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Abstract. Accurate estimates of long-term surface temperature (ST) changes are fundamental not only for assessing
observed warming, but also for improving the reliability of future climate projections. However, substantial missing
information in global ST datasets, remains a major source of uncertainty in estimating global or regional temperature
changes. Recent advances in artificial intelligence (Al) have promoted the effective application of deep learning approaches,
such as image inpainting and transfer learning, in reconstructing incomplete geophysical datasets. In this study, partial
convolutional neural network (PConv) models were trained using the 20CR reanalysis data and CMIP6 climate model
outputs as training samples, with the aim of achieving a proper reconstruction of the global surface temperature dataset. To
address differences among existing sea surface temperature (SST) datasets, we reconstruct global monthly ST fields since
1850 by merging the China global Land Surface Air Temperature (C-LSAT2.1) dataset with Extended Reconstructed Sea
Surface Temperature (ERSSTv6) dataset and Met Office Hadley Centre's sea surface temperature (HadSST4) dataset,
respectively. Although both reconstructions reliably reproduce large-scale spatial patterns and long-term variations, the
merge of C-LSAT2.1 with HadSST4 exhibits greater physical consistency and is therefore adopted as our preferred
reconstruction. In particular, validation against station observations indicates that the reconstructions perform well over the
Antarctica after 1961, where observational coverage is extremely sparse. Based on this framework, we developed the China
global Artificial Intelligence Reconstructed Surface Temperaturesocricmirs (C-AIRSTrm) datasets, providing spatially
complete global monthly ST anomaly reconstructions since 1850 with a spatial resolution of 5°x2.5°. These datasets offer
improved support for extending long-term climate records and for applications in polar climate assessment, as well as in
climate monitoring, detection, and attribution studies. The C-AIRSTrnm datasets can be downloaded at
https://doi.org/10.6084/m9.figshare.30663797.vl  (Ouyang et al., 2025). They are also available from
http://www.gwpu.net/en/h-col-103.html (last access: 21 November 2025).

1 Introduction

Global surface temperature (ST) is one of the most fundamental variables in the climate system, directly reflecting the state

of the Earth's energy balance, it plays a central role in the monitoring and assessment of climate change (IPCC, 2013, 2021).
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Although sporadic surface temperature (ST) observations have been available since the late seventeenth century, continuous
observational datasets capable of representing global-scale ST variability did not emerge until the mid-nineteenth century
(Cowtan and Way, 2014; Jones, 2016). The sparse distribution of observation sites introduces uncertainties in estimates of
both global and regional climate changes (Katz et al., 2013; Karl et al., 2015; Huang et al., 2017; Li et al., 2021, 2022; Sun et
al., 2021, 2022). Because the number of meteorological sensors and stations is limited, it is difficult to derive globally
representative conclusions directly from observational records. Therefore, developing effective approaches to reconstruct
global climate information has become particularly necessary (Vose et al., 2021; Morice et al., 2021).The evolution of the
atmosphere and ocean follows the fundamental physical laws of mass, momentum, and energy conservation, these
constraints imply that the climate field exhibits a certain degree of spatial and temporal continuity and predictability, and
based on these properties, it is possible to infer missing information through statistical or dynamical relationships even in
regions with sparse observations (Lorenz, 1963; Trenberth et al., 2003). Consequently, researchers have employed various
methods to reconstruct missing climate information, including smoothing and interpolation techniques (Rayner et al., 2003;
Vose et al., 2012; Lenssen et al., 2019; Li et al., 2021), principal component analysis (PCA) and its variants such as
empirical orthogonal teleconnection (EOT) (Huang et al., 2017; Sun et al., 2021, 2022), and data-interpolating empirical
orthogonal functions (DINEOF) (Beckers et al., 2003; Huang et al., 2017). These methods have played an important role in
filling missing values and extracting climate signals from noisy data (Beckers et al., 2003; Wang and Clow, 2020). However,
missing information inevitably introduces uncertainties and structural biases. The propagation of observational errors,
inconsistencies among reanalysis products, and the inherent limitations of interpolation assumptions can all affect the
reliability of reconstruction results (Huang et al., 2017; Morice et al., 2021). These issues are particularly pronounced in
regions such as Africa, South America, and Antarctica, where sparse observations and harsh environmental conditions pose
greater challenges for traditional reconstruction methods.

The Antarctica holds an irreplaceable position in the global climate system, and its enormous glacier masses store a
substantial portion of the world’s freshwater and play a major role in determining future sea level change (IPCC, 2013). At
the same time, this region’s radiation budget and the complex interactions among ice, atmosphere, and ocean exert profound
influences on the atmospheric circulation of the Southern Hemisphere (SH) and the global energy balance (Kennicutt et al.,
2019). Consequently, accurately characterizing the spatiotemporal variations of ST over Antarctica is essential for assessing
the polar amplification effect, diagnosing changes in ice sheet mass balance, and improving the performance of global
climate models. However, due to its extreme geographical conditions, harsh climate, and logistical and communication
constraints, observational data from Antarctica remain extremely scarce and temporally uneven. Since the International
Geophysical Year (1957/1958), national research programs have gradually established an automatic weather station (AWS)
network across the Antarctica, providing valuable data for long-term climate monitoring (Jones et al., 2019; Wang et al.,
2023). Nevertheless, most of these stations are concentrated along the coastal regions and near research bases, while
observations over the interior plateau remain sparse. As a result, observation-based regional temperature fields often hard to

capture the overall spatial structure of ST variability (Bromwich et al. 2025a). Against this background, Antarctic
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temperature reconstruction has become a major focus of polar climate research. Researchers have commonly adopted multi-
source data fusion strategies that integrate limited in situ observations with reanalysis and satellite remote sensing products,
using statistical and machine learning methods for spatial and temporal interpolation or extrapolation. For instance, Nicolas
et al. (2014) and Bromwich et al. (2025a) applied ordinary kriging with different datasets as weights to spatially extrapolate
Antarctic ST, effectively mitigating the problem of sparse observational coverage. Ma et al. (2025) reconstructed the
Antarctic temperature field using a deep learning model. Nielsen et al. (2023) improved the spatiotemporal consistency of
polar temperature estimates by calibrating MODIS land/ice ST against AWS observations through linear regression.
Moreover, Xie et al. (under review) combined limited in situ station data with MODIS ST retrievals within a Bayesian
framework, reproducing the evolution of Antarctic climate variability since the beginning of this century. Despite these
advances, Antarctic temperature reconstruction still faces considerable challenges. Systematic biases exist among different
data sources, and reanalysis products often show substantial uncertainties at high latitudes. Satellite observations are
significantly affected by cloud cover and complex topography, while traditional statistical interpolation methods struggle to
fully capture nonlinear spatial structures (Wang et al., 2023; Wang et al., 2025; Bromwich et al., 2025; Ma et al., 2025).
Therefore, developing reliable methods to reconstruct Antarctic surface air temperature under limited observational
constraints remains one of the central scientific challenges in polar climate reconstruction research.

