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Abstract. Accurate estimates of long-term surface temperature (ST) changes are fundamental not only for assessing 

observed warming, but also for improving the reliability of future climate projections. However, substantial missing 

information in global ST datasets, remains a major source of uncertainty in estimating global or regional temperature 10 

changes.  Recent advances in artificial intelligence (AI) have promoted the effective application of deep learning approaches, 

such as image inpainting and transfer learning, in reconstructing incomplete geophysical datasets. In this study, partial 

convolutional neural network (PConv) models were trained using the 20CR reanalysis data and CMIP6 climate model 

outputs as training samples, with the aim of achieving a proper reconstruction of the global surface temperature dataset. To 

address differences among existing sea surface temperature (SST) datasets, we reconstruct global monthly ST fields since 15 

1850 by merging the China global Land Surface Air Temperature (C-LSAT2.1) dataset with Extended Reconstructed Sea 

Surface Temperature (ERSSTv6) dataset and Met Office Hadley Centre's sea surface temperature (HadSST4) dataset, 

respectively. Although both reconstructions reliably reproduce large-scale spatial patterns and long-term variations, the 

merge of C-LSAT2.1 with HadSST4 exhibits greater physical consistency and is therefore adopted as our preferred 

reconstruction. In particular, validation against station observations indicates that the reconstructions perform well over the 20 

Antarctica after 1961, where observational coverage is extremely sparse. Based on this framework, we developed the China 

global Artificial Intelligence Reconstructed Surface Temperature20CR/CMIP6 (C-AIRSTR/M) datasets, providing spatially 

complete global monthly ST anomaly reconstructions since 1850 with a spatial resolution of 5°×2.5°. These datasets offer 

improved support for extending long-term climate records and for applications in polar climate assessment, as well as in 

climate monitoring, detection, and attribution studies. The C-AIRSTR/M datasets can be downloaded at 25 

https://doi.org/10.6084/m9.figshare.30663797.v1 (Ouyang et al., 2025). They are also available from 

http://www.gwpu.net/en/h-col-103.html (last access: 21 November 2025). 

1 Introduction 

Global surface temperature (ST) is one of the most fundamental variables in the climate system, directly reflecting the state 

of the Earth's energy balance, it plays a central role in the monitoring and assessment of climate change (IPCC, 2013, 2021). 30 
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Although sporadic surface temperature (ST) observations have been available since the late seventeenth century, continuous 

observational datasets capable of representing global-scale ST variability did not emerge until the mid-nineteenth century 

(Cowtan and Way, 2014; Jones, 2016). The sparse distribution of observation sites introduces uncertainties in estimates of 

both global and regional climate changes (Katz et al., 2013; Karl et al., 2015; Huang et al., 2017; Li et al., 2021, 2022; Sun et 

al., 2021, 2022). Because the number of meteorological sensors and stations is limited, it is difficult to derive globally 35 

representative conclusions directly from observational records. Therefore, developing effective approaches to reconstruct 

global climate information has become particularly necessary (Vose et al., 2021; Morice et al., 2021).The evolution of the 

atmosphere and ocean follows the fundamental physical laws of mass, momentum, and energy conservation, these 

constraints imply that the climate field exhibits a certain degree of spatial and temporal continuity and predictability, and 

based on these properties, it is possible to infer missing information through statistical or dynamical relationships even in 40 

regions with sparse observations (Lorenz, 1963; Trenberth et al., 2003). Consequently, researchers have employed various 

methods to reconstruct missing climate information, including smoothing and interpolation techniques (Rayner et al., 2003; 

Vose et al., 2012; Lenssen et al., 2019; Li et al., 2021), principal component analysis (PCA) and its variants such as 

empirical orthogonal teleconnection (EOT) (Huang et al., 2017; Sun et al., 2021, 2022), and data-interpolating empirical 

orthogonal functions (DINEOF) (Beckers et al., 2003; Huang et al., 2017). These methods have played an important role in 45 

filling missing values and extracting climate signals from noisy data (Beckers et al., 2003; Wang and Clow, 2020). However, 

missing information inevitably introduces uncertainties and structural biases. The propagation of observational errors, 

inconsistencies among reanalysis products, and the inherent limitations of interpolation assumptions can all affect the 

reliability of reconstruction results (Huang et al., 2017; Morice et al., 2021). These issues are particularly pronounced in 

regions such as Africa, South America, and Antarctica, where sparse observations and harsh environmental conditions pose 50 

greater challenges for traditional reconstruction methods. 

The Antarctica holds an irreplaceable position in the global climate system, and its enormous glacier masses store a 

substantial portion of the world’s freshwater and play a major role in determining future sea level change (IPCC, 2013). At 

the same time, this region’s radiation budget and the complex interactions among ice, atmosphere, and ocean exert profound 

influences on the atmospheric circulation of the Southern Hemisphere (SH) and the global energy balance (Kennicutt et al., 55 

2019). Consequently, accurately characterizing the spatiotemporal variations of ST over Antarctica is essential for assessing 

the polar amplification effect, diagnosing changes in ice sheet mass balance, and improving the performance of global 

climate models. However, due to its extreme geographical conditions, harsh climate, and logistical and communication 

constraints, observational data from Antarctica remain extremely scarce and temporally uneven. Since the International 

Geophysical Year (1957/1958), national research programs have gradually established an automatic weather station (AWS) 60 

network across the Antarctica, providing valuable data for long-term climate monitoring (Jones et al., 2019; Wang et al., 

2023). Nevertheless, most of these stations are concentrated along the coastal regions and near research bases, while 

observations over the interior plateau remain sparse. As a result, observation-based regional temperature fields often hard to 

capture the overall spatial structure of ST variability (Bromwich et al. 2025a). Against this background, Antarctic 
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temperature reconstruction has become a major focus of polar climate research. Researchers have commonly adopted multi-65 

source data fusion strategies that integrate limited in situ observations with reanalysis and satellite remote sensing products, 

using statistical and machine learning methods for spatial and temporal interpolation or extrapolation. For instance, Nicolas 

et al. (2014) and Bromwich et al. (2025a) applied ordinary kriging with different datasets as weights to spatially extrapolate 

Antarctic ST, effectively mitigating the problem of sparse observational coverage. Ma et al. (2025) reconstructed the 

Antarctic temperature field using a deep learning model. Nielsen et al. (2023) improved the spatiotemporal consistency of 70 

polar temperature estimates by calibrating MODIS land/ice ST against AWS observations through linear regression. 

Moreover, Xie et al. (under review) combined limited in situ station data with MODIS ST retrievals within a Bayesian 

framework, reproducing the evolution of Antarctic climate variability since the beginning of this century. Despite these 

advances, Antarctic temperature reconstruction still faces considerable challenges. Systematic biases exist among different 

data sources, and reanalysis products often show substantial uncertainties at high latitudes. Satellite observations are 75 

significantly affected by cloud cover and complex topography, while traditional statistical interpolation methods struggle to 

fully capture nonlinear spatial structures (Wang et al., 2023; Wang et al., 2025; Bromwich et al., 2025; Ma et al., 2025). 

