:
500 28 September 2025). The O:I full, summer and 21st century climatologies are available at <https://doi.org/10.17882/103946>
501 (Zhou et al. 2025b, last access: 28 September 2025). Both dataset are in NetCDF format with intuitive description of
502 variables, the key ones among which are mentioned in this data release paper.

503 Acknowledgement

504 This research was supported by Ocean Cryosphere Exchanges in ANtarctica: Impacts on Climate and the Earth system,
505 OCEAN ICE, which is funded by the European Union, Horizon Europe Funding Programme for research and innovation
506 under grant agreement Nr. 101060452, 10.3030/101060452. OCEAN ICE contribution number 18. This work was funded by
507 UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding Guarantee [grant number
508 0048443]. Authors would like to thank all the scientists, project principle investigators and ship crew members who are
509 involved in collecting CTD profiles, Argo float deployments and seal taggings. This profiles compilation and climatology

510 would not be possible without all these hard efforts of *in-situ* data acquisition. Shenjie Zhou, Pierre Dutrieux, Andrew
511 Meijers, Tore Hattermann and Makus Janout received funding from OCEAN ICE. Claudia Giulivi was funded by NASA
512 project 19-MAP19-0011 Assessing the Impact of Glacial Melt on the Coupled Climate (grant # 80NSSC20K1158). Tae-Wan
513 Kim was supported by the Korea Polar Research Institute (KOPRI) grant funded by the Ministry of Oceans and Fisheries
514 (grant no. PE25110). Won Sang Lee was supported by the Korea Institute of Marine Science & Technology Promotion
515 (KIMST) funded by the Ministry of Oceans and Fisheries (RS-2023-00256677).

516 Author contribution

517 S. Z. and P. D jointly conceived the study. S. Z. curated the profile compilation, developed methodology and performed the
518 climatology construction. P. D., C. G. helped gather raw profile data. W. L., T.-W. K., T. H. provided dataset that were not
519 yet archived in public databases. P. D., A. M. and M. J. involved in the discussion of the methodology development and
520 results interpretation. All authors contribute to revising this manuscript.

521 Competing interests

522 The authors declare that they have no conflict of interest.

523 Reference

- 524 1. Akhoudas, C.H., Sallée, J.B., Reverdin, G., Haumann, F. A., Pauthenet, E., Chapman, C. C., Margirier, F., Monaco, C. L., Metzl, N., Meilland, J. and Stranne, C.: Isotopic evidence for an intensified hydrological cycle in the Indian sector of the Southern Ocean. *Nat. Commun.*, 14, 2763. <https://doi.org/10.1038/s41467-023-38425-5>, 2023.
- 525 2. Barker, P. M and McDougall, T. J.: Stabilizing Hydrographic Profiles with Minimal Change to the Water Masses. *J. Atmos. Oceanic Technol.*, 34, 1935 - 1945. <https://doi.org/10.1175/JTECH-D-16-0111.1>, 2017.
- 526 3. Boyer, T., Levitus, S., Garcia, H., Locarnini, R. A., Stephens, C. and Antonov, J.: Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. *Int. J. Climatol.*, 25, 931 - 945. <https://doi.org/10.1002/joc.1173>, 2005.
- 527 4. Chu, P. C., and Fan, C. W.: A conserved minimal adjustment scheme for stabilization of hydrographic profiles. *J. Atmos. Oceanic Technol.*, 27, 1072–1083. <https://doi.org/10.1175/2010JTECHO742.1>, 2010.
- 528 5. Finucane, G., and Stewart, A. L.: A predictive theory for heat transport into iceshelf cavities. *Geophys. Res. Lett.*, 51, e2024GL108196. <https://doi.org/10.1029/2024GL108196>, 2024.