At present, a relatively mature technical framework for global ST reconstruction has been developed. The Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2021) includes five observational ST products:
HadCRUTS, NOAAGlobalTemp-Interim, GISTEMPv4, Berkeley Earth, and China-MST-Interim. These datasets apply
various reconstruction or interpolation methods to generate homogenized global ST records with as complete a spatial
coverage as possible (Morice et al., 2021; Vose et al., 2021; Lenssen et al., 2019; Rohde, 2020; Sun et al., 2021). With the
rapid development of artificial intelligence (Al), deep learning has created new opportunities in atmospheric science (Liu et
al., 2018; Ham et al., 2019; Kadow et al., 2020; Irrgang et al., 2021). For example, NOAAGlobalTempv6 incorporates an
artificial neural network (ANN) to extend data coverage and update the dataset to a globally complete product (Yin et al.,
2024). Bochow et al. (2025) applied fast Fourier convolution to fill missing values in HadCRUT4, while Plésiat et al. (2024)
examined the ability of partial convolution-based networks to reproduce historical spatial patterns of climate extremes.
Partial convolutional networks (PConv), originally proposed by Liu et al. (2018) for image inpainting, perform convolution
operations using only valid (non-missing) pixels and dynamically update the validity mask during training. This design
greatly enhances reconstruction accuracy, particularly for fields with extensive missing regions. The underlying concept has
since been extended to climate reconstruction tasks, in which PConv-based models learn spatial structures and nonlinear
dependencies from large climate datasets, thereby enabling “intelligent” completion of incomplete climate fields (Kadow et
al., 2020; Zhou et al., 2022; Jiao et al., 2023; Bochow et al., 2025; Ma et al., 2025). Building on these previous efforts, the
present study applies PConv reconstruction framework for global ST anomaly fields. We construct training samples from
long-term reanalysis products and climate model simulations, and use in situ Antarctic station observations as the primary

reference. By combining statistical approaches with convolutional neural networks, the methodology seeks to balance model
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interpretability with nonlinear representation capability. The reconstructed temperature anomaly fields are then
systematically compared with existing observational and reconstructed products to assess the strengths and limitations of Al-

based methods for this application.

2 Data and methods
2.1 Data resources

The China global Merged Surface Temperature (China-MST/C-MST) dataset is an established global ST product (Yun et al.,
2019; Sun et al., 2021, 2022; Li et al., 2020, 2021). The latest version, C-MST3.0, is classified into three variants (C-
MST3.0-Nrec, C-MST3.0-Imin and C-MST3.0-Imax) based on the spatial coverage of reconstructed Arctic sea-ice ST (Li et
al., under review). C-MST?3.0 is constructed by combining ST from the China land surface air temperature (LSAT) dataset
C-LSAT2.1 (Wei et al., 2025) with the Extended Reconstructed Sea Surface Temperature version 6 (ERSSTv6), released by
NOAA/NCEI (Huang et al., 2025a, 2025b). In this study, LSAT from C-LSAT2.1 are separately merged with the sea surface
temperature (SST) products ERSSTv6 and the Met Office Hadley Centre's sea surface temperature (HadSST4.1.1.0) dataset
(Kennedy et al., 2019), and the resulting merged datasets, referred to as “Merge-E” and “Merge-H”, are used as the original
inputs for the Al-based reconstruction. Both datasets provide monthly mean ST from 1850 to 2024.

In addition, two historical monthly ST datasets are employed to construct training sets for the Al reconstructions. The
Twentieth Century Reanalysis version 3 (20CR; Slivinski et al., 2019), which provides monthly ST fields for 1850-2015, is
used to train the “20CR-AI” model, whereas the “Historical” simulations from the Coupled Model Intercomparison Project
Phase 6 (CMIP6), offering monthly ST fields for 1850-2014, are used to train the “CMIP6-AI” model. The 20CR dataset
contains 80 ensemble members, whereas the CMIP6 dataset contains 105 ensemble members (Table S1).

To better reconstruct realistic climate conditions over Antarctica, we further employ monthly Antarctic station
observations. Most stations originate from SCAR READER (Turner et al., 2004), GHCNm v4 (Menne et al., 2018),
AntAWS (Wang et al., 2023), and GSOD (NCEI, 1999). Additional stations are obtained from the OSU Polar Meteorology
Group (Bromwich et al., 2025b), Météo-France (Météo-France, 2025), the University of Wisconsin-Madison (South Pole
Meteorology Office, 2025), and the National Institute of Water and Atmospheric Research Ltd (NIWA, 2025). Stations with
more than 25 valid years during 1961-1990 are selected, yielding a temporal span of 1957-2024. Following Bromwich et al.
(2025a), necessary gap-filling procedures are applied to the Antarctic station data. Subsequently, homogenization tests are
performed to eliminate discontinuities caused by station relocations, sensor changes, or other non-climatic shifts. Station
observations are mapped to the corresponding 5°x2.5° grid cells (based on station longitude and latitude) and treated as valid
data constraints for the reconstruction. Details of the station metadata and temperature anomaly time series are shown in

Table S2 and Figure S1 in the Supplement.
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2.2 LSAT and SST merging method

130 In this study, we adopted the data merging approach of Yun et al. (2019) to merge LSAT from C-LSAT2.1 separately with
SST from ERSSTv6 and HadSST4. The land—ocean mask used in this process was obtained from the NCAR Command
Language (NCL) “landsea.nc” mask file (download at: http://www.ncl.ucar.edu/Applications/Data/cdf/landsea.nc, last access:
23 July 2025). The mask file contains five categories: 0 for ocean, 1 for land, 2 for lake, 3 for small island, and 4 for ice shelf.
In this study, land, lake, small island, and ice shelf were treated as land, while the other category was considered ocean. Due

135  to the relatively low resolution of the reconstructed datasets (5°%2.5°), this merging approach results in some grid cells along
the land—ocean boundaries, particularly along the Antarctica where observational data are sparse, containing only ocean
information. Al-based reconstruction is influenced by features at the edges of missing data (Liu et al., 2018). To minimize
the impact of ocean-dominated grid cells along land—ocean boundaries, we reasonably expanded the Antarctic land mask
relative to the original land—sea mask at the 5°x2.5° scale (Fig. S2). This expansion has negligible effect on the merging

140 process in regions with extremely sparse Antarctic observations but allows the Al reconstruction to better capture ST

patterns in the Antarctic coastal and peripheral areas.