Therefore, developing reliable methods to reconstruct Antarctic surface air temperature under limited observational 

constraints remains one of the central scientific challenges in polar climate reconstruction research. 

At present, a relatively mature technical framework for global ST reconstruction has been developed. The Sixth 80 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2021) includes five observational ST products: 

HadCRUT5, NOAAGlobalTemp-Interim, GISTEMPv4, Berkeley Earth, and China-MST-Interim. These datasets apply 

various reconstruction or interpolation methods to generate homogenized global ST records with as complete a spatial 

coverage as possible (Morice et al., 2021; Vose et al., 2021; Lenssen et al., 2019; Rohde, 2020; Sun et al., 2021). With the 

rapid development of artificial intelligence (AI), deep learning has created new opportunities in atmospheric science (Liu et 85 

al., 2018; Ham et al., 2019; Kadow et al., 2020; Irrgang et al., 2021). For example, NOAAGlobalTempv6 incorporates an 

artificial neural network (ANN) to extend data coverage and update the dataset to a globally complete product (Yin et al., 

2024). Bochow et al. (2025) applied fast Fourier convolution to fill missing values in HadCRUT4, while Plésiat et al. (2024) 

examined the ability of partial convolution-based networks to reproduce historical spatial patterns of climate extremes. 

Partial convolutional networks (PConv), originally proposed by Liu et al. (2018) for image inpainting, perform convolution 90 

operations using only valid (non-missing) pixels and dynamically update the validity mask during training. This design 

greatly enhances reconstruction accuracy, particularly for fields with extensive missing regions. The underlying concept has 

since been extended to climate reconstruction tasks, in which PConv-based models learn spatial structures and nonlinear 

dependencies from large climate datasets, thereby enabling “intelligent” completion of incomplete climate fields (Kadow et 

al., 2020; Zhou et al., 2022; Jiao et al., 2023; Bochow et al., 2025; Ma et al., 2025). Building on these previous efforts, the 95 

present study applies PConv reconstruction framework for global ST anomaly fields. We construct training samples from 

long-term reanalysis products and climate model simulations, and use in situ Antarctic station observations as the primary 

reference. By combining statistical approaches with convolutional neural networks, the methodology seeks to balance model 
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interpretability with nonlinear representation capability. The reconstructed temperature anomaly fields are then 

systematically compared with existing observational and reconstructed products to assess the strengths and limitations of AI-100 

based methods for this application. 

2 Data and methods 

2.1 Data resources 

The China global Merged Surface Temperature (China-MST/C-MST) dataset is an established global ST product (Yun et al., 

2019; Sun et al., 2021, 2022; Li et al., 2020, 2021). The latest version, C-MST3.0, is classified into three variants (C-105 

MST3.0-Nrec, C-MST3.0-Imin and C-MST3.0-Imax) based on the spatial coverage of reconstructed Arctic sea-ice ST (Li et 

al., under review). C-MST3.0 is constructed by combining ST from the China land surface air temperature (LSAT) dataset 

C-LSAT2.1 (Wei et al., 2025) with the Extended Reconstructed Sea Surface Temperature version 6 (ERSSTv6), released by 

NOAA/NCEI (Huang et al., 2025a, 2025b). In this study, LSAT from C-LSAT2.1 are separately merged with the sea surface 

temperature (SST) products ERSSTv6 and the Met Office Hadley Centre's sea surface temperature (HadSST4.1.1.0) dataset 110 

(Kennedy et al., 2019), and the resulting merged datasets, referred to as “Merge-E” and “Merge-H”, are used as the original 

inputs for the AI-based reconstruction. Both datasets provide monthly mean ST from 1850 to 2024. 

In addition, two historical monthly ST datasets are employed to construct training sets for the AI reconstructions. The 

Twentieth Century Reanalysis version 3 (20CR; Slivinski et al., 2019), which provides monthly ST fields for 1850–2015, is 

used to train the “20CR-AI” model, whereas the “Historical” simulations from the Coupled Model Intercomparison Project 115 

Phase 6 (CMIP6), offering monthly ST fields for 1850–2014, are used to train the “CMIP6-AI” model. The 20CR dataset 

contains 80 ensemble members, whereas the CMIP6 dataset contains 105 ensemble members (Table S1). 

To better reconstruct realistic climate conditions over Antarctica, we further employ monthly Antarctic station 

observations. Most stations originate from SCAR READER (Turner et al., 2004), GHCNm v4 (Menne et al., 2018), 

AntAWS (Wang et al., 2023), and GSOD (NCEI, 1999). Additional stations are obtained from the OSU Polar Meteorology 120 

Group (Bromwich et al., 2025b), Météo-France (Météo-France, 2025), the University of Wisconsin-Madison (South Pole 

Meteorology Office, 2025), and the National Institute of Water and Atmospheric Research Ltd (NIWA, 2025). Stations with 

more than 25 valid years during 1961–1990 are selected, yielding a temporal span of 1957–2024. Following Bromwich et al. 

(2025a), necessary gap-filling procedures are applied to the Antarctic station data. Subsequently, homogenization tests are 

performed to eliminate discontinuities caused by station relocations, sensor changes, or other non-climatic shifts. Station 125 

observations are mapped to the corresponding 5°×2.5° grid cells (based on station longitude and latitude) and treated as valid 

data constraints for the reconstruction. Details of the station metadata and temperature anomaly time series are shown in 

Table S2 and Figure S1 in the Supplement. 
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2.2 LSAT and SST merging method 

In this study, we adopted the data merging approach of Yun et al. (2019) to merge LSAT from C-LSAT2.1 separately with 130 

SST from ERSSTv6 and HadSST4. The land–ocean mask used in this process was obtained from the NCAR Command 

Language (NCL) “landsea.nc” mask file (download at: http://www.ncl.ucar.edu/Applications/Data/cdf/landsea.nc, last access: 

23 July 2025). The mask file contains five categories: 0 for ocean, 1 for land, 2 for lake, 3 for small island, and 4 for ice shelf. 

In this study, land, lake, small island, and ice shelf were treated as land, while the other category was considered ocean. Due 

to the relatively low resolution of the reconstructed datasets (5°×2.5°), this merging approach results in some grid cells along 135 

the land–ocean boundaries, particularly along the Antarctica where observational data are sparse, containing only ocean 

information. AI-based reconstruction is influenced by features at the edges of missing data (Liu et al., 2018). To minimize 

the impact of ocean-dominated grid cells along land–ocean boundaries, we reasonably expanded the Antarctic land mask 

relative to the original land–sea mask at the 5°×2.5° scale (Fig. S2). This expansion has negligible effect on the merging 

process in regions with extremely sparse Antarctic observations but allows the AI reconstruction to better capture ST 140 

patterns in the Antarctic coastal and peripheral areas. 