- 536 6. Frölicher, T. L., Jorge L. Sarmiento, David J. Paynter, John P. Dunne, John P. Krasting and Winton. M.: Dominance
537 of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. *J. Clim.*, 28(2), 862 - 886.
538 <https://doi.org/10.1175/JCLI-D-14-00117.1>, 2015.
- 539 7. Garcia, H. E., Boyer, T. P., Locarnini, R. A., Baranova, O. K. and Zweng, M. M.: World Ocean Database 2018:
540 User's Manual (prerelease). A.V. Mishonov, Technical Ed., NOAA, Silver Spring, MD.
541 https://www.ncei.noaa.gov/sites/default/files/2020-04/wodreadme_0.pdf, 2018. (last access: 12 November
542 2025).
- 543 8. The IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017. *Nature*, 558, 219 - 222.
544 <https://doi.org/10.1038/s41586-018-0179-y>, 2018.
- 545 9. Jackett, D. J., and McDougall, T. J.: Minimal adjustment of hydrographic profiles to achieve static stability. *J.
546 Atmos. Oceanic Technol.*, 12, 381–389,
547 [https://doi.org/10.1175/1520-0426\(1995\)012%3C0381:MAOHPT%3E2.0.CO;2](https://doi.org/10.1175/1520-0426(1995)012%3C0381:MAOHPT%3E2.0.CO;2), 1995.
- 548 10. Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sütlenfuss, J., Østerhus, S., Stulic, L., Ryan, S., Schröder,
549 M. and Kanzow, T.: FRIS revisited in 2018: On the circulation and water masses at the Filchner and Ronneice
550 shelves in the southern Weddell Sea. *J. Geophys. Res. Oceans*, 126, e2021JC017269.
551 <https://doi.org/10.1029/2021JC017269>, 2021.
- 552 11. Jenkins, A., Shoosmith, D., Dutrieux, P. et al.: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by
553 decadal oceanic variability. *Nat. Geosci.*, 11, 733 - 738. <https://doi.org/10.1038/s41561-018-0207-4>, 2018.
- 554 12. Johnson, G. C. and S. G. Purkey: Refined estimates of global ocean deep and abyssal decadal warming trends.
555 *Geophys. Res. Lett.*, 51, e2024GL111229. <https://doi.org/10.1029/2024GL111229>, 2024.
- 556 13. Johnson, G. C., Lyman, J. M., Boyer, T., Cheng, L., Giglio, D., Gilson, J., Ishii, M., Killick, R. E., Kuusela, M.,
557 Locarnini, R., Mishonov, A., Oe, M., Purkey, S. G., Reagan, J., Sato, K. and Sukianto, T.: Ocean heat content. In
558 state of the climate in 2023, global oceans. *BAMS*, 105(8), S173–S177.
559 <https://doi.org/10.1175/BAMS-D-24-0100.1>, 2024.
- 560 14. Jourdain, N. C., Asay-Davis, X., Hattermann, T., Straneo, F., Seroussi, H., Little, C. M., and Nowicki, S.: A
561 protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections, *The Cryosphere*, 14, 3111 -
562 3134, <https://doi.org/10.5194/tc-14-3111-2020>, 2020.
- 563 15. Kim, Y. S. and Orsi, A. H.: On the Variability of Antarctic Circumpolar Current Fronts Inferred from 1992–2011
564 Altimetry, *J. Phys. Oceanogr.*, 44, 3054 - 3071. <https://doi.org/10.1175/JPO-D-13-0217.1>, 2014.
- 565 16. Kimura, S., Jenkins, A., Regan, H., Holland, P. R., Assmann, K. M., Whitt, D. B., Van Wessem, M., van de Berg,
566 W. J., Reijmer, C. H. and Dutrieux, P.: Oceanographic controls on the variability of ice-shelf basal melting and
567 circulation of glacial meltwater in the Amundsen Sea Embayment, Antarctica. *J. Geophys. Res. Oceans*, 122,
568 10131–10155. <https://doi.org/10.1002/2017JC012926>, 2017.