2.3 Al training and reconstruction process
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Figure 1: Al training and reconstruction.
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The PConv method has demonstrated excellent performance in reconstructing globally missing climate data, including ST
anomaly fields, wind fields, and surface solar radiation (Kadow et al., 2020; Zhou et al., 2022; Jiao et al., 2023). The
underlying principle is to treat the climate field as a two-dimensional image, with missing regions regarded as irregular holes
to be inpainted. PConv is then trained to learn spatial features from a large set of climate data samples, enabling the
inference of plausible spatial patterns in the missing regions (Kadow et al., 2020). In this study, the AI reconstruction
follows a similar approach. The reconstruction workflow is illustrated in Figure 1, and consists of the following steps:

(1) Resolution standardization: All datasets used for training and reconstruction were regridded to a common spatial
resolution of 5°x2.5°, resulting in a 72x72 grid.

(2) Sample partitioning: Monthly temperature anomaly fields from 20CR (80 ensemble members) and CMIP6 (105
ensemble members) for 1850-2015 (2014) relative to the 1961-1990 climatology were divided into training and testing
sets. One ensemble member was randomly selected as the test set, while the remaining 79 members from 20CR were
used to train the 20CR-AI model, and 104 CMIP6 members were used to train the CMIP6-AI model.

(3) Training sample construction: The training samples were randomly partitioned, with 8/9 used for model training and 1/9
for validation. This resulted in 139,883 training samples and 17,485 validation samples for the 20CR-AI model, and
183,040 training samples and 22,880 validation samples for the CMIP6-AI model.

(4) Mask configuration: Observational data from Merge-E and Merge-H, covering monthly values from 1850 to 2024, were
used as masks for missing values in the respective reconstruction schemes. Observed grid points were marked as “1”
and missing grid points as “0”, serving as inputs for model training and validation.

(5) Model training and fine-tuning: Both Al models were trained for 500,000 iterations with a learning rate of 0.0002,
followed by an additional 500,000 iterations with a reduced learning rate of 0.00006. The batch size was set to 16, and
computations were performed on an NVIDIA GeForce RTX 4060 GPU for approximately 8 hours.

2.4 Model Post-Processing

To ensure comparability across different data sources, all external datasets, including observations, reanalysis products, and
reconstructed data, were first regridded to a common 72x72 regular grid consistent with the Al reconstruction output, with a
uniform spatial resolution of 5°%2.5°. All data were converted to ST anomalies relative to the 1961-1990 climatology to
eliminate differences in the climate reference among datasets. Subsequently, the performance of the Al reconstruction was
systematically evaluated. The primary evaluation metrics included the spatial correlation coefficient and root mean square
error (RMSE), which were used to assess the consistency and bias of the reconstructed fields relative to reference datasets in
the spatial domain. Temporal stability and reconstruction accuracy were further examined using annual mean correlation
coefficients and RMSE time series (Fig. S4, S5 and S6). To comprehensively assess the global applicability and reliability of
the Al reconstruction, it was compared against multiple representative global temperature datasets, including Berkeley Earth,
HadCRUTS, NOAAGIlobalTempv6, C-MST3.0-Imax, and the four reconstruction scenarios in this study (Merge-E 20CR-AI,
Merge-E CMIP6-Al, Merge-H 20CR-AI, Merge-H CMIP6-AI). The comparison included global annual mean temperature

6
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anomaly time series, linear trend estimates, and their statistical significance. In the Antarctica, where observational coverage

is sparse, targeted evaluation of the Al reconstruction was performed. Reference datasets included the ERAS5 reanalysis,

Berkeley Earth, HadCRUTS, GISTEMPv4, the reconstruction by Bromwich et al. (2025a), and Antarctic ground-based

station observations used in this study. Cross-validation among these multiple data sources was conducted to assess the

reliability and consistency of the Al reconstruction under conditions of sparse polar observations.

3 Global Reconstruction Results

3.1 Characteristics of the Global Reconstruction Results
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Figure 2: Global temperature anomaly fields before and after reconstruction for four typical months. Merge-E original (al-a4),
Merge-E reconstructed with 20CR-AI (b1-b4), Merge-E reconstructed with CMIP6-AI (c1-c4), Merge-H original (d1-d4), Merge-
H reconstructed with 20CR-AI (e1-e4), Merge-H reconstructed with CMIP6-AI (f1-4).
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Prior to the 19th century, the C-LSAT2.1 dataset contained substantial missing data in Asia, South America, Africa, and
Antarctica due to the sparse distribution of land-based stations, and this situation was improved considerably after the 19th
century (Wei et al., 2025). In addition, Antarctic observational stations began recording data progressively after the
1957/1958 International Geophysical Year; however, observational coverage in Antarctica remains extremely sparse (Wang
et al.,, 2023). As shown in Figure S3, the original ERSSTv6 dataset exhibits higher ocean data coverage compared to
HadSST4. This is because ERSSTv6 employs an ANN reconstruction method, which allows for more accurate and stable
reconstruction of SST in sparsely observed regions, reduces excessive smoothing, and better preserves spatial variability
(Huang et al., 2025a, 2025b). In contrast, HadSST4 primarily relies on statistical interpolation and ensemble-based methods,
which aim to correct biases and estimate uncertainties within grid cells, without performing large-scale spatial reconstruction
(Kennedy et al., 2019).

Considering the differences between the two SST datasets, this study performed Al-based reconstruction using two
distinct merged datasets to investigate potential discrepancies under different conditions. Figures 2 (b1-b4, cl—c4, el—e4,
f1-f4) show the complete temperature anomaly fields reconstructed from Merge-E and Merge-H using the 20CR-AI and
CMIP6-AI models. The global spatial patterns of the four reconstructed fields are largely consistent across most regions;
however, in high-latitude areas with extremely sparse early observations, the spatial distributions of Merge-E and Merge-H
reconstructions show some differences. The reconstruction performance of the model improves as the coverage of original
valid data in the model validations (Fig. S4, S5 and S6). Compared to Merge-H, Merge-E exhibits higher spatial coverage
and fewer missing gaps in polar regions, particularly over Antarctica and its surrounding seas. This leads to better Al
reconstruction performance under the Merge-E mask than under Merge-H (Fig. S4 and S6). Visually, the reconstructed fields
in Antarctica and adjacent regions are smoother in Merge-E than in Merge-H (Fig. 2), indicating that during image
inpainting, the Al reconstruction is influenced to some extent by the colour, texture, and style features at the edges of
missing regions in the two different datasets (Liu et al., 2018; Nazeri et al., 2019), thereby leading to distinct reconstructed
features in the early periods when large areas of missing data occur in Merge-E and Merge-H.