2.3 AI training and reconstruction process 

 
Figure 1: AI training and reconstruction. 
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The PConv method has demonstrated excellent performance in reconstructing globally missing climate data, including ST 145 

anomaly fields, wind fields, and surface solar radiation (Kadow et al., 2020; Zhou et al., 2022; Jiao et al., 2023). The 

underlying principle is to treat the climate field as a two-dimensional image, with missing regions regarded as irregular holes 

to be inpainted. PConv is then trained to learn spatial features from a large set of climate data samples, enabling the 

inference of plausible spatial patterns in the missing regions (Kadow et al., 2020). In this study, the AI reconstruction 

follows a similar approach. The reconstruction workflow is illustrated in Figure 1, and consists of the following steps: 150 

(1) Resolution standardization: All datasets used for training and reconstruction were regridded to a common spatial 

resolution of 5°×2.5°, resulting in a 72×72 grid. 

(2) Sample partitioning: Monthly temperature anomaly fields from 20CR (80 ensemble members) and CMIP6 (105 

ensemble members) for 1850–2015 (2014) relative to the 1961–1990 climatology were divided into training and testing 

sets. One ensemble member was randomly selected as the test set, while the remaining 79 members from 20CR were 155 

used to train the 20CR-AI model, and 104 CMIP6 members were used to train the CMIP6-AI model. 

(3) Training sample construction: The training samples were randomly partitioned, with 8/9 used for model training and 1/9 

for validation. This resulted in 139,883 training samples and 17,485 validation samples for the 20CR-AI model, and 

183,040 training samples and 22,880 validation samples for the CMIP6-AI model. 

(4) Mask configuration: Observational data from Merge-E and Merge-H, covering monthly values from 1850 to 2024, were 160 

used as masks for missing values in the respective reconstruction schemes. Observed grid points were marked as “1” 

and missing grid points as “0”, serving as inputs for model training and validation. 

(5) Model training and fine-tuning: Both AI models were trained for 500,000 iterations with a learning rate of 0.0002, 

followed by an additional 500,000 iterations with a reduced learning rate of 0.00006. The batch size was set to 16, and 

computations were performed on an NVIDIA GeForce RTX 4060 GPU for approximately 8 hours. 165 

2.4 Model Post-Processing 

To ensure comparability across different data sources, all external datasets, including observations, reanalysis products, and 

reconstructed data, were first regridded to a common 72×72 regular grid consistent with the AI reconstruction output, with a 

uniform spatial resolution of 5°×2.5°. All data were converted to ST anomalies relative to the 1961–1990 climatology to 

eliminate differences in the climate reference among datasets. Subsequently, the performance of the AI reconstruction was 170 

systematically evaluated. The primary evaluation metrics included the spatial correlation coefficient and root mean square 

error (RMSE), which were used to assess the consistency and bias of the reconstructed fields relative to reference datasets in 

the spatial domain. Temporal stability and reconstruction accuracy were further examined using annual mean correlation 

coefficients and RMSE time series (Fig. S4, S5 and S6). To comprehensively assess the global applicability and reliability of 

the AI reconstruction, it was compared against multiple representative global temperature datasets, including Berkeley Earth, 175 

HadCRUT5, NOAAGlobalTempv6, C-MST3.0-Imax, and the four reconstruction scenarios in this study (Merge-E 20CR-AI, 

Merge-E CMIP6-AI, Merge-H 20CR-AI, Merge-H CMIP6-AI). The comparison included global annual mean temperature 
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anomaly time series, linear trend estimates, and their statistical significance. In the Antarctica, where observational coverage 

is sparse, targeted evaluation of the AI reconstruction was performed. Reference datasets included the ERA5 reanalysis, 

Berkeley Earth, HadCRUT5, GISTEMPv4, the reconstruction by Bromwich et al. (2025a), and Antarctic ground-based 180 

station observations used in this study. Cross-validation among these multiple data sources was conducted to assess the 

reliability and consistency of the AI reconstruction under conditions of sparse polar observations. 

3 Global Reconstruction Results 

3.1 Characteristics of the Global Reconstruction Results 

 185 
Figure 2: Global temperature anomaly fields before and after reconstruction for four typical months. Merge-E original (a1–a4), 
Merge-E reconstructed with 20CR-AI (b1–b4), Merge-E reconstructed with CMIP6-AI (c1–c4), Merge-H original (d1–d4), Merge-
H reconstructed with 20CR-AI (e1–e4), Merge-H reconstructed with CMIP6-AI (f1–f4). 
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Prior to the 19th century, the C-LSAT2.1 dataset contained substantial missing data in Asia, South America, Africa, and 

Antarctica due to the sparse distribution of land-based stations, and this situation was improved considerably after the 19th 190 

century (Wei et al., 2025). In addition, Antarctic observational stations began recording data progressively after the 

1957/1958 International Geophysical Year; however, observational coverage in Antarctica remains extremely sparse (Wang 

et al., 2023). As shown in Figure S3, the original ERSSTv6 dataset exhibits higher ocean data coverage compared to 

HadSST4. This is because ERSSTv6 employs an ANN reconstruction method, which allows for more accurate and stable 

reconstruction of SST in sparsely observed regions, reduces excessive smoothing, and better preserves spatial variability 195 

(Huang et al., 2025a, 2025b). In contrast, HadSST4 primarily relies on statistical interpolation and ensemble-based methods, 

which aim to correct biases and estimate uncertainties within grid cells, without performing large-scale spatial reconstruction 

(Kennedy et al., 2019). 

Considering the differences between the two SST datasets, this study performed AI-based reconstruction using two 

distinct merged datasets to investigate potential discrepancies under different conditions. Figures 2 (b1–b4, c1–c4, e1–e4, 200 

f1–f4) show the complete temperature anomaly fields reconstructed from Merge-E and Merge-H using the 20CR-AI and 

CMIP6-AI models. The global spatial patterns of the four reconstructed fields are largely consistent across most regions; 

however, in high-latitude areas with extremely sparse early observations, the spatial distributions of Merge-E and Merge-H 

reconstructions show some differences. The reconstruction performance of the model improves as the coverage of original 

valid data in the model validations (Fig. S4, S5 and S6). Compared to Merge-H, Merge-E exhibits higher spatial coverage 205 

and fewer missing gaps in polar regions, particularly over Antarctica and its surrounding seas. This leads to better AI 

reconstruction performance under the Merge-E mask than under Merge-H (Fig. S4 and S6). Visually, the reconstructed fields 

in Antarctica and adjacent regions are smoother in Merge-E than in Merge-H (Fig. 2), indicating that during image 

inpainting, the AI reconstruction is influenced to some extent by the colour, texture, and style features at the edges of 

missing regions in the two different datasets (Liu et al., 2018; Nazeri et al., 2019), thereby leading to distinct reconstructed 210 

features in the early periods when large areas of missing data occur in Merge-E and Merge-H. 