- 569 17. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R.
570 Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, D. Seidov, 2013. World Ocean Atlas 2013, Volume 1:
571 Temperature. S. Levitus, Ed.; A. Mishonov, Technical Ed.; NOAA Atlas NESDIS 73, 40 pp.
572 https://www.ncei.noaa.gov/data/oceans/woa/WOA13/DOC/woa13_voll.pdf. (last access: 12 November, 2025).
- 573 18. Lynn, R. G., and Reid J. L.: Characteristics and circulation of deep and abyssal waters. *Deep-Sea Res.*, 15 ,
574 577–598, [https://doi.org/10.1016/0011-7471\(68\)90064-8](https://doi.org/10.1016/0011-7471(68)90064-8), 1968.
- 575 19. Mazloff, M., P. Heimbach, and C. Wunsch: An Eddy-Permitting Southern Ocean State Estimate. *J. Phys.*
576 *Oceanogr.*, 40, 880 - 899. <https://doi.org/10.1175/2009JPO4236.1>, 2010.
- 577 20. McDougall, T. J. and P. M. Barker: Getting started with TEOS-10 and Gibbs Seawater (GSW) Oceanographic
578 Toolbox, 28pp, SCOR/IAPSO WG127, ISBN 978-0-646-55621-5.
- 579 21. Nicholls, K. W., Østerhus, S., Makinson, K., Gammelsrød, T. & Fahrbach, E.: Ice-ocean processes over the
580 continental shelf of the southern Weddell Sea, Antarctica: a review. *Rev. Geophys.*, 47, RG3003.
581 <https://doi.org/10.1029/2007RG000250>, 2009.
- 582 22. Orsi, A. H. and Whitworth, T.: Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE) Volume 1:
583 Southern Ocean. <https://doi.org/10.21976/C6BC78>, 2005.
- 584 23. Purkey, S. G. and G. C. Johnson: Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s
585 and 2000s: Contributions to Global Heat and Sea Level Rise Budgets. *J. Clim.*, 23(23), 6336 - 5351.
586 <https://doi.org/10.1175/2010JCLI3682.1>, 2010.
- 587 24. Purkey, S. G. and G. C. Johnson: Global Contraction of Antarctic Bottom Water between the 1980s and 2000s. *J.*
588 *Clim.*, 23(17), 5830 - 5844. <https://doi.org/10.1175/JCLI-D-11-00612.1>, 2012.
- 589 25. Purkey, S. G. and G. C. Johnson: Antarctic Bottom Water Warming and Freshening: Contributions to Sea Level
590 Rise, Ocean Freshwater Budgets, and Global Heat Gain. *J. Clim.*, 26(16), 6105 - 6122.
591 <https://doi.org/10.1175/JCLI-D-12-00834.1>, 2013.
- 592 26. Reagan, J.R., H.E. Garcia, T.P. Boyer, O.K. Baranova, C. Bouchard, S.L. Cross, D. Dukhovskoy, A. Grodsky, R.A.
593 Locarnini, A.V. Mishonov, C.R. Paver, D. Seidov, and Z. Wang: World Ocean Atlas 2023: Product Documentation.
594 A. Mishonov, Technical Editor, <https://doi.org/10.25923/a78k-gq49>, 2023.
- 595 27. Ridgway, K. R., Dunn, J. R. and Wilkin, J. L.: Ocean Interpolation by Four-Dimensional Weighted Least Squares -
596 Application to the Waters around Australasia, *J. Atmos. Oceanic Technol.*, 19, 1357 - 1375.
597 [https://doi.org/10.1175/1520-0426\(2002\)019<1357:OIBFDW>2.0.CO;2](https://doi.org/10.1175/1520-0426(2002)019<1357:OIBFDW>2.0.CO;2), 2002.
- 598 28. Roquet F., Guinet C., Charrassin J.-B., Costa D. P., Kovacs K. M., Lydersen C., Bornemann H., Bester M. N.,
599 Muelbert M. C., Hindell M. A., McMahon C. R., Harcourt R., Boehme L., Fedak M. A., Doriot V., Picard B.:
600 MEOP-CTD in-situ data collection: a Southern ocean Marine-mammals calibrated sea water temperatures and
601 salinities observations. SEANOE. <https://doi.org/10.17882/45461>, 2024.