Moreover, the Al reconstruction effectively reproduces characteristic climate events in key years. In particular, the results
shown in Figures 2 (el, f1) clearly capture the strong El Nifio event of 1877, characterized by significantly positive SST
anomalies in the central and eastern tropical Pacific and a distinct east-west dipole pattern of warm and cold anomalies
along the equator, reflecting the typical signal of the El Nifio—Southern Oscillation (ENSO). This demonstrates that the
model is capable of reconstructing large-scale spatial patterns and temporal evolution of the temperature field even under

extremely sparse observational coverage, indicating robust performance and spatial consistency.
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Figure 3: Global mean temperature anomaly time series from 1850 to 2024 (relative to the 1961-1990 climatology).

220 Table 1: Trends of global annual mean surface temperature over different periods and 95% confidence intervals (°C per decade;
The global warming level (GWL) denotes the increase in global mean temperature (°C) in 2024 relative to the 1850—1900 reference

period).

Dataset/Period 1850-2024 19002024 1950-2024 1979-2024 GWL
Berkeley Earth 0.070%£0.006 0.107£0.008 0.163£0.104 0.206+0.024 1.62
HadCRUTS 0.065+0.006 0.100£0.008 0.156£0.015 0.203+0.023 1.53
NOAAGIobalTempv6 0.058£0.006 0.098 £0.008 0.155+0.013 0.196+0.024 1.45
C-MST3.0-Imax 0.061£0.006 0.098 £0.008 0.159+0.014 0.210£0.022 1.50
Merge-E 20CR-AI 0.052+0.007 0.097£0.008 0.157£0.013 0.199+0.023 1.37
Merge-E CMIP6-AI 0.057£0.007 0.099+0.008 0.157£0.013 0.199+0.023 1.43
Merge-H 20CR-AI 0.064+0.006 0.105%0.008 0.155+0.014 0.196+0.023 1.45
Merge-H CMIP6-Al 0.064+0.006 0.101£0.008 0.156+0.014 0.199+0.023 1.52

The Global mean temperature anomaly time series reconstructed by Al is shown in Figure 3, reflecting the long-term

225  variations of global mean temperature from 1850 to 2024. The Al reconstruction results from Merge-E and Merge-H exhibit
overall consistent trends; however, certain differences exist during periods with sparse early observations. Prior to the 1890s,

the global ST anomalies in the Merge-E reconstruction are generally higher than those in the Merge-H reconstruction. Given
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the significant contribution of SST to global annual mean temperature variability, this difference is mainly attributable to the
differing SST datasets used in the two reconstructions. PConv rely heavily on the spatial structures present in regions with
valid observations when reconstructing climate fields containing extensive missing data (Liu et al., 2018; Reichstein et al.,
2019; Toms et al., 2020). In the Merge-E scenario, when early land observations are extremely sparse but oceanic grid points
exhibit relatively complete spatial coverage (Fig. S3), the dominant spatial gradients, covariance structures, and anomaly
patterns learned by the model during training are inherently governed by the ocean. According to the general properties of
deep learning, convolutional neural networks preferentially learn the most frequent and statistically stable features in the
input data (LeCun et al., 2015). Consequently, during 1850—1890, when land observations are limited, the PConv model is
inevitably dominated by oceanic signals during feature extraction. This causes the model to “fill” missing regions with
spatial structures resembling those of the ocean, which are typically smoother and warmer, thereby producing systematic
biases in the land driven by ocean-dominated features. Around the 1890s, however, the substantial increase in land-based
observation stations (Wei et al., 2025) enriches the spatial information over land. As the spatial patterns and variability of
land anomalies begin to occupy sufficient weight in the training data, the PConv model becomes capable of simultaneously
learning both land and ocean features. This reduces the early-period dominance of oceanic coverage and allows the
reconstruction to gradually converge toward a more realistic combined land—ocean spatial structure. In the experiments
described above, the SST product ERSSTv6 in Merge-E already incorporates ANN-based spatial infilling, resulting in
smoother and more homogeneous oceanic features (Huang et al., 2025a, 2025b). This further amplifies the dominance of
oceanic characteristics during feature learning. In contrast, in the Merge-H scenario, both land and ocean fields contain
extensive missing data in the early period (Wei et al., 2025; Kennedy et al., 2019), meaning that no single domain provides a
strong dominant signal. As a result, the PConv model is more likely to learn spatial structures jointly constrained by both the
land and the ocean domains, thereby reducing the risk of domain-specific biases, particularly biases associated with the
ocean. Consequently, the Merge-E reconstruction exhibits pronounced overfitting to oceanic structures before the late
nineteenth century, producing warmer biases and ultimately yielding a lower long-term trend and global warming level
(GWL) than that of Merge-H (Table 1). Based on the above results, we adopt the more physically consistent merging scheme,
the Merge-H product generated by combining C-LSAT2.1 with HadSST4, as the primary focus of our analysis.

It is noteworthy that the two Al models show small differences in their long-term reconstructions and trends under the
Merge-H scenario (Fig. 3, Table 1). For the Merge-H case, the 1850-2024 warming trend produced by both Al
reconstructions is 0.064 £ 0.006 °C per decade, which is broadly consistent with the trend in HadCRUTS. The GWL
reconstructed by CMIP6-AI reaches 1.52 °C, which is slightly higher than the 1.5 °C estimated from 20CR-AI. This
indicates that both Al reconstructions from Merge-H suggest that global warming in 2024 has reached 1.5 °C above the
baseline of 1850—-1900.