Moreover, the AI reconstruction effectively reproduces characteristic climate events in key years. In particular, the results 

shown in Figures 2 (e1, f1) clearly capture the strong El Niño event of 1877, characterized by significantly positive SST 

anomalies in the central and eastern tropical Pacific and a distinct east–west dipole pattern of warm and cold anomalies 

along the equator, reflecting the typical signal of the El Niño–Southern Oscillation (ENSO). This demonstrates that the 215 

model is capable of reconstructing large-scale spatial patterns and temporal evolution of the temperature field even under 

extremely sparse observational coverage, indicating robust performance and spatial consistency. 
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Figure 3: Global mean temperature anomaly time series from 1850 to 2024 (relative to the 1961–1990 climatology). 

Table 1: Trends of global annual mean surface temperature over different periods and 95% confidence intervals (°C per decade; 220 
The global warming level (GWL) denotes the increase in global mean temperature (°C) in 2024 relative to the 1850–1900 reference 
period).  

Dataset/Period 1850–2024 1900–2024 1950–2024 1979–2024 GWL 

Berkeley Earth 0.070±0.006 0.107±0.008 0.163±0.104 0.206±0.024 1.62 

HadCRUT5 0.065±0.006 0.100±0.008 0.156±0.015 0.203±0.023 1.53 

NOAAGlobalTempv6 0.058±0.006 0.098±0.008 0.155±0.013 0.196±0.024 1.45 

C-MST3.0-Imax 0.061±0.006 0.098±0.008 0.159±0.014 0.210±0.022 1.50 

Merge-E 20CR-AI 0.052±0.007 0.097±0.008 0.157±0.013 0.199±0.023 1.37 

Merge-E CMIP6-AI 0.057±0.007 0.099±0.008 0.157±0.013 0.199±0.023 1.43 

Merge-H 20CR-AI 0.064±0.006 0.105±0.008 0.155±0.014 0.196±0.023 1.45 

Merge-H CMIP6-AI 0.064±0.006 0.101±0.008 0.156±0.014 0.199±0.023 1.52 

 

The Global mean temperature anomaly time series reconstructed by AI is shown in Figure 3, reflecting the long-term 

variations of global mean temperature from 1850 to 2024. The AI reconstruction results from Merge-E and Merge-H exhibit 225 

overall consistent trends; however, certain differences exist during periods with sparse early observations. Prior to the 1890s, 

the global ST anomalies in the Merge-E reconstruction are generally higher than those in the Merge-H reconstruction. Given 
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the significant contribution of SST to global annual mean temperature variability, this difference is mainly attributable to the 

differing SST datasets used in the two reconstructions. PConv rely heavily on the spatial structures present in regions with 

valid observations when reconstructing climate fields containing extensive missing data (Liu et al., 2018; Reichstein et al., 230 

2019; Toms et al., 2020). In the Merge-E scenario, when early land observations are extremely sparse but oceanic grid points 

exhibit relatively complete spatial coverage (Fig. S3), the dominant spatial gradients, covariance structures, and anomaly 

patterns learned by the model during training are inherently governed by the ocean. According to the general properties of 

deep learning, convolutional neural networks preferentially learn the most frequent and statistically stable features in the 

input data (LeCun et al., 2015). Consequently, during 1850–1890, when land observations are limited, the PConv model is 235 

inevitably dominated by oceanic signals during feature extraction. This causes the model to “fill” missing regions with 

spatial structures resembling those of the ocean, which are typically smoother and warmer, thereby producing systematic 

biases in the land driven by ocean-dominated features. Around the 1890s, however, the substantial increase in land-based 

observation stations (Wei et al., 2025) enriches the spatial information over land. As the spatial patterns and variability of 

land anomalies begin to occupy sufficient weight in the training data, the PConv model becomes capable of simultaneously 240 

learning both land and ocean features. This reduces the early-period dominance of oceanic coverage and allows the 

reconstruction to gradually converge toward a more realistic combined land–ocean spatial structure. In the experiments 

described above, the SST product ERSSTv6 in Merge-E already incorporates ANN-based spatial infilling, resulting in 

smoother and more homogeneous oceanic features (Huang et al., 2025a, 2025b). This further amplifies the dominance of 

oceanic characteristics during feature learning. In contrast, in the Merge-H scenario, both land and ocean fields contain 245 

extensive missing data in the early period (Wei et al., 2025; Kennedy et al., 2019), meaning that no single domain provides a 

strong dominant signal. As a result, the PConv model is more likely to learn spatial structures jointly constrained by both the 

land and the ocean domains, thereby reducing the risk of domain-specific biases, particularly biases associated with the 

ocean. Consequently, the Merge-E reconstruction exhibits pronounced overfitting to oceanic structures before the late 

nineteenth century, producing warmer biases and ultimately yielding a lower long-term trend and global warming level 250 

(GWL) than that of Merge-H (Table 1). Based on the above results, we adopt the more physically consistent merging scheme, 

the Merge-H product generated by combining C-LSAT2.1 with HadSST4, as the primary focus of our analysis. 

It is noteworthy that the two AI models show small differences in their long-term reconstructions and trends under the 

Merge-H scenario (Fig. 3, Table 1). For the Merge-H case, the 1850–2024 warming trend produced by both AI 

reconstructions is 0.064 ± 0.006 °C per decade, which is broadly consistent with the trend in HadCRUT5. The GWL 255 

reconstructed by CMIP6-AI reaches 1.52 °C, which is slightly higher than the 1.5 °C estimated from 20CR-AI. This 

indicates that both AI reconstructions from Merge-H suggest that global warming in 2024 has reached 1.5 °C above the 

baseline of 1850–1900. 

At the decadal scale, all reconstruction sequences clearly reproduce the pronounced global warming associated with the 

extreme 1876–1877 El Niño event, which led to the warmest years prior to the 1940s (Huang et al., 2020). From 1850 to the 260 

early 20th century, global mean temperatures remained relatively stable, occasionally interrupted by short-term cooling 
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events associated with enhanced volcanic activity and slight decreases in solar radiation (Fang et al., 2022). Between the 

1910s and 1940s, global mean temperature experienced the first rapid and sustained warming phase of the 20th century, with 

a marked increase in magnitude. From the mid-20th century to the mid-1970s, the warming trend slowed, followed by a 

renewed and significant warming phase starting in the late 1970s, which continues to the present day, reflecting the dominant 265 

influence of anthropogenic greenhouse gas emissions (IPCC, 2013, 2021). It is noteworthy that none of the AI reconstruction 

sequences show a significant "warming slow-down" during 1998–2012, consistent with the findings of Li et al. (2021). 