- 602 29. Sallée J. B., Abrahamsen E. P., Allaigre C., Auger M., Ayres H., Badhe, R., Boutin, J., Brearley, J. A., de Lavergne,
603 C., ten Doeschate, A. M. M., Droste, E. S., du Plessis, M. D., Ferreira, D., Giddy, I. S., Gulk, B., Gruber, N., Hague,
604 M., Hoppema, M., Josey, S. A., Kanzow, T., Kimmritz, M., Lindeman, M. R., Llanillo, P. J., Lucas, N. S., Madec,
605 G., Marshall, D. P., Meijers, A. J. S., Meredith, M. P., Mohrman, M., Monteiro, P. M. S., Mosneron Dupin, C.,
606 Naeck, K., Narayanan, A., Naveira Garabato, A. C., Nicholson, S-A., Novellino, A., Odalen, M., Østerhus, S., Park,
607 W., Patmore, R. D., Piedagnel, E., Roquet, F., Rosenthal, H. S., Roy, T., Saurabh, R., Silvy, Y., Spira, T., Steiger, N.,
608 Styles, A. F., Swart, S., Vogt, L., Ward, B. and S. Zhou, S.: Southern ocean carbon and heat impact on climate. *Phil. Trans. R. Soc. A.*, 38120220056. <http://doi.org/10.1098/rsta.2022.0056>, 2023.
- 610 30. Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., and Steinhage, D.: A
611 global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry, *Earth Syst. Sci.
612 Data*, 8, 543–557, <https://doi.org/10.5194/essd-8-543-2016>, 2016.
- 613 31. Schmidtko, S., G. C. Johnson, and J. M. Lyman: MIMOC: A global monthly isopycnal upper-ocean climatology
614 with mixed layers, *J. Geophys. Res. Oceans*, 118, 1658–1672, <https://doi.org/10.1002/jgrc.20122>, 2013.
- 615 32. Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki: Multidecadal warming of Antarctic waters. *Science*,
616 346, 1227 - 1231, <https://doi.org/10.1126/science.1256117>, 2014.
- 617 33. Siedler, G., Church, J., and Gould, J. (Eds.): *Ocean Circulation and Climate: Observing and Modelling the Global
618 Ocean*, Academic Press, London, 715 pp., ISBN 978-0-12-026143-1, 2001.
- 619 34. Tamura, T., K. I. Ohshima, A. D. Fraser, and G. D. Williams: Sea ice production variability in Antarctic coastal
620 polynyas. *J. Geophys. Res. Oceans*, 121, 2967 - 2979. <https://doi.org/10.1002/2015JC011537>, 2016.
- 621 35. Tamsitt, V., Drake, H.F., Morrison, A.K., Talley, L. D., Dufour, C. O., Gray, A. R., Griffies, S. M., Mazloff, M. R.,
622 Sarmiento, J. L., Wang, J. and Weijer, W.: Spiraling pathways of global deep waters to the surface of the Southern
623 Ocean. *Nat Commun* 8, 172. <https://doi.org/10.1038/s41467-017-00197-0>, 2017.
- 624 36. Thompson, A. F., Speer, K. G. and Schulze Chretien, L. M.: Genesis of the Antarctic Slope Current in West
625 Antarctica. *Geophys. Res. Lett.*, 47, e2020GL087802. <https://doi.org/10.1029/2020GL087802>, 2020.
- 626 37. Walker, D. P., A. Jenkins, K. M. Assmann, D. R. Shoosmith, and M. A. Brandon: Oceanographic observations at
627 the shelf break of the Amundsen Sea, Antarctica, *J. Geophys. Res. Oceans*, 118, 2906–2918.
628 <https://doi.org/10.1002/jgrc.20212>, 2013.
- 629 38. Wang, X., Chu, P. C., Han, G., Li, W., Zhang, X. and Li, D.: A Fully Conserved Minimal Adjustment Scheme with
630 (T, S) Coherency for Stabilization of Hydrographic Profiles. *J. Atmos. Oceanic Technol.*, 29, 1854–1865.
631 <https://doi.org/10.1175/JTECH-D-12-00025.1>, 2012.
- 632 39. Williams, R.G., Meijers, A.J.S., Roussenov, V.M., Katavouta, A., Ceppi, P., Rosser, J. P. and Salvi, P.:
633 Asymmetries in the Southern Ocean contribution to global heat and carbon uptake. *Nat. Clim. Chang.*, 14, 823 -
634 831. <https://doi.org/10.1038/s41558-024-02066-3>, 2024.

- 635 40. Yamazaki, K., Aoki, S., Shimada, K., Kobayashi, T. and Kitade, Y.: Structure of the subpolar gyre in the
636 Australian-Antarctic Basin derived from Argo floats. *J. Geophys. Res. Oceans*, 125, e2019JC015406.
637 <https://doi.org/10.1029/2019JC015406>, (2020).
- 638 41. Yamazaki, K., Bindoff, N. L., Phillips, H.E., Nikurashin, M., Herraiz-Borreguero, L., and Spence, P.: Unlocking
639 Southern Ocean under-ice seasonality with a new monthly climatology. *J. Geophys. Res. Oceans*, 130,
640 e2024JC020920. <https://doi.org/10.1029/2024JC020920>, (2025).
- 641 42. Yang, H. W., Kim, T. W., Dutrieux, P., Wählén, A. K., Jenkins, A., Ha, H. K., Kim, C. S., Cho, K.-H., Park, T., Lee,
642 S. H. and Cho Y.-K.: Seasonal variability of ocean circulation near the Dotson Ice Shelf, Antarctica. *Nat. Commun.*,
643 13, 1138, <https://doi.org/10.1038/s41467-022-28751-5>, 2022.
- 644 43. Zhou, S., Meijers, A. J. S., Meredith, M. P., Abrahamson, E. P., Holland, P. R., Silvano, A., Sallée, J.-B. and
645 Østerhus, S.: Slowdown of Antarctic Bottom Water export driven by climatic wind and sea-ice changes. *Nat. Clim.
646 Chang.*, 13(7), 701–709. <https://doi.org/10.1038/s41558-023-01695-4>, 2023.
- 647 44. Zhou, S., Dutrieux, P., Giulivi, C., Lee, W., Kim, T.-W., Hattermann, T. and Janout, M.: Southern Ocean
648 (90°S-45°S) conservative temperature and absolute salinity profiles compilation (OCEAN ICE D1.1). SEANOE
649 [dataset], <https://doi.org/10.17882/99787>, 2025a.
- 650 45. Zhou, S., Dutrieux, P. and Giulivi, C.: The OCEAN ICE Southern Ocean Climatology. SEANOE [dataset],
651 <https://doi.org/10.17882/103946>, 2025b.
- 652