At the decadal scale, all reconstruction sequences clearly reproduce the pronounced global warming associated with the
extreme 1876—1877 El Nifio event, which led to the warmest years prior to the 1940s (Huang et al., 2020). From 1850 to the

early 20th century, global mean temperatures remained relatively stable, occasionally interrupted by short-term cooling
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events associated with enhanced volcanic activity and slight decreases in solar radiation (Fang et al., 2022). Between the
1910s and 1940s, global mean temperature experienced the first rapid and sustained warming phase of the 20th century, with
a marked increase in magnitude. From the mid-20th century to the mid-1970s, the warming trend slowed, followed by a
265 renewed and significant warming phase starting in the late 1970s, which continues to the present day, reflecting the dominant
influence of anthropogenic greenhouse gas emissions (IPCC, 2013, 2021). It is noteworthy that none of the Al reconstruction
sequences show a significant "warming slow-down" during 1998-2012, consistent with the findings of Li et al. (2021).
Overall, the Al reconstruction sequences shown in Figure 3 reasonably reproduce the phased characteristics of global climate
changes over the past 175 years at the annual scale, further demonstrating the robustness and reliability of the Al framework

270 for long-term climate reconstruction.
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3.2 Characteristics of Regional Surface Temperature Changes
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Figure 4: Annual mean surface temperature anomaly time series from 1850 to 2024 in different regions under the Merge-H
Scenario. Asia, Europe, Africa, South America, North America, Oceania, the Northern Hemisphere, and the Southern Hemisphere
(a—h). Coverage indicates the original data availability in each region.

Global reconstruction of land regions is one of the main focuses of this study. We first analyse the long-term variations of ST

in different land regions before and after reconstruction (Fig. 4). In this analysis, the original Merge-E dataset is compared

with its two Al-based reconstructions. Considering the extremely sparse observational coverage over Antarctica, this

subsection does not discuss the Antarctic region, which will be addressed in detail in Section 4 (Antarctic Reconstruction

280 Results). As a reference for reconstruction performance, the effective data coverage of the original datasets in each region is
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also presented. Table 2 provides the linear trends of annual mean ST and their 95% CI for different regions from 1850 to
2024.
Table 2: Temperature trends and 95% confidence intervals (CI) in different regions from 1850 to 2024 (°C per decade).

Region/Dataset Merge-H Original Merge-H 20CR-AI Merge-H CMIP6-AI
Asia 0.083+0.010 0.090+0.010 0.0911+0.010
Europe 0.0941+0.014 0.099+0.014 0.0971+0.014
Africa 0.069+0.009 0.06040.009 0.074+0.009
South America 0.068+0.009 0.05540.010 0.0641+0.010
North America 0.080+0.012 0.080+0.013 0.083+0.012
Oceania 0.04110.008 0.03540.009 0.038+0.008
NH 0.08710.010 0.08940.010 0.0971+0.010
SH 0.054+0.007 0.05040.008 0.063+0.007

Figure 4 shows that as observational coverage increases, the differences between different reconstruction results decrease
markedly. This feature is particularly evident in regions with increasingly abundant observational data, where the Al-
reconstructed annual variations become more stable. In contrast, in periods or regions with sparse early observations and low
data coverage, discrepancies among reconstructions are more pronounced. The differences between the two Al
reconstructions are mainly concentrated in regions such as Africa and South America, where early observations were scarce.
Due to the large extent of missing data in these areas, which corresponds to large holes in the input images that need to be
filled, the accuracy of the Al reconstructions is significantly affected (Liu et al., 2018). Considering Table 2, the differences
between the two Al reconstructions are unavoidable in some regions during periods of low early data coverage. For the
Merge-H reconstruction, the two Al models exhibit slight differences in long-term trends, with 20CR-AI showing a lower
temperature trend in all regions except Europe compared to CMIP6-Al. However, the trends remain within reasonable ranges
relative to the pre-reconstruction data. Except for regions with substantial early data gaps, such as Africa, South America,
and Oceania, most Al-reconstructed temperature trends exhibit stronger warming compared with pre-reconstruction trends.

On long timescales, all regions show significant warming trends, particularly since the 1970s, when the warming rate
accelerated. Nevertheless, warming is uneven across continents due to differences in response scales and persistence (Li et
al., 2022). According to Table 2, in the Merge-H reconstruction scenario, Europe experienced the most pronounced warming
between 1850 and 2024, with trends of 0.099 + 0.014 and 0.097 + 0.014 °C per decade, whereas Oceania experienced the
smallest warming, with corresponding trends of 0.035 £ 0.009 and 0.038 + 0.008 °C per decade. The warming rate in the SH

is noticeably lower than in the NH. This north—south asymmetry under global warming results from significant differences in
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land—ocean distribution, with the Southern Ocean absorbing the majority of heat, leading to greater climate inertia in the SH
(Hansen et al., 2010).

A comprehensive analysis of regional ST anomaly time series indicates that NH land areas contribute most significantly to
global land warming. Within the NH, Europe, Asia, and North America are the primary contributors. In conditions of
extremely low data coverage, the both reconstructions inevitably exhibit biases. However, as coverage increases, the Al

reconstruction experiments show good consistency and stability in these regions.

3.3 Characteristics of seasonal surface temperature changes
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Figure 5: Seasonal surface temperature anomaly time series from 1850 to 2024 under the Merge-H scenario. Global winter, spring,
summer and autumn(al-a4), Northern Hemisphere winter, spring, summer and autumn (b1-b4), Southern Hemisphere winter,
spring, summer and autumn (c1-c4).

The seasonal ST anomaly time series from 1850 to 2024 are shown in Figure 5. It can be seen that all seasons exhibited a
slight cooling trend prior to the 20th century. The period from the 1910s to 1940s corresponds to the first notable warming
phase, followed by a relatively stable trend in global land temperatures during the 1940s—1970s. Since the late 1970s, global
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land temperatures have shown a pronounced and rapid warming trend, consistent with the overall global temperature
changes.

From the perspective of interannual variability, winter (DJF) temperatures in the NH exhibit the largest interannual
fluctuations, whereas summer (JJA) shows the smallest variability. This contrast is mainly attributed to the dominance of the
NH. The larger interannual variability in winter land temperatures is associated with a relatively unstable atmospheric
circulation, enhanced planetary wave activity, and strong snow and sea ice feedbacks, which make land temperatures more
sensitive to external perturbations. In contrast, the smaller interannual variability in summer is due to the dominance of solar
radiation, a more stable boundary layer, and land processes such as evapotranspiration and soil moisture that provide thermal
buffering, thereby reducing the impact of atmospheric disturbances on temperature (Jones et al., 2014). The four seasons in
the SH do not exhibit significant differences in interannual variability, reflecting stronger thermal inertia and lower year-to-
year fluctuations.

Table 3: Seasonal temperature trends and 95% CI from 1850 to 2024 (°C per decade).