Overall, the AI reconstruction sequences shown in Figure 3 reasonably reproduce the phased characteristics of global climate 

changes over the past 175 years at the annual scale, further demonstrating the robustness and reliability of the AI framework 

for long-term climate reconstruction. 270 
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3.2 Characteristics of Regional Surface Temperature Changes 

 
Figure 4: Annual mean surface temperature anomaly time series from 1850 to 2024 in different regions under the Merge-H 
Scenario. Asia, Europe, Africa, South America, North America, Oceania, the Northern Hemisphere, and the Southern Hemisphere 
(a–h). Coverage indicates the original data availability in each region. 275 

Global reconstruction of land regions is one of the main focuses of this study. We first analyse the long-term variations of ST 

in different land regions before and after reconstruction (Fig. 4). In this analysis, the original Merge-E dataset is compared 

with its two AI-based reconstructions. Considering the extremely sparse observational coverage over Antarctica, this 

subsection does not discuss the Antarctic region, which will be addressed in detail in Section 4 (Antarctic Reconstruction 

Results). As a reference for reconstruction performance, the effective data coverage of the original datasets in each region is 280 
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also presented. Table 2 provides the linear trends of annual mean ST and their 95% CI for different regions from 1850 to 

2024. 

Table 2: Temperature trends and 95% confidence intervals (CI) in different regions from 1850 to 2024 (°C per decade). 

Region/Dataset Merge-H Original Merge-H 20CR-AI Merge-H CMIP6-AI 

Asia 0.083±0.010 0.090±0.010 0.091±0.010 

Europe 0.094±0.014 0.099±0.014 0.097±0.014 

Africa 0.069±0.009 0.060±0.009 0.074±0.009 

South America 0.068±0.009 0.055±0.010 0.064±0.010 

North America 0.080±0.012 0.080±0.013 0.083±0.012 

Oceania 0.041±0.008 0.035±0.009 0.038±0.008 

NH 0.087±0.010 0.089±0.010 0.097±0.010 

SH 0.054±0.007 0.050±0.008 0.063±0.007 

 

Figure 4 shows that as observational coverage increases, the differences between different reconstruction results decrease 285 

markedly. This feature is particularly evident in regions with increasingly abundant observational data, where the AI-

reconstructed annual variations become more stable. In contrast, in periods or regions with sparse early observations and low 

data coverage, discrepancies among reconstructions are more pronounced. The differences between the two AI 

reconstructions are mainly concentrated in regions such as Africa and South America, where early observations were scarce. 

Due to the large extent of missing data in these areas, which corresponds to large holes in the input images that need to be 290 

filled, the accuracy of the AI reconstructions is significantly affected (Liu et al., 2018). Considering Table 2, the differences 

between the two AI reconstructions are unavoidable in some regions during periods of low early data coverage. For the 

Merge-H reconstruction, the two AI models exhibit slight differences in long-term trends, with 20CR-AI showing a lower 

temperature trend in all regions except Europe compared to CMIP6-AI. However, the trends remain within reasonable ranges 

relative to the pre-reconstruction data. Except for regions with substantial early data gaps, such as Africa, South America, 295 

and Oceania, most AI-reconstructed temperature trends exhibit stronger warming compared with pre-reconstruction trends. 

On long timescales, all regions show significant warming trends, particularly since the 1970s, when the warming rate 

accelerated. Nevertheless, warming is uneven across continents due to differences in response scales and persistence (Li et 

al., 2022). According to Table 2, in the Merge-H reconstruction scenario, Europe experienced the most pronounced warming 

between 1850 and 2024, with trends of 0.099 ± 0.014 and 0.097 ± 0.014 °C per decade, whereas Oceania experienced the 300 

smallest warming, with corresponding trends of 0.035 ± 0.009 and 0.038 ± 0.008 °C per decade. The warming rate in the SH 

is noticeably lower than in the NH. This north–south asymmetry under global warming results from significant differences in 
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land–ocean distribution, with the Southern Ocean absorbing the majority of heat, leading to greater climate inertia in the SH 

(Hansen et al., 2010). 

A comprehensive analysis of regional ST anomaly time series indicates that NH land areas contribute most significantly to 305 

global land warming. Within the NH, Europe, Asia, and North America are the primary contributors. In conditions of 

extremely low data coverage, the both reconstructions inevitably exhibit biases. However, as coverage increases, the AI 

reconstruction experiments show good consistency and stability in these regions. 

3.3 Characteristics of seasonal surface temperature changes 

 310 
Figure 5: Seasonal surface temperature anomaly time series from 1850 to 2024 under the Merge-H scenario. Global winter, spring, 
summer and autumn(a1–a4), Northern Hemisphere winter, spring, summer and autumn (b1–b4), Southern Hemisphere winter, 
spring, summer and autumn (c1–c4). 

The seasonal ST anomaly time series from 1850 to 2024 are shown in Figure 5. It can be seen that all seasons exhibited a 

slight cooling trend prior to the 20th century. The period from the 1910s to 1940s corresponds to the first notable warming 315 

phase, followed by a relatively stable trend in global land temperatures during the 1940s–1970s. Since the late 1970s, global 
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land temperatures have shown a pronounced and rapid warming trend, consistent with the overall global temperature 

changes. 

From the perspective of interannual variability, winter (DJF) temperatures in the NH exhibit the largest interannual 

fluctuations, whereas summer (JJA) shows the smallest variability. This contrast is mainly attributed to the dominance of the 320 

NH. The larger interannual variability in winter land temperatures is associated with a relatively unstable atmospheric 

circulation, enhanced planetary wave activity, and strong snow and sea ice feedbacks, which make land temperatures more 

sensitive to external perturbations. In contrast, the smaller interannual variability in summer is due to the dominance of solar 

radiation, a more stable boundary layer, and land processes such as evapotranspiration and soil moisture that provide thermal 

buffering, thereby reducing the impact of atmospheric disturbances on temperature (Jones et al., 2014). The four seasons in 325 

the SH do not exhibit significant differences in interannual variability, reflecting stronger thermal inertia and lower year-to-

year fluctuations. 

Table 3: Seasonal temperature trends and 95% CI from 1850 to 2024 (°C per decade).  

Season/Dataset Merge-H Original Merge-H 20CR-AI Merge-H CMIP6-AI 

Global 

DJF 0.062±0.007 0.067±0.007 0.068±0.007 

MAM 0.064±0.007 0.067±0.007 0.068±0.007 

JJA 0.057±0.006 0.059±0.007 0.058±0.006 

SON 0.062±0.007 0.063±0.007 0.062±0.006 

NH 

DJF 0.073±0.010 0.084±0.010 0.090±0.010 

MAM 0.071±0.008 0.078±0.008 0.084±0.008 

JJA 0.056±0.008 0.057±0.008 0.062±0.008 

SON 0.070±0.008 0.071±0.009 0.075±0.009 

SH 

DJF 0.051±0.006 0.050±0.006 0.046±0.006 

MAM 0.056±0.006 0.056±0.006 0.051±0.006 

JJA 0.056±0.005 0.061±0.006 0.055±0.006 

SON 0.052±0.006 0.054±0.006 0.049±0.006 

 

As shown in Table 3, the reconstructed global temperature trends are fastest in DJF, with trends of 0.067 ± 0.007 and 330 

0.068 ± 0.007 °C per decade, followed by MAM (0.067 ± 0.007 and 0.068 ± 0.007 °C per decade), while JJA shows the 

slowest warming rate (0.059 ± 0.007 and 0.058 ± 0.006 °C per decade), with the NH contributing the most to the long-term 

warming trend. A further comparison of different AI reconstruction scenarios indicates that CMIP6-AI reconstructions 

generally exhibit slightly higher seasonal temperature trends than the 20CR-AI reconstructions, whereas in the SH the 

former shows lower trends than the latter. Overall, the reconstructed seasonal temperature series capture the major climate 335 
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change features revealed by both observations and models. The slight differences between CMIP6-AI and 20CR-AI 

highlight the importance of the coverage, spatial characteristics, and training samples of the original datasets for AI 

reconstruction performance, providing a reference for further improving multi-source climate data fusion and AI-based 

reconstruction methods. 

4 Antarctic Reconstruction Results 340 

Table 4: Validation between Antarctic station observations and monthly temperature anomalies from AI-reconstructed grid cells 
under two reconstruction schemes (r: correlation coefficient; RMSE: root mean square error, °C) 

Station Latitude Longitude Elevation(m) Coverage 
Merge-H 20CR-AI Merge-H CMIP6-AI 

r RMSE r RMSE 

Dome A －80.4 77.4 4084 2006–2019 0.52 1.28 0.64 1.17 

Drescher －79.2 －19.0 27 1993–2003 0.60 0.72 0.56 0.77 

Ferrel －77.9 170.8 45 2007–2023 0.84 0.65 0.88 0.58 

G3 －70.9 69.9 84 2002–2020 0.49 0.79 0.44 0.81 

GC41 －71.6 111.3 2763 1984–2005 0.80 0.57 0.96 0.43 

General Belgrano －78.0 －38.8 32 1956–1978 0.70 0.76 0.69 0.77 

GF08 －68.5 102.1 2125 1987–2007 0.87 0.46 0.87 0.45 

LG10 －71.3 59.2 2619 1993–2005 0.73 0.43 0.71 0.43 

LG35 －76.0 65.0 2345 1994–2007 0.70 0.51 0.64 0.53 

LG59 －73.5 76.9 2565 1994–2003 0.63 0.45 0.54 0.48 

Mount Siple －73.2 －127.1 230 1993–2006 0.84 0.34 0.84 0.34 

Nordenskiold －73.1 －13.4 497 1995–2019 0.82 0.31 0.81 0.32 

Russkaya －74.7 －136.9 100 1981–1989 0.73 0.66 0.69 0.70 

Thurston Island －72.5 －97.6 225 2011–2021 0.74 0.56 0.85 0.43 

Average (14 stations) 0.72 0.61 0.72 0.59 

 

Among the 81 Antarctic stations used in this study (Table S2 and Fig. S1), the vast majority began recording Antarctic 

climate data after the 1957/1958 International Geophysical Year. Even so, the effective data coverage in Antarctica remained 345 

only around 10% after 1961 (Figure 6a). During model validation for Antarctic data (Fig. S6), the reconstructed results from 

both AI models showed high performance, with correlation coefficients with the test dataset reaching approximately 0.9 and 

RMSE below 1.3 °C after 1961. Due to the scarcity of observational data prior to 1961, validation and assessment of 
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Antarctic data for earlier years are not feasible. Therefore, this study focuses on the systematic validation and analysis of 

Antarctic reconstructed data from 1961 onward. 350 

To better evaluate the performance of the AI models in reconstructing ST over the Antarctic continent since 1961 and to 

ensure the validity of the verification, we selected 14 independent Antarctic stations that were not used in the reconstruction 

and were located outside the effective grid cells. The monthly observed anomalies at these stations were compared with the 

corresponding reconstructed anomalies to assess the consistency and statistically test whether the reconstructions reliably 

reproduced temperature variability (Monaghan et al., 2008; Nicolas et al., 2014; Bromwich et al., 2025a). The results 355 

indicate that most stations exhibit high correlation with the reconstructed grid cell temperature series, with RMSE below 

0.9°C except for Dome A (Table 4). Dome A, located at the highest point of the East Antarctic Plateau, is influenced by 

surface winds controlled by synoptic-scale circulation, and its temperature records can reach extreme lows, making it more 

challenging for the reconstruction method to capture its variability (Scambos et al., 2018). Overall, the average correlation 

between the 14 stations and the two reconstruction schemes is 0.72, with corresponding mean RMSE values of 0.61°C and 360 

0.59°C. Although there are slight differences among the reconstruction schemes, the CMIP6-AI reconstruction performs 

slightly better than the 20CR-AI reconstruction, and both schemes show good agreement with the observational data. 
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Figure 6: Annual mean surface temperature anomaly time series over Antarctica from 1961 to 2024 (a). Linear trend of annual 
mean temperature and 95% confidence interval (°C per decade) during 1961–2024 (b), 1979–2024 (c) and 2001–2024 (d). “*” 365 
indicates data ending in 2022. 

Figure 6 presents the annual mean ST anomalies over the Antarctic continent for 1961–2024, along with the linear 

temperature trends and their 95% CI for three representative periods. To comprehensively evaluate the reliability and 

performance of the AI reconstructions, the results were systematically compared with the arithmetic mean of 81 Antarctic 

observational stations used in this study (Station in Figure 6), the reconstruction from Bromwich et al. (2025a), HadCRUT5, 370 

NOAAGlobalTempv6, Berkeley Earth, and the ERA5 reanalysis product. 

Overall, the AI reconstructions exhibit high consistency with multiple observational and reconstruction products in terms 

of interannual variability. In particular, the reconstructed anomalies closely track the phases of strong cold and warm years, 

indicating that the AI method reliably captures interannual climate signals in the Antarctic region. During 1961–2024, the 
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linear warming trends derived from the two AI reconstruction schemes are 0.078 ± 0.053 and 0.089 ± 0.053°C per decade, 375 

respectively. The trends are similar in magnitude, show minor differences, and are both statistically significant at the 0.05 

level, demonstrating a pronounced warming trend over the Antarctic continent since the 1960s (Fig. 6b). 