Season/Dataset Merge-H Original Merge-H 20CR-AI Merge-H CMIP6-AI

DIJF 0.062+0.007 0.067+0.007 0.068+0.007

MAM 0.064+0.007 0.067+0.007 0.068+0.007

Global

JJA 0.05710.006 0.059+0.007 0.058+0.006

SON 0.062+0.007 0.063+0.007 0.06210.006

DJF 0.07340.010 0.084+0.010 0.0901+0.010

MAM 0.07140.008 0.078+0.008 0.084+0.008

i JJA 0.05640.008 0.05740.008 0.062+0.008
SON 0.07040.008 0.07140.009 0.07540.009

DJF 0.05140.006 0.05040.006 0.046+0.006

MAM 0.056+0.006 0.0561+0.006 0.05110.006

> JJA 0.05640.005 0.06110.006 0.05540.006
SON 0.05240.006 0.05410.006 0.04910.006

As shown in Table 3, the reconstructed global temperature trends are fastest in DJF, with trends of 0.067 £ 0.007 and
0.068 + 0.007 °C per decade, followed by MAM (0.067 £+ 0.007 and 0.068 £+ 0.007 °C per decade), while JJA shows the
slowest warming rate (0.059 = 0.007 and 0.058 + 0.006 °C per decade), with the NH contributing the most to the long-term
warming trend. A further comparison of different Al reconstruction scenarios indicates that CMIP6-AI reconstructions
generally exhibit slightly higher seasonal temperature trends than the 20CR-Al reconstructions, whereas in the SH the

former shows lower trends than the latter. Overall, the reconstructed seasonal temperature series capture the major climate
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change features revealed by both observations and models. The slight differences between CMIP6-AI and 20CR-AI
highlight the importance of the coverage, spatial characteristics, and training samples of the original datasets for Al
reconstruction performance, providing a reference for further improving multi-source climate data fusion and Al-based

reconstruction methods.

4 Antarctic Reconstruction Results

Table 4: Validation between Antarctic station observations and monthly temperature anomalies from Al-reconstructed grid cells
under two reconstruction schemes (r: correlation coefficient; RMSE: root mean square error, °C)

Merge-H 20CR-AI Merge-H CMIP6-AI

Station Latitude Longitude Elevation(m) Coverage
r RMSE r RMSE

Dome A —80.4 77.4 4084 2006-2019  0.52 1.28 0.64 1.17
Drescher —79.2 —19.0 27 1993-2003  0.60 0.72 0.56 0.77
Ferrel =779 170.8 45 2007-2023  0.84 0.65 0.88 0.58
G3 —70.9 69.9 84 2002-2020  0.49 0.79 0.44 0.81
GC41 —71.6 111.3 2763 1984-2005  0.80 0.57 0.96 0.43
General Belgrano  —78.0 —38.8 32 1956-1978  0.70 0.76 0.69 0.77
GFO08 —68.5 102.1 2125 1987-2007  0.87 0.46 0.87 0.45
LG10 —71.3 59.2 2619 1993-2005  0.73 0.43 0.71 0.43
LG35 —76.0 65.0 2345 1994-2007  0.70 0.51 0.64 0.53
LG59 —73.5 76.9 2565 1994-2003  0.63 0.45 0.54 0.48
Mount Siple —73.2 —127.1 230 1993-2006  0.84 0.34 0.84 0.34
Nordenskiold —73.1 —13.4 497 1995-2019  0.82 0.31 0.81 0.32
Russkaya —74.7 —136.9 100 1981-1989  0.73 0.66 0.69 0.70
Thurston Island —72.5 —97.6 225 2011-2021  0.74 0.56 0.85 0.43
Average (14 stations) 0.72 0.61 0.72 0.59

Among the 81 Antarctic stations used in this study (Table S2 and Fig. S1), the vast majority began recording Antarctic
climate data after the 1957/1958 International Geophysical Year. Even so, the effective data coverage in Antarctica remained
only around 10% after 1961 (Figure 6a). During model validation for Antarctic data (Fig. S6), the reconstructed results from
both Al models showed high performance, with correlation coefficients with the test dataset reaching approximately 0.9 and

RMSE below 1.3 °C after 1961. Due to the scarcity of observational data prior to 1961, validation and assessment of
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Antarctic data for earlier years are not feasible. Therefore, this study focuses on the systematic validation and analysis of
Antarctic reconstructed data from 1961 onward.

To better evaluate the performance of the Al models in reconstructing ST over the Antarctic continent since 1961 and to
ensure the validity of the verification, we selected 14 independent Antarctic stations that were not used in the reconstruction
and were located outside the effective grid cells. The monthly observed anomalies at these stations were compared with the
corresponding reconstructed anomalies to assess the consistency and statistically test whether the reconstructions reliably
reproduced temperature variability (Monaghan et al., 2008; Nicolas et al., 2014; Bromwich et al., 2025a). The results
indicate that most stations exhibit high correlation with the reconstructed grid cell temperature series, with RMSE below
0.9°C except for Dome A (Table 4). Dome A, located at the highest point of the East Antarctic Plateau, is influenced by
surface winds controlled by synoptic-scale circulation, and its temperature records can reach extreme lows, making it more
challenging for the reconstruction method to capture its variability (Scambos et al., 2018). Overall, the average correlation
between the 14 stations and the two reconstruction schemes is 0.72, with corresponding mean RMSE values of 0.61°C and
0.59°C. Although there are slight differences among the reconstruction schemes, the CMIP6-Al reconstruction performs

slightly better than the 20CR-AI reconstruction, and both schemes show good agreement with the observational data.
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Figure 6: Annual mean surface temperature anomaly time series over Antarctica from 1961 to 2024 (a). Linear trend of annual
mean temperature and 95% confidence interval (°C per decade) during 1961-2024 (b), 1979-2024 (c) and 2001-2024 (d). “*”
indicates data ending in 2022.

Figure 6 presents the annual mean ST anomalies over the Antarctic continent for 1961-2024, along with the linear
temperature trends and their 95% CI for three representative periods. To comprehensively evaluate the reliability and
performance of the Al reconstructions, the results were systematically compared with the arithmetic mean of 81 Antarctic
observational stations used in this study (Station in Figure 6), the reconstruction from Bromwich et al. (2025a), HadCRUTS,
NOAAGIobalTempv6, Berkeley Earth, and the ERAS reanalysis product.

Overall, the Al reconstructions exhibit high consistency with multiple observational and reconstruction products in terms
of interannual variability. In particular, the reconstructed anomalies closely track the phases of strong cold and warm years,

indicating that the Al method reliably captures interannual climate signals in the Antarctic region. During 1961-2024, the
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linear warming trends derived from the two Al reconstruction schemes are 0.078 + 0.053 and 0.089 + 0.053°C per decade,
respectively. The trends are similar in magnitude, show minor differences, and are both statistically significant at the 0.05
level, demonstrating a pronounced warming trend over the Antarctic continent since the 1960s (Fig. 6b).