Notably, since 1979, the warming trends in the AI reconstructions remain non-significant, consistent with Bromwich and 

NOAAGlobalTempv6, whereas HadCRUT5, Berkeley Earth, and ERA5 still show significant warming trends, in agreement 

with the arithmetic mean of the station data (Station) (Fig. 6c). The higher trend estimates in these products may stem from 380 

biases introduced by statistical and reanalysis methods under sparse observational conditions in polar regions. Previous 

studies indicate that the ERA5 reanalysis system exhibits substantial seasonal biases in near-surface Antarctic temperatures, 

likely due to weak constraints on surface turbulent processes and increased assimilation errors under strong inversions and 

low-friction conditions (Garza-Girón et al., 2024; Yang et al., 2025). Additionally, Berkeley Earth’s spatial statistical 

extrapolation may produce systematic overestimation in high-latitude Antarctica (Rohde et al., 2020), although the exact 385 

contribution of statistical and assimilation methods to these biases remains to be quantified. These results highlight that 

systematic differences among data sources must be carefully considered when assessing long-term climate trends in polar 

regions. 

Since 2001, both the AI reconstructions and all datasets except ERA5 indicate that Antarctic warming is not statistically 

significant (Fig. 6d). During this period of accelerated global mean temperature increase (Fig. 3), no significant warming is 390 

detected over Antarctica, suggesting that internal climate variability continues to exert a stronger influence on Antarctic 

climate than external forcing, warranting further attention. 

Overall, the AI reconstruction results demonstrate reasonable temporal consistency, trend significance, and magnitude of 

variability, validating the feasibility and potential utility of AI-based climate reconstruction for the Antarctic region. 
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 395 
Figure 7: Spatial distribution of Antarctic annual mean surface temperature trends for 1979–2024 (“///” indicates regions where 
the temperature trend is statistically significant at the 0.05 level). 

The spatial pattern of Antarctic temperature change is of critical scientific importance for understanding regional climate 

variability and its potential driving mechanisms. Due to substantial differences in topography, sea ice coverage, circulation 

features, and ocean–atmosphere interactions across the Antarctic continent, temperature changes are not uniformly 400 

distributed but exhibit complex regional responses (Turner et al., 2005, 2019; Marshall, 2003, 2006). Figure 7 presents the 

spatial distribution of ST trends and their statistical significance for 1979–2024 derived from the two AI reconstruction 

schemes, together with the results from other representative datasets. Overall, both AI reconstruction schemes reveal 

significant warming over the Antarctic Peninsula, near the Ronne Ice Shelf, and the northeastern Ross Ice Shelf, while the 

Wilkes Land coast shows significant cooling. These spatial patterns are broadly consistent with the reconstructions of 405 

Bromwich, the NOAAGlobalTempv6 dataset, and reported observations or model simulations in these regions (Vaughan et 

al., 2003; Wang et al., 2025; Darelius et al., 2016; Clem et al., 2020; Sheehan et al., 2024), demonstrating the reliability of 

AI reconstructions in capturing key climate signals in Antarctica. 

In contrast, the ERA5 product exhibits some spatial discrepancies: it shows significant warming near Queen Maud Land 

and west of the Ronne Ice Shelf, whereas cooling along the Wilkes Land coast is not statistically significant. The 410 
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HadCRUT5, Berkeley Earth, and GISTEMPv4 global temperature reconstructions rely on limited ground-based observations 

in Antarctica and extend spatially using different statistical methods (optimal interpolation, EOF, or spatially weighted 

averaging) (Morice et al., 2021; Rohde et al., 2020; Lenssen et al., 2019). As a result, their temperature trend fields are 

smoother and have weaker spatial gradients. All three datasets indicate significant warming over the Antarctic Peninsula, 

with HadCRUT5 and Berkeley Earth also showing extensive warming near the South Pole, while GISTEMPv4 indicates 415 

significant warming east of the Ross Ice Shelf and in eastern Queen Maud Land. Notably, NOAAGlobalTempv6 also shows 

warming in eastern Queen Maud Land, whereas the two AI reconstruction schemes, reconstruction from Bromwich, and 

ERA5 reveal positive but statistically insignificant trends in this region, which lies in the transitional zone of Antarctic 

continental temperature variability. 

In summary, the AI reconstructions successfully capture the main regional temperature trends and their statistical 420 

significance across Antarctica, reflecting climate signals consistent with observations and reanalysis data while exhibiting 

plausible spatial variability in data-sparse areas. This demonstrates that AI-based climate reconstruction not only provides 

high temporal consistency but also possesses strong potential for spatial applications, offering a novel tool for understanding 

Antarctic climate change processes and their underlying drivers. 

5 Limitations and future perspectives 425 

AI reconstruction results exhibit high consistency with existing observational and reconstructed datasets in terms of spatial 

structure, long-term trends, and interannual variability, demonstrating the feasibility and reliability of this AI approach for 

climate reconstruction. However, compared with traditional statistical interpolation or reanalysis models, AI methods still 

present challenges regarding model dependency, physical interpretability, and long-term consistency that warrant further 

investigation. 430 

The AI reconstruction approach employed in this study is based on image inpainting techniques, which treat climate fields 

as two-dimensional images and use PConv to infer missing data from learned spatial features in local neighborhoods. This 

method performs well in mid-latitude and low-latitude regions where spatial continuity is relatively strong, but because the 

computation relies on planar convolution operations, it cannot fully account for the spherical geometry of the Earth. 

Consequently, systematic limitations remain in high-latitude regions. Similarly, Kadow et al. (2020) and Bochow et al. (2025) 435 

highlighted that whether using partial convolution or Fourier convolution, while historical climate fields can be reasonably 

reconstructed, projecting the spherical Earth onto a two-dimensional equidistant grid introduces geometric distortion at high 

latitudes, affecting continuity on the sphere and potentially generating “edge discontinuities” or “artifacts” at the poles or at 

the image seams (at the 0°/360° boundary of the global map). The “artifact” features observed in the edge reconstruction of 

our images support this observation (Fig. 2 and S8). Esteves et al. (2023) reported that scaling spherical convolutional neural 440 

networks (Scaling Spherical CNNs) can directly model data on the sphere, achieving competitive results in weather 

forecasting tasks, demonstrating the potential of spherical convolutional frameworks in atmospheric sciences. However, 

https://doi.org/10.5194/essd-2025-717
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



22 
 

high-resolution global climate reconstruction with such methods remains significantly limited by current GPU memory 

capacity and the high cost of high-performance computing. Overall, balancing spherical geometric accuracy with 

computational feasibility while maintaining global spatial continuity is a key direction for future AI climate reconstruction. 445 

Integrating spherical deep learning structures with physical constraints may enable more realistic and accurate 

reconstructions of polar climate variability. 