Notably, since 1979, the warming trends in the Al reconstructions remain non-significant, consistent with Bromwich and
NOAAGIobalTempv6, whereas HadCRUTS, Berkeley Earth, and ERAS still show significant warming trends, in agreement
with the arithmetic mean of the station data (Station) (Fig. 6¢). The higher trend estimates in these products may stem from
biases introduced by statistical and reanalysis methods under sparse observational conditions in polar regions. Previous
studies indicate that the ERAS reanalysis system exhibits substantial seasonal biases in near-surface Antarctic temperatures,
likely due to weak constraints on surface turbulent processes and increased assimilation errors under strong inversions and
low-friction conditions (Garza-Girén et al., 2024; Yang et al., 2025). Additionally, Berkeley Earth’s spatial statistical
extrapolation may produce systematic overestimation in high-latitude Antarctica (Rohde et al., 2020), although the exact
contribution of statistical and assimilation methods to these biases remains to be quantified. These results highlight that
systematic differences among data sources must be carefully considered when assessing long-term climate trends in polar
regions.

Since 2001, both the Al reconstructions and all datasets except ERAS indicate that Antarctic warming is not statistically
significant (Fig. 6d). During this period of accelerated global mean temperature increase (Fig. 3), no significant warming is
detected over Antarctica, suggesting that internal climate variability continues to exert a stronger influence on Antarctic
climate than external forcing, warranting further attention.

Overall, the Al reconstruction results demonstrate reasonable temporal consistency, trend significance, and magnitude of

variability, validating the feasibility and potential utility of Al-based climate reconstruction for the Antarctic region.
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Figure 7: Spatial distribution of Antarctic annual mean surface temperature trends for 1979-2024 ( “///” indicates regions where
the temperature trend is statistically significant at the 0.05 level).

The spatial pattern of Antarctic temperature change is of critical scientific importance for understanding regional climate
variability and its potential driving mechanisms. Due to substantial differences in topography, sea ice coverage, circulation
features, and ocean—atmosphere interactions across the Antarctic continent, temperature changes are not uniformly
distributed but exhibit complex regional responses (Turner et al., 2005, 2019; Marshall, 2003, 2006). Figure 7 presents the
spatial distribution of ST trends and their statistical significance for 1979-2024 derived from the two Al reconstruction
schemes, together with the results from other representative datasets. Overall, both Al reconstruction schemes reveal
significant warming over the Antarctic Peninsula, near the Ronne Ice Shelf, and the northeastern Ross Ice Shelf, while the
Wilkes Land coast shows significant cooling. These spatial patterns are broadly consistent with the reconstructions of
Bromwich, the NOAAGlobalTempv6 dataset, and reported observations or model simulations in these regions (Vaughan et
al., 2003; Wang et al., 2025; Darelius et al., 2016; Clem et al., 2020; Sheehan et al., 2024), demonstrating the reliability of
Al reconstructions in capturing key climate signals in Antarctica.

In contrast, the ERAS product exhibits some spatial discrepancies: it shows significant warming near Queen Maud Land

and west of the Ronne Ice Shelf, whereas cooling along the Wilkes Land coast is not statistically significant. The
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HadCRUTS, Berkeley Earth, and GISTEMPv4 global temperature reconstructions rely on limited ground-based observations
in Antarctica and extend spatially using different statistical methods (optimal interpolation, EOF, or spatially weighted
averaging) (Morice et al., 2021; Rohde et al., 2020; Lenssen et al., 2019). As a result, their temperature trend fields are
smoother and have weaker spatial gradients. All three datasets indicate significant warming over the Antarctic Peninsula,
with HadCRUTS and Berkeley Earth also showing extensive warming near the South Pole, while GISTEMPv4 indicates
significant warming east of the Ross Ice Shelf and in eastern Queen Maud Land. Notably, NOAAGlobalTempv6 also shows
warming in eastern Queen Maud Land, whereas the two Al reconstruction schemes, reconstruction from Bromwich, and
ERAS reveal positive but statistically insignificant trends in this region, which lies in the transitional zone of Antarctic
continental temperature variability.

In summary, the Al reconstructions successfully capture the main regional temperature trends and their statistical
significance across Antarctica, reflecting climate signals consistent with observations and reanalysis data while exhibiting
plausible spatial variability in data-sparse areas. This demonstrates that Al-based climate reconstruction not only provides
high temporal consistency but also possesses strong potential for spatial applications, offering a novel tool for understanding

Antarctic climate change processes and their underlying drivers.

5 Limitations and future perspectives

Al reconstruction results exhibit high consistency with existing observational and reconstructed datasets in terms of spatial
structure, long-term trends, and interannual variability, demonstrating the feasibility and reliability of this Al approach for
climate reconstruction. However, compared with traditional statistical interpolation or reanalysis models, Al methods still
present challenges regarding model dependency, physical interpretability, and long-term consistency that warrant further
investigation.

The Al reconstruction approach employed in this study is based on image inpainting techniques, which treat climate fields
as two-dimensional images and use PConv to infer missing data from learned spatial features in local neighborhoods. This
method performs well in mid-latitude and low-latitude regions where spatial continuity is relatively strong, but because the
computation relies on planar convolution operations, it cannot fully account for the spherical geometry of the Earth.
Consequently, systematic limitations remain in high-latitude regions. Similarly, Kadow et al. (2020) and Bochow et al. (2025)
highlighted that whether using partial convolution or Fourier convolution, while historical climate fields can be reasonably
reconstructed, projecting the spherical Earth onto a two-dimensional equidistant grid introduces geometric distortion at high
latitudes, affecting continuity on the sphere and potentially generating “edge discontinuities” or “artifacts” at the poles or at
the image seams (at the 0°/360° boundary of the global map). The “artifact” features observed in the edge reconstruction of
our images support this observation (Fig. 2 and S8). Esteves et al. (2023) reported that scaling spherical convolutional neural
networks (Scaling Spherical CNNs) can directly model data on the sphere, achieving competitive results in weather

forecasting tasks, demonstrating the potential of spherical convolutional frameworks in atmospheric sciences. However,
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high-resolution global climate reconstruction with such methods remains significantly limited by current GPU memory
capacity and the high cost of high-performance computing. Overall, balancing spherical geometric accuracy with
computational feasibility while maintaining global spatial continuity is a key direction for future Al climate reconstruction.
Integrating spherical deep learning structures with physical constraints may enable more realistic and accurate
reconstructions of polar climate variability.