The stability of AI reconstruction results largely depends on the spatial patterns of the training samples and the availability 

of original valid data. In this study, models trained on CMIP6 outputs generally captured higher long-term trends than those 

trained on 20CR, particularly, systematic biases also exist between the Merge-E and Merge-H reconstruction schemes. This 450 

indicates that while deep learning methods possess strong nonlinear fitting capabilities, they are constrained by the spatial 

structure and statistical characteristics of the input data. Moreover, we found that when missing regions are excessively large 

and contain no valid data, the AI model’s prior correlation and RMSE deteriorate substantially, as observed in the pre-1961 

polar regions. After introducing station observations post-1961 to increase effective coverage, the prior correlation improved 

and RMSE decreased, particularly for Merge-H, which had larger missing regions than Merge-E (Fig. S6). This finding 455 

emphasizes that while AI reconstruction can generate plausible climate fields under sparse observational conditions, 

sufficient image information or spatial constraints are required. Because the AI model does not explicitly include energy 

conservation or atmospheric dynamics constraints, extrapolations to data-sparse regions, such as early periods and polar 

regions, heavily rely on surrounding temperature spatial patterns, that is, the edge features of the missing regions (Liu et al., 

2018). Thus, land–ocean boundaries, complex terrain, and extensive missing-data areas are major sources of AI 460 

reconstruction errors. Future studies may improve reconstructions by incorporating terrain corrections, adjusting land–ocean 

weighting, introducing local dynamical parameterizations, or using physics-informed loss functions. Furthermore, combining 

AI’s ability to capture nonlinear features and local spatial patterns with the interpretability, computational transparency, and 

uncertainty quantification advantages of statistical methods, forming “AI plus physics-driven” or “AI plus statistical fusion” 

frameworks, may represent a promising direction for climate reconstruction. 465 

AI method demonstrates strong potential and scalability in climate reconstruction, yet its application in modeling and 

reconstructing climate systems remains an evolving area. The physical consistency and long-term stability of current AI 

reconstruction outputs still require further validation under more stringent constraints. Future research should incorporate 

climate dynamics and energy balance constraints while preserving the nonlinear fitting advantages of deep learning to ensure 

interpretability and generalizability in complex climate contexts. With continued advancement in high-performance 470 

computing and climate big data, AI reconstruction methods may achieve higher resolution and stronger constraint global 

climate field reconstructions. By integrating spherical neural networks, physical information, and multi-source data fusion 

frameworks, future AI reconstruction systems could more accurately reproduce climate evolution in data-sparse regions, 

supporting studies on polar amplification, local climate change, and data monitoring, detection, and evaluation. Overall, AI 

is expected to play an increasingly important role in climate science, providing a robust technological foundation for 475 

understanding past and projecting future global and regional climate change. 
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6 Data availability 

The C-AIRSTR/M datasets are publicly available on the website at https://doi.org/10.6084/m9.figshare.30663797.v1 (Ouyang 

et al., 2025). They can also be accessed at http://www.gwpu.net/en/h-col-103.html (last access: 21 November 2025) for free.  

7 Code availability 480 

The code utilized in this project can be downloaded here or cloned here at https://github.com/FREVA-

CLINT/climatereconstructionAI. 

8 Conclusions 

This study employed an AI model (PConv) to reconstruct global ST fields from two fused observational datasets. The results 

demonstrate that the AI reconstruction shows high consistency with multiple representative climate datasets in terms of 485 

interannual variability, long-term temperature trends, and spatial patterns, validating the effectiveness and reliability of deep 

learning-based image inpainting approaches for climate reconstruction tasks. A comprehensive comparison of the global 

mean ST time series derived from different reconstruction schemes in this study indicates that the datasets exhibit largely 

consistent long-term trends. In particular, for Antarctica after 1961, the AI reconstruction aligns well with both observational 

and reanalysis data, indicating that the AI-based approach provides reliable support for reconstructing continuous global ST 490 

fields since the mid-19th century. The main conclusions of this study are as follows: 

(1) Convolutional neural network-based image inpainting can effectively fill global temperature data gaps. Both the 20CR-

AI and CMIP6-AI models, which are trained on large-sample datasets, produced satisfactory reconstruction results. The 

differences between the two models in reconstruction quality and trend estimation are minor, demonstrating good 

generalization and stability. Reconstruction performance improves significantly with increased data coverage, 495 

highlighting the importance of data completeness for model performance. 

(2) AI reconstructions provide a novel tool for climate system research. Compared with traditional statistical interpolation 

and reanalysis products, the AI method has advantages in capturing complex spatial structures and nonlinear changes. It 

can restore large-scale temperature anomaly patterns such as those associated with ENSO, and generate physically 

reasonable, fully covered climate fields even in data-sparse regions. 500 

(3) High reliability of Antarctic AI reconstructions after 1961. Although the effective data coverage in Antarctica is only 

around 10% after 1961, the AI models achieve correlation coefficients of approximately 0.9 and RMSE values generally 

below 1.3°C in this region. The reconstructed sequences show strong consistency with previous studies in both temporal 

evolution and spatial distribution, indicating that deep learning models can effectively recover ST variations in high-

latitude regions with sparse observations when sufficient climate information is present. 505 
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(4) Consistent long-term trends across different AI models in global and Antarctic regions. The 20CR-AI reconstructions 

show slightly lower global temperature trends than CMIP6-AI, but both reveal that 19th-century temperature anomalies 

were generally lower, with a slow cooling trend from the mid-19th century to the early 20th century. Since the mid-20th 

century, particularly during the satellite era, global temperatures have increased significantly, and no pronounced 

“warming hiatus” has been detected since 1998. In Antarctica, surface temperatures have shown a gradual warming 510 

trend since 1961, statistically significant at the 0.05 level, with strong warming particularly evident over the Antarctic 

Peninsula, Ronne Ice Shelf, Ross Ice Shelf, and surrounding regions. 

Based on the Merge-H AI reconstruction schemes, this study developed spatially complete global monthly ST anomaly 

datasets for 1850–2024 with a spatial resolution of 5°×2.5°, termed the China global Artificial Intelligence Reconstructed 

Surface Temperature20CR/CMIP6 (C-AIRSTR/M) datasets, which are reconstructed independently using the 20CR-AI and 515 

CMIP6-AI schemes based on the merged C-LSAT2.1 and HadSST4. Both datasets exhibit high temporal and spatial 

continuity, providing a solid foundation for extending long-term climate records, assessing polar climate change, and 

supporting climate monitoring, detection, and attribution. Overall, this study demonstrates the potential and application value 

of AI in climate data reconstruction. With further advancements in deep learning, physics-informed learning, and high-

performance computing, future AI-based climate reconstruction frameworks are expected to achieve breakthroughs in global 520 

continuity and high resolution, offering more robust scientific support for understanding the evolution of the Earth’s climate 

system. 
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