The stability of Al reconstruction results largely depends on the spatial patterns of the training samples and the availability
of original valid data. In this study, models trained on CMIP6 outputs generally captured higher long-term trends than those
trained on 20CR, particularly, systematic biases also exist between the Merge-E and Merge-H reconstruction schemes. This
indicates that while deep learning methods possess strong nonlinear fitting capabilities, they are constrained by the spatial
structure and statistical characteristics of the input data. Moreover, we found that when missing regions are excessively large
and contain no valid data, the Al model’s prior correlation and RMSE deteriorate substantially, as observed in the pre-1961
polar regions. After introducing station observations post-1961 to increase effective coverage, the prior correlation improved
and RMSE decreased, particularly for Merge-H, which had larger missing regions than Merge-E (Fig. S6). This finding
emphasizes that while Al reconstruction can generate plausible climate fields under sparse observational conditions,
sufficient image information or spatial constraints are required. Because the Al model does not explicitly include energy
conservation or atmospheric dynamics constraints, extrapolations to data-sparse regions, such as early periods and polar
regions, heavily rely on surrounding temperature spatial patterns, that is, the edge features of the missing regions (Liu et al.,
2018). Thus, land—ocean boundaries, complex terrain, and extensive missing-data areas are major sources of Al
reconstruction errors. Future studies may improve reconstructions by incorporating terrain corrections, adjusting land—ocean
weighting, introducing local dynamical parameterizations, or using physics-informed loss functions. Furthermore, combining
Al’s ability to capture nonlinear features and local spatial patterns with the interpretability, computational transparency, and
uncertainty quantification advantages of statistical methods, forming “Al plus physics-driven” or “Al plus statistical fusion”
frameworks, may represent a promising direction for climate reconstruction.

Al method demonstrates strong potential and scalability in climate reconstruction, yet its application in modeling and
reconstructing climate systems remains an evolving area. The physical consistency and long-term stability of current Al
reconstruction outputs still require further validation under more stringent constraints. Future research should incorporate
climate dynamics and energy balance constraints while preserving the nonlinear fitting advantages of deep learning to ensure
interpretability and generalizability in complex climate contexts. With continued advancement in high-performance
computing and climate big data, Al reconstruction methods may achieve higher resolution and stronger constraint global
climate field reconstructions. By integrating spherical neural networks, physical information, and multi-source data fusion
frameworks, future AI reconstruction systems could more accurately reproduce climate evolution in data-sparse regions,
supporting studies on polar amplification, local climate change, and data monitoring, detection, and evaluation. Overall, Al
is expected to play an increasingly important role in climate science, providing a robust technological foundation for

understanding past and projecting future global and regional climate change.
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6 Data availability

The C-AIRSTr/m datasets are publicly available on the website at https://doi.org/10.6084/m9.figshare.30663797.v1 (Ouyang
et al., 2025). They can also be accessed at http://www.gwpu.net/en/h-col-103.html (last access: 21 November 2025) for free.

7 Code availability

The code utilized in this project can be downloaded here or cloned here at https:/github.com/FREVA-
CLINT/climatereconstructionAl.

8 Conclusions

This study employed an Al model (PConv) to reconstruct global ST fields from two fused observational datasets. The results
demonstrate that the AI reconstruction shows high consistency with multiple representative climate datasets in terms of
interannual variability, long-term temperature trends, and spatial patterns, validating the effectiveness and reliability of deep
learning-based image inpainting approaches for climate reconstruction tasks. A comprehensive comparison of the global
mean ST time series derived from different reconstruction schemes in this study indicates that the datasets exhibit largely
consistent long-term trends. In particular, for Antarctica after 1961, the Al reconstruction aligns well with both observational
and reanalysis data, indicating that the Al-based approach provides reliable support for reconstructing continuous global ST
fields since the mid-19th century. The main conclusions of this study are as follows:

(1) Convolutional neural network-based image inpainting can effectively fill global temperature data gaps. Both the 20CR-
Al and CMIP6-AI models, which are trained on large-sample datasets, produced satisfactory reconstruction results. The
differences between the two models in reconstruction quality and trend estimation are minor, demonstrating good
generalization and stability. Reconstruction performance improves significantly with increased data coverage,
highlighting the importance of data completeness for model performance.

(2) AI reconstructions provide a novel tool for climate system research. Compared with traditional statistical interpolation
and reanalysis products, the Al method has advantages in capturing complex spatial structures and nonlinear changes. It
can restore large-scale temperature anomaly patterns such as those associated with ENSO, and generate physically
reasonable, fully covered climate fields even in data-sparse regions.

(3) High reliability of Antarctic Al reconstructions after 1961. Although the effective data coverage in Antarctica is only
around 10% after 1961, the Al models achieve correlation coefficients of approximately 0.9 and RMSE values generally
below 1.3°C in this region. The reconstructed sequences show strong consistency with previous studies in both temporal
evolution and spatial distribution, indicating that deep learning models can effectively recover ST variations in high-

latitude regions with sparse observations when sufficient climate information is present.
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(4) Consistent long-term trends across different AI models in global and Antarctic regions. The 20CR-AI reconstructions
show slightly lower global temperature trends than CMIP6-AI, but both reveal that 19th-century temperature anomalies
were generally lower, with a slow cooling trend from the mid-19th century to the early 20th century. Since the mid-20th
century, particularly during the satellite era, global temperatures have increased significantly, and no pronounced
“warming hiatus” has been detected since 1998. In Antarctica, surface temperatures have shown a gradual warming
trend since 1961, statistically significant at the 0.05 level, with strong warming particularly evident over the Antarctic
Peninsula, Ronne Ice Shelf, Ross Ice Shelf, and surrounding regions.

Based on the Merge-H Al reconstruction schemes, this study developed spatially complete global monthly ST anomaly
datasets for 1850-2024 with a spatial resolution of 5°%2.5°, termed the China global Artificial Intelligence Reconstructed
Surface Temperaturesocriomips (C-AIRSTrm) datasets, which are reconstructed independently using the 20CR-AI and
CMIP6-AI schemes based on the merged C-LSAT2.1 and HadSST4. Both datasets exhibit high temporal and spatial
continuity, providing a solid foundation for extending long-term climate records, assessing polar climate change, and
supporting climate monitoring, detection, and attribution. Overall, this study demonstrates the potential and application value
of Al in climate data reconstruction. With further advancements in deep learning, physics-informed learning, and high-
performance computing, future Al-based climate reconstruction frameworks are expected to achieve breakthroughs in global
continuity and high resolution, offering more robust scientific support for understanding the evolution of the Earth’s climate

system.
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